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Abstract: Logistic Regression and Random Forest are used to identify risk factors that influence traffic accident
fatalities in the United Kingdom. The mean decrease accuracy was used to measure variable importance. The
speed limit, police attendance and quarter had an increasing influence on accident fatalities. They had a mean
decrease of 102.1669, 221.5322, and 120.894 respectively. The speed limit, had a parameter estimate of 0.0046902
and a standard deviation of 0.0004875. Light Conditions: Night had a parameter estimate of 1.2657635 and a
standard deviation of 0.0118409. Road Type Round About had a parameter estimate of -0.4055796 and a standard
deviation of 0.0210848. Police Attendance classified as Yes had a parameter of 0.8546232 and a standard deviation
of 0.0151043. The best predictors were speed limit, police attendance and quarter since they had p values that were
less than 0.05. The findings of the study indicated that logistic Regression had a higher accuracy rate 79.85% as
compared to 64.00% for Random Forest. A split test was used and a standard deviation of 0.0010486 was obtained
for the Logistic Regression model.
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1. Introduction

According to [1] road traffic accidents occurring in the world today have resulted in many deaths.
The increase in injuries and fatalities caused by road traffic accidents affects the economy as well
as socially impacts the individuals and governments. Additionally, traffic injuries are among the
top 10 causes of death and it is anticipated to be the leading cause of human death by 2030 [2].
Additionally, [3] found that road traffic sustained injuries rank eighth among the world’s leading
causes of death and there has been a 46% increase since the 1990s. Loss of life resulting from traffic
accidents indicates the need of evaluating methods that have been used to analyse traffic accidents
and see if there is a decline in death caused by traffic accidents. It is therefore important to look at
numerous studies that used statistical methods and machine learning methods in an attempt to save
human life.

There are numerous studies that have looked at modeling traffic accident fatalities using statistical
methods. For instance, [4] used the ordered probit model. Factors such as driver characteristics,
roadway features, vehicle types and pedestrian characteristics were used to find out how they influence
crash severity. Additionally, [5] used a negative binomial crash model to find the effect of weather
conditions on roadway crashes. The study shows that drivers had higher chances of getting involved
in fatal injuries in rollover crashes occurring under weather conditions. On the other hand, [6] used
Poisson and Negative Binomial Regression to identify how traffic condition factors affect the number
of deaths and serious injuries caused by truck traffic accidents. [7] used a binomial regression model to
investigate the impact of vehicle and crash characteristics on injury severity in two-vehicle side-impact
crashes. [8] used Logistic regression to analyse crash fatality rates for sport utility vehicles, pickup
trucks and passenger cars in the United States between the years 1997 and 2003.

Machine learning methods have become very popular for analysing traffic accident fatality
data. In transportation safety, they have been used to outline significant factors contributing to crash
severity [9]. Also, [10] used data mining methods such as clustering algorithms, classification, and
association rule mining. The study focused on factors that had a huge impact on road accidents.
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Furthermore, [11] have done a research almost similar to the one proposed in this study. They forecast
the severity of traffic accidents, using Multinomial Logit (MNL), Nearest Neighbor Classification
(NNC), Support Vector Machine (SVM), and Random Forests (RF) analysis methods.

This study departs from the study of [12] who used the multivariate logistic regression to deter-
mine the independent contribution of crash, driver and vehicular characteristics that lead to increasing
driver’s fatality risk. The study uses logistic regression and random forest to identify the importance of
the independent variables in predicting traffic accident fatalities. The primary reason for undertaking
Logistic Regression and Random Forest is to identify relationships among variables in the dataset
selected. The rising number of road accidents and the resulting injuries and deaths reinforces the need
for frequent examination of road traffic fatalities, as does the necessity for this study. Although there
are existing sources of modelling traffic fatalities by vehicle type, they do not model using random
forest and logistic regression. [13] argued that statistical methods such as Poisson regression cannot
be able to handle multidimensional datasets. This necessitated the use of the random forest method
as it is capable of handling large datasets. The shortcoming of the above-mentioned research used
to analyse traffic accident mortality is that the negative binomial and Poisson distributions operate
best when the sample size is small. It has also been difficult to apply Poisson models as variables that
show a number of accidents are categorical [14]. Considering all of these methods, Logistic Regression
and Random Forest were found to be the best fit for this study because accident data is discrete and
categorical.

1.1. Statement of the Problem

The motivation for this study is loss of life due to road accidents. This has also increased the
concern for safety and the necessity for the study to focus on human factors because of their impact on
the United Kingdom roads. Statistical methods that have been used to analyse traffic accident fatalities
include Poisson distribution and Negative Binomial Regression. However, Poisson distribution cannot
be able to handle multidimensional datasets. Methods that can handle multidimensional datasets
which is Random Forest and Logistic regression are compared. The performance of Random Forest and
Logistic regression is compared using evaluation metrics such as accuracy, sensitivity and specificity.
In addition, the prediction of traffic accident fatalities is achieved using Gini index and area under
ROC curve used predominantly as the measure of model performance. The study seeks to find the
most contributing factors from such factors as road type, light conditions, weather conditions, and
road surface conditions drawn from an accident dataset from the United Kingdom and how they
influence traffic accident fatalities using Random Forest and Logistic Regression. It also seeks to
evaluate variable importance when predicting the target variable. This helps to identify variables that
have an impact on predicting traffic accident fatalities.

1.2. Research Aim and Objectives

This study aims to compare statistical methods to machine learning methods in traffic accidents
modelling. The study objectives are as follows:

1. To identify the risk factors that influence accident severity in traffic accidents in the United
Kingdom.

2. To compare the performance of Random Forest and Logistic Regression in the prediction of traffic
accident fatalities using an accident dataset from the United Kingdom.

3. Determine whether or not there are differences in traffic accident fatalities using factors such
as road type, light conditions, weather conditions, and road surface conditions drawn from an
accident dataset from the United Kingdom.
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2. Theoretical Background

Statistical methods such as logistic regression, multinomial logistic regression, ordinal logistic
regression, and linear discriminant analysis rely on restrictive assumptions that may not be always
true to the datasets in question which may cause misleading results. The relationship between the logit
of the outcome and each continuous independent variable must be linear under logistic regression.
In addition, there must be minimum outlier data points to avoid twisting the outcome and accuracy
of the model. The independent variables should not be correlated with each other in order to give a
valid result. Multicollinearity leads to biased coefficient estimates and inaccurate standard errors [15].
Therefore, it is crucial to check that there is no multicollinearity among explanatory variables. The type
of logistic regression used should match the dependent variable in the dataset. In this study a binary
logistic regression is used since the dependent variable has two outcomes. On the other hand machine
learning methods can be used to analyse multiple independent variables since they do not rely on
assumptions. A brief discussion of commonly used statistical learning methods such as Binary logistic
regression, Multinomial Logistic Regression, Ordinal Logistic Regression and Baseline Category Logit
Model is given next. Machine learning methods such as Random forest and Artificial neural network
will also be discussed.

