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Abstract: The popularity of handheld devices for point-of-care ultrasound (POCUS) has increased in recent years

due to their portability and cost-effectiveness. However, POCUS has the drawback of lower imaging quality

compared to conventional ultrasound, because of hardware limitations. Improving the quality of POCUS through

post-image processing would therefore be beneficial, with deep learning approaches showing promise in this

regard. This review investigates the state-of-the-art progress of image enhancement using deep learning suitable

for POCUS applications. A systematic search was conducted from January 2024 to February 2024 on PubMed and

Scopus. From the 457 articles that were found, the full text was retrieved for 69 articles. From this selection, 15

articles were identified addressing multiple quality enhancement aspects. A disparity in the baseline performance

of the low-quality input images was seen across these studies, ranging between 8.65–29.24 dB for the Peak Signal-

to-Noise Ratio (PSNR) and 0.03-0.71 for the Structural Similarity Index Measure (SSIM). In six studies, where both

PSNR and the SSIM metrics were reported for the baseline and the generated images a mean difference of 6.60

(SD ± 2.99) and 0.28 (SD ± 0.15) was observed for the PSNR and SSIM, respectively. The reported performances

demonstrate the potential of deep-learning-based image enhancement for POCUS. However, variability in the

extent of performance gain across datasets and articles was notable, and the heterogeneity across articles makes

quantifying the exact improvements challenging.

Keywords: ultrasound; point-of-care ultrasound (POCUS); deep learning; image enhancement; quality enhancement

1. Introduction

The use of handheld devices suitable for point-of-care ultrasound (POCUS) has been on the rise
in recent years. This increase in popularity can be attributed to some key characteristics of these
devices. Firstly, their portability makes them more convenient compared to conventional cart-based
devices. Moreover, these handheld POCUS devices are more affordable than traditional ultrasound
machines [1–5], making ultrasound technology more accessible and expanding its application beyond
the radiology departments. This is particularly useful in situations where larger, more expensive
ultrasound equipment is impractical, such as in bedside emergency settings, general practitioner
offices, home care environments, and rural medicine facilities [6–12].

However, one of the primary drawbacks of ultrasound examination with a handheld device
is the reduced imaging quality due to hardware limitations and the absence of sophisticated post-
processing algorithms. These limitations can potentially lead to less accurate diagnoses [2,4]. Compared
to conventional high-end ultrasound systems, handheld POCUS devices typically exhibit reduced
resolution and contrast, less distinct texture or edges of structures, and increased noise levels [6,13–15].
Despite the advancements in POCUS technology in recent years, a trade-off remains between imaging
quality and the benefits of cost and portability [14,16,17].

Efforts to enhance the quality of POCUS can be categorized into three main approaches. The
first approach involves advancements in hardware. However, this approach is constrained by rising
costs or compromised portability. Another option for quality improvement involves refinements in the
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ultrasound beam-forming algorithm [18,19]. Nevertheless, the accessibility of raw radio frequency
(RF) signals required for these improvements is limited in most commercial ultrasound systems.
Therefore, this systematic review opts to center its focus on a third alternative: modifications to the
image post-processing methods, eliminating the need for hardware remodeling or operations on the
raw RF signal.

Traditional post-processing techniques, such as filtering and deconvolution, have been employed
for ultrasound image enhancement for some time, as described in the review by Ortiz et al. [20]. Over
the last few years, deep learning has emerged as a powerful tool, achieving state-of-the-art performance
in various image processing tasks, including image quality enhancement [21–23]. Lepcha et al. recently
conducted a systematic survey on existing state-of-the-art image enhancement techniques, including
deep learning [24]. However, to the best of the authors’ knowledge, there has been no recent literature
review on the current status of deep learning-based image enhancement specifically focusing on
ultrasound. This gap in the literature presents a compelling area for investigation, particularly given
the affordability and flexibility of POCUS, alongside its inherent challenges related to image quality.

The aim of this systematic review is, therefore, to explore the current state-of-the-art progress in
ultrasound image enhancement using deep learning for point-of-care ultrasound applications. In this
review, we will categorize the quality enhancement methods used in the selected articles, provide an
overview of the improvements in performance achieved by these methods, and assess the practical
benefits and limitations of these deep learning algorithms in enhancing ultrasound image quality for
clinical practice.

2. Materials and Methods

This systematic review was performed according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines [25].

2.1. Literature Search

2.1.1. Search Strategy

A literature search was conducted in PubMed and Scopus on January 29, 2024, covering publi-
cations from 2018 onwards. This decision was made due to the substantial growth of deep learning
applications in medical contexts observed only in more recent years, especially in tasks related to image
generation [21,26]. The search strategy was formulated to encompass three primary concepts: “Quality
enhancement”, “Ultrasound” and “Deep learning”. It should be noted that even though this review
focuses on the POCUS applications, the search included methods developed for general ultrasound
imaging to ensure a comprehensive coverage of relevant algorithms. Synonyms and related keywords
for each concept were identified and included in the search string, such as specific aspects of quality
enhancement like denoising or specific types of deep learning networks like a convolutional neural
network. The complete search strings for both databases are reported in Appendix A. Additionally, a
snowballing search was conducted to identify related articles, and duplicates were removed during
the screening process.

2.1.2. Eligibility Criteria

Studies were included if they met the following criteria: 1) focused on medical image quality
enhancement, defined as increased spatial resolution, contrast enhancement, denoising, or enhance-
ment of structure boundaries; 2) used post-image processing techniques on B-mode ultrasound images,
i.e. image-to-image methods; 3) proposed a deep learning algorithm; 4) proposed algorithm was
specifically developed for ultrasound images; 5) full-text original article was written in English.

