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Article 

Combustion Control of Ship’s Oil‐Fired Boilers 

based on Prediction of Flame Images 

Chang‐Min Lee 

Division of Marine System Engineering, Korea Maritime and Ocean University, 727, Taejong‐ro, Yeongdo‐gu, 

Busan 49112, Korea; Korea Maritime & Ocean University; oldbay@kmou.ac.kr 

Abstract: This study proposes and validates a novel combustion control system for Oil‐Fired Boilers 

aimed at reducing air pollutant emissions through flame image prediction. The proposed system is 

easily applicable to existing ships. Traditional proportional combustion control systems supply fuel 

and  air  at  fixed  ratios  according  to  the  set  steam  load, without  considering  the  emission of  air 

pollutants. To address this, a stable and immediate control system is proposed, which adjusts the 

air  supply  to  modify  the  combustion  state.  The  combustion  control  system  utilizes  oxygen 

concentration predictions from flame images via SEF+SVM as control inputs, and applies Internal 

Model Control (IMC)‐based Proportional‐Integral (PI) control for real‐time combustion control. Due 

to  the  complexity  of  modeling  the  image‐based  system,  IMC  parameter  tuning  through 

experimentation is essential for achieving effective control performance. Experiments conducted on 

a  3000  kg/h marine  oil‐fired  boiler  in  actual  operation  optimized  the  controller parameters  for 

stability and responsiveness, and validated their effectiveness. The results demonstrate the potential 

of the proposed system to improve combustion efficiency and reduce emissions of air pollutants. 

This study provides a feasible and effective solution for enhancing the environmental performance 

of marine oil‐fired boilers. Given its ease of application to existing ships, it is expected to contribute 

to sustainable air pollution reduction across the maritime environment. 

Keywords:  combustion  control;  emission  prediction;  IMC‐based  PI  Control;  real‐time  control; 

performance assessment 

 

1. Introduction 

Combustion boilers are widely used for steam generation in marine industries, power plants, 

and various utilities requiring substantial thermal energy[1]. In the marine sector, although the trend 

of producing steam‐powered ships has significantly declined [2], boilers burning diesel fuel are still 

extensively used on ships employing diesel engines as  the primary propulsion system. However, 

fossil fuels like diesel contribute to global warming by emitting greenhouse gases such as  𝑁𝑂௫,  𝑆𝑂௫, 
and  CO2  during  combustion  [3,4].  Compared  to  main  propulsion  systems  such  as  internal 

combustion engines, there is relatively less regulation and concern regarding pollutants emitted from 

combustion boilers [5,6]. Therefore, efforts are needed to reduce air pollutants generated from the 

exhaust gases of ship boilers. 

The boiler system generates exhaust gases with  thermal energy  through  the atomization and 

combustion  of  pressurized  air  and  fuel.  These  exhaust  gases  convert water  into  steam  via  heat 

transfer  surfaces  such  as water  tubes  or  fire  tubes.  The  amount  of  air  pollutants  emitted  varies 

depending on the equivalence ratio, which is the ratio of fuel to air during the combustion process 

[7]. 

To  reduce  air  pollutants,  it  is  necessary  to  properly  control  the  air  and  fuel  supplied  for 

combustion  [8]. However,  traditional  boiler  combustion  systems  use  a  proportional  combustion 

control, where the load of steam is the control target, and predetermined fuel and air flow rates are 

supplied  for  combustion.  This method  ensures  system  stability  but  does  not  take  air  pollutant 
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emissions  into  account  [9]. Consequently,  research  has  been  continuously  conducted  to  directly 

control  the  fuel oil  and  air  flow  rates  supplied  to  the  combustion  system  in order  to  reduce  air 

pollutants [10,11]. 

However,  although  these  control  solutions  have  proven  effective  in  reducing  air  pollutant 

emissions,  they need  to be designed at  the manufacturing stages,  leading  to  increased  initial and 

operational  costs.  Additionally,  advanced  control  methods  requiring  high  accuracy  in  system 

modeling can cause combustion  instability and  flame extinction due  to  transient  responses when 

directly  applied  to  the  dynamic  boiler  systems  sensitive  to  environmental  changes  [12].  These 

challenges  related  to  cost  and  stability  continue  to  support  the  widespread  use  of  traditional 

proportional combustion control. 

Therefore,  this  study proposes a system  that  reduces emissions of air pollutant by adding a 

control system for combustion optimization to the existing Oil‐Fired Boiler (OFB) combustion system, 

which ensures system stability. 

In existing research, air pollutants and oxygen concentration were used as inputs through either 

direct measurement or  indirect estimation based on operational data  [13–15]. However,  the direct 

measurement method using devices is not suitable for real‐time control due to the delay between the 

combustion control point and the measurement point [16]. Additionally, the indirect measurement 

method based on operational data  is economically disadvantageous as  it requires numerous data 

collection devices, and the loss of a single operational data point or sensor failure can significantly 

impact prediction accuracy, leading to errors in control inputs [14]. Consequently, research on control 

systems using soft measurement has been continuously conducted. 

In this study, a soft measurement method is employed by observing quasi‐instantaneous flame 

images to predict air pollutants, using these predictions as control inputs to achieve real‐time control.   

It  is  challenging  to mathematically  represent  the dynamic modeling  of  a  boiler  combustion 

system  utilizing  flame  images  as  control  inputs.  Therefore,  machine  learning‐based  modeling 

methods  using  operational  data  are  frequently  employed  for  such  complex  systems  [17].  To 

effectively control the modeled system, selecting appropriate control techniques and parameters is 

crucial [18].   

In this study, an IMC‐based PI controller is used to maintain the oxygen concentration derived 

from flame images at a constant level. PI control is a well‐established method in numerous industrial 

processes,  and  by  incorporating  the  robustness  of  IMC,  it  provides  a  simple  yet  highly  reliable 

solution. This makes it readily applicable to ships, easy to operate, and capable of delivering excellent 

performance [19,20]. 