2.1. Logistic Regression

Logistic regression is a statistical method used for analyzing a dataset in which there are one or
more independent variables that determine an outcome. The outcome is measured with a dichotomous
variable [16]. Logistic regression provides a method for modeling a binary response variables, which
takes values 1 (success) and 0 (failures). The goal of logistic regression is to find the best fitting model
to describe the relationship between the dichotomous characteristic of interest dependent variable and
a set of independent variables.

2.1.1. Binary Logistic Regression

Logistic regression has had wide applications in traffic accident modelling. It is very useful when
predicting accident fatalities using probabilistic systems to classify the probability as fatal or non fatal
event. According to [17], the aforementioned are probability models independent of the distributions
of predictors or explanatory variables. When p is the probability of the person being involved in a
fatal accident and f; stands for regression coefficients having the feature t;. The intercept is denoted by
Bo- The logistic response function [17] is given as:

ePo+li_q Biti

P= 1+ ePotli—i Biti© M

This is referred to as the logistic regression function [18]. This gives a likelihood of the response
variable to be 1, given several predictor variables. Since it is non-linear, it is linearised by applying the
logit response function. A formula for the logistic response function then becomes:

P _ BotBititBatat Bty )
I-p

The term % in equation (2.2) is called the odds ratio of the event. Placing the natural logarithm on
both sides, results in

log<1fp> = Bo+Bit1 + Bata + -+ Bty ©)

Since, the left hand side is a function of ¢y, ... , t, so equation (2.3) can be written as:

gt ty) = Po+ Bity + Pata + -+ Bty @
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Equation 2.4 can be used to establish the relationship between variables of interest. Maximum
likelihood method is used to obtain coefficients in logistic regression. Hence a brief discussion
is given. This technique evaluates the variables for a given statistic that results in a maximum
likelihood distribution for the known likelihood distribution [16]. Equation (2.8) is found by taking
the exponential of an equation (2.6). The log-likelihood function is produced by taking the natural log
of an equation (2.8). The critical endpoint of the log-likelihood function is obtained by equating the
first derivative to zero.

g(zi) =TI fi(zi) =TT, p?i(l _ pi)ifzi )
log (=) = 1og 1y (2)p7 (1 — py) = o
K
T (o tbiy (1 — E0s P
log g(zi) =TT} (exk=0tikPk)zi(1 B SO n )
log g(z;) =TT/, (€% P tikﬁk)(l + eXk-o0 tik.Bk)*”i ®)
1(B) = Ty zi( T taxBr) — nlog(1 + ebico i) o)
d
9Br Yr_o tikBr = tik (10)
B) _ yn L K g

T‘Bk - i:1zitik_nimm(l+e k=0 tik k) (11)

K 4
= Z:‘l:l Zitix — nimeik:o tix Bk a%k Z;If:() ticBr 12)

K4
= Yo zitik — ”imezkzo t:kﬂktik 3
= Yl Zitik — nipitic 14

When Equation 2.14 is equated to zero, it produces nonlinear equations, each with m + 1 unknown
variables [19]. Iteration is the method for resolving this problem.

2.1.2. Multinomial Logistic Regression

Multi-nomial logistic regression is an important method for analysing categorical data. It considers
a nominal or ordinal response variable. Additionally, the model permits the approximation of three
or more log odds [20]. Let K corresponds to the predictors for a dependent variable Z denoted by
Ty, Ty, - -, Ty, the model for log odds is [18]:

logit[P(Z =1)] = &+ B1t1 + Bata + - - - + Brtk (15)
The alternative formula 7(t) is given by:

e(“+ﬂ1t1+ﬂ2t2+"'+/5ktk)
v(H) = 1 + elatBiti+Patr+-+Pxty)

(16)

where B; indicates the impact of #; on the log odds that Z = 1. Let 7; represent the multinomial
probability that belongs to the jth category. The multiple logistic regression model is given by :
vi(t)
lo
()

= wgi + Prjti + Pojtai + -+ Bpjtpis 17)
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withj=1,2,---,(k—1),i=1,2,--- ,n. When the 9’s add to unity, this gives the result [18]:

o @oitByjtritBajtait-+Bpjtpi)

1 + E;:ll el@oitBijtiitBajtait- -+ Bpjtpi)

log (7j(t:)) (18)

2.1.3. Ordinal Logistic Regression

This type of regression has a dependent variable with at least three order levels. This differs
from the binary logistic regression that takes only two values 0 and 1. The advantage of ordinal
logistic regression is that it is capable of modelling at least two regression curves at the same time. The
assumption in modelling with ordinal logistic regression is that the relationship between independent
variables and logits are the same [21]. The coefficients of the independent variables do not differ
significantly given that the logits are the same. The constant term «y, for each equation is different.

log<1_p1> a, +pB'T (19)
p1+p2 _ ’
log<l—p1—p2) =, + BT (20)
p1+p2+-+pxr ) p
lo =wa,+ BT, 21
g<1—P1—P2—"~—Pk K+ B (21)

2.1.4. Baseline Category Logit Model

When 7;(t) = P(Z = j|t) for a fixed setting t for independent variables, with }_;;(t) = 1, for
observations at that setting, the study considers the numbers at the | categories of Z as multinomial
with probabilities, {71(t), -+ ,7;(t)}. logit models pair each dependent category with a baseline
category given by :

(1) ,
log——= =a; +p'T (22)
S P
wherej=1,2,---,(] — 1), explain the effects of t on these (J-1) logits, the impact varies in line with the
response paired with the baselines [18]. Since

lOg’Yb(f) g?](t) 77(t)’

with categorical predictors, Pearson chi-square statistic and the likelihood ratio chi-square statistic
goodness-of-fit statistics provide a mode check when data are not sparse [22].

2.1.5. Confidence Intervals for Logistic Regression

The odds ratio in logistic regression for the shortest width confidence interval was developed
by [23]. The shortest width confidence interval has a smaller probability of covering the wrong odds
ratio value compared with the standard confidence interval. Let the coefficient of logistic regression
B be estimated by maximum likelihood so that 3 = (8, 62) in a big sample. To achieve the shortest
confidence interval for odds ratio = ef using B assuming the variance is known. The 100(1 — «)%
confidence interval for f is given by:

(B—zl,%a,ﬁ+z1,%a> (24)

and then exponentiates to obtain 100(1 — «)% confidence interval for OR given by :

(eﬁ—zlgal 3B+Zlga> (25)

d0i:10.20944/preprints202407.2197.v1
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where z;_¢ is the (1 — §)th quantile of the standard normal cdf, 7 g = ¢~ 1(1— %) where ¢ is the cdf
of the standard normal distribution. If a = 0.05 then z; _¢ =1.96. The Wald CI with symmetric z values
for OR is given by:

(EB+21(7/ eBJrzza) (26)

where z; < z1 are such that ¢,,) - ¢,) = 1- a. The standard CI has the form (2.22) with ¢, = - ¢-,.
The following optimisation is obtained min(e*2? — ¢%17). According to [23], this optimisation problem
reduces to the solution of the following system of equations for z; and z5:

Pzy) =Pz =1—n (27)
z1+2zp = =20 (28)

To overcome this system, they used Newton’s algorithm by updating the z-values as follows: z} =
21+ A, 2z = zp — Ay, where:

60— (z1+2z2+20)¢p(z2)

A = 29
LT 0@ 9 )
0+ (z1 + 22+ 20)p(z1)
Ay = 30
2T @) 9 0
0= ) ~Pa) —1Ha (1)
starting from the standard values, z; = - z1-4 and z; = Z1-g and where ¢ denotes the density of

the standard variable. After z; and z; are determined the 100(1 — )% confidence interval for OR is
computed as (65“1‘7, ePtz20 )

For the standard confidence interval z; = ¢ (%) and zo = ¢! (1 — %), and for optimal CI z; and
zp are computed via iterations as a solution to an optimization problem. The result of the comparison of
wrong coverage probabilities for standard and optimised 95% CI is shown in Figure 2.1. Two scenarios
are used one with ¢ = 0.25 and the other with ¢ = 0.4. The value of ORy = 1.2 in both cases. For the
range of OR values the coverage of the wrong OR is smaller for the shortest with CI.

—— Standard
—— Optimized

06
|

Probability of false coverage
1
True OR=1.2

15 20 2.5 30 s 4.0 4.5
False OR

Figure 1. The probability of false coverage for the traditional Wald CI and the CI with shortest
width: [23].

Confidence intervals can be determined using standard errors.
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2.2. Model Adequacy Checks

Model adequacy can be tested through a goodness of fit test which measures how well observed
data relate to the model fitted by comparing the values observed to expected values or through analysis
of deviance residuals. The most commonly used statistics to assess model adequacy are coefficient of
determination, Deviance, Wald test, and Akaike information criterion. A brief discussion about them
is given next.

2.2.1. The Coefficient of Determination
A pseudo R? is an indicator of the quality of fit. Its value lies between 0 and 1. It assesses the
degree to which the response and the predictor variables are linked. The generalised coefficient of
determination R? is given as follows:
L(O)"
RZ=1-(—+ 2
(iw) 2

where L(O) is the likelihood of the model with just intercept. The likelihood of the calculated model is
L(#), and the sample size is n. The numerator of the ratio is the variability in the dependent variable
that is not predicted by the model, while the denominator represents total variance in the dependent
variable [24]. Cox and Snell is given by:

2 1 _ L(mint) %
=1 (L(mfull)> )

For the intercept model, L(m;,;) represents the dependent variable’s conditional probability.

2.2.2. Wald Test

This is a test used to determine the significance of particular model coefficients. The following is
the formula for computing the Wald test [25] given by:

2
G (34)
~ \ e

where b is the explanatory variable’s estimate coefficient 3, and SE(b;) is the standard error. The
hypotheses are Hy : B = 0 and Hj : B # 0. Every wald statistic is compared to a one-degree-of-
freedom chi-square distribution. With p < 0.05, a significant chi-squared value implies a poor match.
Additionally, a p value near 1, a modest chi-squared value suggests a good logistic regression model
fit.

2.2.3. Deviance

When Z is a binary variable the expression 7y(t) given in the equation (2.31) provides a conditional
probability that Z equals one given t, denoted as P(Z = 1/t). The quantity 1 - () gives the conditional
probability that Z equals zero given t denoted as P(Z = 0/t) [26]. In addition, [26] stated that for the
pairs (t;, z;) for Z; =1, the likelihood function is y(¢;). For the pairs Z; = 0, the likelihood function is 1 -
v(t;). The quantity 7(t;) indicates the value of y(t) at (¢;). The test statistic D is called deviance.

D=-2Y", [Zilf‘(%{)) +( _Zi)ln(%ﬂ )

d0i:10.20944/preprints202407.2197.v1
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where §; = §(t;). Deviance is a measure of how much a model deviates from its perfect condition
which is the saturated model. This is used in logistic regression to measure the goodness of fit. The
change in D caused by including the independent variable in the model is obtained as :

G = D(for the model without the variable) — D(for the model with the variable) (36)

Under the null hypothesis, if B is equal to zero, G will follow a x? distribution with one degree of
freedom.

2.3. Akaike Information Criterion

To determine whether a given model fits the data concerning the candidate models, the Akaike
information criterion is used. The quality of every model relative to other models can be evaluated
based on the method. The AIC is given by:

21 2k
AIC=-=4+= (37)
n n

where [ is the log-likelihood, the parameters in the model are represented by k and the sample size by
n. A model having the smallest AIC value is the best model for the data [27].

2.4. Other Statistical Methods

There are several classification techniques that one might use to predict a qualitative response.
Some of these such as logistic regression has been discused in section 2.1.1. In the next section linear
discriminant analysis and Bayes theorem is briefly discussed.

2.4.1. Bayes Theorem for Classification

When K is greater or equal to 2, an observation can be classified into K classes that have a response
variable Z. The values of Z can assume K distinct and unordered values. Let -y, stand for a probability
obtained from the k*’* class. This is the probability that a given observation is associated with the k"
category of the response variable Z. Let fi(t) = Pr(T = t|Z = k) represent a density function of t. The
Bayes theorem is given as [28]:

Priz=Hr="1= z{zij;kl(;z) Ok %)

Using pi(t) = Pr(Z = k|T = t) and substituting in estimates of 7, and f(t) into bayes theorem. The
probability that an observation T = t belongs to the k" class is denoted by py(t).

2.4.2. Linear Discriminant Analysis

It uses Bayes theorem to calculate the probabilities, hence an explanation of Bayes theorem is
necessary. For linear discriminant analysis with one predictor the normal density in one dimensional
setting [28] is given as:

1 —ptw)?
e ¥ , (39)
V270;
where mean and variance are indicated by v; and 6?. It is assumed that 67 = ... = §? = §%. The variance
is equal in all classes indicated by 2. By substituting the normal density into Bayes’ theorem we get:

fi(t) =

— 5z (t=v)?
1

1
Timse
pilt) = 0, (40)

o k 1 ey
X 26
21:1 /2,),1(5 e
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where 7; indicates a probability that is obtained from the k'’* class. Taking the log of equation (2.40)
and rearranging terms, yields :
2
L,V v;
Gi(f) = t.55 = 553 +1og(7i), (41)
If 6;(t) is the largest, it represents the correct classification of observation to the class to which it belongs.
When i =2 and 7 = 7, then an observation is allocated to class 1 if 2f(v] — vp) > v% - v%, and to class

2 otherwise. Also, its decision boundary is equal to the point where

2_ .2
vy —V V1 + 17
f= 1 2 42
2(v1 —1p) 2 42)

The Bayes classifier is approximated using linear discriminant by plugging estimates for v;, v;, 6> into
equation (2.42). These estimates are

1
vi=_- Yot

Lijizi=i

. 1 &
2 532

0° = Y ) (=), (43)
n—iH= =~

i=1iz;=i
Training observations have their sum indicated as 1, whereas ; are training observations in the k"
class. The average of training observations from the k" class are indicated by v;. 6% is the mean of
sample variances that are obtained k! classes. The linear discriminant analysis estimates 7; is given as

oo M

Yi = n (44)

The estimates given in equation (2.43) and equation (2.44) are substituted into equation (2.41), and an
observation T = ¢ is assigned to the class for which it is

A B 1?1' 1% o
§i(t) = 155 — 7 +log () @)

biggest. The discriminant functions &;(t) in equation (2.45) are linear functions of t.