Exclusion criteria included: 1) other quality enhancement methods like restoration and inpainting,
or different study aims like domain conversion and 3D reconstruction; 2) hardware changes were
required; 3) RF ultrasound data was used as input; 4) research on (microbubble) contrast-enhanced
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ultrasound, ultrasound computed tomography, elastography, color Doppler ultrasound, quantita-
tive ultrasound, and high-intensity focused ultrasound; 5) non-journal publications (e.g. reviews,
comments, dissertations, newspapers, and books); 6) non-accessible full-text publications.

2.1.3. Selection Procedure

The title and abstract of all studies were screened. Studies were excluded if they did not meet the
eligibility criteria. For the remaining studies, the full text was retrieved and evaluated comprehensively.
Each study was classified according to the quality enhancement aspects it addressed, which is explained
in more depth in the paragraph below. This classification resulted in a final selection of articles for
further assessment and quantification.

2.2. Categorization by Quality Enhancement Aspects

Papers published on quality enhancement in ultrasound were further grouped based on the
specific distortions addressed, which are particularly relevant to POCUS imaging, namely: 1) spatial
resolution; 2) contrast; 3) texture or detail enhancement; and 4) noise. The definitions of these quality
enhancement aspects as implemented in this review are further specified in Table 1.

Given the multifaceted nature of distortions in handheld ultrasound and the necessity for real-
time quality enhancement, this review focused on deep learning algorithms simultaneously addressing
multiple quality enhancement aspects. However, these quality enhancement aspects can be closely
related. For instance, the presence of noise reduces image contrast and resolution, thereby affecting
edges and fine details [27,28]. Therefore, improving the quality of the ultrasound image by addressing
one or more of the quality enhancement aspects should be specifically described and evaluated through
a suitable performance metric.

Furthermore, studies were also included if they reported on the process of mapping low-quality
images to high-quality reference images. This had to be achieved by obtaining ultrasound images
that naturally showed a disparity in quality as a result of differences in the capture process, such as a
different number of piezoelectric elements or the number of plane waves used, and not by artificially
inducing quality reduction or improvement. Consequently, this led to the identification of a final
category: 5) general quality improvement. The articles addressing either multiple quality enhancement
aspects or quality improvement, in general, were selected for further descriptive and quantitative
assessment.

Table 1. Definitions of quality enhancement aspects.

Quality enhancement
aspect

Definition

1. Spatial resolution The ability of differentiating two adjacent structures as being distinct
from one another, either parallel (axial resolution) or perpendicular
(lateral resolution) to the direction of the ultrasound beam [29].

2. Contrast resolution The ability to distinguish between different echo amplitudes of adja-
cent structures through image intensity variations [29].

3. Detail enhancement
of structures

Enhancement of texture, edges, or boundaries between structures.

4. Noise Minimization of random variability that is not part of the desired
signal.

5. General quality im-
provement

Mapping low-quality images to high-quality reference images, where
the quality disparities are inherent to differences in the capture pro-
cess and not artificially induced.
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2.3. Data Extraction

Two performance metrics were evaluated; the Peak Signal-to-Noise Ratio (PSNR) and the Struc-
tural Similarity Index Measure (SSIM). The PSNR and SSIM are commonly used metrics for assessing
image quality, which can quantitatively show the effectiveness of the proposed networks. Both are
full-reference metrics, which evaluate the quality of an image, by comparing it to a high-quality
reference image. Data was extracted if the article reported either the PSNR or SSIM with standard
deviation for both the low-quality input images as well as for the generated images by the proposed
algorithm.

The PSNR is defined as the ratio of the maximum power of a signal and the power of the distorting
noise [30]. It reflects the pixel-based similarity between the reconstructed image and the corresponding
high-quality reference [14]. This ratio between two images is expressed in decibels (dB), thus following
a log10 scale. A higher value indicates that the reconstructed image contains more details and provides
a higher image quality [6,31]. And vice versa, a small value of the PSNR implies high numerical
differences between images [31]. Given a reference image f and a test image g, both of size MxN
with maximum intensity MAXI and the Mean Squared Error (MSE) between f and g, the PSNR is
calculated as follows:

PSNR = 10 · log10

(
MAX2

I
MSE( f , g)

)
(1)

where MSE represents,

MSE( f , g) =
1

MN

M

∑
i=1

N

∑
j=1

( fij − gij)
2 (2)

The SSIM evaluates the perceived quality and assesses the perceptual-based similarity between
paired images [14,30]. It is considered to be correlated with the quality perception of the human visual
system. Instead of using traditional error summation methods, the SSIM is designed by modeling any
image distortion as a combination of three factors that are loss of correlation, luminance distortion,
and contrast distortion. The SSIM index ranges between -1 and 1, with a value of 1 indicating perfect
correlation, 0 indicating no correlation, and -1 indicating anti-correlation between the images [31].

For a reference image f and a test image g, where µ denotes the mean, σ2
f denotes the variance of

f , σf g denotes the covariance of f and g and C1 and C2 are two positive constants used to avoid a null
denominator, the SSIM is defined as:

SSIM( f , g) =
(2µ f µg + C1)(2σf g + C2)

(µ2
f + µ2

g + C1)(σ
2
f + σ2

g + C2)
. (3)

Additionally, the extracted data was grouped by set type (in vivo, phantom, or simulation).

