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Fractional Inflow of New Opinions

Vygintas Gontis

Institute of Theoretical Physics and Astronomy, Vilnius University, Saulétekio al. 3, 10257 Vilnius, Lithuania; vygintas@gontis.eu

Abstract: Our recent analysis of empirical limit order flow data in financial markets reveals a power-law distribu-
tion in limit order cancellation times. These times are modeled using a discrete probability mass function derived
from the Tsallis g-exponential distribution, closely aligned with the second form of the Pareto distribution. We
elucidate this distinctive power-law statistical property through the lens of agent heterogeneity in trading activity
and asset possession. Our study introduces a novel modeling approach that combines fractional Lévy stable
motion for limit order inflow with this power-law distribution for cancellation times, significantly enhancing
the prediction of order imbalances. This model not only addresses gaps in current financial market modeling
but also extends to broader contexts such as opinion dynamics in social systems, capturing the finite lifespan
of opinions. Characterized by stationary increments and a departure from self-similarity, our model provides
a unique framework for exploring long-range dependencies in time series. This work paves the way for more
precise financial market analyses and offers new insights into the dynamic nature of opinion formation in social

systems.

Keywords: time series and signal analysis; discrete stochastic dynamics; scaling in socio-economic systems;

fractional dynamics; quantitative finance

1. Introduction

The debate within the scientific community regarding power-law behavior in social and physical
systems has been long-standing [1,2]. Typically, power-law behavior is observed at the macro level
of a system, prompting researchers to seek microscopic interpretations of these phenomena. Mathe-
matically, the power-law is unique in its satisfaction of the scale-free property p(bx) = f(b)p(x) [1],
establishing a close relationship between the self-similarity of stochastic processes and power-law
behavior [3]. This statistical property is a characteristic feature of both social and financial systems.
Measures of long-range memory based on self-similarity are often ambiguous, as Markov processes
with power-law statistical properties can exhibit long-range memory, including slowly decaying auto-
correlation [4-12]. Financial markets, in particular, provide empirical limit order book (LOB) data that
exhibit these power-law statistical properties [13].

From the perspective of econophysics, it is essential to provide microscopic interpretations of
econometric models that typically serve as macroscopic descriptions of complex social systems. These
models frequently rely on assumptions of self-similarity and long-range dependence. To deepen
our understanding of long-range memory in social systems, it is crucial to integrate macroscopic
modeling with empirical analyses. In our prior review [14], we questioned whether the observed
long-range memory in social systems arises from true long-range memory processes or merely from
the non-linearity inherent in Markov processes.

In this contribution, we demonstrate the critical role of assumptions regarding fractional Lévy
stable motion (FLSM) and illustrate how a straightforward model of opinion dynamics can challenge
these assumptions. Our proposed model is empirically grounded on the order imbalance time series
from financial markets [15,16]. Empirical data from order books reveal that market order flows exhibit
long-range persistence, a behavior attributed to the order-splitting actions of individual traders [17].
This finding supports the existence of genuine long-range memory in financial systems, recently
confirmed by a comprehensive investigation [18]. The order-splitting behavior of traders should be
evident in the sequence of submitted limit orders.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Section 2 provides a brief overview of the limit order time series, serving as the foundation
for a broader interpretation of opinion dynamics. In Section 3, we present a model of power-law
waiting times arising from a system of heterogeneous agents. Section 4 offers evidence of the broken
self-similarity assumption when opinion cancellation is included in the model. Finally, we discuss our
results and offer conclusions in Section 5.

2. Modeling Limit Order Flow and/or Opinion Dynamics

In our recent work [15], we analyzed the sequence of limit order submissions to the market,

denoted as X (j):
J ]
X (j) =Y vi=)_ Yi(i), 1
i=1 i=1

where v; represents the volume of the submitted limit order. We examined X (j) through the lens of
fractional Lévy stable motion (FLSM), as the probability density functions (PDFs) of order volumes
v; exhibit power-law tails. We documented fluctuations in the memory parameter for various stocks,
finding values in the range d ~ 0.19 < 0.34. Despite the rough approximation of the PDF of volumes v;
by the Lévy stable distribution, the time series X[ (j) can be considered FLSM-like.