The experiments were conducted on a 3000 kg/h heavy oil boiler currently in use at the site. To 

predict  the oxygen concentration, an  indirect measure of air pollutant emissions and combustion 

efficiency,  the  SEF+SVM  method  was  used  to  extract  features  from  flame  images  and  make 

predictions. 

This method was validated in prior research conducted on the same plant. Flame images under 

six different combustion  conditions were  collected, and a  trained model of oxygen concentration 

estimation was established as  the control  input  for  the control system  to  form a closed‐loop. The 

transfer  function  of  the  configured  closed‐loop  was  estimated  using  input‐output  data  from 

experiments, and an IMC‐based PI controller was designed accordingly. The parameters of the IMC 

were  optimized  through  experiments  to  balance  robustness  and  control  performance,  and  their 

effectiveness was demonstrated through control performance verification. 

The objectives of this study can be summarized as follows: 

1. Propose a combustion control system to reduce air pollutant emissions from marine Oil‐Fired Boilers. 

2. Develop a real‐time combustion control system using predicted oxygen concentration from flame 

images as control inputs. 

3. Tune an IMC‐based PI controller through experiments to compensate for system discrepancies. 
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2. Combustion Control System for Marine Oil‐Fired Boilers 

Figure 1 shows a schematic diagram of the experimental setup. The OFB on the ship operates as 

a closed‐loop control process,  𝒫1, to reach the set steam pressure. This process adjusts the fuel valve 
and  the damper  opening  of  the  turbocharger  fan  at  a  fixed  ratio  according  to  the  internal  logic 

programmed  into  the PLC  to achieve  the  set  control  target.  In  this process,  the  combustion  state 

cannot be independently adjusted in response to disturbances such as fuel oil properties or system 

variations, as the fuel supply and air supply cannot be controlled separately. To address this issue in 

the existing OFB system and improve the combustion state, a new control process,  𝒫2, is proposed, 
which  includes an additional servo motor  for damper adjustment controlled by  𝒫1, as shown  in 

Figure 1. 

 

Figure 1. Schematic of Boiler Combustion Experiment. 

The 𝒫2 control process predicts the combustion state from flame images and adjusts the servo 

motor to regulate the air supply based on this feedback. 

Combustion parameters such as  𝑆𝑂௫,  𝑁𝑂௫,  COଶ, and CO, as well as oxygen,  included  in  the 

exhaust gases  can  be  easily measured using  gas  analyzers. However,  the measured  exhaust  gas 

values in this method have a delay time due to the process of flowing from the combustion point to 

the measurement point. This delay tends to cause the feedback control loop, which regulates oxygen 

concentration, to overcompensate for errors, resulting in slower control response and larger transient 

responses. In contrast, using flame images, which are indicators of quasi‐instantaneous combustion 

states, as inputs for oxygen measurement allows for immediate reflection of the current combustion 

state,  enabling  real‐time  continuous  flame  control. A 1920ൈ1080 pixel CMOS webcam  is used  to 

collect high‐resolution flame images. The camera is positioned at the flame observation port on the 

side of the boiler in accordance with SOLAS regulations. The collected flame images are transmitted 

to a computer via a USB 3.0 interface, and the predicted values of oxygen concentration, obtained 

from a pre‐trained model, are used as feedback signals in the control system. 

The  error  in  the oxygen  concentration  setpoint  is  converted  into  a  control  signal  for  the  air 

regulation  damper  through  the  designed  controller.  In  the  𝒫1control  system,  fuel  and  air  are 

controlled simultaneously at a fixed ratio according to the steam load. In contrast, the proposed  𝒫2 
control system adjusts the damper opening, which regulates the air supply, independently, thereby 

allowing control over the combustion state. To achieve individual damper control, an A/D converter 

drive is used to convert the analog control output to an angle ranging from 0 to 90 degrees, and a 

servo motor is installed at the end of the damper to control it in real‐time. 
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To train the prediction model of oxygen concentration for the experimental OFB and to compare 

and verify  the  effectiveness of  the  control  system,  information on  air pollutants  is  automatically 

recorded in the computing system via an exhaust gas analyzer from the funnel during the process. 

Specifically,  the oxygen  concentration, which  is  an  indirect measure of  energy  consumption  and 

combustion state as well as the control target, is recorded as time‐series data along with the flame 

images. 

3. Oxygen Concentration Estimation Model Using Saturation Extraction Filter 

To estimate the control input, specifically the oxygen concentration, in real‐time, flame images 

representing quasi‐instantaneous combustion states are processed through the SEF‐SVM model. This 

model  extracts  linear  features  from  the  flame  images,  focusing  on  saturation  information,  and 

converts these features into histograms to predict exhaust gas information in real‐time. 

The effectiveness of the SEF‐SVM model was validated through experiments conducted on the 

same  shipʹs  OFB  plant.  The model  demonstrated  an  R²  value  of  0.97  in  oxygen  concentration 

measurement performance. Furthermore, the measurement delay time was reduced to an average of 

2.1 seconds, confirming its suitability for use as an input in real‐time control [21]. 

Figure 2 shows a schematic diagram of the SEF‐SVM model. 

 

Figure 2. Learning Structure of Flame Images Using SEF+SVM. 

The collection of  flame  images utilizes  the existing  flame observation port, which presents a 

limitation in capturing the full size and shape of the flame. To mitigate this, the images are resized to 

800ൈ820 pixels to capture the reflective light from the wall surface of the observation port. This size 

was determined to be appropriate for the OFB through experimentation, ensuring that the histogram 

can accurately represent the data without exceeding 2 bytes per bin (216 bytes). 

The collected  flame  images are  initially captured  in RGB  format and  then converted  to HSV 

format. From this, only the Saturation component, which exhibits linear characteristics corresponding 

to  different  combustion  states,  is  extracted.  By  histogramming  this  information,  the  original 

800(H)ൈ820(W)ൈ3ൈ2 byte data  is reduced  to a 256ൈ2 byte  feature‐extracted dataset. This reduced 
dataset is then combined with the corresponding time‐series exhaust gas data and used for regression 

training in the SVM model. 