2.4. Statistical Analysis

Statistical analysis were performed using IBM SPSS Statistics, Version 29.0.2 (Released 2023; IBM
Corp., Armonk, New York, United States), using a random effects model. Statistical heterogeneity
was evaluated by calculating I2 statistics, with high heterogeneity defined as >75% and statistical
significance defined as p < 0.05. Mean differences were calculated by subtracting the quality perfor-
mance values of the low-quality input image from the values of the generated image by the proposed
algorithm. The results were summarized in forest plots.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2024                   doi:10.20944/preprints202407.2600.v1

https://doi.org/10.20944/preprints202407.2600.v1


5 of 23

3. Results

3.1. Study Selection

The systematic literature research identified 457 articles from the two databases after duplicate
removal. Snowballing did not identify any additional relevant articles. The initial screening based on
title and abstract resulted in 69 articles being selected for full-text review [6,14,15,32–97]. Following an
initial analysis focusing on quality enhancement aspects, 15 articles were identified that addressed
multiple quality enhancement aspects. These articles were selected for further descriptive and quanti-
tative assessment. Finally, 6 articles were selected for a meta-analysis based on their reported outcomes.
The study selection process is illustrated in Figure 1.
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Figure 1. Flowchart visualizing the results of the PRISMA-based article selection process.
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3.2. Quality Enhancement Aspects

The distribution of quality enhancement aspects across the 69 included articles was analyzed,
for which the findings are depicted in Figure 2. This figure shows a predominant focus on denoising,
followed by resolution enhancement. Of the 69 articles, the majority (n=54) focused on a single
quality enhancement aspect, while a smaller part (n=15) addressed a combination of aspects or quality
enhancement in general. Consequently, these 15 articles [6,14,15,32–43,46,47,86–89] were selected for
further analysis.

27%

10%

4%

47%

12%

1. Resolution

2. Contrast

3. Detail enhancement

4. Noise

5. General quality improvement

Figure 2. Overview of distribution of quality enhancement aspects addressed in included articles.

3.3. Study Characteristics

The datasets used in the 15 selected articles for further assessment were categorized into three
types: 1) in vivo data; 2) phantom data (including in vitro, ex vivo, and tissue-mimicking datasets, both
self-made and commercial); and 3) simulation data. For studies comparing multiple deep learning
algorithms or loss functions, the best-performing algorithm or loss function and their corresponding
performances were reported. Characteristics of the included articles are shown in detail in Table 2.
Most articles [33,37,38,41–43] used plane wave imaging (PWI) for data collection, by mapping low-
quality images from one or a few angles to high-quality compounded images from multiple angles.
The next most common ultrasound mode for data collection involved low-quality input data from
handheld POCUS and high-quality reference images from high-end ultrasound devices [6,14,15,35].
Additionally, all articles used (a combination of) a CNN and/or a GAN as a deep learning network.
More variety in loss functions was observed, even though often (albeit in combination with other loss
functions) the MSE and SSIM loss were used.
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Table 2. Characteristics of selected studies.

Study Aim Dataset (availability) Ultrasound specifications Deep learning algo-
rithm

Loss function

Awasthi et
al., 2022 [32]

Reconstruction of high-quality
high-bandwidth images from
low-bandwidth images

Phantom: Five separate datasets, tissue-
mimicking, commercial and in vitro porcin
carotid artery. (private)

Verasonics, L11-5v transducer
with PWs at range -25◦ to 25◦.
LQ: limited bandwidth down to
20%, HQ: full bandwidth.

Residual encoder
decoder Net

Scaled MSE

Gasse et al.,
2017 [33]

Reconstruct high-quality US im-
ages from a small number of PW
acquisitions

In-vivo: carotid, thyroid and liver regions of
healthy subjects;
Phantom: Gammex. (private)

Verasonics, ATL L7-4 probe (5.2
MHz, 128 elements) with range
±15◦. LQ: 3 PWs. HQ: 31 PWs.

CNN L2 loss

Goudarzi et
al., 2020 [34]

Achieve the quality of multifo-
cus US images by using a map-
ping function on a single-focus
US image.

Phantom: CIRS phantom and ex vivo lamb liver;
Simulation: Field II software. (private)

E-CUBE 12 Alpinion machine,
L3-12H transducer (8.5 MHz).
LQ: image with single focal point.
HQ: multi-focus image with 3 fo-
cal points.

Boundary-Seeking GAN Binary cross entropy
(discriminator), MSE +
boundary seeking loss
(generator)

Guo et al.,
2020 [35]

Improve the quality of handheld
US devices using a small number
of plane waves

In vivo: dataset provided by Zhang et al. [42]
(carotid artery and brachioradialis images of
healthy volunteers);
Phantom: PICMUS [98] dataset, CIRS phantom;
Simulation: US images from natural images
using field-II software (only for pre-training
LG_Unet). (private and public)

(Derived from dataset sources)
In vivo: Verasonics, L10-5 probe
(7.5 MHz). LQ: 3 PWs, HQ: Com-
pounded image of 31 PWs with
range -15◦ to 15◦.
Phantom data: Verasonics, L11
probe. (5.2 MHz, 128 elements).

Local Global Unet (LG-
Unet) + Simplified resid-
ual network (S_ResNet)

MSE + SSIM (LG_Unet)
and L1 (S_Resnet)

Huang et al.,
2018 [36]

Improve the quality of ultrasonic
B-mode images from 32 to that
from 128 channels.

Simulation: Field-II software. (private) Simulation data set at 5MHz cen-
ter frequency, 0.308mm pitch,
71% bandwidth. LQ: 32-channel
image, HQ: 128-channel image.

Context encoder recon-
struction GAN

Not reported

Khan et al.,
2021 [15]

Contrast and resolution enhance-
ment of handheld POCUS im-
ages

In vivo: carotid and thyroid regions;
Phantom: ATS-539 phantom;
Simulation: intermediate domain images gener-
ated by down grading the in vivo and phantom
images acquired from high-end system. (private)

LQ: NPUS050 portable US sys-
tem were used as low-quality in-
put. HQ: E-CUBE 12R US, L3–12
transducer.

Cascade application
of unsupervised self-
consistent CycleGAN
+ supervised super-
resolution network.