For multiple predictors the linear discriminant analysis (LDA) assumes that T = (T, T, - - -, Tp)
is selected from a multivariate Gaussian distribution, with a class-specific multivariate mean vector
and a common covariance matrix. A p-dimensional random variable T has a multivariate Gaussian
distribution, we write T ~ N(v;,}). v is the mean of T which is a vector of p components, and
Cov(T) = X is the p x p covariance matrix of T. The multivariate Gaussian density is defined as [28]:

F(f) = — e TR ) (46)
22Xl
The linear discriminant analysis classifier assumes that the observations in the k" class are drawn
from a multivariate Gaussian distribution N(v;, Y"), where v; is a class-specific mean vector, and ) is a
covariance matrix that is common to all k* classes. Substituting the density function for the k* class,
fi(t), into equation (2.38) shows that the Bayes classifier assigns an observation T = t to the class for
which

-1 1 -1
6i(t) = TTY “vi— 5vl} wi+log(mi) (47)
is largest. The unknown parameters vy, ..., vk, 71, ..., ¥;, and ) are estimated in a way similar to one

dimensional case in equation (2.43). To assign a new observation T = t, LDA provides the estimates
into equation (2.47) and classifies the class for which J;(¢) is the largest.
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2.5. Machine Learning Methods

There are two main categories of machine learning, namely supervised learning and unsupervised
learning. In supervised learning, the model learns patterns from a labelled dataset and the trained
model is used to make predictions on unseen data. Unsupervised learning does not require a labelled
dataset. The most commonly used machine learning include Random Forest and Artificial Neural
Network. A brief discussion about them is given next.

2.5.1. Random Forest

According to [29], a random forest entails a predictor that consistitutes a collection of S randomised
regression trees. For the j-th tree in the family, the value predicted at the query point t is indicated
by su(t, Qs Cy), forj=1,---,s where pj are independent random variables. C, stands for the training
sample. Finite forest estimate formed by joined trees [29] given by :

1 S
SS;n(t/'pll e /pi’l’I/ Cn) = g an(t/pj/ C}’l) (48)
j=1
As S grows to infinity equation (2.48) is obtained as:
Sn(t} Cn) = ]Ep [Sn(t/ 0, Cn)]/ (49)
tli)ngo Sn;S(t}Pll c o Ps, Cn) = Sn(t} Cn) (50)

[30] states that a random forest algorithm uses the following parameters:

* sy € (1, -+, p), which is the number of preselected directions for splitting
* g, € (1,---,n), which is the number of sampled data points in each tree.
* g, €(1,---,ay), which is the number of leaves in each tree.

Additionally, [30] implemented the following random forest algorithm with a predicted value at t. It
consists of the input and output. The input has the training set denoted by C,;, with a number of trees
S>0,spy€(,---,phanec(d,---,n),q, €, -, a,) and t € [0;1]7. For the output prediction of the
random forest at t for j=1, - - -, S, the following procedures are followed [30].

¢ Uniformly chose a, in C,, without replacement

e Set Py = [0;1]? partition on associated with the root of the trees

e Foralll <i<a,, setP=0

® Set 11,5405 = 1 and level = 0.

* while 71,405 < qn do if Ppoye; = @ ; then level = level + 1

 Let B be the first element in P,,,; where B contains exactly one point then P}y, < Pjover \{B}
Plevel+1 — Plevel+1 U {B}

e Calculate the predicted value s, (t, ®j, Cp) at t equal to the average of the Z; falling in the cell of ¢
in partition Peyer U Preger 11

e Calculate the random forest estimate s, (£; 01, - - , ps, Cn) at the query point t

2.5.2. Artificial Neural Network

It has neurons that can be expressed as

h](S) =6 (ZU] + i wl-]-t,-> (51)
i=1

where § stands for non-linear function activation, w;; are the weights connecting neuron j to neuron i,
wj is the bias and 7 is the total number of input nodes. A neural network that consists of three-layered
is indicated in Figure 2.1. The input layer pass on values t = t1,- - -, t, to the second layer. The second
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layer has activation units /;, and generates non-linear transformations as outputs. The third layer
consists of an activation unit, and it makes use of weighted outputs obtained from the second layer
and yields the predicted value which is the final output.

Hidden layer Outputting layer

Figure 2. Artificial neural network : [31].

According to [32], perceptrons are used to design processing units of artificial neural networks.
They are used to determine non-linear problems. Figure 2.2 shows an input that has K nodes and a
Node 0 representing the bias node. The | nodes stand for hidden layer and Node 0. I nodes stand
for output layer with no bias node. A feedforward type network is used for the whole network. This
means the network connections are allowed from a layer of a particular index to layers of a higher
index [33]. Additionally, multilayer perceptron are often used in the testing phase and training phase.
In the training phase, given a set of training data

Input layer Hidden layer Output layer

Figure 3. Structure of multilayer perceptron: Source: [33].

Y = actual output

€5 | Start testing
>
phase

‘Weight adjustment

Figure 4. How backpropagation works: Source: [33].

Net input

=Yaw

{t(1),d(1)},--- , {t(p),d(p)},--- ,{t(PT),d(PT)} the target is to map {t(1)} to {d(1)}. The
Backpropagation algorithm is used to train the multilayer perceptron. A simple representation of the
algorithm is illustrated in Figure 2.3. From the figure, it could be considered that the output of the
multilayer perceptron is equal to ¢(p) applied across the input layer of the multilayer perceptron. The
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output of the multilayer perceptron which is the same as d(p) an error function is constructed [33] and
it can be written as:

PT I 2
E(W) = Z;Z;[d?(;?) -V )], (52)
p=1li=

where :

E(W) = Error function to be minimised,

¢ W = the weight vector,

PT = the number of training patterns,

I = the number of output nodes,

d?(p) = the desired output of node i if the pattern p is introduced to the MLP,

y? (p) = the actual output of node i if pattern p is introduced to the MLP

The actual output is taken closer to the desired output when the error function is reduced. Equation
(2.52) is differentiated and optimisation techniques applied to perform the minimisation task. Gradient
descent technique is given by:

AW = —yAE(W), (53)

where

e AW = the change of weight vector,
¢ 7= the learning parameter and
e AE(W) = the gradient vector E(W) concerning weight vector W

2.6. Classification Evaluation Metrics

2.6.1. Confusion Matrix

[34] defined the confusion matrix as a table that reveals the true and untrue frequency of cases
classified under a defined target. It is used to find the accuracy of the prediction. The matrix has four
kinds of instances. True positive (TP) and false positive (FP) are instances of correct and incorrect
classifications per actual class, respectively. True negative (TN) and false-negative (FN) are instances
of correct and incorrect classifications per actual class, respectively. The following description of the
measures is used to compare the methods:

¢ Kappa is a measure of accuracy that accounts for the possibility that the agreement occurred by
chance. The data is checked for balance, with 1 being a balanced value, therefore agreement, and
0 being an unbalanced value, thus disagreement.

