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Abstract: This study proposes and validates a novel combustion control system for Oil-Fired Boilers
aimed at reducing air pollutant emissions through flame image prediction. The proposed system is
easily applicable to existing ships. Traditional proportional combustion control systems supply fuel
and air at fixed ratios according to the set steam load, without considering the emission of air
pollutants. To address this, a stable and immediate control system is proposed, which adjusts the
air supply to modify the combustion state. The combustion control system utilizes oxygen
concentration predictions from flame images via SEF+SVM as control inputs, and applies Internal
Model Control (IMC)-based Proportional-Integral (PI) control for real-time combustion control. Due
to the complexity of modeling the image-based system, IMC parameter tuning through
experimentation is essential for achieving effective control performance. Experiments conducted on
a 3000 kg/h marine oil-fired boiler in actual operation optimized the controller parameters for
stability and responsiveness, and validated their effectiveness. The results demonstrate the potential
of the proposed system to improve combustion efficiency and reduce emissions of air pollutants.
This study provides a feasible and effective solution for enhancing the environmental performance
of marine oil-fired boilers. Given its ease of application to existing ships, it is expected to contribute
to sustainable air pollution reduction across the maritime environment.

Keywords: combustion control; emission prediction; IMC-based PI Control; real-time control;
performance assessment

1. Introduction

Combustion boilers are widely used for steam generation in marine industries, power plants,
and various utilities requiring substantial thermal energy[1]. In the marine sector, although the trend
of producing steam-powered ships has significantly declined [2], boilers burning diesel fuel are still
extensively used on ships employing diesel engines as the primary propulsion system. However,
fossil fuels like diesel contribute to global warming by emitting greenhouse gases such as NO,, SO,,
and CO2 during combustion [3,4]. Compared to main propulsion systems such as internal
combustion engines, there is relatively less regulation and concern regarding pollutants emitted from
combustion boilers [5,6]. Therefore, efforts are needed to reduce air pollutants generated from the
exhaust gases of ship boilers.

The boiler system generates exhaust gases with thermal energy through the atomization and
combustion of pressurized air and fuel. These exhaust gases convert water into steam via heat
transfer surfaces such as water tubes or fire tubes. The amount of air pollutants emitted varies
depending on the equivalence ratio, which is the ratio of fuel to air during the combustion process
[7].

To reduce air pollutants, it is necessary to properly control the air and fuel supplied for
combustion [8]. However, traditional boiler combustion systems use a proportional combustion
control, where the load of steam is the control target, and predetermined fuel and air flow rates are
supplied for combustion. This method ensures system stability but does not take air pollutant
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emissions into account [9]. Consequently, research has been continuously conducted to directly
control the fuel oil and air flow rates supplied to the combustion system in order to reduce air
pollutants [10,11].

However, although these control solutions have proven effective in reducing air pollutant
emissions, they need to be designed at the manufacturing stages, leading to increased initial and
operational costs. Additionally, advanced control methods requiring high accuracy in system
modeling can cause combustion instability and flame extinction due to transient responses when
directly applied to the dynamic boiler systems sensitive to environmental changes [12]. These
challenges related to cost and stability continue to support the widespread use of traditional
proportional combustion control.

Therefore, this study proposes a system that reduces emissions of air pollutant by adding a
control system for combustion optimization to the existing Oil-Fired Boiler (OFB) combustion system,
which ensures system stability.

In existing research, air pollutants and oxygen concentration were used as inputs through either
direct measurement or indirect estimation based on operational data [13-15]. However, the direct
measurement method using devices is not suitable for real-time control due to the delay between the
combustion control point and the measurement point [16]. Additionally, the indirect measurement
method based on operational data is economically disadvantageous as it requires numerous data
collection devices, and the loss of a single operational data point or sensor failure can significantly
impact prediction accuracy, leading to errors in control inputs [14]. Consequently, research on control
systems using soft measurement has been continuously conducted.