Cycle consistency +
adversarial loss (cycle-
GAN), MAE + SSIM
(super-resolution net-
work)

Lu et al.,
2020 [37]

High-quality reconstruction for
DW imaging using a small num-
ber (3) of DW transmissions com-
peting with those obtained by
compounding with 31 DWS

In vivo: Thigh muscle, finger phalanx, and liver
regions;
Phantom: CIRS and Gammex. (private)

Verasonics, ATL P4-2 transducer.
LQ: 3 DWs, HQ: Compounded
image of 31 DWs.

CNN with inception
module

MSE
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Table 2. Cont.

Study Aim Dataset (availability) Ultrasound specifications Deep learning algo-
rithm

Loss function

Lyu et al.,
2023 [38]

Reconstruct super-resolution
high-quality images from
single-beam plane-wave images

PICMUS 2016 dataset [98] modulated following
the guidelines of CUBDL, consisting of
Simulation: generated with Field II software;
Phantom: CIRS;
In vivo: carotid artery of healthy volunteer. (pub-
lic)

(Derived from dataset source)
Verasonics, L11 probe with range
-16◦, 16◦. LQ: single PW im-
age. HQ: PW images synthe-
sized from 75 different angles us-
ing CPWC

U-shaped GAN based
on Attention and Resid-
ual connection (ARU-
GAN)

Combination of MS-
SSIM, classical adver-
sarial and perceptual
loss

Moinuddin
et al., 2022
[39]

Enhance US images using a net-
work where the task of noise sup-
pression and resolution enhance-
ment are carried out simultane-
ously.

In vivo: breast US (BUS) dataset [99], for which
high resolution and low noise label images are
generated using NLLR normal filtration;
Simulation: Salient object detection (SOD)
dataset [100] augmentated using image forma-
ton physics information, divided in two datasets.
(public)

(Derived from dataset source)
Siemens ACUSON Sequoia C512,
17L5 HD transducer (8.5 MHz)

Deep CNN MSE

Monkam et
al., 2023 [40]

Suppress speckle noise and en-
hance texture and fine-details.

Simulation: original low-quality US images of
HC18 Challenge fetal data set [101], from which
high-quality target images and additional low-
quality images are generated (for training and
testing);
In vivo publicly available datasets: HC18 Chal-
lenge (fetal) [101], BUSI (breast), CCA (common
carotid artery) (for testing). (public)

(Derived from HC18 dataset
source)
Voluson E8 or the Voluson 730
US device.

U-Net with added fea-
ture refinement atten-
tion block (US-Net)

L1 loss

Tang et al.,
2021 [41]

Reconstruct high-resolution,
high-quality plane-wave images
from low-quality plane-wave
images from different angles.

PICMUS 2016 dataset [98] modulated following
the guidelines of CUBDL, consisting of
Simulation: generated with Field II software;
Phantom: CIRS;
In vivo: carotid artery of healthy volunteer. (pub-
lic)

(Derived from dataset source)
Verasonics, L11 probe with range
-16◦, 16◦. LQ: PW image using
3 angles. HQ: PW images syn-
thesized from 75 different angles
using CPWC

Attention mechanism
and Unet-based GAN

cross-entropy + MSE +
perceptual loss

Zhang et al.,
2018 [42]

Reconstruct high-quality US im-
ages from small number of PWs
(3).

In vivo: carotid artery and brachioradioalis of
heathy volunteer;
Phantom: CIRS phantom, ex vivo swine muscles.
(private)

Verasonics, L10-5 (7.5 MHz) with
range -15◦ to 15◦. LQ: 3 PWs,
HQ: coherent compounding us-
ing 31 PWs.

GAN, with feed-forward
CNN as both generator
and discriminator net-
work

MSE + adversarial loss
(generator), binary cross
entropy (discriminator)
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Table 2. Cont.

Study Aim Dataset (availability) Ultrasound specifications Deep learning algo-
rithm

Loss function

Zhou et al.,
2018 [43]

Improve the image quality of a
single angle PW image to that of
a PW image synthesized from 75
different angles

PICMUS 2016 dataset [98] synthesized by three
different beamforming methods:
In vivo: 1) thyroid gland and 2) carotid artery of
human volunteers. (public)
Phantom: CIRS phantom;
Simulation: 1) point images and 2) cyst images
generated using Field-II software.

(Derived from dataset sources)
Verasonics, L11 probe with range
-16◦, 16◦. LQ: single PW im-
age. HQ: PW images synthe-
sized from 75 different angles.

Multi-scaled CNN MSE

Zhou et al.,
2020 [6]

Improve quality of portable US,
by mapping low-quality images
to corresponding high-quality
images.

Single-/multiangle PWI simulation, phantom
and in vivo data (only used for transfer learn-
ing). For training and testing:
In vivo: carotid and thyroid images of healthy
volunteers;
Phantom: CIRS and self-made gelatin and raw
pork;
Simulation: Field-II software. (private)

LQ: mSonics MU1, L10-5v. trans-
ducer. HQ: Verasonics, L11-4v
transducer (phantom data) and
Toshiba Aplio 500, 7.5 MHz (clin-
ical data).

Two-stage GAN with U-
Net and gradual learn-
ing strategy.

MSE + SSIM + Conv loss

Zhou et al.,
2021 [14]

Enhance video quality of hand-
held US devices.

In vivo: single and multiangle PW videos (only
for training). Handheld and high-end images and
videos of different bodyparts of healthy volun-
teers (for training and testing). (private)

PW videos: Verasonics, L11-
4v transducer (6.25MHz, 128-
element) with range -16◦ to
16◦. High-end US (HQ): Toshiba
Aplio 500 device. Handheld US
(LQ): mSonics MU1, L10-5 trans-
ducer.