The series X[ (j) serves as a macroscopic measure of opinion in the order flow, exhibiting long-
range dependence due to the heterogeneity of agents. However, a more comprehensive measure of
traders’ macro opinion should incorporate events of order cancellation and execution. Therefore, we
explore an alternative sequence of order flow:

X() = ¥ onp =Y Y0), )
i=1

i<j<i2

where the first sum includes all live limit orders, encompassing all limit order volumes v;; ;, submitted
before event j and awaiting cancellation or execution. A sequence of limit order submissions of
length N generates a series of order imbalance X(j) of length 2N, as each submission pairs with a
cancellation or execution event. Notably, X () differs significantly from X (j): X(j) is bounded while
XL(j) is unbounded. Additionally, our evaluation of the memory parameter d for X(j) using FLSM
assumptions yielded contradictory results. Our previous work [15] concluded that the time series
defined in (2) does not exhibit FLSM-like properties. Consequently, persistent limit order submission
flow or long-range dependence is concealed from econometric methods when analyzing the time series
of order imbalance X(j).

To reinterpret the order imbalance series X(j), we introduce a discrete g-exponential probability
mass function:

N
N

-, )

—q

Pag(k) = SPyg(k = 1) = SPyg(k) = (14 (g = 1) (k=1)A) 7 — (1 + (9 — 1)kA)

<

=

as a g-extension of the geometric distribution, based on the generalized Tsallis statistics [19]. This dis-
tribution fits empirical limit order cancellation times more accurately, revealing their weak sensitivity
to order sizes and price levels. The fitted parameters, A = 0.3, and 4 = 1.5, remain consistent across
the ten stocks and trading days analyzed. The power-law distribution of cancellation (waiting) times
may stem from a stochastic queuing model where tasks are executed based on a continuous-valued
priority [20,21]. In Section 3, we derive the power-law of waiting time originating from an alternative
agent heterogeneity approach.

We propose a relatively simple model of limit order flow imbalance by combining fractional
Lévy stable limit order inflow with the g-exponential lifetime distribution. This model, derived from
empirical analysis [15], serves as an illustrative example of broader social system modeling.

Extending the model’s interpretation, we consider it a version of opinion dynamics applicable
to other social systems. Originally, the model involves two random sequences: (a) A sequence of
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limit order volumes v; generated as ARFIMA({0,d,0}{«, N}, where d is the memory parameter, « is the
stability index, and N is the sequence length. (b) A corresponding independent sequence of limit order
cancellation times with the same length N generated using the PMF P, ,(k) defined in Equation (3).

For the extended model interpretation, v; represents the opinion weight, positive for a buy (first
one) and negative for a sell (second one). The limit order cancellation time, measured in event space
k = i2 — i1, represents the opinion lifetime. While initially designed for analyzing financial market
order flow, this extended interpretation can investigate other instances of weighted opinions in social
systems. This model exemplifies a simple time series constructed using an ARFIMA sequence, yet
exhibiting properties beyond the assumption of self-similarity.

With these independent sequences, we calculate the model time series X (j) = Y.} Y (i) defined
by sequence v;; j» (see Equation (2)). Here, the opinion submission event number i1 and its cancellation
event number i2 are determined for each v; of sequence (a) and the corresponding k of sequence (b).
The generated random sequence represents an artificial analog of the order imbalance time series,
comparable with empirical order flow data in financial markets [15]. We achieved good correspondence
with empirical data by choosing the artificial model parameters: « = 1.8; A = 0.3; 4 = 1.5 [15]. For
other applications, the model can be simplified by replacing the sequence v; with unit weights:

-1 ifv; <0
vu; = Sign(v;) = < 0 ifv; =0. (4)
1 ifv; >0

We denote these series with an additional index S, for example, Xs(j). Another simplification involves
choosing g = 1 in Equation (3), yielding a geometric distribution:

lim P (k) = exp~ exp® =1) = (1= p)'p, ®)

where p = 1 — exp~*. The geometric distribution, as a discrete version of the exponential distribution,
is a common choice for waiting times in many physical and social systems.