In this study, a soft measurement method is employed by observing quasi-instantaneous flame
images to predict air pollutants, using these predictions as control inputs to achieve real-time control.

It is challenging to mathematically represent the dynamic modeling of a boiler combustion
system utilizing flame images as control inputs. Therefore, machine learning-based modeling
methods using operational data are frequently employed for such complex systems [17]. To
effectively control the modeled system, selecting appropriate control techniques and parameters is
crucial [18].

In this study, an IMC-based PI controller is used to maintain the oxygen concentration derived
from flame images at a constant level. PI control is a well-established method in numerous industrial
processes, and by incorporating the robustness of IMC, it provides a simple yet highly reliable
solution. This makes it readily applicable to ships, easy to operate, and capable of delivering excellent
performance [19,20].

The experiments were conducted on a 3000 kg/h heavy oil boiler currently in use at the site. To
predict the oxygen concentration, an indirect measure of air pollutant emissions and combustion
efficiency, the SEF+SVM method was used to extract features from flame images and make
predictions.

This method was validated in prior research conducted on the same plant. Flame images under
six different combustion conditions were collected, and a trained model of oxygen concentration
estimation was established as the control input for the control system to form a closed-loop. The
transfer function of the configured closed-loop was estimated using input-output data from
experiments, and an IMC-based PI controller was designed accordingly. The parameters of the IMC
were optimized through experiments to balance robustness and control performance, and their
effectiveness was demonstrated through control performance verification.

The objectives of this study can be summarized as follows:

1. Propose a combustion control system to reduce air pollutant emissions from marine Oil-Fired Boilers.

2. Develop areal-time combustion control system using predicted oxygen concentration from flame
images as control inputs.

3. Tune an IMC-based PI controller through experiments to compensate for system discrepancies.
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2. Combustion Control System for Marine Oil-Fired Boilers

Figure 1 shows a schematic diagram of the experimental setup. The OFB on the ship operates as
a closed-loop control process, P1, to reach the set steam pressure. This process adjusts the fuel valve
and the damper opening of the turbocharger fan at a fixed ratio according to the internal logic
programmed into the PLC to achieve the set control target. In this process, the combustion state
cannot be independently adjusted in response to disturbances such as fuel oil properties or system
variations, as the fuel supply and air supply cannot be controlled separately. To address this issue in
the existing OFB system and improve the combustion state, a new control process, P2, is proposed,
which includes an additional servo motor for damper adjustment controlled by P1, as shown in
Figure 1.

P1 : Steam pressure control process
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Figure 1. Schematic of Boiler Combustion Experiment.

The P2 control process predicts the combustion state from flame images and adjusts the servo
motor to regulate the air supply based on this feedback.

Combustion parameters such as SO,, NO,, CO,, and CO, as well as oxygen, included in the
exhaust gases can be easily measured using gas analyzers. However, the measured exhaust gas
values in this method have a delay time due to the process of flowing from the combustion point to
the measurement point. This delay tends to cause the feedback control loop, which regulates oxygen
concentration, to overcompensate for errors, resulting in slower control response and larger transient
responses. In contrast, using flame images, which are indicators of quasi-instantaneous combustion
states, as inputs for oxygen measurement allows for immediate reflection of the current combustion
state, enabling real-time continuous flame control. A 1920x1080 pixel CMOS webcam is used to
collect high-resolution flame images. The camera is positioned at the flame observation port on the
side of the boiler in accordance with SOLAS regulations. The collected flame images are transmitted
to a computer via a USB 3.0 interface, and the predicted values of oxygen concentration, obtained
from a pre-trained model, are used as feedback signals in the control system.