Low-rank represen-
tation multipathway
GAN

adversarial + MSE + ul-
trasound specific percep-
tual loss

US: ultrasound, LQ: low-quality, HQ: high-quality, MSE: Mean Squared Error, CNN: convolutional neural network, GAN: Generative Adversarial Network, DW: diverging wave,
PICMUS: Plane-wave Imaging Challenge in Medical UltraSound, CUBDL: Challenge on Ultrasound Beamforming with Deep Learning, NLLR: non-local low-rank, PW: plane wave.
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3.4. Study Outcomes

The outcomes of the selected studies are reported in Table 3, including the computation time,
source code availability, number of images in test set, performance metrics for low-quality input
images, and performance metrics for enhanced generated images. The performance of the proposed
algorithms were categorized by dataset type (in vivo, phantom or simulation). Both full-reference
metrics and non-reference metrics are reported.

Additionally, the quantitative outcomes for the most commonly reported performance metrics
(PSNR and SSIM) are visualized in Figures 3 and 4. Both the baseline performance metrics for the
low-quality input images and the obtained performance metrics for the images generated by the
proposed algorithm are shown. In these figures, each bar represents a dataset and the color represents
the corresponding study. The baseline PSNR low-quality input images ranged from 8.65 to 29.24, while
the generated images had PSNR values ranging from 13.99 to 36.59. Similarly, SSIM values ranged
from 0.03 to 0.71 for low-quality input images and from 0.30 to 0.93 for the enhanced images.
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Figure 3. Visualization of the obtained PSNR for each dataset in the included studies, for both the
low-quality input images and the generated images by the proposed algorithm. The color represents
the dataset type (in vivo, phantom, or simulation data). Note that some studies are represented by
multiple bars since they evaluated multiple datasets.
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Table 3. Outcomes of selected studies.

Study Computation time
(source code availabil-
ity)

Number of images in test set Performance (±SD) of low-quality input image Performance (±SD) of generated image

Awasthi et
al., 2022 [32]

"Light weight" (avail-
able)

Phantom:
dataset 1: n=134
dataset 2: n=90
dataset 3: n=31
dataset 4: n=70
dataset 5: n=239

Phantom:
dataset 1: PSNR=17.049±1.107, RMSE=0.141±0.016,
PC=0.788
dataset 2: PSNR=15.768±1.376, RMSE=0.165±0.026
dataset 3: PSNR=13.885±1.276, RMSE=0.204±0.032
dataset 4: PSNR=16.297±1.212, RMSE=0.155±0.021
dataset 5: PSNR=15.487±1.876, RMSE=0.172±0.040

Phantom:
dataset 1: PSNR=20.903±1.189, RMSE=0.091±0.012,
PC=0.86
dataset 2: PSNR=20.523±1.242, RMSE=0.095±0.013
dataset 3: PSNR=13.985±1.120, RMSE=0.201±0.025
dataset 4: PSNR=21.457±1.238, RMSE=0.085±0.012
dataset 5: PSNR=17.654±1.536, RMSE=0.133±0.022

Gasse et al.,
2017 [33]

Not reported (not avail-
able)

Mixed test set of in vivo and
phantom data:
n=1000

Only graphs given, showing CR and LR reached by the
proposed model with 3 PWs compared to the standard
compounding of an increasingly larger number of PWs.

-

Goudarzi et
al., 2020 [34]

Not reported (available) Phantom (CIRS):
n=-
Simulation:
n=360

Phantom:
FWHM=1.52, CNR=9.6
Simulation:
SSIM=0.622±0.02, PSNR=23.27±1, FWHM=1.3, CNR=7.2

Phantom:
FWHM=1.44, CNR=11.1
Simulation:
SSIM=0.769±0.017, PSNR=25.32±0.919, FWHM=1.09,
CNR=8.02

Guo et al.,
2020 [35]

Not reported (not avail-
able)

225 (out of 9225) patch images
from the in vivo, phantom and
simulation dataset (distribution
between datasets not reported)

In vivo:
PSNR=16.04
Phantom:
FWHM=1.8 mm, CR=0.36, CNR=24.93

In vivo:
PSNR=18.94
Phantom:
FWHM=1.3 mm, CR=0.79, CNR=32.81

Huang et al.,
2018 [36]

Not reported (not avail-
able)

Simulation:
n=1

Simulation:
CNR: 0.939, PICMUS CNR: 2.381, FWHM: 13.34

Simulation:
CNR: 1.508, PICMUS CNR: 6.502, FWHM: 11.15

Khan et al.,
2021 [15]

13.18 ms (not available) In vivo:
n=43
Phantom:
n=32

Not reported Gain compared to simulated intermediate quality images
of in vivo and phantom data (only measuring fitness of
super-resolution network):
PSNR=13.58, SSIM=0.63
Non-reference metrics for entire proposed method for in
vivo and phantom data:
CR=14.96, CNR=2.38, GCNR=0.8604 (which is 21.77%,
30.06%, and 44.42% higher than those of the low-quality
input images.)
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Table 3. Cont.

Study Computation time
(source code availabil-
ity)

Number of images in test set Performance (±SD) of low-quality input image Performance (±SD) of generated image

Lu et al.,
2020 [37]

0.75 ± 0.03 ms (not avail-
able)

Mixed in vivo and phantom
data:
n=1000

Mixed in vivo and phantom data:
PSNR=29.24±1.57, SSIM=0.83±0.15, MI=0.51±0.16
Non-reference metrics are only shown in graph form for
low-quality images.