3. Heterogeneity of Agents and Power-Law of Waiting Time

While power-law waiting times are observed in stochastic queueing models with continuous-
valued priorities [20,21], another plausible explanation for this phenomenon could be the heterogeneity
of trading agents. In financial markets, agents manage a diverse range of assets, leading to substantial
variability in their trading activities and the lifetimes of their orders. To address this, we propose a
model that combines agent heterogeneity to derive a power-law distribution for limit order cancellation
times.

Consider n categories of agents, each with different rates for limit order submission and can-
cellation. The lowest rate is one limit order per trading day (the duration of the time series under
investigation). Let denote this probability as 0 < p; = 7/n < 1. Agents who submit two orders per
day have a probability p» = 27/n, and agents submitting i limit orders have a probability p; = iy /n.
The most active traders, who submit # limit orders, have a probability p,, = 7.

Under this framework, the waiting (cancellation) time for agents in the i-th category follows a
geometric distribution with the probability mass function (PMF) given by P;(k) = (1 — p;)¥~!p;. To
obtain the overall PMF for the ensemble of agents, we average this distribution over all categories.
According to our assumptions, the arrival probability of orders from different agent categories is
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proportional to the index i, and the number of agents in each category is inversely proportional, Zipf’s
law. Thus, the PMF for the entire ensemble of agents can be expressed as:

n i ‘ “yi/n* ~ Elexp

i=1
_ n(nexp(—n(k—1)) = (1L n)exp(—y(k—1) + 151 +exp(UE2))

U

Py ) (6)

)
n2(1 = exp(15H))2
To understand the result given by Eq. (7), consider the limit as n — oo:

o0 n(k—1)2 ’

which reveals a power-law with an exponent ¥ = 2. This power-law nature is illustrated in Figure 1,
alongside partial sums defined by:

om .
[N
Pgam (k) = 5 i1 — Lyt ©)
i=1
2" k—1)i
Pyt (k) = -5 exp(—%» (10)

i=1
where m = {0,1,2...10} and n = 210 = 1024.

PMF Egs. (7,9,10)

0.001¢

PMF

1076

1 10 100 1000 10%
k

Figure 1. Visualization of PMFs from Egs. (7), (9), and (10). The black line represents the PMF from Eq.
(7); the green line represents Eq. (9); and the red line represents Eq. (10). The green and red lines are
indistinguishable due to the overlap of Egs. (9) and (10). The black line aligns with both partial sums
when m = 10.

Our assumptions, incorporating Zipf’s law, lead to a power-law of cancellation (waiting) time
that is exponentially stretched on both sides. This restriction arises from the fixed number of agent
categories n or the related number of opinions (orders) submitted, N = n(n + 1) /4. Crucially, the
power-law exponent in Eq. (7) is ¥ = 2. Given the relationship between the g-exponential distribution
and the Pareto distribution, this implies an exponent g4 = 1.5, as empirically defined in [15]. Therefore,
the presented description of the PMF for waiting times in a heterogeneous agent ensemble supports the
conclusion that a power-law exponent g4 = 1.5 is a stylized fact in financial markets. Further empirical
studies of cancellation times using the proposed PMF in Eq. (7) would be valuable.

4. Self-Similarity Analysis of Proposed Model

Building on previous efforts to unravel long-range memory in social systems [14], it is crucial to
juxtapose macroscopic descriptions with empirical analyses and agent-based modeling. Extensive
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empirical studies of volatility, trading activity, and order flow in financial markets have solidified the
foundation for examining long-range memory properties [17,18,22-26]. Various econometric models
incorporating fractional noise have been developed to represent volatility time series [22,27-32]. Yet,
from an econophysics perspective, these models often serve merely as macroscopic interpretations of
complex social phenomena, frequently relying on ad hoc assumptions of long-range memory. Despite
advancements in trading algorithms and machine learning, predicting stock price movements remains
a formidable challenge for researchers [33-35].

In this section, we address the requirement of self-similarity, a cornerstone in modeling long-range
dependence, within our proposed opinion dynamics model. Econometric methods commonly accept
the assumption of self-similarity without scrutiny; however, a deeper examination is crucial [36].