The error in the oxygen concentration setpoint is converted into a control signal for the air
regulation damper through the designed controller. In the P1control system, fuel and air are
controlled simultaneously at a fixed ratio according to the steam load. In contrast, the proposed P2
control system adjusts the damper opening, which regulates the air supply, independently, thereby
allowing control over the combustion state. To achieve individual damper control, an A/D converter
drive is used to convert the analog control output to an angle ranging from 0 to 90 degrees, and a
servo motor is installed at the end of the damper to control it in real-time.
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To train the prediction model of oxygen concentration for the experimental OFB and to compare
and verify the effectiveness of the control system, information on air pollutants is automatically
recorded in the computing system via an exhaust gas analyzer from the funnel during the process.
Specifically, the oxygen concentration, which is an indirect measure of energy consumption and
combustion state as well as the control target, is recorded as time-series data along with the flame
images.

3. Oxygen Concentration Estimation Model Using Saturation Extraction Filter

To estimate the control input, specifically the oxygen concentration, in real-time, flame images
representing quasi-instantaneous combustion states are processed through the SEF-SVM model. This
model extracts linear features from the flame images, focusing on saturation information, and
converts these features into histograms to predict exhaust gas information in real-time.

The effectiveness of the SEF-SVM model was validated through experiments conducted on the
same ship's OFB plant. The model demonstrated an R? value of 0.97 in oxygen concentration
measurement performance. Furthermore, the measurement delay time was reduced to an average of
2.1 seconds, confirming its suitability for use as an input in real-time control [21].

Figure 2 shows a schematic diagram of the SEF-SVM model.

SEF+SVM model training

L il [ 2

Flame image data SEF (Saturation Extraction Filter)

T T 1§ -
SVM(Support Vector Machine)

Exhaust gas data
Figure 2. Learning Structure of Flame Images Using SEF+SVM.

The collection of flame images utilizes the existing flame observation port, which presents a
limitation in capturing the full size and shape of the flame. To mitigate this, the images are resized to
800x820 pixels to capture the reflective light from the wall surface of the observation port. This size
was determined to be appropriate for the OFB through experimentation, ensuring that the histogram
can accurately represent the data without exceeding 2 bytes per bin (216 bytes).

The collected flame images are initially captured in RGB format and then converted to HSV
format. From this, only the Saturation component, which exhibits linear characteristics corresponding
to different combustion states, is extracted. By histogramming this information, the original
800(H)x820(W)x3x2 byte data is reduced to a 256X2 byte feature-extracted dataset. This reduced
dataset is then combined with the corresponding time-series exhaust gas data and used for regression
training in the SVM model.

3.1. Data Collection

Figure 3 presents the data collection process used in the experiment.
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Exhaust gas Data acquisition
Figure 3. Data Acquisition Process of Flame Images and Exhaust Gas Data.

During the data collection process, the combustion environment is divided into six distinct
stages. For each stage, 200 data points are collected, resulting in a total of 1,200 time-series data points.
The combustion environment is manually controlled by operating the OFB while maintaining a
constant supply of fuel and air, disregarding the steam pressure in the P1 control system. In this
state, as shown in Figure 3, the amount of supplied air is varied by adjusting the control hole installed
on the linkage of the air damper. Changes in the air supply affect the oxygen concentration 3§, in
Equation 1, fuel-lean equation, altering the Combustion Equivalence Ratio (CER) and consequently
changing the exhaust gas composition due to variations in C, H, and N reacting in the fuel [7].
Therefore, as the CER increases, the peak value of the saturation in the flame image changes. The data
on air pollutants and oxygen concentration in the exhaust gas are stored as time-series data
synchronized with the SEF-processed data, forming the dataset.
Pe 1368, + 37\ "
0= =185(5= 9.525,,)

a

)

3.2. Training of the Prediction Model of Oxygen Concentration

The flame images and oxygen concentration data, stored from the process, are used to train a
linear regression model for predicting oxygen concentration. The training model employs SEF+SVM,
identical to model E1 trained with 300 samples in previous research, and uses a training dataset of
1,200 data points, with 200 samples for each environmental variation. While increasing the dataset
size improves the model's performance by increasing the learning rate and reliability, it also raises
the risk of overfitting, so the dataset size must be appropriately selected through experimentation.
The training results for the new prediction model E2 are shown in Table 1. The evaluation metrics
indicate the R? of 0.976, RMSE of 0.1159, and MAE of 0.1159. Compared to the proven performance
of SEF+SVM, the R? increased by 0.62%, while the RMSE and MAE decreased by 31.74% and 4.45%,
respectively, confirming the effectiveness of the E2 prediction model.