* No information Rate (NIR) reveals the accuracy achievable when predicting the majority class
label. The lower the better that will indicate equal representation.

® Accuracy is the frequency of true predictions divided by the total frequency of predictions. The
higher the better.

¢ Balanced accuracy is calculated using the average of the true positive and true negative rates,
hence again, the higher the better.

¢ The ability of a classifier to distinguish negative labels is measured by item specificity.

¢ The weighted average of recall and precision is used to calculate the item F-score.

2.6.2. Accuracy, Precision, and F-Score

Accuracy, Precision,and F-Score are defined as [35].

TP + TN
AcCuracy = g P 4 TN + TP 69
TP
Precision —
recision = 5 (55)
2 x Precision x Recall
F_ Score _ X I'recision X Ikeca (56)

Precision + Recall
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2.7. Cohen’s Kappa

Cohen’s kappa statistic measures the accuracy and takes into account the possibility of the
agreement occurring by chance [36].

v

_ To —Te
1-Te
Tp stands for observed agreement, and T, stands for the probability of chance agreement. When x = 1,
there is complete agreement that exists between the response variable and the independent variable.
When the value of ¥ = 0, there is no agreement between the response variable and the independent
variable.

(57)

2.7.1. Receiver Operating Characteristic Curve

It is a graphical plot that reveals the performance of a classifier, for various thresholds. It shows the
trade-off between sensitivity and specificity [37]. The formulars for finding sensitivity and specificity
are given as :

. TP

Sensitivity = TP + EN (58)
e TN

Specificity = TN £ TP (59)

When plotting the ROC graphs, specificity is labelled on the X-axis and the sensitivity on the
Y-axis. A value of area under the ROC curve closer to one usually correlates with a better performance
of the model. Additionally, a value of the area under ROC curve equal to 0.5 means that the two classes
are statistically identical.

2.8. Class Imbalance

Class imbalance is one of the challenges of machine learning and data mining fields. Imbalance
data hinders the performance of data mining and machine learning techniques as the overall accuracy
and decision making are biased to the majority class, which lead to misclassifying the minority class
samples. The imbalance problem heightens whenever the class of interest is relatively rare and has
small number of instances compared to the majority class. According to [38] when training sample
size increases, the error rate of the imbalanced class classification reduces. Furthermore, [39] findings
were that a classifier with sufficient number of training data has less chance of being affected by high
imbalance ratio. To reduce class imbalance [40] proposed for an adaptive over-sampling technique
named SMOTE (Synthetic Minority Over-sampling Technique). It adds new examples to minority class
by computing a probability distribution to model the smaller class thus making the decision boundary
larger in order to capture adjacent minority class examples. Furthermore, Upsampling method is a
method used to address the imbalance class. It helps to reduce errors and improves the accuracy of the
model.

3. Literature Review

3.1. Statistical Learning Methods

The Poisson regression has proved to be a major tool that has been used in the analysis of accidents.
This has resulted in many researchers implementing the Poisson regression in the analysis of traffic
accidents. For instance, [41] used Poisson regression to analyze traffic accidents. Their main aim was
to find out if the fatal crash rate was linked to the speed limit. The finding was that the fatal crash rate
that happened on freeways in Washington state was influenced by an increase in speed limit. [42] used
negative binomial distribution to model traffic accident fatalities. Functional forms were assigned to
each variable in the model having both a multiplicative component and an additive component. The
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multiplicative component accounted for the effect of a variable that has a continuous role along the
road such as lane width or shoulder type while the additive component accounted for the presence
of hazardous points such as driveways or narrow bridges. [43] applied Tobit regression in order to
identify the primary factors affecting accidents. The model results showed that factors related to the
status and quality of the pavement and geometric infrastructure features affect the number of crashes.

[44] used Poisson regression and negative binomial model to fit a model on the number of
people killed by road traffic accidents in Ghana during the period 2001-2010. However, because
of overdispersion using the Poisson model, the negative binomial regression model had a lower
dispersion and AIC indicating a better fit compared to the Poisson model. The number of fatalities
anticipated in an accident was found to be correlated with vehicle type. Heavy-duty vehicles like
bulldozers and trucks classified as others were recognized as the vehicle kinds that killed the least
number of persons, whereas cars and buses were identified as the vehicle types that killed the most. [45]
used negative binomial regression to analyse type of vehicles and its effect on traffic fatalities. Traffic
fatalities were modeled as the truck ratio of a country’s vehicles and a set of variables in the function.
The findings were that traffic fatalities tend to increase if the number of light trucks increase in the
road. Light trucks also increased the risk of fatalities in motorcycle collisions. In addition, fatality rates
were found to vary significantly by vehicle type.

On the other hand, [46] investigated how sample size affects the results of Multinomial Logit,
Ordered Probit, and Mixed Logit. It was found that the Mixed Logit model required a larger sample
size compared to an Ordered Probit model. [47] investigated the effect of rain-related factors on the
frequency of multilane road crash occurrence by comparing Poisson, negative binomial and negative
multinomial regression models. They discovered that wet-pavement surfaces were a highly significant
variable that increased severe crashes. The use of statistical methods has been preferred as they
have the strengths of identifying factors that contribute positively or negatively to accidents. Linear
regression and Poisson regression work best under assumptions, based on the relationship between the
independent and dependent variables. Assumptions need to be considered as failure to do so would
lead to the error of estimation of accident occurrence. [48] argued that the Poisson or negative binomial
regression is used for a specific roadway segment simply because of the distributional properties
such as random, discrete, and non-negativity of the vehicle accidents. The major challenge that they
discovered was that the mean and variance of the accident data, under Poisson distribution, are
constrained to be equal.

Several findings were discovered that helped to overcome the challenges encountered. For
instance, [49] findings were that accident data are overdispersed. This suggested that the variance was
bigger than the mean. Further, [50] used zero-inflated Poisson and zero-inflated negative binomial
models to deal with the issue of overdispersion. Zero-altered counting processes provide a model
of a roadway section with accident frequencies split into two categories, zero-accident state and
accident state. The accident state was considered as a place where accident frequencies assume
a known distribution such as Poisson or negative binomial regression whereas the zero-accident
state was viewed as a place where accidents are not observed. The results indicated that the zero-
altered probability process yields flexibility in uncovering processes impacting accident frequencies on
roadway areas with zero accidents and those observed with accidents. [51] argued that the Poisson
regression must be considered as the initial model and if the overdispersion of accident data is detected,
negative binomial and zero-inflated count models can be used.