Stochastic time series are often assumed to be self-similar if they satisfy certain scaling relations.
For instance, a series X(t) is self-similar if it holds that X(tt) ~ T/ X(t), where ~ indicates identical
distributions for any T > 0 and t > 0. Moreover, these series should exhibit stationary increments:
X(t+71)— X(t) ~ X(t) — X(0) for any T > 0 and t > 0. These processes, characterized by self-affine
increments, follow the rule: X(t+ct) — X(t) ~ tH(X(t +¢) — X(t)) for any ¢ > 0, [37]. All these
properties are defined through equality in distributions, thus the simplest estimation of H should also
be based on distributional equality. By analyzing these distributions, we can identify deviations from
the self-similarity requirement.

Our model of limit order flow X} (j) and opinion imbalance X(j) assume stationary increments as
they stem from a Lévy stable distribution. We express the self-similarity condition as:

X (t+ 1) = X()] ~ T7|X(1) - X(0)]. (11)

To compare distributions, we employ the Kolmogorov-Smirnov (KS) two-sample test [38] and compute
the KS distance D:

D = supx|Fy (x) — Fy (x)], (12)

where F;, (x) represents the cumulative empirical distribution functions for an integer sequence i =
0,1,2, ... and a corresponding sequence of 7; j = 2':

Fo(x) = P ZXW (13)

From the definition of self-similarity (11), we expect consistent values of H that minimize D for any 7.
Divers values of H across different T suggest a failure to meet the self-similarity criterion.

The proposed model of opinion dynamics is a good example of a time series to demonstrate how
self-similarity is broken when opinion cancellation is introduced into a self-similar series, FLSM, of
opinion inflow Xj (t). We generate FLSM series X[ (j) with parameters: « = 1.8, d = 0.3, N = 200000
and corresponding series of opinion duration (waiting time) k(j) using (3) with parameters g4 = 1.5
and A = 0.3. Then we calculate series X(j) of length 2N of opinion disbalance (2).

Our opinion dynamics model provides a useful case study to illustrate how introducing opinion
cancellation disrupts a self-similar series of opinion inflow Xj (). We simulate the FLSM series X[ ()
with parameters: « = 1.8, d = 0.3, N = 200000, alongside a series of opinion durations (waiting times)
k(j) using parameters g = 1.5 and A = 0.3. We then generate the series X(j) of opinion imbalance (2)
with a length of 2N.

In Figure 2, we compare numerically calculated KS distances D(H), Eq. (12), as functions of H for
various series, demonstrating that while the series X (f) maintains self-similarity, the series Xj) does
not, as evidenced by the range of H values obtained for different 7; = 2 x 2’. Even when simplifying
the model to only consider signs of volumes, the KS distance D(H) is less sensitive to H, supporting
the conclusion that while Xg ; (j) can be considered self-similar, Xs(j) is not. From our point of view,
this procedure to control self-similarity should apply to any observed time series.


https://doi.org/10.20944/preprints202408.0032.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 August 2024 d0i:10.20944/preprints202408.0032.v1

6 0f 9

(a)- Opinion Inflow D(H) (b)- Disbalance D(H)
0.20F ‘ ‘ ‘ ‘ ] r ‘ ‘ ‘ ‘
0.15
0.15+
0.10+
0 0.10¢ m)
0.05" 0.05¢
0.00% ‘ ‘ ‘ ‘ ] 0.00% ‘ : |
00 0.2 04 06 08 1.0 00 02 04 06 08 1.0
H H
(c)- Sign Inflow D(H) (d)- Sign Disbalance D(H)
0.20f ] o5
0.15¢
0.10+
0 0.10 o
0.05- i 0.05¢ , L]
0.00= . . . . d 0.00 = . . . . 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
H H

Figure 2. Numerical KS distances as functions of H: (a) for FLSM inflow of opinions X (j); (b) for
opinion imbalance X () including opinion cancellation events; (c) for the simplified inflow of signs
Xs,1.(j); (d) for the imbalance with simplified inflow of signs Xs(J). Model series generated using
parameters d = 0.3, « = 1.8, A = 0.3, N = 200000.