Table 1. Learning Results of Predictive Models E1 and E2.

Prediction Model Training Dataset R? RMSE MAE

El1 300 0.97 0.1698 0.1213
E2 1200 0.984 0.1159 0.1159
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4. Development of an IMC-PID Based Oxygen Concentration Control System Using
Flame Images

By utilizing flame images as input for oxygen concentration, the input delay issues associated
with oxygen concentration meters can be resolved, allowing for the establishment of a real-time
control system to regulate the oxygen concentration in the exhaust gases of the OFB. The schematic
diagram of the control system S2 for P1 proposed in this study is shown in Figure 4.

S2 : Proposed control system for Oxygen concentration
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Figure 4. Overall of the Boiler Control System with the Proposed Combustion Control System.

S1 is the existing control system used for boiler combustion. This system is a proportional
combustion control system that simultaneously controls the air flow and fuel quantity to maintain
constant steam pressure. Since this ratio is set by the manufacturer during the commissioning part
with a primary focus on combustion stability, the flame remains stable despite changes in the
environmental conditions of the supplied air and the characteristics of the fuel. However, the
emissions of air pollutants vary as a result. Consequently, by adjusting the amount of supplied air
while maintaining a constant fuel quantity, it is possible to control the emissions of air pollutants
while ensuring combustion stability during the stable combustion process of the flame.

Therefore, this study proposes an oxygen concentration control system, S2, that can additionally
control the air damper opening, which is proportionally controlled in the existing S1 system. The
control system uses flame images as real-time input to predict oxygen concentration through the
SEF+SVM predictor. The predicted oxygen concentration is then used to adjust a servo motor for the
damper via a controller, compensating for any deviation from the target value. This controlled
damper alters the amount of air supplied to the combustor, thereby controlling the air pollutants
generated during the combustion process.

4.1. Setting Control Objectives

The air pollutants emitted from the OFB are inversely proportional to the amount of air supplied
because the amount of oxygen reacting with the fuel components increases during lean combustion
when the equivalence ratio is less than 1. Maintaining the oxygen concentration in the exhaust gases
is crucial to minimize soot particles and black smoke while effectively controlling cooling losses due
to heat release and nitrogen oxide (NO,) emissions. Therefore, setting and maintaining an optimal
oxygen concentration is essential for the effective control of air pollutants.

Additionally, previous studies using the same type of boiler as the OFB employed in this
research have shown that the air pollutants CO,, NO,, and SO, tend to be inversely proportional to
oxygen concentration in the exhaust gases. Moreover, excessive supercharging should be avoided, as
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it can reduce combustion efficiency due to heat loss in the exhaust gases. Therefore, it is crucial not
to maintain the oxygen concentration excessively low [22].

The previous studies analyzing the exhaust gas characteristics of boiler systems based on oxygen
concentration have demonstrated similar tendencies and highlighted the importance of maintaining
an appropriate oxygen concentration.

In the study by J. Chen et al., the exhaust gas oxygen concentration of a coal-fired boiler was adjusted
between 2% and 5%, revealing a correlation between oxygen concentration and NOy emissions.
Additionally, the study examined the impact of soot and graphite on flame image measurements with
varying oxygen concentrations. It was found that at an oxygen concentration of 4.02%, the occurrence of
soot and graphite was minimized, resulting in the least noise in flame image recognition [23].