3.1. Data Collection 

Figure 3 presents the data collection process used in the experiment. 
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Figure 3. Data Acquisition Process of Flame Images and Exhaust Gas Data. 

During  the data  collection process,  the  combustion  environment  is divided  into  six distinct 

stages. For each stage, 200 data points are collected, resulting in a total of 1,200 time‐series data points. 

The combustion environment is manually controlled by operating the OFB while maintaining a 

constant supply of  fuel and air, disregarding  the steam pressure  in the  𝒫1 control system.  In  this 

state, as shown in Figure 3, the amount of supplied air is varied by adjusting the control hole installed 

on the  linkage of the air damper. Changes in the air supply affect the oxygen concentration  𝛿௢  in 
Equation 1, fuel‐lean equation, altering the Combustion Equivalence Ratio (CER) and consequently 

changing  the  exhaust gas  composition due  to variations  in C, H,  and N  reacting  in  the  fuel  [7]. 

Therefore, as the CER increases, the peak value of the saturation in the flame image changes. The data 

on  air  pollutants  and  oxygen  concentration  in  the  exhaust  gas  are  stored  as  time‐series  data 

synchronized with the SEF‐processed data, forming the dataset. 

𝜑 ൌ
𝜌௘
𝜌௔

ൌ 18.5 ൬
13𝛿௢ ൅ 37
2 െ 9.52𝛿௢

൰
ିଵ

 (1) 

3.2. Training of the Prediction Model of Oxygen Concentration 

The flame images and oxygen concentration data, stored from the process, are used to train a 

linear regression model for predicting oxygen concentration. The training model employs SEF+SVM, 

identical to model E1 trained with 300 samples in previous research, and uses a training dataset of 

1,200 data points, with 200 samples for each environmental variation. While increasing the dataset 

size improves the modelʹs performance by increasing the learning rate and reliability, it also raises 

the risk of overfitting, so the dataset size must be appropriately selected through experimentation. 

The training results for the new prediction model E2 are shown in Table 1. The evaluation metrics 

indicate the R² of 0.976, RMSE of 0.1159, and MAE of 0.1159. Compared to the proven performance 

of SEF+SVM, the R² increased by 0.62%, while the RMSE and MAE decreased by 31.74% and 4.45%, 

respectively, confirming the effectiveness of the E2 prediction model. 

Table 1. Learning Results of Predictive Models E1 and E2. 

Prediction Model  Training Dataset  R²  RMSE  MAE 

E1  300  0.97  0.1698  0.1213 

E2  1200  0.984  0.1159  0.1159 
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4. Development of an IMC‐PID Based Oxygen Concentration Control System Using   

Flame Images 

By utilizing flame images as input for oxygen concentration, the input delay issues associated 

with oxygen  concentration meters  can be  resolved,  allowing  for  the  establishment of  a  real‐time 

control system to regulate the oxygen concentration in the exhaust gases of the OFB. The schematic 

diagram of the control system  𝑆2  for  𝒫1  proposed in this study is shown in Figure 4. 

 

Figure 4. Overall of the Boiler Control System with the Proposed Combustion Control System. 

𝑆1  is  the  existing  control  system used  for  boiler  combustion. This  system  is  a proportional 

combustion control system that simultaneously controls the air flow and fuel quantity to maintain 

constant steam pressure. Since this ratio is set by the manufacturer during the commissioning part 

with  a  primary  focus  on  combustion  stability,  the  flame  remains  stable  despite  changes  in  the 

environmental  conditions  of  the  supplied  air  and  the  characteristics  of  the  fuel. However,  the 

emissions of air pollutants vary as a result. Consequently, by adjusting the amount of supplied air 

while maintaining a constant  fuel quantity,  it  is possible to control the emissions of air pollutants 

while ensuring combustion stability during the stable combustion process of the flame. 

Therefore, this study proposes an oxygen concentration control system,  𝑆2, that can additionally 
control the air damper opening, which is proportionally controlled in the existing  𝑆1  system. The 

control system uses  flame  images as  real‐time  input  to predict oxygen concentration  through  the 

SEF+SVM predictor. The predicted oxygen concentration is then used to adjust a servo motor for the 

damper  via  a  controller,  compensating  for  any  deviation  from  the  target  value.  This  controlled 

damper alters  the amount of air supplied  to  the combustor,  thereby controlling  the air pollutants 

generated during the combustion process. 

4.1. Setting Control Objectives 

The air pollutants emitted from the OFB are inversely proportional to the amount of air supplied 

because the amount of oxygen reacting with the fuel components increases during lean combustion 

when the equivalence ratio is less than 1. Maintaining the oxygen concentration in the exhaust gases 

is crucial to minimize soot particles and black smoke while effectively controlling cooling losses due 

to heat release and nitrogen oxide (𝑁𝑂௫) emissions. Therefore, setting and maintaining an optimal 

oxygen concentration is essential for the effective control of air pollutants. 
Additionally,  previous  studies  using  the  same  type  of  boiler  as  the OFB  employed  in  this 

research have shown that the air pollutants  COଶ,  𝑁𝑂௫, and  SOଶ  tend to be inversely proportional to 

oxygen concentration in the exhaust gases. Moreover, excessive supercharging should be avoided, as 
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it can reduce combustion efficiency due to heat loss in the exhaust gases. Therefore, it is crucial not 

to maintain the oxygen concentration excessively low [22]. 

The previous studies analyzing the exhaust gas characteristics of boiler systems based on oxygen 

concentration have demonstrated similar tendencies and highlighted the importance of maintaining 

an appropriate oxygen concentration. 