While researchers employ various methodologies to estimate the self-similarity parameter H of
observed time series, there often lies a gap in validating the self-similarity assumption itself [36]. It is
imperative that we devote greater attention to developing and refining methods that rigorously test
these self-similarity assumptions. Particularly, the method we propose here, while robust for complex
models, shows limitations in accuracy when applied to simplified series such as Xg 1 (j) and Xs(j),
where the numerically calculated functions D(H) display a fractured structure indicative of potential
method inadequacies.

In Table 1, we list the Hurst parameter evaluation results using diverse methodologies for
the model series X1 (j), X(j), Xs(j), and Xg(j). Further details on the estimation of mean square
displacement (MSD) and H using different methods, such as the Absolute Value Estimator (AVE)
or Higuchi’s method, are elaborated in [15,16]. These results underscore that formally evaluated
Hurst parameters can sometimes yield misleading conclusions regarding persistence and long-range
dependence. Although all series were generated with the same memory parameter d, a correct
interpretation of self-similarity is essential for accurately understanding memory effects in these time
series.

Table 1. Parameters of time series X (f), X(j), Xg 1.(j), and Xg(j) calculated using various estimators:
MSD, AVE(H), Hig(H), and D(H). Model series generated using parameters d = 0.3, « = 1.8, A = 0.3,

N = 200000.
Series d MSD AVE(H) Hig(H) D(H)
X () 0.3 1.61 0.84 0.84 0.82 - 0.84
X(7) 0.3 1.03 0.25 0.27 06025
Xs.1(j) 0.3 153 0.81 0.82 0.75 = 0.81
Xs(j) 0.3 1.02 0.22 0.24 034+0.16

In conclusion, the model of artificial order imbalance and opinion dynamics time series provides
valuable insights into the persistence and memory properties of financial market limit order flow. The
comparison with empirical data underscores the utility of the model and supports the conclusion that
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the g-exponential nature of limit order cancellation times contributes significantly to the statistical
properties of order imbalance time series.

5. Discussion and Conclusions

In our previous work [15], we introduced the concept of a discrete g-exponential distribution, as
outlined in Equation (3). This g-extension of the geometric distribution is grounded in the theoretical
foundations of generalized Tsallis statistics [19]. Empirical validation of this model on limit order
cancellation times across ten different stocks and trading days demonstrated its robustness, with the
fitted g-exponential PMF parameter g = 1.5 revealing weak sensitivity to order sizes and price levels.
This model aligns with the second class Pareto distribution, which is known to exhibit a power-law
tail with an exponent x = q%l = 2[39]. In this contribution, we utilize a heterogeneous agent model
to elucidate this distinctive power-law characteristic.

Our approach categorizes trading agents based on their activity within selected intervals, such as
one trading day, leading to n categories where i = {1, 2, ...,i,.., n} represents the number of limit orders
submitted per agent of category. Given that each order is canceled or executed, it is natural to model
the lifetime k of orders from each agent group i with a Geometric PMF P;(k) = (1 — y7i/n)*Vyi/n.
Assuming the number of agents in each group i is inversely proportional to the group’s index, in
consistence with Zipf’s law, the probabilities P;(k) contribute equally when averaging waiting times
across all agent categories. This leads to the explicit form of the PMF of cancellation (waiting) times
as defined in (7), effectively capturing the empirically observed power-law behavior of limit order
cancellation times [15].

We further expand and generalize this model by integrating two independent random sequences,
the ARFIMA{0,d,0}{a, N} and P, ,4(k) from Eq. (3), to form the imbalance series X(j), portraying
opinion dynamics. This model not only elucidates the properties of limit order imbalance in financial
markets but also offers insights into the complexity of long-range dependence observed in various
social systems [14,16,40].

The proposed model serves as an example of a time series with hidden long-range dependence.
Thus, we propose the method of self-similarity tests and demonstrate that series X(j) and Xs(j) are
not self-similar. Though the result is predictable, the proposed method might be useful in analyzing
other empirical time series before using widely accepted methods of self-similar series analysis.