Mixed in vivo and phantom data:
PSNR=31.13±1.47, SSIM=0.93±0.06, MI=0.82±0.20,
CR (near field)=19.54, CR (far field)=14.95,
CNR (near field)=7.63, CNR (far field)=5.21,
LR (near field)=0.90, LR (middle field)=1.64,
LR (far field)=2.35

Lyu et al.,
2023 [38]

Not reported (not avail-
able)

In vivo:
n=150
Phantom:
n=150
Simulation:
n=150

No performance metrics available for low-quality images,
only for other traditional deep learning methods for com-
parison.

In vivo:
PSNR=26.508, CW-SSIM=0.876, NCC=0.943
Phantom:
FWHM=0.424, CR=26.900, CNR=3.693
Simulation:
FWHM=0.277, CR=39.472, CNR=5.141

Moinuddin
et al., 2022
[39]

Not reported In vivo:
n=33
Simulation:
SOD-1: n=200
SOD-2: n=200
Evaluated with 5-fold cross-
validation approach.

In vivo:
PSNR=26.0071±2.3083, SSIM= 0.7098 ± 0.0761
Simulation:
SOD-1: PSNR=12.1587±0.7839, SSIM=0.5570±0.1205
SOD-2: PSNR=12.5272±0.8243, SSIM=0.1556±0.1451,
GCNR=0.9936±0.0039

In vivo:
PSNR=26.9112±2.3025, SSIM=0.7522±0.0635
Simulation:
SOD-1: PSNR=25.5275±2.9712, SSIM=0.6946±0.1267
SOD-2: PSNR=32.4719±2.6179, SSIM=0.8785±0.0766,
GCNR=0.9966±0.0026

Monkam et
al., 2023 [40]

52.16 ms (not available) In vivo:
HC18: n=30
BUSI: n=30
CCA: n=30
Simulation:
HC18: n=335

No performance metrics available for low-quality images,
only for other enhancement methods for comparison.

In vivo:
HC18: SNR=39.32, CNR=1.10, AGM=27.46, ENL=15.71
BUSI: SNR=34.54, CNR=4.20, AGM=39.88, ENL=17.04
CCA: SNR=40.87, CNR=2.59, AGM=35.92, ENL=23.03
Simulation:
HC18: SSIM=0.9155, PSNR=32.87, EPI= 0.6371

Tang et al.,
2021 [41]

Not reported (not avail-
able)

n=360 (total number of images in
test set for the in vivo, phantom
and simulation datasets, distri-
bution not reported)

Phantom:
FWHM=0.5635, CR=8.718, CNR=1.109, GCNR=0.609
Simulation:
FWHM=0.2808, CR=13.769, CNR=1.576, GCNR=0.735

In vivo:
PSNR=28.278, SSIM=0.659, MI=0.9980, NCC=0.963
Phantom:
FWHM=0.3556, CR=24.571, CNR=2.495, GCNR=0.915
Simulation:
FWHM=0.2695, CR=39.484, CNR=5.617, GCNR=0.998

Zhang et al.,
2018 [42]

Not reported (not avail-
able)

In vivo:
n=500
phantom:
n=30

Mixed in vivo and phantom test set:
FWHM=0.50, CR=10.23, CNR=1.30

Mixed in vivo and phantom test set:
FWHM=0.53, CR=19.46, CNR=2.25
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Table 3. Cont.

Study Computation time
(source code availabil-
ity)

Number of images in test set Performance (±SD) of low-quality input image Performance (±SD) of generated image

Zhou et al.,
2018 [43]

Not reported (not avail-
able)

In vivo:
Thyroid dataset: n=30
Simulation:
Point dataset: n=30
Cyst dataset: n=30
Evaluated with 5-fold cross-
validation approach.

In vivo:
Thyroid dataset: PSNR=14.9235, SSIM=0.0291, MI=0.3474
Simulation:
Point dataset: PSNR=24.1708, SSIM=0.1962, MI=0.4124,
FWHM=0.49
Cyst dataset: PSNR=15.8860, SSIM=0.5537, MI=1.1976,
CR=137.0473

In vivo:
Thyroid dataset: PSNR=21.7248, SSIM=0.3034, MI=0.8856
Simulation:
Point dataset: PSNR=36.5884, SSIM=0.9216, MI=0.4483,
FWHM=0.196
Cyst dataset: PSNR=24.0167, SSIM=0.6135, MI=1.5622,
CR=184.0432

Zhou et al.,
2020 [6]

Not reported (not avail-
able)

In vivo:
n=94
Phantom:
n=40
Simulation:
n=56
Evaluated with 5-fold cross vali-
dation approach.

In vivo:
PSNR=8.65±1.32, SSIM=0.18±0.04, MI=0.22±0.13,
BRISQUE=38.91±4.99
Phantom:
PSNR=15.26±2.91, SSIM=0.12±0.03, MI=0.20±0.11,
BRISQUE=24.61±4.50
Simulation:
PSNR=16.38±2.35, SSIM=0.19±0.06, MI=0.22±0.16,
BRISQUE=29.08±3.45

In vivo:
PSNR=18.08±1.57, SSIM=0.41±0.05, MI=0.68±0.18,
BRISQUE=35.25±4.13
Phantom:
PSNR=24.70±1.11, SSIM=0.64±0.07, MI=0.26±0.09,
BRISQUE=21.68±3.36
Simulation:
PSNR=28.50±2.01, SSIM=0.59±0.02, MI=0.42±0.04,
BRISQUE=23.30±3.09

Zhou et al.,
2021 [14]

Not reported (not avail-
able)

In vivo:
n=40 videos
For full-reference methods, a sin-
gle frame in handheld video was
used and most similar frame in
high-end video was selected.