In the study by J. Chen et al., the exhaust gas oxygen concentration of a coal‐fired boiler was adjusted 

between  2%  and  5%,  revealing  a  correlation  between  oxygen  concentration  and  NOଡ଼   emissions. 

Additionally, the study examined the impact of soot and graphite on flame image measurements with 

varying oxygen concentrations. It was found that at an oxygen concentration of 4.02%, the occurrence of 

soot and graphite was minimized, resulting in the least noise in flame image recognition [23]. 

The study conducted by G. Xiao et al. on gas‐fired boiler combustion examined the correlation 

between heat  release  and  NOଡ଼   production  in  boilers. The  study  established weightings  for heat 

release and  NOଡ଼  production, finding that to double the weighting for reducing  NOଡ଼  emissions, the 

oxygen  concentration  needs  to  be  increased  by  approximately  1.14  times  under  various  load 

conditions. In  this research, an oxygen concentration of 3.5% achieved a 1:1 balance between heat 

release and  NOଡ଼  production at 80% load. When adjusting the weighting to reduce  NOଡ଼  production, 

the optimal oxygen concentration was found to be around 4.0% [24]. 

Based on a comprehensive review of the exhaust gas characteristics of the target shipʹs OFB and 

related  researches,  this  study  concludes  that  setting  the  control  target  value  for  the  oxygen 

concentration in the exhaust gas to 4% is appropriate for real‐time combustion control of the boiler. 

4.2. Estimation of Transfer Function Based on Step Response 

To  set  the  controller,  the  transfer  function  of  the  control  system must  first  be  determined. 

Although classical methods such as calculating differential equations can be used to find the transfer 

function, this approach is not straightforward for the given system due to the numerous variables, 

including changes in the supplied air, fuel characteristics, and heat transfer efficiency variations with 

load. Therefore, this study employs a method that identifies the system by providing a constant input 

and  analyzing  the  resulting  response.  This  method  is  well‐suited  for  irregular  and  non‐linear 

systems, and it offers the advantage of being able to adapt to the desired model structure despite the 

presence of many system variables by using actual data [17,25]. 

To  identify  the  system,  the  combustion  control  system  𝑆1   is maintained  at  a  load  of  78%, 

ensuring that the oxygen concentration in the exhaust gas remains at 4% while fuel is supplied at a 

constant rate. During this process, a step input of +5 degrees in the open direction is applied to the 

servo motor of  𝑆2, and  the oxygen concentration, as  inputted  through  flame  images,  is recorded. 

Figure 5 shows the oxygen concentration output of the system in response to the step input. 

 

 

Figure 5. Concentration of  𝑶𝟐  Change in Response to Servo Angle Step Input. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 July 2024                   doi:10.20944/preprints202407.2201.v1

https://doi.org/10.20944/preprints202407.2201.v1


  8 

 

The  collected  data  is  then  used  to  estimate  the  transfer  function  using MATLAB’s  System 

Identification Toolbox. This method utilizes machine  learning algorithms  to estimate  the  transfer 

function through the learning of input and output data. The order of the system is specified from first 

to third order, and the transfer functions are estimated as shown in Table 2. 

Table 2. Transfer Function Estimation through Training of Machine Learning Algorithms. 

system   

order 

Estimated 

Numerator 

Estimated 

Denominator 

Fit Rate to 

Data 
MSE 

1  0.2187  1, 2648.14  81.47  0.124 

2  0.2187, 0.5960  1, 2847.82, 1508.78  99.28%  0.0001833 

3  2.867, 0.05036  1, 44.45, 97.21, 0.0841  90.51%  0.03482 

The accuracy presented  in Table 2 confirms that a second‐order system  is most suitable. This 

indicates that the fuel is consistently supplied, and disturbances other than changes in the air supply 

do not significantly affect the system. Therefore, the system transfer function is designated as  𝒢̅ୗଶ  in 
Equation 2, and a controller is designed accordingly. 

𝒢̅ୗଶ ൌ  
0.2187𝑠 ൅ 0.5960

𝑠ଶ ൅ 2847.82𝑠 ൅ 1508.78
ൌ

0.2187ሺ𝑠 ൅ 2.728ሻ
ሺ𝑠 ൅ 0.523ሻሺ𝑠 ൅ 2847.29ሻ

 (2) 

Examining  the  poles  and  zeros  of  the  transfer  function  𝒢ୗ̅ଶ ,  the  poles  are  located  at  s1 ൎ
െ0.523, s2 ൎ െ2847.29. Since the real parts of both poles are negative, they are positioned on the left 
half of the complex plane, indicating that the system is stable and controllable. The zeros are also real 

and negative, which confirms that they do not affect the system’s stability 

4.3. Tuning of the IMC‐Based PI Controller 

To effectively control the  image‐based combustion system of  the  𝑆2  system,  it  is essential to 

employ an appropriate controller. This experiment utilizes an  IMC‐based PI controller  for system 

regulation. Given that the  𝑆2  system uses flame images as input signals, high‐frequency noise may 

arise from intermittent prediction errors. In such cases, the derivative component of a PID controller 

could  amplify  the noise, making  a PI  controller more  suitable  [18]. Furthermore,  for  the  sake of 

computational simplicity in tuning the IMC controller, a PI controller is used. 

Figure  6  shows  the  closed‐loop  structure  of  the  IMC  applied  to  the  actual  system  transfer 

function  𝒢ୗଶ . 

 

Figure 6. Control Diagram of IMC. 

𝒢̅ୗଶ  is the internal model transfer function estimated from the data,  𝓆ሺsሻ  is the IMC controller, 

and 𝒦ୗଶሺsሻ  is the controller integrated with the internal model. As determined in Section 4‐2,  𝒢ୗ̅ଶ 
is a second‐order function and can be expressed as shown in Equation 3. 

