
Article Not peer-reviewed version

Euclidean Locality in Treonic Topological

Spaces: The Genesis of Treonic

Manifolds

Alejandro Jesús Bermejo Valdés *

Posted Date: 31 July 2024

doi: 10.20944/preprints202407.2551.v1

Keywords: treonic spaces; Euclidean locality; topological manifolds; homeomorphisms; Bermejo algebras

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1406860


Article

Euclidean Locality in Treonic Topological Spaces: The
Genesis of Treonic Manifolds

Alejandro Jesús Bermejo Valdés

Riojan Health Service, Piqueras 98, 26006, Logroño, La Rioja, Spain; ajbermejo@riojasalud.es

Abstract: We explore the concept of Euclidean locality within treonic topological spaces. Our study establishes a

foundational theoretical framework, elucidating the properties of continuity, homeomorphisms, and compactness

in these spaces. We assess the Euclidean locality of treonic spaces through the analysis of specific homeomorphisms,

which enables us to define manifolds in treonic spaces and extend recent research on Bermejo Algebras. For

the first time, we characterize treonic manifolds by incorporating the property of Euclidean locality alongside

previously studied properties such as Hausdorff spaces and second countable spaces. Our findings advance the

understanding of the topological and geometric properties of treonic spaces, providing significant insights for

advanced mathematical research.
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1. Introduction

Topological spaces are fundamental to mathematical research, providing a robust framework for
investigating a wide range of mathematical and physical phenomena [1]. Treonic spaces, distinguished
by their unique intrinsic properties [2,3], represent a particularly intriguing area of study. We explored
the concept of Euclidean locality within treonic topological spaces, focusing on their topological and
geometric characteristics.

Our investigation began by constructing a detailed theoretical framework that defined the es-
sential concepts of continuity, homeomorphisms, and compactness within topological spaces. These
foundational concepts were pivotal for comprehending the behavior and properties of treonic spaces.
We then extended this theoretical framework to analyze the structure of treonic spaces, specifically
examining their Euclidean locality by establishing homeomorphisms with R3. This approach al-
lowed us to elucidate the conditions under which treonic spaces could be locally represented as
Euclidean spaces.

Additionally, we delved into the quotient spaces derived from treonic spaces, assessing their
manifold properties and identifying the criteria under which they could be locally modeled as
Euclidean spaces.

A significant contribution of this paper was the novel characterization of treonic manifolds by
integrating the property of Euclidean locality within treonic spaces with previously studied properties
such as being Hausdorff spaces [2] and second-countable spaces [3].

By incorporating the concept of Euclidean locality into the study of treonic spaces, our research
advanced current knowledge in topology. The insights gained from this study not only deepened
our comprehension of treonic spaces but also opened up new avenues for advanced mathematical
research. Future studies could further explore the implications of these properties in various contexts,
potentially leading to novel developments and applications in the mathematical sciences.

2. Theoretical Framework

2.1. Continuity of Mappings Between Topological Spaces

Given two topological spaces (ΛA, TΛA) and (ΛB, TΛB), a mapping f : ΛA → ΛB is continuous
if ∀U ∈ TΛB ⇒ f−1(U) ∈ TΛA [4,5], where f−1 denotes the inverse mapping of f . Additionally, we
say that f is sequentially continuous if ∀p0 ∈ ΛA, where p0 is a fixed treon p0 ≡ (p01 , p02 , p03), we have
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(pn)n∈N,pn→p0 ⊆ ΛA ⇒ f ((pn)n∈N)→ f (p0) ⊆ ΛB, meaning the sequence in the domain is mapped
to a convergent sequence in the image f (pn)→ f (p0) as n→ ∞ [6].

It is known that if a mapping is continuous, then it is sequentially continuous. Moreover, if a
mapping is sequentially continuous and defined in a metric space or in a second-countable space, then
it is a continuous mapping [4,6–8].

2.2. Homeomorphisms

Given two topological spaces (ΛA, TΛA) and (ΛB, TΛB), a mapping f : ΛA → ΛB is a homeomor-
phism if f is bijective, continuous, and if the inverse, f−1 : ΛB → ΛA, is also continuous [9,10].