This study significantly advances our understanding of order imbalance and memory effects
in financial markets. By integrating the FLSM with the g-exponential distribution, we provide a
framework for modeling complex behaviors in social systems. Our findings not only bridge the gap
between theoretical constructs and empirical observations but also pave the way for future research
aimed at developing more precise models and gaining deeper insights into financial market dynamics
and beyond.
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Abbreviations

The following abbreviations are used in this manuscript:

ARFIMA  Auto-regressive fractionally integrated moving average

AVE Absolute Value estimator
FBM Fractional Brownian motion
FGN Fractional Gaussian noise
FLSM fractional Levy stable motion
MSD Mean squared displacement
PDF Probability density function

PMF Probability mass function


https://doi.org/10.20944/preprints202408.0032.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 August 2024 d0i:10.20944/preprints202408.0032.v1

8of9

References

1.  Newman, M. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics 2005, 46, 323-351.
https://doi.org/10.1080/00107510500052444.

2. Kumamoto, S.I.; Kamihigashi, T. Power Laws in Stochastic Processes for Social Phenomena: An Introductory
Review. Frontiers in Physics 2018, 6. https://doi.org/10.3389 /fphy.2018.00020.

3.  Newberry, M.G.; Savage, V.M. Self-Similar Processes Follow a Power Law in Discrete Logarithmic Space.
Physical Review Letters 2019, 122. https:/ /doi.org/10.1103/physrevlett.122.158303.

4. Gontis, V.,; Kaulakys, B. Multiplicative point process as a model of trading activity. Physica A: Statistical
Mechanics and its Applications 2004, 343, 505-514. https://doi.org/10.1016/j.physa.2004.05.080.

5. Bassler, K.; G., G.; McCauley. Markov processes, Hurst exponents, and nonlinear diffusion equations: With
application to finance. Physica A 2006, 369, 343-353.

6.  Gontis, V,; Kaulakys, B. Long-range memory model of trading activity and volatility. Journal of Statistical
Mechanics 2006, P10016, 1-11. https://doi.org/10.1088/1742-5468 /2006 /10/p10016.

7. McCauley, ].L.; Gunaratne, G.H.; Bassler, K.E. Hurst exponents, Markov processes, and fractional Brownian
motion. Physica A 2007, 379, 1-9. https://doi.org/10.1016/j.physa.2006.12.028.

8.  Gontis, V,; Kaulakys, B.; Ruseckas, J. Trading activity as driven Poisson process: comparison with empirical
data. Physica A 2008, 387, 3891-3896. https:/ /doi.org/10.1016/j.physa.2008.02.078.

9.  Micciche, S. Modeling long-range memory with stationary Markovian processes. Physical Review E 2009,
79,031116.

10. Micciche, S; Lillo, F.; Mantegna, R. The role of unbounded time-scale in generating long-range memory in
additive Markovian processes. Fluctuation and Noise Letters 2013, 12, 1340002.

11.  Ruseckas, ].; Kaulakys, B. Tsallis distributions and 1/f noise from nonlinear stochastic differential equations.
Phys.Rev.E 2011, p. 051125.

12.  Kononovicius, A.; Ruseckas, J. Nonlinear GARCH model and 1/f noise. Physica A 2015, 427, 74-81.
https:/ /doi.org/10.1016/j.physa.2015.02.040.

13. Gould, M.D.; Porter, M.A.; Williams, S.; McDonald, M.; Fenn, D.J.; Howison, S.D. Limit order books.
Quantitative Finance 2013, 13, 1709-1742. https://doi.org/10.1080/14697688.2013.803148.

14. Kazakevicius, R.; Kononovicius, A.; Kaulakys, B.; Gontis, V. Understanding the Nature of the Long-Range
Memory Phenomenon in Socioeconomic Systems. Entropy 2021, 23. https://doi.org/10.3390/e23091125.

15.  Gontis, V. Discrete q-Exponential Limit Order Cancellation Time Distribution. Fractal and Fractional 2023,
7, 581. https://doi.org/10.3390/ fractalfract7080581.