𝒢̅ୗଶሺ𝑠ሻ ൌ
𝑘௣ሺ𝛽𝑠 ൅ 1ሻ

ሺ𝜏௔𝑠 ൅ 1ሻሺ𝜏௕𝑠 ൅ 1ሻ
 ሺ𝜏௔ ൏ 𝜏௕ሻ (3) 

Equation 3 
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The  𝜏௔ 𝑎𝑛𝑑 𝜏௕    are the time constants of the system,  𝑘௣  is the proportional gain, and  𝛽 is the 
constant associated with the zero. Consequently, the IMC controller can be expressed as shown in   

Equation 4, where  𝑓ሺ𝑠ሻ  represents the IMC filter. The filter function  𝑓ሺ𝑠ሻ  is set as a second‐order 
system, corresponding to the order of the internal model, and  𝜆  is the filter constant that defines the 
trade‐off between control performance and robustness. 

𝓆ሺsሻ ൌ  𝒢̅ୗଶ
   ିଵ𝑓ሺ𝑠ሻ (4‐1) 

𝑓ሺ𝑠ሻ ൌ
𝑠 ൅ 1

ሺ𝜆𝑠 ൅ 1ሻଶ
  (4‐2) 

By standardizing the closed‐loop structure using this approach, the IMC controller  𝓆ሺsሻ  and 
the internal model  𝒢̅ୗଶ  can be integrated to form the classic controller 𝒦ୗଶሺsሻ. This can be expanded 
using Equation (4‐1) and Equation (4‐2) to be expressed in the form shown in Equation 5. 

𝒦ୗଶሺsሻ ൌ
𝓆ሺsሻ

1 െ 𝒢ୗ̅ଶ𝓆ሺsሻ
ൌ

𝒢ୗ̅ଶ
   ିଵ𝑓ሺ𝑠ሻ

1 െ 𝒢̅ୗଶ𝒢̅ୗଶ
   ିଵ𝑓ሺ𝑠ሻ

  (5‐1) 

𝒦ୗଶሺsሻ ൌ
𝜏௕
𝑘௣𝜆

൬1 ൅
1
𝜏௕𝑠

൰
ሺ𝜏௔𝑠 ൅ 1ሻ
ሺ𝛽𝑠 ൅ 1ሻ

ൌ
𝜏௕
𝑘௣𝜆

൬1 ൅
1
𝜏௕𝑠

൰ 𝑓௟ሺ𝑠ሻ  (5‐2) 

Equation 5 

The expanded Equation  (5‐2)  shows  that  𝒦ୗଶሺsሻ  takes  the  form of a PI  controller. The  term 
ሺఛೌ௦ାଵሻ

ሺఉ௦ାଵሻ
  can be considered as a lead‐lag filter and is denoted  𝑓௟ሺ𝑠ሻ. The classic controller is expressed 

as   𝒦ୗଶ′ሺsሻ  in Equation 6, using the proportional gain  𝐾௣  and the integral gain   𝐾௜ . 

𝒦ୗଶ
ᇱ ሺsሻ ൌ

𝜏௕
𝑘௣𝜆

൬1 ൅
1
𝜏௕𝑠

൰ ൌ 𝐾௣ ൬1 ൅
 K୧

𝑠
൰ (6) 

Equation 6 

Figure 7 shows the final form of the closed‐loop control system for  𝑆2. 

 

Figure 7. Final Form of IMC Control Diagram of a Two‐State System. 

Therefore,  the  IMC‐based  PI  controller  𝒦ୗଶ
ᇱ ሺsሻ   can  be  expressed  as  a  function  of  the 

proportional gain  𝐾௣  and the integral gain  𝐾௜  with respect to  𝜆, as shown in Equation 7. 

𝐾௣ ൌ
𝜏௕
𝑘௣𝜆

 ,  𝐾୧ ൌ
1
𝑘௣𝜆

 (7) 

The control elements for system  𝑺𝟐  are summarized in Table 3. 

Table 3. Control Elements of the System. 

𝓖ഥ𝐒𝟐ሺ𝒔ሻ  𝒇ሺ𝒔ሻ  𝓚𝐒𝟐
ᇱ ሺ𝐬ሻ  𝑲𝒑  𝑲𝒊 

𝒌𝒑ሺ𝜷𝒔 ൅ 𝟏ሻ
ሺ𝝉𝒂𝒔 ൅ 𝟏ሻሺ𝝉𝒃𝒔 ൅ 𝟏ሻ

 
𝑠 ൅ 1

ሺ𝜆𝑠 ൅ 1ሻଶ
  𝐾௣ ൬1 ൅

 K୧

𝑠
൰ 

𝜏௕
𝑘௣𝜆

 
1
𝑘௣𝜆

 

𝒌𝒑= 2.1865704,  𝜷  = 2.728423e3,  𝝉𝒂= 3.51e−4,  𝝉𝒃= 1.887649 

Therefore, by adjusting the IMC filter constant  𝜆, the values of  𝐾௣  and  𝐾௜  can be modified to 

tune the control performance. 

   

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 July 2024                   doi:10.20944/preprints202407.2201.v1

https://doi.org/10.20944/preprints202407.2201.v1


  10 

 

5. Case Study 

5.1. Example Case 

By installing an IMC‐based PI controller in the  𝑆2  combustion control system and specifying 

an appropriate filter constant, effective control can be achieved. However, it is essential to determine 

the optimal  filter constant value by considering  the  trade‐off between  response performance and 

robustness to noise. 

Generally, a higher filter constant  𝜆, results in slower response times but increases stability due 

to robustness against model mismatches. Conversely, a lower  𝜆  leads to faster response times but 

may cause overshoot due to noise from model inaccuracies [20]. 

The  steady‐state  control  output  for  an  oxygen  concentration  of  4%  is  analyzed  for  the  five 

specified controllers, along with the response performance when a step input changes the oxygen 

concentration  from  4%  to  5%.  By  examining  the  stability  of  the  steady‐state  at  4%  oxygen 

concentration and the response performance to the step input across the five cases, the optimal filter 

constant  𝜆  can be determined. 