3. Theoretical Development

3.1. Euclidean Locality in Treonic Spaces

A topological space (Λ, TΛ) is an n-dimensional topological manifold if: (1) It is a Hausdorff
space, (2) it is second-countable, and (3) it is locally Euclidean of dimension n [11–13].

A topological space (Λ, TΛ) being locally Euclidean means that we can locally relate it via a
homeomorphism to the topological space (Rn, Td), where Td is the standard topology induced by the
Euclidean metric [14–16].

The fact that this homeomorphism occurs "locally" indicates that, by fixing a point p0 ∈ (Λ, TΛ),
we can define an open neighborhood Vp0 ∈ TΛ of the point p0 as homeomorphic to an open neighbor-
hood of a point ρ0 ∈ Rn.

Definition 1. Let a treon p0 ≡ (p01 , p02 , p03) and an open neighborhood of p0, Vp0 . A treonic topological
space (Λ, TΛ) is locally Euclidean n-dimensional if ∀p0 ∈ Λ∃Vp ∈ TΛ and a homeomorphism f : VΛ → VR,
such that VR ∈ Rn and VΛ ∈ Λ.

3.2. Homeomorphism Between Treonic Space and R3

Since the treonic space Λ is isomorphic to R3, we can find a bijective, continuous mapping
f : Λ→ R3 whose inverse f−1 is also continuous.

We can define a homeomorphism f :

f : Λ→ R3,

p1 + p2i + p3 j ≡ (p1, p2, p3) 7→ (ρ1, ρ2, ρ3),

such that f ((p1, p2, p3)) = (ρ1, ρ2, ρ3). This correspondence associates each treon (p1, p2, p3) ∈ Λ
with a vector (ρ1, ρ2, ρ3) in R3 with the same coordinates, meaning f is an identity mapping between
coordinates of different spaces.

Bermejo demonstrated the isomorphism between treons, p1 + p2i + p3 j, and elements of algebra
B, (p1, p2, p3), when algebra B is defined using the real field R and the vector space R3 [17]. Therefore,
a treon with structure (p1, p2, p3) is trivially representable by the Cartesian product R×R×R.

The vector space R3 is by definition equipped with vector addition and scalar multiplication.
When we equip it with the product of algebra B [18], we call it a treonic space, as there exists an
isomorphism between the vectors of R3 and the treons [17].

The treonic space thus defined implicitly contains its own metric, norm, and inner product in
its real components when the product of algebra B is performed [2,3,17]. This is a characteristic that
distinguishes it from the conventional R3, which requires explicit incorporations of metric (metric
space), norm (normed space), or inner product (inner product space). The product operation of algebra
B is sufficient to define these properties [2,3,17]. This makes the subspace N ⊆ Λ of elements that can
be represented as a product of treons the space most similar to a normed, metric, and inner product
space R3. A difference between N ⊆ Λ and Λ is the absence of pure imaginary treons different from
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the null vector, (0, p2, p3) 6= (0, 0, 0), since the only possibility of having an element with a null real
component in N is the treon (0, 0, 0) [2,3].

Therefore, the space Λ is isomorphic to R3 with respect to the correspondence between the
coordinates that define its components. As a result, the space can be endowed with Euclidean norms,
metrics, and inner products. Additionally, we consider a subspace N ⊆ Λ that is also isomorphic to a
subspace of R3, where norms, metrics, and inner products can be defined by the algebraic product of
B.

Let N ⊆ Λ be an intrinsically normed subspace, that is, in N we have elements of the form

pA � p
(∗i,j)

A ≡ 〈p2〉 = (‖p‖2, 2p1 p2 + p2 p3, 2p1 p3 + p3 p2), where ‖p‖2 ≡ p2
1 + p2

2 + p2
3. The ortho-

mulearity [18] for two treons p and q, given by the product p2i� q3 j = 0 is trivial, as in N we have
p2 = q3 = 0. On the other hand, the product q3 j� p2i = q3 p2 j� i is also zero.

Outside N, orthomulearity and the product q3 j� p2i are not trivial, as pure imaginary treons do
exist.