The study conducted by G. Xiao et al. on gas-fired boiler combustion examined the correlation
between heat release and NOy production in boilers. The study established weightings for heat
release and NOy production, finding that to double the weighting for reducing NOy emissions, the
oxygen concentration needs to be increased by approximately 1.14 times under various load
conditions. In this research, an oxygen concentration of 3.5% achieved a 1:1 balance between heat
release and NOy production at 80% load. When adjusting the weighting to reduce NOy production,
the optimal oxygen concentration was found to be around 4.0% [24].

Based on a comprehensive review of the exhaust gas characteristics of the target ship's OFB and
related researches, this study concludes that setting the control target value for the oxygen
concentration in the exhaust gas to 4% is appropriate for real-time combustion control of the boiler.

4.2. Estimation of Transfer Function Based on Step Response

To set the controller, the transfer function of the control system must first be determined.
Although classical methods such as calculating differential equations can be used to find the transfer
function, this approach is not straightforward for the given system due to the numerous variables,
including changes in the supplied air, fuel characteristics, and heat transfer efficiency variations with
load. Therefore, this study employs a method that identifies the system by providing a constant input
and analyzing the resulting response. This method is well-suited for irregular and non-linear
systems, and it offers the advantage of being able to adapt to the desired model structure despite the
presence of many system variables by using actual data [17,25].

To identify the system, the combustion control system S1 is maintained at a load of 78%,
ensuring that the oxygen concentration in the exhaust gas remains at 4% while fuel is supplied at a
constant rate. During this process, a step input of +5 degrees in the open direction is applied to the
servo motor of S2, and the oxygen concentration, as inputted through flame images, is recorded.
Figure 5 shows the oxygen concentration output of the system in response to the step input.

Estimated
oxygen concentration(Vol %)

2 f

Damper step change

20 30 40 50 60 70 80
Times(sec)

— Step output

Figure 5. Concentration of 0, Change in Response to Servo Angle Step Input.
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The collected data is then used to estimate the transfer function using MATLAB’s System
Identification Toolbox. This method utilizes machine learning algorithms to estimate the transfer
function through the learning of input and output data. The order of the system is specified from first
to third order, and the transfer functions are estimated as shown in Table 2.

Table 2. Transfer Function Estimation through Training of Machine Learning Algorithms.

system Estimated Estimated Fit Rate to MSE
order Numerator Denominator Data
1 0.2187 1,2648.14 81.47 0.124
2 0.2187, 0.5960 1, 2847.82,1508.78 99.28% 0.0001833
3 2.867, 0.05036 1, 44.45,97.21, 0.0841 90.51% 0.03482

The accuracy presented in Table 2 confirms that a second-order system is most suitable. This
indicates that the fuel is consistently supplied, and disturbances other than changes in the air supply
do not significantly affect the system. Therefore, the system transfer function is designated as Gg, in
Equation 2, and a controller is designed accordingly.

- 0.2187s + 0.5960 0.2187(s + 2.728)
952 = $7172847.825 + 1508.78 (5 + 0.523)(s + 2847.29) @

Examining the poles and zeros of the transfer function Gs,, the poles are located at sl =
—0.523,52 =~ —2847.29. Since the real parts of both poles are negative, they are positioned on the left
half of the complex plane, indicating that the system is stable and controllable. The zeros are also real
and negative, which confirms that they do not affect the system’s stability

4.3. Tuning of the IMC-Based PI Controller

To effectively control the image-based combustion system of the S2 system, it is essential to
employ an appropriate controller. This experiment utilizes an IMC-based PI controller for system
regulation. Given that the S2 system uses flame images as input signals, high-frequency noise may
arise from intermittent prediction errors. In such cases, the derivative component of a PID controller
could amplify the noise, making a PI controller more suitable [18]. Furthermore, for the sake of
computational simplicity in tuning the IMC controller, a PI controller is used.

Figure 6 shows the closed-loop structure of the IMC applied to the actual system transfer
function Gs, .

Hs2(8)
r(s) T e(s)t ¥(s)

* B | + q,(s) Gs2(s)

A

b

Gs2(8)

Figure 6. Control Diagram of IMC.