In vivo:
PSNR=12.68±3.45, SSIM=0.24±0.06, MI=0.71±0.09,
NIQE=19.48±4.66, ultrasound quality score=0.06±0.03

In vivo:
PSNR=19.95±3.24, SSIM=0.45±0.06, MI=1.05±0.07,
NIQE=6.95±1.97, ultrasound quality score=0.89±0.16

AGM: Average gradient magnitudes, BRISQUE: Blind referenceless image spatial quality evaluator, CNR: Contrast-to-noise ratio, CR: Contrast ratio, ENL: Equivalent number of looks,
EPI: Edge preservation index, FWHM: Full width at half maximum, GCNR: Generalized contrast-to-noise ratio, LR: Likelihood ratio, MI: Mutual information, MSE: Mean squared error,
MS-SSIM: Multi scale structural similarity index measurement, NCC: Normalized cross-correlation, NIQE: Natural image quality evaluator, PC: Pearson correlation, PSNR: Peak signal-to-noise ratio,
RMSE: Root mean squared error, SNR: Signal-to-noise ratio, SSIM: Structural similarity index measurement
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Figure 4. Visualization of the obtained SSIM for each dataset in the included studies, for both the
low-quality input images and the generated images by the proposed algorithm. The color represents
the dataset type (in vivo, phantom, or simulation data). Note that some studies are represented by
multiple bars since they evaluated multiple datasets.

3.5. Meta-Analysis Results

Six studies reported PSNR values[6,14,32,34,37,39] and five reported SSIM values[6,14,34,37,39]
with standard deviations for both the low-quality input images and the generated images. Conse-
quently, these studies were included in a meta-analysis. The meta-analysis revealed a mean increase in
PSNR between the generated and low-quality input images of 6.60 ± 2.99 (Figure 5). The mean increase
in SSIM was 0.28 ± 0.15 (Figure 6). Both increases were statistically significant (p=0.00). However,
high heterogeneity was observed in both meta-analyses (I2 = 100%), indicating substantial variability
among the included studies.

Figure 5. Forest plot of the mean PSNR difference (95% CI).
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Figure 6. Forest plot of the mean SSIM difference (95% CI).

4. Discussion

Point-of-care ultrasound (POCUS) is recognized for its affordability and convenience, but it suffers
from a lower image quality compared to conventional high-end, cart-based ultrasound systems. Recent
advances in deep learning have achieved state-of-the-art performance in various problems of image
processing, including the enhancement of image quality. This systematic review provides a overview
of research focused on ultrasound image enhancement using deep learning methods, suitable for
real-time POCUS applications. A comprehensive description of the methods used, as well as a further
analysis of the performance of the proposed algorithms, is given.

It was observed that the majority of studies utilized GANs incorporating CNNs in both the
generator and discriminator networks. The emergence of GANs in the medical imaging field, as
described by Liu et al. [23], is noteworthy as these models are capable of generating highly realistic
medical images, effectively bridging the gap between supervised learning and image generation.
Despite this trend, there was considerable variation in GAN and CNN architectures, loss functions,
and evaluation methods across studies. Some studies compared their proposed network with existing
networks to benchmark quality enhancement, while others compared the generated images to the
original low-quality input images and/or paired high-quality reference images. For the methods that
quantitatively assessed the networks’ performance, a variety of image quality metrics was reported. In
addition to metric-based assessments, some studies incorporated visual assessments or tested the effect
of quality enhancement on downstream tasks such as segmentation or diagnosis. Often, a combination
of these evaluation methods was utilized to provide a more comprehensive overview of the proposed
algorithm’s performance.

Variability in evaluation methods and performance metrics poses a challenge for direct compar-
isons among all articles. However, those reporting the most commonly reported performance metrics
(PSNR and SSIM) for the low-quality input images or generated images allowed for some comparisons.
Figures 3 and 4 reveal substantial disparities in low-quality input image performance, indicating
varying baseline qualities across studies. These differences may be explained by heterogeneity in
ultrasound devices and dataset types. Nevertheless, consistent improvements in image quality were
observed when comparing enhanced images to the original inputs, as shown by Figures 3 and 4. The
meta-analysis further supports these findings, showing a statistically significant increase in PSNR
and SSIM. This indicates the potential of the proposed deep learning algorithms for enhancing the
quality of ultrasound images. However, variability in the extent of performance gain across datasets
and articles is notable. This is further supported by the I2 score of both meta-analyses (I2 = 100%),
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indicating high heterogeneity. This variability complicates the determination of achievable quality
gain. Notably, simulated datasets generally exhibited higher performance gains compared to in vivo
and phantom datasets, suggesting that simulation results may not fully represent clinical scenarios.

This review focused on ultrasound enhancement for POCUS applications but included studies for
ultrasound in general as well to ensure comprehensive coverage of relevant algorithms. A key selection
criterion was the simultaneous addressing of multiple distortion types, which led to the inclusion
of 15 articles. Interestingly, despite the importance of computation time for real-time applications,
most articles did not report this aspect. Furthermore, the lack of source code availability hinders the
reproducibility of the conducted research. Studies focusing specifically on enhancing POCUS images
commonly paired low-quality POCUS images with high-quality images from high-end machines.
Although these image pairs are expected to contain the same locational information, they often suffer
from locational differences due to acquisition challenges, which can only be partially mitigated by
registration methods and consequently impact network training. In contrast, studies using Plane Wave
Imaging (PWI) did not encounter this issue as they used the same device with different numbers
of angles, resulting in nearly identical locational information. Future research could benefit from
developing more accurately paired datasets, particularly using ex vivo data, to improve image-to-
image translation techniques for POCUS.