Bermejo defined the treonic space Λ as the preimages of the mapping 〈·2〉, such that 〈·2〉(p1, p2, p3) =

(‖p‖2, 2p1 p2 + p2 p3, 2p1 p3 + p3 p2) [2,3]. 〈·2〉 is a particular case of the mapping given by the dou-
ble conjugate product pA � p∗B(i,j)

≡ 〈pA, pB〉 = (pA � pB,−pA1 pB2 + pA2 pB1 − pA3 pB2 ,−pA1 pB3 +

pA3 pB1 − pA3 pB2), where pA � pB ≡ pA1 pB1 + pA2 pB2 + pA3 pB3 is the Bermejian inner product [3].
By performing 〈·2〉 on the difference between treons, dAB, Bermejo defined a metric gAB as gAB ≡√

Re〈d2
AB〉, where dAB = (pA1 , pA2 , pA3)− (pB1 , pB2 , pB3) [3]. With this metric, balls of radius ε cen-

tered at p0 ≡ (p01 , p02 , p03) were defined: B = {Bε(p0) : p0 ∈ Λ, ε ∈ R, ε > 0} [3].
For these balls to be well-defined, they necessarily must have an associated norm, which is

achieved by defining Λ as the preimages of 〈·2〉, meaning in this context that:

1. We take a point p0 ∈ Λ.
2. We calculate a difference between p0 ∈ Λ and an arbitrary treon pB ∈ Λ, d0B = (p01 , p02 , p03)−

(pB1 , pB2 , pB3).
3. We apply the mapping 〈·2〉(d0B), 〈·2〉(d0B) = (‖d0B‖2, 2d0B1 d0B2 + d0B2 d0B3 , 2d0B1 d0B3 + d0B3 d0B2).

4. We extract g0B, g0B =
√

Re〈d2
0B〉 =

√
‖d0B‖2.

In this way, the metric quantity g0B can be defined arbitrarily small, g0B = ε, for treons in Λ.
Note that the preimages of the mapping 〈·2〉, Λ, is the entire treonic space, as there is no domain

for which 〈·2〉 is not defined. We simply refer to the entire treonic space as the preimage of 〈·2〉 to
indicate that these elements are subject to the product 〈pA, pB〉 when it is necessary to define a metric,
a norm, or an inner product.

The difference between Λ and R3 lies in the fact that we need to equip R3 with the metric to have
balls of radius ε centered at vectors ~p ≡ p1 î + p2 ĵ + p3k̂ ≡ (ρ1, ρ2, ρ3), where {î, ĵ, k̂} is the canonical
basis. On the other hand, Λ with the product of algebra B contains the metric gij intrinsically.

If we take two position vectors ρ0 ≡ (ρ01 , ρ02 , ρ03) and ρB = (ρB1 , ρB2 , ρB3) in R3 and apply the
same reasoning to obtain a metric, we have: d0B = (ρ01 , ρ02 , ρ03)− (ρB1 , ρB2 , ρB3) = (ρ01 − ρB1 , ρ02 −
ρB2 , ρ03 − ρB3) ≡ (d0B1 , d0B2 , d0B3), and ‖d0B‖2 = (d0B1 , d0B2 , d0B3) · (d0B1 , d0B2 , d0B3) = (d0B1)

2 +

(d0B2)
2 + (d0B3)

3, therefore g0B = ‖d0B‖ =
√
(d0B1)

2 + (d0B2)
2 + (d0B3)

3 (The operation dot · here

is the inner (dot) product in R3). This exactly matches the components of the Bermejian metric in the
real component of treons. Therefore, the open balls given by the Euclidean metric have a one-to-one
correspondence with treonic open balls.

3.2.1. Bijectivity

Bijectivity is verified by injectivity: f ((pA1 , pA2 , pA3)) = f ((pB1 , pB2 , pB3)) ⇔ (pA1 , pA2 , pA3) =

(pB1 , pB2 , pB3), and surjectivity: ∀(ρ1, ρ2, ρ3) ∈ R3∃(p1, p2, p3) ∈ Λ.
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Suppose f ((pA1 , pA2 , pA3)) = f ((pB1 , pB2 , pB3)). Since there is a unique correspondence given by
f (the identity mapping of coordinates):

f ((pA1 , pA2 , pA3)) = (ρA1 , ρA2 , ρA3)⇒ pA1 = ρA1 ∧ pA2 = ρA2 ∧ pA3 = ρA3

and
f ((pB1 , pB2 , pB3)) = (ρB1 , ρB2 , ρB3)⇒ pB1 = ρB1 ∧ pB2 = ρB2 ∧ pB3 = ρB3 .