Gs, is the internal model transfer function estimated from the data, g(s) is the IMC controller,
and Ks,(s) is the controller integrated with the internal model. As determined in Section 4-2, s,
is a second-order function and can be expressed as shown in Equation 3.

- kst D)
Gs2() = s Py oy (e <) ®
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The 7, and t, are the time constants of the system, k,, is the proportional gain, and g is the
constant associated with the zero. Consequently, the IMC controller can be expressed as shown in
Equation 4, where f(s) represents the IMC filter. The filter function f(s) is set as a second-order
system, corresponding to the order of the internal model, and 4 is the filter constant that defines the
trade-off between control performance and robustness.

4(s) = Gs; 'f(s) (4-1)

. os+1 10
f(s) = st 12 (4-2)

By standardizing the closed-loop structure using this approach, the IMC controller g(s) and
the internal model s, can be integrated to form the classic controller K, (s). This can be expanded

using Equation (4-1) and Equation (4-2) to be expressed in the form shown in Equation 5.

a(s)  _ Gsi'f(s)

Ky (s) = o = 2 T (5-1)
¥ 1—g9?@) $—QMQZV@%
) 1\(1es+1) 19
Ksas) = k,A (1 rbs) Bs+1)  kyA (1 * r,,s)f‘(s) (5-2)
The expanded Equation (5-2) shows that Ks,(s) takes the form of a PI controller. The term
(;;;:11)) can be considered as a lead-lag filter and is denoted f;(s). The classic controller is expressed
as Ks,'(s) in Equation 6, using the proportional gain K,, and the integral gain K;.
, _ Tp 1 _ Ki
Ksx() = k,A (1 * rbs) =K (1 3 ) ©)

Figure 7 shows the final form of the closed-loop control system for S2.

rs) T ,
— QN Ks2 (9 fi(s) Gs2(8)

A

yGs)

Figure 7. Final Form of IMC Control Diagram of a Two-State System.

Therefore, the IMC-based PI controller Kg,(s) can be expressed as a function of the

proportional gain K,, and the integral gain K; with respect to A, as shown in Equation 7.
Tp

K, =-—, K

Py’ !

The control elements for system $2 are summarized in Table 3.

) @)

Table 3. Control Elements of the System.

Gs2(5) f(s) Kz (s) Ky K;
k,(Bs + 1) s+1 i T 1
(tas +1D)(Tps + 1) (As +1)2 Ky (1 * ?) kpd kpd

k,=2.1865704, B =2.728423e3, T,=3.51e-4, T,=1.887649

Therefore, by adjusting the IMC filter constant A, the values of K,, and K; can be modified to
tune the control performance.
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5. Case Study

5.1. Example Case

By installing an IMC-based PI controller in the S2 combustion control system and specifying
an appropriate filter constant, effective control can be achieved. However, it is essential to determine
the optimal filter constant value by considering the trade-off between response performance and
robustness to noise.

Generally, a higher filter constant 4, results in slower response times but increases stability due
to robustness against model mismatches. Conversely, a lower A leads to faster response times but
may cause overshoot due to noise from model inaccuracies [20].

The steady-state control output for an oxygen concentration of 4% is analyzed for the five
specified controllers, along with the response performance when a step input changes the oxygen
concentration from 4% to 5%. By examining the stability of the steady-state at 4% oxygen
concentration and the response performance to the step input across the five cases, the optimal filter
constant A can be determined.

The internal model §s,(s) estimated from experimental data may experience discrepancies from
the actual plant due to disturbances and changes in environmental variables. Therefore, it is
necessary to determine a stable filter constant 1 through experimentation to ensure effective control
performance in the actual plant. The values of 1 for K, and K; in Equation 7 can be set between
0.5 and 2.5, as shown in Table 4. Accordingly, five controllers are specified with filter constant values
increasing by 0.5 increments, starting from 0.5.