The logistic regression model has a response variable that has only two values. It uses 1 for success
and 0 for failure. Logistic regression, has been widely used in the study of accident data. [52] scrutinised
the logistic regression to reveal driver characteristics and the relationship between injury severity. They
concluded that the percentage of men involved in fatal accidents was higher compared to females.
Additionally, motorcyclists and bicyclists had higher chances of having a fatal injury as compared
to car drivers. It has been found in existing literature that accidents are predicted through binary
logistic regression models or other prediction models. A few of these models include non-parametric
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models, such as classification and regression tree (CART), and decision tree, which are used to identify
significant variables in traffic accident analysis [33]. They have proven to be effective in variable
selection and crash outcome prediction. In addition, [53] proposed a pedestrian recognition model
applicable to intelligent transportation systems based on AdaBoost algorithms to reduce pedestrian
fatalities in traffic crashes. These models do not take into account the concept of road characteristics
that may increase traffic accident fatalities. The disadvantage of logistic regression is that it employs
the use of standardized coefficients, calculation of estimated probabilities, and odds ratio, which
might be difficult for non-experts to interpret and explain [54]. Additionally, [55] mentioned that the
assumptions related to data distribution and a linear relationship between explanatory and dependent
variables can lead to inaccurate inferences. To overcome these limitations, machine learning techniques
such as random forest will be implemented. They do not demand a relationship to exist between
dependent and independent variables.

Linear discriminant analysis is an alternative method that can be used to predict accident severity
where there are more than two responses. Where classes are fully split, the parameters assessed for
the logistic regression are erratic. The linear discriminant analysis can overcome this. Additionally,
it can be used in situations where training observations are not too large and the predictors X are
approximately normal for all classes. Furthermore, logistic regression and linear discriminant analysis
vary entirely in their fitting methods [28]. Multinomial Logistic Regression is also used where there are
more than two responses. According to [20], Multinomial Logistic Regression permits the concurrent
comparison of more than one contrast, that is, the log odds of three or more contrasts are estimated
simultaneously. Many studies have looked at the causes of traffic fatal accidents, and the main focus
was to come up with lasting solutions for reducing fatalities. The odds proportion of a fatal injury
increases with old age, according to a study by [12] using multivariate logistic analysis. Gender was
viewed as one of the characteristics that had an impact on fatality. Several fatalities were found to
be among male drivers as compared to female drivers. The proportion of traffic fatalities for young
male drivers was 26.6%, versus 5.6% for female drivers of the same age range [12]. The drivers’
actions before the accidents occur also play an important role like changing lanes. This might be a
contributing factor to fatalities. [56] used the multinomial logit model, to identify leading factors in
rural highways influencing accident intensity with information from the China Communications and
Transportation Association. Multinomial logistic regression requires a large number of parameters and
degrees of freedom. Besides, they do not account for the ordering of the response variable rendering
its interpretation impractical [57].

3.2. Machine Learning Methods

Statistical learning methods, such as multinomial logistic regression have weaknesses as their
performance can be affected by missing values and outliers. The artificial neural network is most
suitable for overcoming this challenge since it does not require assumptions between the dependent
and independent variables. They can associate input with output and are error-tolerant [58]. [55] used a
neural network with three layers to determine the accident probability in Italy. The study findings were
that carelessness and excessive speed were categorised as the main causes of deaths that occur due to
traffic accidents. To figure out the extent of the crisis of urban junctions, [55] further used an artificial
neural network. The findings were that an artificial neural network is a better model for scrutinising
causes leading to junction accidents. On the other hand, [59] utilised artificial neural networks to
estimate the occurrence of accidents with the intention of finding which of the methods work well.
The findings were that a traffic accident prediction model constructed using Artificial Neural Network
(ANN) to forecast traffic accidents using adequate data was accurate enough to predict real traffic
accidents. They came to the conclusion that this may be used to forecast future traffic accidents.
Furthermore, they found that the results gave more trustworthy findings than established methods
such as Poisson regression and negative binomial distribution. [60] used random forests and rough
set theory to explore fundamental factors related to vehicle crash severity. Also, [61] utilised neural
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networks to forecast the severity of 1 000 recorded clashes in Tehran. The findings were that the artificial
neural network performed better than other methods used. The methods that were compared include
a genetic algorithm used for solving both constrained and unconstrained optimization problems based
on natural selection. The other method investigated is a model combining the genetic algorithm (GA)
and pattern search (PS) models. The use of GA and PS models in transportation safety studies increases
prediction accuracy. [62] used artificial neural networks to evaluate crash severity and to identify
important crash-related factors on urban streets. The findings were that head-on collision, highway
width, and speeding are the most important factors that increase crash severity in urban streets.

The artificial neural network can be utilised to solve non-algorithmic problems. They are capable
of solving new and unexpected situations using experience. There is no need to know how the
variables are related to one another when employing an artificial neural network [58]. Additionally,
the neural network can be able to handle many variables and produce fewer mistakes. Artificial neural
networks have certain limitations. According to [31], drawing the correct sequence of the estimate of
components, layers, and types of activation functions remains a difficult task. Hence, neural networks
are difficult to use for non-experts. On the other hand, [63] stated that there are many challenges
encountered in designing and training multilayer perceptron networks. Firstly, identifying how many
neurons are to be used in each hidden layer acts as a challenge. Additionally, validating a neural
network to test for overfitting is a challenge when it comes to designing and training a neural network.
This clearly, shows some major challenges associated with the use of the neural network.

[30] provided a familiar structure for tree ensembles called “random forests”. It is a classifier that
has various decision trees and outputs. [64], used random forest and naive Bayes theorem to forecast
and disclose the severity of injury and causes of traffic accidents. The findings were that the random
forest performs better than the other methods that were employed. A study by [65] used Tree Net and
random forest to forecast injury severity. It was found that the ensemble technique produced better
results in forecasting injury severity than any other classifier methods. [66] used regression trees to
analyse factors that are associated with injury severity using Iranian traffic data from 2006 to 2008. The
findings of this study were that in most cases, not wearing a seat belt was a major contributing factor
associated with injury severity.

Random forests are considered to be robust to noise and fast. They do not overfit and provide
options for explaining and visualising the input, such as selecting features. They are used in identifying
relevant variables, especially in data analysis [67]. According to [67], the algorithm of random forest
is still not fully understood. Additionally, the algorithm remains heuristic rather than theoretically
motivated. The implementation of the algorithm has proved to be a challenging task even though the
steps of the algorithm are clearly outlined. On the other hand, interpreting the random forest model
has been viewed as a difficult task, to such an extent that machine learning experts find it hard to give
a clear explanation of the algorithm.