The internal model  𝒢̅ୗଶሺ𝑠ሻ estimated from experimental data may experience discrepancies from 

the  actual  plant  due  to  disturbances  and  changes  in  environmental  variables.  Therefore,  it  is 

necessary to determine a stable filter constant  𝜆  through experimentation to ensure effective control 

performance in the actual plant. The values of  𝜆  for    𝐾௣  and  𝐾௜  in Equation 7 can be set between 

0.5 and 2.5, as shown in Table 4. Accordingly, five controllers are specified with filter constant values 

increasing by 0.5 increments, starting from 0.5. 

Table 4. Control Gain according to IMC Constant λ of S2 System Controller. 

Controller  𝝀  𝑲𝒑  𝑲𝒊 

𝑪𝒃𝒓𝟏   0.5  17.265  9.147 

𝑪𝒃𝒓𝟐   1.0  8.633  4.573 

𝑪𝒃𝒓𝟑   1.5  5.755  3.049 

𝑪𝒃𝒓𝟒   2.0  4.316  2.287 

𝑪𝒃𝒓𝟓   2.5  3.453  1.829 

5.2. Evaluation Methods 

To analyze the steady‐state response for the target oxygen concentration of 4% across the five 

cases,  the  normal distribution  of  the measured  response data  is determined,  and  the mean  and 

variance are calculated. Additionally, to evaluate the response performance for a step input change 

from  4%  to  5%  oxygen  concentration  in  each  case,  the  stability  index  𝑀௣  is  analyzed using  the 

Integral of Squared Error (ISE) [26]. 

The 𝑀௣  represents the maximum peak error in the step response, as represented by Equation 8. 

This generally indicates the maximum overshoot before the system reaches a steady state. This metric 

allows for the comparison of the maximum magnitude of overshoot across different controllers. 
𝑀௣ ൌ 𝑚𝑎𝑥|𝑒ሺ𝑡ሻ| (8) 

The Integral of Squared Error (ISE) is calculated by integrating the square of the error over time, 

as represented by Equation 9. This approach amplifies the impact of larger errors by squaring them, 

allowing  for  a more  significant  reflection  of  their  effects.  This metric  enables  the  comparative 

evaluation of overall stability during the transient response period. 

𝐼𝑆𝐸 ൌ  න |𝑒ሺ𝑡ሻ|𝑑𝑡
௧೑

௧ೞ

 (9) 

Equation 9 
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5.3. Steady‐State Response 

To apply the optimal IMC‐PI control parameters to the proposed OFB combustion improvement 

system  𝑆2 ,  experimental  characteristics  are  compared.  The  experiments  are  conducted  with  a 

constant fuel supply of 131 kg/h to the OFB, and the S1 process is halted to measure the standalone 

performance of  𝑆2.   
Figure 8 presents the experimental results of controlling the oxygen concentration of the OFB 

system,  𝒫2  at 4% for each case. The combustion system  𝑆2  was controlled for each case, and data 

was collected for a total of 1200 seconds in the steady state. With a sampling period of 0.25 seconds, 

the estimation was based on a total of 4800 image data points. 

 

Figure  8.  (A)  SteadyState  Response  to  Target Oxygen Concentration  (B) Normal Distribution  of 

Response Data. 

Through  this analysis,  the mean values  for  the  IMC  filter constant  𝜆  ranging  from 0.5  to 2.5 
were  found  to be 4.1571, 4.0509, 3.9823, 4.0156, and 4.0076, respectively, with variances of 0.0397, 

0.0181, 0.0182, 0.0068, and 0.0052. 
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Figure 8‐(A) demonstrates that the control system accurately tracks the target value of 4% for all 

values of  𝜆. However, it also indicates that as the filter constant  𝜆  decreases, the variability around 
the target value of 4% in the steady state increases. 

Figure 8‐(B) visualizes the normal distribution of the data collected in the steady state. When  𝜆 
is 0.5, the steady‐state values show a significant error from the target value of 4%, greatly reducing 

control stability. Conversely, as the value of  𝜆  increases, both  the steady‐state error and variance 
decrease, indicating improved stability of the control system. These results suggest that increasing 

the  filter  constant  𝜆   is  advantageous  for  accurate  tracking  of  the  target  value  and maintaining 

control stability. 

5.4. Transient Response Comparison for Step Input 

To verify  the  response performance of  the controller, a step change  is applied  to  the control 

setpoint, and the corresponding step response  is observed. The experimental results are shown  in 

Figure 9, and Table 5 presents the performance evaluation based on the filter constant  𝜆. 

 

Figure 9. Response by Case to Oxygen Concentration Target Value Step Changes. 

Table 5. Response by case to oxygen concentration target value step change. 

Controller 
4% > 5% Transient Response Comparison 

𝝀  𝑴𝒑  𝑰𝑺𝑬 

𝑪𝒃𝒓𝟏   0.5  0.377  10.9183 

𝑪𝒃𝒓𝟐   1.0  0.3579  10.1689 

𝑪𝒃𝒓𝟑   1.5  0.19245  10.1159 

𝑪𝒃𝒓𝟒   2.0  0.15869  13.6268 

𝑪𝒃𝒓𝟓   2.5  0.13824  14.2537 

Examining the transient response period from 50 to 56 seconds allows us to assess the control 

response  performance  to  the  step  input.  In Case  1, with  a  filter  constant  𝜆   of  0.5,  the  transient 
response  is significant, resulting  in an 𝑀௣  of 0.377, and the system exhibits oscillations. In Case 2, 

with an increased  𝜆, the    value of   𝑀௣ is 0.3579; although the systemʹs oscillations are dampened, 

the transient response remains unimproved. However, from Case 3 onwards, the   𝑀௣  significantly 
improves to 0.19245, and the system no longer oscillates. The ISE represents the error between the 

target value of 5% and the actual response from 50 to 56 seconds. In Cases 1 to 3, as shown in the 

graph in Figure 9, the response speeds are similar, resulting in comparable ISE values. However, from 
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Case 4 onwards, the response speed drastically decreases, causing the ISE to spike to 13.6268. This 

indicates  that starting  from a  𝜆  of 2.0,  the system exhibits discrepancies with  the  internal model, 

rendering it unsuitable as a controller for step responses. 