Therefore, if:
(ρA1 , ρA2 , ρA3) = (ρB1 , ρB2 , ρB3),

then:
(pA1 , pA2 , pA3) = (pB1 , pB2 , pB3).

It is verified that f is injective.
Note that we can cover all of R3 with elements (ρ1, ρ2, ρ3) that come from (p1, p2, p3) under f .

Since all of Λ is the domain of f , all of R3 is the image. Thus, effectively for every (ρ1, ρ2, ρ3) ∈ R3

there exists a (p1, p2, p3) ∈ Λ. Therefore, f is surjective.

3.2.2. Continuity of f and f−1

To prove that f is continuous, we need to show that for any open set O in R3, the inverse set
f−1(O) is open in Λ.

Bermejo defined that, for (Λ, TΛ) a topological space induced by the Bermejian metric gij, the
basis B of TΛ is defined as the balls of radius ε centered at p0 ≡ (p01 , p02 , p03), such that B = {Bε(p0) :
p0 ∈ ΛQ3 , ε ∈ Q, ε > 0}, where the components of the central treon of each ball p0i , and the distance ε,
belong to the set Q, so that B is a countable basis of TΛ [3].

Open balls centered at points that are a Cartesian product Q×Q×Q, with rational radii, can
approximate any open ball in R3. For example, if we have an irrational point p ≡ (p1, p2, p3), the balls
Bε(p0), with p0i ∈ Q and ε a rational radius arbitrarily small, will cover points close to p, including p
itself.

Any open ball in R3 centered at an irrational point (which does not form our countable basis) can
be seen as a union of smaller open balls centered at rational points. Therefore, the countable basis of
balls with rational centers is sufficient to describe the topology of the entire treonic space, including
irrational points.

Rational numbers Q are dense in real numbers R [3], meaning for any real number, we can always
find a sequence of rational numbers that approximate it arbitrarily closely. This property ensures that,
even though we use a basis with rational elements, we can always approximate any point in R with
arbitrary precision using rational elements. Formally, ∀ε > 0, ∀x ∈ R∃q ∈ Q : ‖x − q‖ < ε. Then,
given any point x ∈ R3 and an open ball centered at x with radius ε, we can find a point q ∈ Q3 within
the ball such that ‖x− q‖ < ε.

Note that the treonic space Λ itself is not limited to rational elements, but the basis for its topology
TΛ can be defined using balls with rational centers.

The Bermejian metric gij and the topology induced by this metric in Λ allow the open balls defined
in terms of rational elements to encompass within the radius ε irrational points, as well as approximate
arbitrarily any open ball centered on a treon defined with real components p ≡ (p1, p2, p3), pi ∈ R. In
this sense, denoting the centers of balls as p0 ≡ (p01 , p02 , p03) if p0i ∈ ΛQ and as p1 ≡ (p11 , p12 , p13) if
p1 ∈ R3, and let a mapping f , we have:

(p0)n,n∈N,n→p1 ⇒ f ((p0)n,n∈N,n→p1) = (ρ0)n,n∈N,n→ρ1 ,
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where ρ0 ≡ (ρ01 , ρ02 , ρ03) ∈ Q3 and ρ1 ≡ (ρ11 , ρ12 , ρ13) ∈ R3. In this sense, f is a sequentially
continuous mapping, and as it is defined over the second-countable space ΛQ, then f is a continuous
mapping [4,6–8].

Continuity can also be viewed from the perspective of open sets in topologies. To demonstrate
that f is continuous, we must verify that for any open set O in R3, the preimage f−1(O) is an open set
in ΛQ. We will continue from here with the notation Λ, understanding that it is a second-countable
space (ΛQ).