[68] recommended machine learning based on geospatial techniques. They employed geospatial
analysis, support vector machines, and a coactive neuro-fuzzy inference system, to find out spatial
and non-spatial factors in predicting crash severity in Iran. The findings of their study showed
support vector machines performed better as compared to other methods that were employed. Fur-
thermore, [69] stated that Support vector machines are the best models because they can handle large
datasets. According to [28], support vector machines can only be used on data sets that are separated
by linear boundaries. Support Vector Machines are considered to be generalised simple and intuitive
classifiers called the maximal margin classifier. Additionally, they are used where there are only two
classifications. They can be used in a range of situations, and they are regarded as one of the most
effective ways for class methods for classifiers [28]. In addition, the loss function of support vector
machines is zero but for logistic regression is not equal to zero. There is a similarity in the results
produced by their loss functions. Further, [28] stated that support vector machines yield better results
than logistic regression when classes are defined. When multiple regimes overlap, logistic regression
is the best option. Support vector machines require a tuning parameter that determines under fitting
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or over fitting the data. Support vector machines, on the other hand, use kernels when expanding the
feature space to accommodate non-linear class border [28].

[70] employed classification and regression trees (CART) and a multinomial logistic regression
approach to compare the human factors role in predicting the crash severity of accidents recorded in
Iran. The findings were that CART performed better as compared to other employed methods. [71]
used supervised methods intended to find out if the environmentally independent factors are related
to the severity of accidents that were provided by traffic accident datasets. The findings were that road
conditions and road markings had a great influence on the injury severity of a pedestrians. The cyclist
age group and month were revealed to be statistically significant predictors of injury severity. [72]
used support vector machines in crash frequency prediction. They concluded that the SVM model has
a lot of potential for dealing with problems involving classification. They further stated that support
vector machines can be utilised for modelling traffic accident fatalities data, which are categorical. The
disadvantage of the Support vector machines is that they work like black-boxes and for non experts, it
is difficult to interpret the results. A discussion of important variables is discussed next.

3.3. Discussion of Important Variables

Researchers have conducted several studies to identify factors that influence accident severity. For
instance, [73] came up with the conditional logistic regression to pinpoint causes aiding traffic accident
fatalities in Turkey. The findings were that roadway type and condition, the time of day, collision type
and location had a great influence on accident severity. Additionally, [74] used binary logistic regression
and the findings were that factors affecting road accident severity only inside urban areas include young
driver age, bicycles, intersections, and collision with fixed objects, whereas factors affecting severity
only outside urban areas are weather conditions and head-on and side collisions. As an example, [75]
researched the connection between traffic fatalities accidents in Palermo and the characteristics of
drivers, road conditions, and the season in which they occur. The results of their analyses showed
that non-fatal accidents were significantly associated with a driver’s age and seasonality. [9] reported
that leading factors like behavioral factors, infrastructure factors, characteristics of the vehicle, and the
effects of weather were seen as a major reasons for motorcycle crashes. In addition lighting conditions
was also important factor when predicting traffic accident fatalities. According to [76], factors like
head-on collisions, poor lighting conditions, and speeding were linked to greater accident severity.
Moreover, other factors, including gender, the type of intersection, the surface of the road, the seating
position, and the weather, did not produce consistent results [76].

Excessive speed contributed to the traffic accident fatalities as well as property damage [77].
Furthermore, [78] revealed that high speed contributed to the occurrence of traffic fatalities in China.
[79] stated that increased vehicle speed significantly increased the odds of getting involved in severe
crashes. [76] mentioned that passengers had high chances of being involved in fatal accidents when
they travel on dry road surfaces. The variable weather condition, according to [80] accounted for the
highest number of traffic fatalities in America that happened in pellucid weather from the year 2010
to 2014. [81] revealed that alcohol consumption had a huge impact on traffic fatalities that occurred
during the weekends. [82] stated that liquor raises the probability of having a severe injury.

[83] stated that temporal variations had a huge impact on traffic accident fatalities. Travel patterns
differ between weekends and weekdays. Their findings were that more traffic accident fatalities
happened during weekends compared to weekdays. Additionally, [84] found that a huge number
of traffic accidents that took place during weekends were more fatal as compared to weekdays.
On the other hand, [85] compared traffic accident fatalities that took place on public holidays and
regular weekends. The findings were that traffic accident fatalities were higher during public holidays
compared to weekends.
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4. Materials and Methods
4.1. The Data

In this study, an accident dataset downloaded from https://data.gov.uk/dataset/road-accidents-
safety-data is used. It was made available by the United Kingdom’s Department for Transport in the
year 2014. The dataset has 146 322 traffic accident records and 32 variables. The study compares the
performance of logistic regression with that of random forest for predicting traffic accident fatalities.
The predictor variables that are selected are the day of the week, speed limit, light conditions, weather
conditions, road surface conditions, road type, and accident severity. This study treats the accident
severity as the response variable, which has been further divided into two categorical classes, that
is fatal and non fatal. This was necessary so that logistic regression could be used. The connections
between traffic fatalities and the independent variables is analysed. The main objective is to find out
which variables are significant in predicting traffic fatalities. Data is divided into two parts, which are
test dataset and training dataset. The split is 70% training dataset and 30% test dataset using K-fold
cross validation and K is taken as 10. [86] found that using small values of k that are less than 10 will
tend to produce results that are biased. If k = 10 better results are produced, it justifies selecting the
value of k since it gives better results.

To define the relationship between traffic fatalities and independent variables, odds ratio is used.
The odds ratio measures the impact of a one-unit increase on the odds of having a fatal or non fatal
injury. Confidence intervals are also used for identifying significant factors that affect traffic accident
fatalities. To implement good modelling in this study, we create training and test splits to avoid under
or overfitting when performing regression.

To obtain the most essential features, a stepwise regression is used to perform model selection
using the AIC. It assesses the model’s ability to fit the data. Using AIC enables a selection of the
variables that contribute significantly to traffic accident fatalities. Additionally, predictor variables
that have a great impact on traffic accident fatalities are evaluated using the p values. In addition to
the methods discussed, Wald tests is used to select the important variables. Deviance measures how
much a model deviates from the perfect model, which is the saturated model. This is used to measure
the goodness of fit. The pseudo R? is used to establish the connection between the input variable and
the output variables. Model summary provides values indicating how good the model fits the data
and also for linear relationship between the accident severity and the independent variables. When
the independent variables are correlated with each other it indicates the presence of multicollinearity.
For Logistic regression it requires that little or no multicollinearity among the independent variables.
Therefore, the independent variables do not need to be highly correlated with each other. Logistic
regression assumes linearity of independent variables and log odds. It requires that the independent
variables are linearly related to the log odds. Multicollinearity is tested using correlation matrix and
the correlation coefficients should be smaller than 0.8.

The Random Forest is used to obtain important features and provides the rank of the features.
The mean decrease accuracy is also used to select variables that are important in predicting accident
severity. The mean decrease accuracy values of a variable tell us how much that particular variable
reduces the accuracy of the model if removed.