Overall, when  the values of  𝜆  are  0.5  and  1.0,  the  response  speed  is  faster, but  the  system 
experiences oscillations and significant transient responses. At  𝜆  is 1.5, although the   𝑀௣    is slightly 
higher than in cases 4 and 5, it ensures adequate control response speed without causing oscillations. 

Additionally, it shows the lowest error in ISE. Therefore, for efficient control of the OFB combustion 

system, the optimal parameter is achieved by selecting the values of  𝜆  as 1.5, as indicated in Case 3. 

6. Conclusion 

This study proposes and validates a new control system to optimize the combustion process of 

marine oil‐fired boilers, aiming to reduce emissions and  increase efficiency. The proposed system 

uses an SEF and an SVM model to predict oxygen concentration, which is then utilized as an input 

for an IMC based PI controller. The major findings and contributions of this study can be summarized 

as follows. 

By  analyzing  flame  images  in  real‐time,  the  proposed  system  overcomes  the measurement 

delays  associated with  traditional gas measurement methods,  enabling  faster  and more  accurate 

control  of  the  combustion  process.  To  address  the  combustion  instability  caused  by  transient 

responses during control, the study proposed and validated system  𝑆2, which allows for additional 

adjustments to the air supply while ensuring the combustion stability of the existing proportional 

combustion control system  𝑆1. For effective control of  this system, obtaining an accurate  internal 

model is essential. Therefore, machine learning‐based model estimation methods were employed to 

calculate the internal model, which is crucial for designing an effective combustion control system. 

This  internal model,  estimated  through machine  learning‐based  training  on  experimental  input‐

output data, demonstrates responses similar to the actual system. 

However, even though the prediction model based on flame images may exhibit high accuracy, 

prediction  errors  can  still  occur.  These  errors  can  arise  due  to  factors  such  as  the  modelʹs 

generalization ability, data noises, and environmental changes, leading to discrepancies between the 

predicted and actual values  in  the  real  system. Consequently,  it  is  important  to optimize  control 

stability and performance through the experimental tuning of the IMC‐based PI controller. Extensive 

experimentation  revealed  that an  IMC  filter  constant  (𝜆) of 1.5 best balances  responsiveness and 
stability, minimizing both overshoot (𝑀௣) and integral of squared error (ISE). This demonstrates that 

the IMC‐based PI controller, using flame images as input, must consider the non‐linearities caused 

by prediction errors, even when the internal model of the system is accurately estimated. Through 

experimental  tuning  of  the  IMC  controller,  a  robust  controller  can  be  designed  to  withstand 

prediction errors and disturbances. 

In conclusion, the implementation of the proposed system combined with real‐time IMC‐based 

PI control using flame images offers a feasible and effective solution for enhancing the environmental 

performance  of OFB.  This  approach  can  improve  combustion  efficiency,  reducing  emissions  of 

harmful air pollutants, and can be easily applied to existing ships, contributing to more sustainable 

marine air pollution reduction. Furthermore, the ease of installation can encourage participation from 

shipping companies. 

The  focus of  future research will be designing an  intelligent control system  for  the proposed 

system  that  uses  flame  images  as  input, with  high  adaptability  to  environmental  changes  and 

effective control of nonlinear systems. The goal is to enhance combustion efficiency and minimize 

emissions  of  air  pollutants.  In  particular,  efforts will  be made  to  further  strengthen  the  current 

system’s ability to overcome the nonlinearities caused by prediction errors and to develop adaptive 

control methods that continuously improve over time. 

By  advancing  the  proposed  system  and  integrating  it  into  the  combustion  system  𝑆2 ,  as 
described  in  this  paper,  future  studies  will  aim  to  evaluate  its  applicability  in  real  marine 

environments and achieve optimal performance. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 July 2024                   doi:10.20944/preprints202407.2201.v1

https://doi.org/10.20944/preprints202407.2201.v1


  14 

 

Author Contributions: Conceptualization, C.M. Lee., B.G. Jung; methodology, C.M. Lee.; formal analysis, C.M. 

Lee; writing—original draft preparation, C.M. Lee.; writing—review and editing, J.H Choi. 

Funding: The author(s) received no  financial support  for the research, authorship, and/or publication of  this 

article. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: No applicable. 

Acknowledgments: First and foremost, we extend our deepest gratitude to everyone who has played a role in 

the successful completion of this journal. We also wish to express our sincere thanks to the esteemed reviewers 

for their meticulous evaluation, insightful feedback, and expert guidance throughout the peer review process. 

Lastly, we are immensely thankful to the editors for their dedication, hard work, and commitment to advancing 

knowledge in our field 

Conflicts  of  Interest: The  author(s) declared  no  potential  conflicts  of  interest with  respect  to  the  research, 

authorship, and/or publication of this article. 

References 

1. Das, C.K.; Bass, O.; Kothapalli, G.; Mahmoud, T.S.; Habibi, D. Overview of  energy  storage  systems  in 

distribution networks: Placement, sizing, operation, and power quality. Renewable and Sustainable Energy 

Reviews 2018, 91, 1205‐1230. 

2. Issa, M.;  Ilinca, A.;  Ibrahim, H.; Rizk, P. Maritime autonomous  surface ships: Problems and challenges 

facing the regulatory process. Sustainability 2022, 14, 15630. 

3. Huang, J.; Duan, X. A comprehensive review of emission reduction technologies for marine transportation. 

Journal of Renewable and Sustainable Energy 2023, 15. 