Consider the open set O in R3; by the definition of standard topology, O can be represented as the
union of open balls in R3 (or Q3 in the second-countable sense):

O =
⋃
i∈I

Bεi (ρi),

where ρi ≡ (ρi1 , ρi2 , ρi3) ∈ R3.
Representing O in terms of its topological basis, the preimage of O under f , Preim f (O) ≡ f−1(O),

is:

f−1(O) = f−1

(⋃
i∈I

Bεi (ρi)

)
=
⋃
i∈I

f−1(Bεi (ρi)).

The preimage of each arbitrary open ball Bε(ρ0) is:

f−1(Bε(ρ0)) = {p ∈ Λ : f (p) ∈ Bε(ρ0)},

since f is an identity mapping of the components of the treons, i.e.:

f ((p1, p2, p3)) = {(ρ1, ρ2, ρ3) ∈ R3 : p1 = ρ1 ∧ p2 = ρ2 ∧ p3 = ρ3},

and therefore:
f ((p1, p2, p3)) = ( f (p1), f (p2), f (p3)) = (ρ1, ρ2, ρ3).

Thus, the preimage f−1(Bε(ρ0)) is exactly the ball Bε(p0) ∈ Λ.
As the balls in Λ form a basis for the topology of Λ, and any open ball in R3 has a preimage that

is an open ball in Λ, we conclude that the preimage of any open set in R3 is an open set in Λ:

f−1(O) =
⋃
i∈I

Bεi (pi).

Similarly, the continuity of the inverse mapping is satisfied: f−1 is continuous because any open
set U in Λ, the preimage ( f−1)−1(U) is an open set in R3.

3.3. Homeomorphism Between the Treonic Quotient Space and R3

The homeomorphism between the treonic quotient space Λ\ ∼ and R3 presents an issue with
injectivity since f ([q]) = f ([−q]), where [q] ∈ Λ\ ∼ and f ([q]) ∈ R3. However, the equivalence
relation q ∼ −q implies that injectivity is preserved in the sense that f ([q]) = f ([−q]) ⇔ [q] = [−q].
This is true, but it introduces a problem with surjectivity, as there are points in R3 that the mapping
does not reach. Consequently, the entirety of R3 is not the codomain of f .

However, we must note that each equivalence class is defined by two equivalent points on a
S2-sphere of arbitrary radius r; therefore, for each radius, we will have respective spheres, forming
a volume that fills the space R3 in which the S2-sphere is defined. This means that each hemisphere
(or semi-sphere) is equivalent to its opposite hemisphere, for example: the northern hemisphere is
equivalent to the southern hemisphere under the equivalence relation q ∼ −q.

For a constant radius r0, the corresponding S2-sphere will be given by the equivalence classes
([q]∼)j = ({q,−q})j. For each radius ri∈R, there will be S2

i∈R-spheres.
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Fixing a radius r0, the northern hemisphere S2
r0

can be projected onto the R2 plane such that each
point on the hemisphere has a one-to-one functional correspondence with the R2 plane.

Let S2
r1

be defined as:
S2

r1
≡ {ρ ≡ (ρ1, ρ2, ρ3) ∈ R3 : ‖ρ‖ = 1},

and let a set R be defined as:

R ≡ {ρ′ ≡ (x1, x2) ∈ R2 : ‖ρ′‖ ≤ 1}.

We define a mapping Ψ1:
Ψ1 : S2

r1
→ R2,

(ρ1, ρ2, ρ3) 7→ (x1, x2, 0),

such that Ψ1((ρ1, ρ2, ρ3)) = (Ψ1(ρ1), Ψ1(ρ2), Ψ1(ρ3)) = (x1, x2, 0) ≡ (x1, x2). Ψ1 is also an identity
mapping of components for the first two components (i.e.: Ψ1(ρ1) = ρ1 = x1 and Ψ1(ρ2) = ρ2 = x2),
having the mapping on the third component as Ψ1(ρ3) = 0.