16. Gontis, V. Order flow in the financial markets from the perspective of the Fractional Lévy stable motion.
Communications in Nonlinear Science and Numerical Simulation 2022, 105, 106087. https://doi.org/https:
//doi.org/10.1016/j.cnsns.2021.106087.

17. Lillo, F.; Mike, S.; Farmer, ].D. Theory for long memory in supply and demand. Phys. Rev. E 2005, 71, 066122.
https://doi.org/10.1103/PhysRevE.71.066122.

18. Sato, Y.; Kanazawa, K. Inferring Microscopic Financial Information from the Long Memory in Market-
Order Flow: A Quantitative Test of the Lillo-Mike-Farmer Model. Physical Review Letters 2023, 131. https:
//doi.org/10.1103/physrevlett.131.197401.

19. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479-487.

20. Barabasi, A.L. The origin of bursts and heavy tails in human dynamics. Nature 2005, 435, 207-211.
https://doi.org/10.1038 /nature03459.

21. Grinstein, G.; Linsker, R. Power-law and exponential tails in a stochastic priority-based model queue.
Physical Review E 2008, 77. https://doi.org/10.1103/physreve.77.012101.

22. Baillie, R.; Bollerslev, T.; Mikkelsen, H. Fractionally integrated generalized autoregressive conditional
heteroskedasticity. Journal of Econometrics 1996, 74, 3-30. https://doi.org/10.1016/50304-4076(95)01749-6.

23. Engle, R.; Patton, A. What good is a volatility model? Quantitative Finance 2001, 1, 237-245. https:
//doi.org/10.1088/1469-7688/1/2/305.

24. Plerou, V.; Gopikrishnan, P.; Gabaix, X.; Amaral, L.; Stanley, H. Price fluctuations, market activity and
trading volume. Quantitative Finance 2001, 1, 262-269. https://doi.org/10.1088/1469-7688/1/2/308.

25. Gabaix, X.; Gopikrishnan, P; Plerou, V.; Stanley, H.E. A theory of power law distributions in financial market
fluctuations. Nature 2003, 423, 267-270. https://doi.org/10.1038 /nature01624.


https://doi.org/10.1080/00107510500052444
https://doi.org/10.3389/fphy.2018.00020
https://doi.org/10.1103/physrevlett.122.158303
https://doi.org/10.1016/j.physa.2004.05.080
https://doi.org/10.1088/1742-5468/2006/10/p10016
https://doi.org/10.1016/j.physa.2006.12.028
https://doi.org/10.1016/j.physa.2008.02.078
https://doi.org/10.1016/j.physa.2015.02.040
https://doi.org/10.1080/14697688.2013.803148
https://doi.org/10.3390/e23091125
https://doi.org/10.3390/fractalfract7080581
https://doi.org/https://doi.org/10.1016/j.cnsns.2021.106087
https://doi.org/https://doi.org/10.1016/j.cnsns.2021.106087
https://doi.org/10.1103/PhysRevE.71.066122
https://doi.org/10.1103/physrevlett.131.197401
https://doi.org/10.1103/physrevlett.131.197401
https://doi.org/10.1038/nature03459
https://doi.org/10.1103/physreve.77.012101
https://doi.org/10.1016/S0304-4076(95)01749-6
https://doi.org/10.1088/1469-7688/1/2/305
https://doi.org/10.1088/1469-7688/1/2/305
https://doi.org/10.1088/1469-7688/1/2/308
https://doi.org/10.1038/nature01624
https://doi.org/10.20944/preprints202408.0032.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 August 2024 d0i:10.20944/preprints202408.0032.v1

90f9

26. In Processes with Long-Range Correlations: Theory and Applications; Rangarajan, G.; Ding, M., Eds.; Springer,
2003; Vol. 621, Lecture Notes in Physics, pp. XVIII, 398.

27. Ding, Z.; Granger, CW.J.; Engle, R.F. A long memory property of stock market returns and a new model.
Journal of Empirical Finance 1993, 1, 83-106.

28. Bollerslev, T.; H.-O. Mikkelsen, H.O. Modeling and pricing long-memory in stock market volatility. Journal
of Econometrics 1996, 73, 151-184.