Table 4. Control Gain according to IMC Constant A of S2 System Controller.

Controller y) K, K;
Cpr1 0.5 17.265 9.147
Cprz 1.0 8.633 4.573
Cpr3 1.5 5.755 3.049
Cpra 2.0 4.316 2.287
Cprs 2.5 3.453 1.829

5.2. Evaluation Methods

To analyze the steady-state response for the target oxygen concentration of 4% across the five
cases, the normal distribution of the measured response data is determined, and the mean and
variance are calculated. Additionally, to evaluate the response performance for a step input change
from 4% to 5% oxygen concentration in each case, the stability index M, is analyzed using the
Integral of Squared Error (ISE) [26].

The M, represents the maximum peak error in the step response, as represented by Equation 8.
This generally indicates the maximum overshoot before the system reaches a steady state. This metric
allows for the comparison of the maximum magnitude of overshoot across different controllers.

M, = max|e(t)| )

The Integral of Squared Error (ISE) is calculated by integrating the square of the error over time,
as represented by Equation 9. This approach amplifies the impact of larger errors by squaring them,
allowing for a more significant reflection of their effects. This metric enables the comparative
evaluation of overall stability during the transient response period.

ISE = ffle(t)ldt )

<
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5.3. Steady-State Response

To apply the optimal IMC-PI control parameters to the proposed OFB combustion improvement
system S2, experimental characteristics are compared. The experiments are conducted with a
constant fuel supply of 131 kg/h to the OFB, and the S1 process is halted to measure the standalone
performance of S2.

Figure 8 presents the experimental results of controlling the oxygen concentration of the OFB
system, P2 at 4% for each case. The combustion system S2 was controlled for each case, and data
was collected for a total of 1200 seconds in the steady state. With a sampling period of 0.25 seconds,
the estimation was based on a total of 4800 image data points.
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Figure 8. (A) SteadyState Response to Target Oxygen Concentration (B) Normal Distribution of
Response Data.

Through this analysis, the mean values for the IMC filter constant A ranging from 0.5 to 2.5
were found to be 4.1571, 4.0509, 3.9823, 4.0156, and 4.0076, respectively, with variances of 0.0397,
0.0181, 0.0182, 0.0068, and 0.0052.
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Figure 8-(A) demonstrates that the control system accurately tracks the target value of 4% for all
values of 1. However, it also indicates that as the filter constant A1 decreases, the variability around
the target value of 4% in the steady state increases.

Figure 8-(B) visualizes the normal distribution of the data collected in the steady state. When A
is 0.5, the steady-state values show a significant error from the target value of 4%, greatly reducing
control stability. Conversely, as the value of 4 increases, both the steady-state error and variance
decrease, indicating improved stability of the control system. These results suggest that increasing
the filter constant A is advantageous for accurate tracking of the target value and maintaining
control stability.

5.4. Transient Response Comparison for Step Input

To verify the response performance of the controller, a step change is applied to the control
setpoint, and the corresponding step response is observed. The experimental results are shown in
Figure 9, and Table 5 presents the performance evaluation based on the filter constant A.

5.5 T T T T T T T
A\ “V Dol
AN
Case 1
Case 2 .
Case 3
Case 4
Case 5
Step input
35 1 1 1 | 1 | 1 1 1
40 42 44 46 48 50 52 54 56 58 60
Times(sec)
Figure 9. Response by Case to Oxygen Concentration Target Value Step Changes.
Table 5. Response by case to oxygen concentration target value step change.
4% > 5% Transient Response Comparison
Controller
A M, ISE
Cpr1 0.5 0.377 10.9183
Cpra 1.0 0.3579 10.1689
Cpr3 1.5 0.19245 10.1159
Cpra 2.0 0.15869 13.6268
Cprs 25 0.13824 14.2537