The vectors ρ, for the northern hemisphere, have the structure (ρ1, ρ2, ρ3), such that ρ3 > 0.
If we want to disregard the edge in the domain: S2

r1
= {(ρ1, ρ2, ρ3) ∈ R3 : ‖ρ‖ < 1}. And if we

want to disregard the edge in the codomain: R = {(x1, x2) ∈ R2 : ‖ρ′‖ < 1}.
Defining ρ′ ≡ (x1, x2) and ρ ≡ (ρ1, ρ2, ρ3), the inverse mapping, Ψ−1

1 , is:

Ψ−1
1 : R2 → S2

r1
,

ρ′ 7→ ρ,

such that (x1, x2, 0) 7→ (Ψ−1
1 (x1), Ψ−1

1 (x2), Ψ−1
1 (0)) = (ρ1, ρ2,

√
1− ‖ρ′‖2), since Ψ−1

1 (x1) = x1 = ρ1,
Ψ−1

1 (x2) = x2 = ρ2, and Ψ−1
1 (0) =

√
1− ‖ρ′‖2.

Ψ−1
1 is also an identity mapping of components for the first two components, having the mapping

on the third component as Ψ−1
1 (x3 = 0) =

√
1− ‖ρ′‖2.

An equivalent representation, for the case of the southern hemisphere, implies Ψ−1
1 (x3 = 0) =

−
√

1− ‖ρ′‖2, since the vectors ρ for the southern hemisphere have the structure (ρ1, ρ2, ρ3), such that
ρ3 < 0.

The component ρ3 =
√

1− ‖ρ′‖2 makes ‖ρ‖ = 1. Therefore, any pair (ρ1, ρ2) with ‖ρ‖ = 1
defines the surface of a hemisphere that can be either north or south depending on the positivity
or negativity of its third component, respectively. The same applies to the anterior and posterior
hemispheres or the eastern and western hemispheres.

Taking into account the correspondence between coordinates under the mapping Ψ and its inverse,

note that if we define ρ3 =
√

1− ‖ρ′‖2, we have ‖ρ‖ =
√

ρ2
1 + ρ2

2 + (
√

1− ‖ρ′‖2)2. Since ρ1 = x1 and

ρ2 = x2, we have ‖ρ‖ =
√

ρ2
1 + ρ2

2 + 1− ‖ρ′‖2, and since ρ′ = (x1, x2), which implies ‖ρ′‖2 = x2
1 + x2

2,

we have ‖ρ‖ =
√

x2
1 + x2

2 + 1− x2
1 + x2

2 = 1.
Given the reasoning developed so far, we can generalize the mapping Ψi∈R+ and its inverse for

the volume of the northern hemisphere as follows:

Ψi : S2
ri
→ R2,

ρ 7→ ρ′,

such that:
S2

ri
≡ {ρ ∈ R3 : ‖ρ‖ = i ∈ R+},

so that the codomain is given by:
R = {ρ′ ∈ R2 : ‖ρ′‖ ≤ i}.
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The inverse mapping is:
Ψ−1

i : R2 → S2
ri

,

ρ′ 7→ ρ,

such that (x1, x2) 7→ (x1, x2,
√

i− ‖x2
1 + x2

2‖2) = (x1, x2,
√

i− ‖ρ′‖2), i.e.:

Ψ−1
i (x1, x2, 0) = (Ψ−1

i (x1), Ψ−1
i (x2), Ψ−1

i (0)) = (x1, x2,
√

i− ‖ρ′‖2) = (ρ1, ρ2, ρ3).

The component ρ3 =
√

i− ‖ρ′‖2 in this generalization implies ‖ρ‖ = i. Therefore, for any pair
(x1, x2) with ‖ρ‖ = i, we will have the surface of the northern hemisphere with norm i: ‖ρ‖ =√

x2
1 + x2

2 + (
√

i− ‖ρ′‖2)2 =
√

x2
1 + x2

2 + i− x2
1 + x2

2 = i. Note that each Ψi is a homeomorphism,
such that there is a mapping for each norm i.

An S2-sphere with a fixed radius r0 is determined by the different equivalence classes ([q]∼)j =

({ρ,−ρ})j such that ‖ρ‖ = r0. For an arbitrary radius r, these equivalence classes group into the
quotient set Λ\ ∼. We can understand the set Λ\ ∼ as a quotient set of S2-spheres:

Λ\ ∼≡ {S2
ri
\ ∼∈ R3 : ρ ∼ −ρ ∧ ri ∈ R+}.