29. Giraitis, L.; Leipus, R.; Surgailis, D. ARCH(c0) models and long memory. In Handbook of Financial Time
Series; Anderson, T.G.; Davis, R.A.; Kreis, J.; Mikosh, T., Eds.; Springer Verlag: Berlin, 2009; pp. 71-84.
https:/ /doi.org/10.1007 /978-3-540-71297-8_3.

30. Conrad, C. Non-negativity conditions for the hyperbolic GARCH model. Journal of Econometrics 2010,
157, 441-457.

31. Arouri, M.E.H.; Hammoudeh, S.; Lahiani, A.; Nguyen, D.K. Long memory and structural breaks in modeling
the return and volatility dynamics of precious metals. The Quarterly Review of Economics and Finance 2012,
52,207-218.

32. Tayefi, M.; Ramanathan, T.V. An overview of FIGARCH and related time series models. Austrian Journal of
Statistics 2012, 41, 175-196. https:/ /doi.org/10.17713/ajs.v41i3.172.

33. Kercheval, A.N.; Zhang, Y. Modelling high-frequency limit order book dynamics with support vector
machines. Quantitative Finance 2015, 15, 1315-1329. https://doi.org/10.1080/14697688.2015.1032546.

34. Kumar, I; Dogra, K.; Utreja, C.; Yadav, P. A Comparative Study of Supervised Machine Learning Algorithms
for Stock Market Trend Prediction. In Proceedings of the 2018 Second International Conference on Inventive
Communication and Computational Technologies (ICICCT). IEEE, 2018. https://doi.org/10.1109/icicct.20
18.8473214.

35. Zaznov, L; Kunkel, J.; Dufour, A.; Badii, A. Predicting Stock Price Changes Based on the Limit Order Book:
A Survey. Mathematics 2022, 10. https://doi.org/10.3390/math10081234.

36. Gémez-Aguila, A_; Trinidad-Segovia, ].E.; Sanchez-Granero, M.A. Improvement in Hurst exponent estima-
tion and its application to financial markets. Financial Innovation 2022, 8. https://doi.org/10.1186/s40854-0
22-00394-x.

37. Trinidad Segovia, J.; Ferndndez-Martinez, M.; Sanchez-Granero, M. A note on geometric method-based
procedures to calculate the Hurst exponent. Physica A: Statistical Mechanics and its Applications 2012,
391, 2209-2214. https://doi.org/10.1016/j.physa.2011.11.044.

38. Hodges, J.L. The significance probability of the smirnov two-sample test. Arkiv for Matematik 1958, 3, 469-486.
https:/ /doi.org/10.1007 /bf02589501.

39. dela Barra, E.; Vega-Jorquera, P. On g-pareto distribution: some properties and application to earthquakes.
The European Physical Journal B 2021, 94. https://doi.org/10.1140/epjb/s10051-021-00045-7.

40. Gontis, V. Long-range memory test by the burst and inter-burst duration distribution. Journal of Statistical
Mechanics 2020, 2020, 093406. https://doi.org/10.1088/1742-5468 /abb4db.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.1007/978-3-540-71297-8_3
https://doi.org/10.17713/ajs.v41i3.172
https://doi.org/10.1080/14697688.2015.1032546
https://doi.org/10.1109/icicct.2018.8473214
https://doi.org/10.1109/icicct.2018.8473214
https://doi.org/10.3390/math10081234
https://doi.org/10.1186/s40854-022-00394-x
https://doi.org/10.1186/s40854-022-00394-x
https://doi.org/10.1016/j.physa.2011.11.044
https://doi.org/10.1007/bf02589501
https://doi.org/10.1140/epjb/s10051-021-00045-7
https://doi.org/10.1088/1742-5468/abb4db
https://doi.org/10.20944/preprints202408.0032.v1

	Introduction
	Modeling Limit Order Flow and/or Opinion Dynamics 
	Heterogeneity of Agents and Power-Law of Waiting Time 
	Self-Similarity Analysis of Proposed Model 
	Discussion and Conclusions 
	References