4. Walker, T.R.; Adebambo, O.; Del Aguila Feijoo, M.C.; Elhaimer, E.; Hossain, T.; Edwards, S.J.; Morrison, 

C.E.;  Romo,  J.;  Sharma,  N.;  Taylor,  S.;  Zomorodi,  S.  Chapter  27  ‐  Environmental  Effects  of Marine 

Transportation. In World Seas: An Environmental Evaluation (Second Edition); Sheppard, C., Ed.; Academic 

Press: 2019; pp. 505‐530. 

5. Liang, X.; Wang, Y.; Chen, Y.; Deng, S. Advances in emission regulations and emission control technologies 

for internal combustion engines. SAE International Journal of Sustainable Transportation, Energy, Environment, 

& Policy 2021, 2, 101‐119. 

6. Bakalov, I. Constructive solutions to reduce the NOx and SOx in the marine boiler burners. Trans Motauto 

World 2016, 1, 7‐9. 

7. Ragland, K.W.; Bryden, K.M. Combustion engineering, CRC press: 2011;. 

8. Gaba, A.; Iordache, S.F. Reduction of air pollution by combustion processes. The Impact of Air Pollution 

on Health, Economy, Environment and Agricultural Sources; InTech: London, UK 2011, 119‐142. 

9. Oland, C.B. Guide to low‐emission boiler and combustion equipment selection, The Laboratory Oak Ridge, 

TN, USA: 2002;. 

10. Wang, Y.F.; Wang, M.X.;  Liu, Y.; Yin,  L.; Zhou, X.R.;  Xu,  J.F.; Zhang, X.Y.  Fuzzy modeling  of  boiler 

efficiency  in  power  plants.  Inf  Sci  2021,  542,  391‐405,  DOI  10.1016/j.ins.2020.06.064. Available  online: 

https://www.sciencedirect.com/science/article/pii/S0020025520306526. 

11. Nemitallah, M.A.; Nabhan, M.A.; Alowaifeer, M.; Haeruman, A.; Alzahrani, F.; Habib, M.A.; Elshafei, M.; 

Abouheaf, M.I.; Aliyu, M.; Alfarraj, M. Artificial  intelligence  for  control  and  optimization  of  boilers’ 

performance and emissions: A review.  J Clean Prod 2023, 417, 138109, DOI 10.1016/j.jclepro.2023.138109. 

Available online: https://www.sciencedirect.com/science/article/pii/S0959652623022679. 

12. Annaswamy, A.M.; Ghoniem, A.F. Active  control of  combustion  instability: Theory and practice.  IEEE 

Control Syst Mag 2002, 22, 37‐54. 

13. Kurniawan, E.D.; Effendy, N.; Arif, A.; Dwiantoro, K.; Muddin, N. Soft sensor for the prediction of oxygen 

content  in boiler  flue gas using neural networks and  extreme gradient boosting. Neural Computing  and 

Applications 2023, 35, 345‐352. 

14. Li, S.; Wang, Y. Performance assessment of a boiler combustion process control system based on a data‐

driven approach. Processes 2018, 6, 200. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 July 2024                   doi:10.20944/preprints202407.2201.v1

https://doi.org/10.20944/preprints202407.2201.v1


  15 

 

15. Docquier, N.; Candel, S. Combustion control and sensors: a review. Progress in energy and combustion science 

2002, 28, 107‐150. 

16. Chen,  J.; Chang, Y.; Cheng, Y.; Hsu, C. Design of  image‐based control  loops  for  industrial combustion 

processes.  Appl  Energy  2012,  94,  13‐21,  DOI  10.1016/j.apenergy.2011.12.080.  Available  online: 

https://www.sciencedirect.com/science/article/pii/S0306261911008865. 

17. Brown, B.R. Engineering intelligent systems: Systems engineering and design with artificial intelligence, 

visual modeling, and systems thinking, John Wiley & Sons: 2022;. 

18. Ogata, K.; Yang, Y. Modern control engineering, Prentice hall India: 2002;. 

19. Åström, K.J.; Hägglund,  T. Advanced  PID  control,  ISA‐The  Instrumentation,  Systems  and Automation 

Society: 2006;. 

20. Shamsuzzoha, M.; Lee, M. PID controller design for integrating processes with time delay. Korean Journal 

of Chemical Engineering 2008, 25, 637‐645. 

21. Lee, C.; Jung, B.; Choi, J. Experimental Study on Prediction for Combustion Optimal Control of Oil‐Fired 

Boilers of Ships Using Color Space Image Feature Analysis and Support Vector Machine. Journal of Marine 

Science and Engineering 2023, 11, 1993. 

22. García,  A.C.;  Alban,  C.A.P.;  Benalcázar,  J.R.T.;  Rodríguez,  A.C.;  Lorente‐Leyva,  L.L.;  Aleaga,  A.M.L. 

Control  of Pollutant Emissions  from  a Boiler Through  the Percentage  of Oxygen.  Journal Européen  des 

Systèmes Automatisés 2021, 54, 469‐474. 

23. Chen, J.; Chang, Y.; Cheng, Y. Performance design of image‐oxygen based cascade control loops for boiler 

combustion processes. Ind Eng Chem Res 2013, 52, 2368‐2378. 

24. Xiao, G.; Gao, X.; Lu, W.; Liu, X.; Asghar, A.B.; Jiang, L.;  Jing, W. A physically based air proportioning 

methodology  for  optimized  combustion  in  gas‐fired  boilers  considering  both  heat  release  and  NOx 

emissions. Appl Energy 2023, 350, 121800. 

25. Li, Y.; Zhang, T.; Das, S.; Shamma, J.; Li, N. Non‐asymptotic System Identification for Linear Systems with 

Nonlinear Policies. IFAC‐PapersOnLine 2023, 56, 1672‐1679. 

26. Goodwin, G.C.; Graebe, S.F.; Salgado, M.E. Control system design, Prentice Hall Upper Saddle River: 2001;. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 July 2024                   doi:10.20944/preprints202407.2201.v1

https://doi.org/10.20944/preprints202407.2201.v1