In this way, each S2
ri
\ ∼ is homeomorphic to R2 under the selector mapping Ψ, which selects the

corresponding hemispheres to produce a bijective and continuous mapping in both directions.
This subdivision of the treonic quotient set Λ\ ∼ into quotient sets of ri-spheres, S2

ri
\ ∼, facilitates

the decomposition of the volume Λ\ ∼ into the surfaces that compose it. This would be a model of
decomposing Λ\ ∼ "like onion layers", such that each layer is a quotient subset homeomorphic to
R2 under the hemisphere selector mapping Ψ. Therefore, each layer under Ψ is locally Euclidean.
Analyzing the total volume Λ\ ∼ or the hemispherical volume Λ\ ∼ generates an overlap of points on
the R2 plane. Hence, it is necessary to analyze each layer of each hemisphere at a time in its projection
to R2.

Each hemisphere of north, south, east, west, anterior, and posterior, we denote as Hi, such that
i = north, south, east, west, anterior, and posterior.

The equivalence relation ρ ∼ −ρ implies that the opposite hemispheres are equivalent in the
sense that, for example, any point ρ in the northern hemisphere is equivalent to the point −ρ in the
southern hemisphere. But this situation must be carefully analyzed, and we must understand that
the mapping Ψ acts on hemispheres, not on the entire sphere. Note that the point −ρ in the southern
hemisphere overlaps in its projection onto the R2 plane with the projection of a different point from ρ

in the northern hemisphere under the mapping Ψ. Therefore, it is convenient to also place an index
on the mapping Ψ: We denote Ψi, where i = north, south, east, west, anterior, and posterior. And
according to this notation, for example, the mapping Ψnorth acts on Hnorth and maps a point ρ to a
point ρ′ ∈ R2. On the other hand, the mapping Ψsouth will act on Hsouth and map independently the
point −ρ to a point −ρ′ ∈ R2. It is understood that both R2 planes are separable in the analysis of the
mapping Ψ.

If we intersect an S2
r0

-sphere with vertical planes passing through the centroid, on the surface of
S2

r0
we will have infinite curves, intersected at the north and south poles. These curves describe arcs

that allow us to define angles. In the case of the northern hemisphere, a point ρ0 will be on a curve
C0 and can be described using spherical polar coordinates: It will have a radius r0 and an angle θ0

that describes the angle along the plane defining the curve, understanding that θ0 = 0 at the points
ρ0 = (x1, 0). With this analysis, the equivalent point −ρ0 in the southern hemisphere will coincide in
its projection onto R2 with the projection of the point ρ0 rotated along the plane by an angle π − θ0 in
its corresponding R2 plane. This is useful as it allows us to relate the codomain R2 of Ψnorth acting on
Hnorth with the codomain R2 of Ψsouth acting on Hsouth through a mapping that assigns each point in
the northern hemisphere to a point in the southern hemisphere with the same coordinates in R2.
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Using pairs (Hi, Ψi), we can study the treonic quotient space Λ\ ∼.
Each mapping Ψi along with its corresponding hemisphere Hi, we call a chart (or local chart)

and denote it as (H, Ψ). This denomination corresponds to the usual nomenclature in differential
geometry [11–13]. Thus, our chart (H, Ψ) is a homeomorphism along with the open subset of the
topological manifold where it is defined. This is applicable to open subspaces of H.

4. Statement of the Treonic Manifolds

Let (Λ, TΛ) be the treonic topological space, we say that it is a manifold since it is a Hausdorff
space, second-countable, and locally (in this case: globally) Euclidean in the sense of the existence of an
identity mapping of coordinates between Λ and R3. Therefore, (Λ, TΛ) is a 3-dimensional manifold.

Let (Λ\ ∼, T̃) be the treonic quotient topological space, and it is a Hausdorff space, second-
countable. However, in the volume (Λ\ ∼, T̃), we cannot define a bijection with the real space Rn

equipped with the Euclidean metric. Therefore, under the analysis of the present study, we will not
assume that (Λ\ ∼, T̃) is a manifold.