Several limitations of this review should be noted. First, the selection of articles that addressed
multiple quality enhancement aspects might have excluded relevant studies focusing on single aspects.
Second, the heterogeneous nature of the included studies, with varying datasets and ultrasound
devices, complicates direct and fair comparisons. Although we attempted to group datasets into
in vivo, phantom, and simulation categories, diversity remained within these subgroups. Lastly,
performing a meta-analysis for machine learning-based research presents unique challenges, as this
method was originally designed for comparing cases and controls in medical treatments. Aspects such
as the number of images in "case" and "control" groups, use of cross-validation, and dataset similarities
due to augmentation were not consistently accounted for. Therefore, the meta-analysis should be
seen primarily as an illustrative tool, and caution is needed when drawing firm conclusions about the
precise effects of ultrasound image enhancement in terms of expected PSNR and SSIM gain.

5. Conclusions

This review thoroughly examined the progress in ultrasound image quality enhancement using
deep learning, with a focus on applications suitable for POCUS. Ultrasound image enhancement
through deep learning is a vibrant research field. However, the majority of performed studies focus on
single aspects of quality enhancement, which is less effective for POCUS that suffers from multiple
distortion types. Studies addressing multiple quality aspects demonstrate the potential for substantial
image quality improvements across various ultrasound devices. PSNR values for low-quality input
images ranged from 8.65 to 29.24, improving to 13.99 to 36.59 for the enhanced images. Similarly,
SSIM values ranged from 0.03 to 0.71 and 0.30 to 0.93 for the low-quality input images and the
enhanced images, respectively. However, quantifying the expected performance gain precisely remains
challenging due to the heterogeneous nature of the studies. It is important to note that studies often
neglect to report computation times, a factor crucial for enabling real-time applications. Future research
should prioritize the development of standardized evaluation metrics, report computational efficiency,
and ensure reproducibility by sharing source code. Additionally, creating accurate paired datasets with
POCUS and high-end US images is essential for advancing this field and achieving reliable real-time
image enhancement.
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Appendix A. Search Strings

PubMed:
("Ultrasonography"[Mesh] OR "ultraso*"[tiab]) AND ("Deep Learning"[Mesh] OR "deep learning"[tiab] OR
"deep-learning"[tiab] OR "neural network*"[tiab] OR "generative adversarial*"[tiab] OR "ANN"[tiab] OR
"CNN"[tiab] OR "RNN"[tiab] OR "LSTM"[tiab] OR "DNN"[tiab]) AND ("Image Enhancement"[Mesh]
OR "enhancement"[tiab] OR "quality improving"[tiab: 2] OR "quality improvement"[tiab: 2] OR "quality
improved"[tiab: 2] OR "quality enhanced"[tiab: 2] OR "quality enhancing"[tiab: 2] OR "resolution"[tiab] OR
"Reconstruction"[tiab] OR "denoising"[tiab] OR "noise"[tiab] OR "despeckling"[tiab]) AND (2017:2024[pdat])
NOT "segmentation"[tiab] NOT "classification"[tiab] NOT "detection"[tiab] NOT "quantification"[tiab] NOT
"detection"[tiab] NOT "localization microscopy"[tiab] NOT "microvessel"[tiab] NOT "microbubble"[tiab] NOT
"tomography"[ti] NOT "ultrasound comp* tomography"[tiab: 0] NOT "raw"[tiab] NOT "radio-frequency"[tiab]
NOT "beamforming"[tiab] NOT "sparse"[tiab] NOT "photoacoustic"[tiab] NOT "veloc*"[tiab] NOT "elasto-
graph*"[tiab] NOT "diagnos*"[ti] NOT "review"[ti]

Scopus:
(( TITLE-ABS-KEY ( "deep learning" ) OR TITLE-ABS-KEY ( "deep-learning" ) OR TITLE-ABS-KEY (
"neural network" ) OR TITLE-ABS-KEY ( "generative adversarial" ) OR TITLE-ABS-KEY ( "ANN" ) OR
TITLE-ABS-KEY ( "CNN" ) OR TITLE-ABS-KEY ( "RNN" ) OR TITLE-ABS-KEY ( "LSTM" ) OR TITLE-
ABS-KEY ( "DNN" ) ) AND ( TITLE-ABS-KEY ( "ultrasound" ) OR TITLE-ABS-KEY ( "ultrasonography" )
) AND ( TITLE-ABS-KEY ( "enhancement" ) OR ( TITLE-ABS-KEY ( "quality" ) W/2 TITLE-ABS-KEY (
"improv*" ) ) OR ( TITLE-ABS-KEY ( "quality " ) W/2 TITLE-ABS-KEY ( "enhanc*" ) ) OR TITLE-ABS-
KEY ( "resolution" ) OR TITLE-ABS-KEY ( "reconstruction" ) OR TITLE-ABS-KEY ( "denoising") OR
TITLE-ABS-KEY ( "noise") OR TITLE-ABS-KEY ("despeckling")) AND PUBYEAR > 2017 AND PUBYEAR
< 2025 AND NOT TITLE-ABS-KEY ( "segmentation" ) AND NOT TITLE-ABS-KEY ( "classification" )
AND NOT TITLE-ABS-KEY ( "detection" ) AND NOT TITLE-ABS-KEY ( "quantification" ) AND NOT
TITLE-ABS-KEY ( "localization microscopy" ) AND NOT TITLE-ABS-KEY ( "microvessel*" ) AND NOT
TITLE-ABS-KEY ( "microbubble*" ) AND NOT TITLE ( "tomography" ) AND NOT TITLE-ABS-KEY (
"ultrasound comp* tomography" ) AND NOT TITLE-ABS-KEY ( "raw" ) AND NOT TITLE-ABS-KEY (
"radio-frequency" ) AND NOT TITLE-ABS-KEY ( "beamforming" ) AND NOT TITLE-ABS-KEY ( "sparse"
) AND NOT TITLE-ABS-KEY ( "photoacoustic" ) AND NOT TITLE-ABS-KEY ( "veloc*" ) AND NOT
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