Examining the transient response period from 50 to 56 seconds allows us to assess the control
response performance to the step input. In Case 1, with a filter constant 1 of 0.5, the transient
response is significant, resulting in an M,, of 0.377, and the system exhibits oscillations. In Case 2,
with an increased 4, the value of M, is 0.3579; although the system's oscillations are dampened,
the transient response remains unimproved. However, from Case 3 onwards, the M, significantly
improves to 0.19245, and the system no longer oscillates. The ISE represents the error between the
target value of 5% and the actual response from 50 to 56 seconds. In Cases 1 to 3, as shown in the
graph in Figure 9, the response speeds are similar, resulting in comparable ISE values. However, from
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Case 4 onwards, the response speed drastically decreases, causing the ISE to spike to 13.6268. This
indicates that starting from a 4 of 2.0, the system exhibits discrepancies with the internal model,
rendering it unsuitable as a controller for step responses.

Overall, when the values of A are 0.5 and 1.0, the response speed is faster, but the system
experiences oscillations and significant transient responses. At A is 1.5, althoughthe M, isslightly
higher than in cases 4 and 5, it ensures adequate control response speed without causing oscillations.
Additionally, it shows the lowest error in ISE. Therefore, for efficient control of the OFB combustion
system, the optimal parameter is achieved by selecting the values of 1 as 1.5, as indicated in Case 3.

6. Conclusion

This study proposes and validates a new control system to optimize the combustion process of
marine oil-fired boilers, aiming to reduce emissions and increase efficiency. The proposed system
uses an SEF and an SVM model to predict oxygen concentration, which is then utilized as an input
for an IMC based PI controller. The major findings and contributions of this study can be summarized
as follows.

By analyzing flame images in real-time, the proposed system overcomes the measurement
delays associated with traditional gas measurement methods, enabling faster and more accurate
control of the combustion process. To address the combustion instability caused by transient
responses during control, the study proposed and validated system S$2, which allows for additional
adjustments to the air supply while ensuring the combustion stability of the existing proportional
combustion control system S1. For effective control of this system, obtaining an accurate internal
model is essential. Therefore, machine learning-based model estimation methods were employed to
calculate the internal model, which is crucial for designing an effective combustion control system.
This internal model, estimated through machine learning-based training on experimental input-
output data, demonstrates responses similar to the actual system.

However, even though the prediction model based on flame images may exhibit high accuracy,
prediction errors can still occur. These errors can arise due to factors such as the model's
generalization ability, data noises, and environmental changes, leading to discrepancies between the
predicted and actual values in the real system. Consequently, it is important to optimize control
stability and performance through the experimental tuning of the IMC-based PI controller. Extensive
experimentation revealed that an IMC filter constant (1) of 1.5 best balances responsiveness and
stability, minimizing both overshoot (M,) and integral of squared error (ISE). This demonstrates that
the IMC-based PI controller, using flame images as input, must consider the non-linearities caused
by prediction errors, even when the internal model of the system is accurately estimated. Through
experimental tuning of the IMC controller, a robust controller can be designed to withstand
prediction errors and disturbances.

In conclusion, the implementation of the proposed system combined with real-time IMC-based
PI control using flame images offers a feasible and effective solution for enhancing the environmental
performance of OFB. This approach can improve combustion efficiency, reducing emissions of
harmful air pollutants, and can be easily applied to existing ships, contributing to more sustainable
marine air pollution reduction. Furthermore, the ease of installation can encourage participation from
shipping companies.

The focus of future research will be designing an intelligent control system for the proposed
system that uses flame images as input, with high adaptability to environmental changes and
effective control of nonlinear systems. The goal is to enhance combustion efficiency and minimize
emissions of air pollutants. In particular, efforts will be made to further strengthen the current
system’s ability to overcome the nonlinearities caused by prediction errors and to develop adaptive
control methods that continuously improve over time.

By advancing the proposed system and integrating it into the combustion system S2, as
described in this paper, future studies will aim to evaluate its applicability in real marine
environments and achieve optimal performance.
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