Let (S2
ri
\ ∼, T̃) be the treonic quotient subspace given by the ri-spheres. For any point on

the sphere, we do not have a neighborhood such that we can define a homeomorphism from the
classical point of view, since the opposite hemispheres have points that overlap in R2. To establish
a homeomorphism, we must select only one of the elements in [q]∼ = {q,−q} and map it to R2, or
similarly, homogenize the elements of the class into a single element that contains the information
of the rest, which is easy to understand given that there is an equivalence relationship among the
elements. Then, the inverse mapping recovers the entire equivalence class [q]∼. In this case, f :
S2

ri
\ ∼→ R2, q = (ρ1, ρ2, |ρ3|) ∈ {q,−q} 7→ (x1, x2, 0) = (x1, x2). The inverse mapping is f−1 : R2 →

S2
ri
\ ∼, (x1, x2)→ {(x1, x2,

√
i− ‖x2

1 + x2
2‖2),−(x1, x2,

√
i− ‖x2

1 + x2
2‖2)} = [q]∼ for a radius ri. This

is applicable to the north-south hemisphere relation. For the rest of the hemispheres, the reasoning
is analogous, but considering the first or second components. Under this reasoning, (S2

ri
\ ∼, T̃) is a

2-dimensional manifold.
Let (Hi ⊆ S2

ri
\ ∼, T̃) be the quotient topological subspace defined by the ri-hemispheres. We

say it is a manifold since it is a Hausdorff space, second-countable, and locally Euclidean. Therefore,
(Hi ⊆ S2

ri
\ ∼, T̃) is a 2-dimensional manifold.

5. Transition Map

Let (Λ, TΛ) be a treonic manifold, which we denote as (MΛ, TΛ), and let the charts φ1 : UΛ → UR3

and φ2 : VΛ → VR3 , such that there exists an overlap between UΛ and VΛ, UΛ ∩ VΛ 6= ∅. Then, a
mapping ω of the form ω : A ⊆ UR3 → B ⊆ VR3 is called a transition map [11,13,15,16,16]. The same is
applicable to the manifold (Hi ⊆ S2

ri
\ ∼, T̃Λ), which we denote as (MHi , T̃Λ).

6. Treonic Atlas

Let the manifold (MΛ, TΛ). The collection of charts (Ui, φi)i∈I is called a treonic atlas if it is a cover
of the manifold such that MΛ =

⋃
i∈I Ui [11,12,15,16].

Let the manifold (MHi , T̃Λ), we have that a collection of charts (Wi, Ψi)i∈I , such that Wi ⊆ Hi, is a
treonic quotient atlas if MHi =

⋃
i∈I Wi.

On the other hand, the collection of charts (Hi, Ψi)i∈I forms an atlas that defines the entire treonic
S2

ri
-sphere since S2

ri
=
⋃

i∈I Hi, I = {north, south, east, west, anterior, posterior}. Thus, the collection
of quotient hemispheres forms an atlas under the quotient topology that, for each ri > 0, makes the
volume (Λ\ ∼, T̃) an atlas.

Conclusions

We developed a comprehensive theoretical framework to elucidate Euclidean locality within
treonic topological spaces, thereby achieving significant advancements in the field of topology. We
established the groundwork for a deeper understanding of their topological and geometric behavior.
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A key contribution of our work was the formal establishment of homeomorphisms between treonic
spaces and R3. This critical finding demonstrated that treonic spaces could be locally represented as
Euclidean spaces, thereby affirming their Euclidean locality.

We extended our analysis to the quotient spaces derived from treonic spaces, thoroughly examin-
ing their manifold properties. By identifying the conditions under which these quotient spaces could
be locally modeled as Euclidean spaces, we introduced a novel characterization of treonic manifolds.
In this context, we demonstrated other homeomorphisms, with R2, which allowed us to construct
various types of charts.

We significantly advanced the understanding of treonic topological spaces by establishing their
Euclidean locality and conducting a thorough analysis of their topological and geometric properties,
thereby completing the necessary requirements for the first construction of treonic manifolds, a
potentially essential framework in Bermejo Algebras.

The theoretical framework and findings presented here contribute substantially to the field of
topology and offer valuable insights for future research. By bridging the concepts of treonic and
Euclidean spaces, this study not only enhances theoretical knowledge but also provides a foundation
for future applications in advanced mathematics and theoretical physics. Future research should
continue to delve into the rich structure of treonic spaces, further elucidating their properties and
exploring new applications in both the mathematical and physical sciences.
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