The impact of association between dependent and independent variables is determined using a
Chi-square. It identifies the variables, which significantly contributed to the increase or decrease of
traffic fatalities. The variables significance is determined by the p values obtained from the Chi-square
test. P values less than 0.05 are of signal importance. In addition, the analysis of variance for the
logistic regression for accident severity is conducted. Each predictor is assessed using an ANOVA on
the accident severity. It is used to establish variables that are important in predicting traffic accident
fatalities.

For comparing logistic regression and random forest, different performance metrics are calculated
from the confusion matrix. It is achieved by making a comparison of the accuracy, error rate, sensitivity,


https://doi.org/10.20944/preprints202407.2197.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2024 d0i:10.20944/preprints202407.2197.v1

19 of 31

specificity, and no-information rate for logistic regression and random forest. Furthermore, kappa,
Gini index, and F-score are used for comparison. Additionally, the assessment of the model is done by
plotting the ROC curve for both logistic regression and random forest, and calculating the AUC (Area
under the curve). On the same graph, the ROC curves are plotted so that a clear conclusion can be
drawn.

5. Data Analysis

5.1. Introduction

Results of data analysis for the logistic regression and random forests are presented in this
chapter. A comparison of logistic regression and random forests is implemented utilising the Receiver
Operating Characteristic curve (ROC) by looking at the area under the curve. If the area is higher, the
better the model. In addition, the confidence interval (CI) for odds ratio (OR) is computed to describe
the association between the dependent variable and the independent variables.

5.2. Exploratory Data Analysis (EDA)

5.2.1. Handling Imbalances

The dependent variable, which is accident severity, was split up into non fatal and fatal classes.
The fatal had 22 334 observations and the non fatal had 123 988 observations. There is a huge imbalance
here. If one class has more observations than the other class, the results for classifying observations
using probability will favour classes with more observations. To address the challenge of imbalance,
the study employed the Upsampling method. The minority class size is increased by sampling with
replacement and the size of classes will have an equal size. As a result, there will be fewer errors and
the accuracy of the model will improve.

The exploration data analysis was conducted to evaluate associations among response variable
and explanatory variables. The researcher adopted the accident dataset, which was recorded from
the 1st of January 2014 until the 31st of December 2014. The total observation of the accident severity
data was 146 322. The researcher used accident severity as the dependent variable and used, day of
the week, number of vehicles (stands for vehicles involved in an accident in a given day), place of
accident, road surface conditions, light conditions, weather conditions, speed limit, road type, and
police attendance as the predictor variables. The days of the week were divided into two categories:
weekends and weekdays. The variable light conditions was divided into day and night. The road
surface conditions were classified as dry, snow, and wet. The time was categorised into four quarters.
The types of roads were further classified into roundabouts, carriageways, one-ways/slips, and others.

On the other hand, weather conditions were divided into five categories: fine, rain, snow, fog/mist,
and others. The urban or rural area variable was divided into two classes: urban and rural. The highest
number of recorded traffic accident fatalities occurred on carriageways, which had 20 604 (92.25%).
The weekdays accounted for 16 097 (72.07%) traffic accident fatalities. The variable weather conditions
classified as fine had 18 869 (84.49%) traffic accident fatalities recorded. On the other hand, weather
conditions classified as snowing recorded 40 (0.18%) traffic accident fatalities.
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Category Fatal Non-Fatal Row Total Chi-square
(£)(%) (£)(%) (£)(%) P-value

Weekdays 16097(72.07%)  95264(85.55%)  111361(76.11%) 0.000

Weekends 6237 (27.93%) 28724 (82.16%) 34961 (23.89%)

Carriageway 20604 (92.25%) 110406 (84.27%) 131010 (89.54%) 0.000

One way /Slip 586 (2.62%) 3891 (86.91%) 4477 (3.06%)

Roundabout 1066 (4.77%) 9263 (89.68%) 10329 7.06%

Others 78 (0.35%) 428 (84.59%) 506 (0.35%)

Day 15595 (69.83%) 92476 (85.57%) 108071 (73.86%) 0.000

Night 6739 (30.17%) 31512 (82.38%) 38251 (26.14%)

Fine 18869 (84.49%) 101585 (84.34%) 120454 (82.32%) 0.000

Fog/Mist 140 (0.63%) 613 (81.41%) 753 (0.52%)

Raining 2718 (12.17%) 17280 (86.41%) 19998 (13.67%)

Snowing 40 (0.18%) 265 (86.89%) 305 (0.21%)

Other 567 (2.54%) 4245 (88.22%) 4812 (3.29%)

Dry 15658 (70.11%) 86361 (84.65%) 102019 (69.72%) 0.038

Snow 6354 (28.45%) 35567 (84.84%) 41921 (28.65%)

Wet 322 (1.44%) 2060 (86.48%) 2382 (1.63%)

Rural 9760 (43.70%) 40275 (80.49%) 50035 (34.20%) 0.000

Urban 12574 (56.30%) 83713 (86.94%) 96287 (65.81%)

Police Absent 1961 (8.78%) 24754 (92.66%) 26715 (18.26%) 0.000

Police Present 20373 (91.22%) 99234 (82.97%) 119607 (81.74%)

1 Quarter 5043 (22.58%) 29738 (85.50%) 34781 (23.77%) 0.000

2 Quarter 5666 (25.37%) 30177 (84.19%) 35843 (24.50%)

3 Quarter 5879 (26.32%) 31087 (84.10%) 36966 (25.26%)

4 Quarter 5746 (25.73%) 32986 (85.17%) 38732 (26.47%)
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The p-values of chi-square of independence were all less than 5% level of significance, which
implies that there is an association between the dependent variable and predictors. The results suggest
that the predictors are candidates for explaining the accident severity.

This study categorised accidents into four quarters in order to examine seasonality effects. Table
5.1 indicates that the third quarter recorded the most fatal traffic accidents, with 5 879 (26.32%)
accidents, followed by the fourth quarter with 5 746 (25.73%) accidents. There were 5 043 (22.58%)
accidents in the first quarter, and 5 666 (25.37%) accidents in the second quarter. There is a difference of
623 accidents between the first and second quarters. Table 5.1 shows that there has been an increase in
traffic accident fatalities from the first to the third quarter. On the other hand, Road type-related traffic
accidents are very concerning since they are avoidable. If strict measures are put in place to prevent
road accidents that cause death, the number of traffic fatalities could be reduced. Results show that 20
604 (15.73%) fatal accidents occurred on carriageway roads, followed by 1 066 (10.32%) at roundabouts.
One way or Slip had more accidents than the others, with 78 traffic accidents.

It can be seen from the traffic accident fatalities by urban or rural area in Table 5.1 that accidents
happen more commonly in cities than in rural areas. This is because there is more volume of traffic in
cities than in rural settings. The chances of an accident occurring are high when the traffic volume
is also high. The predictor variable light conditions play a crucial role in analysing traffic accidents.
There were two categories of light conditions, day and night. It was found that traffic accident fatalities
occurred more often during the day than during the night. There are fewer accidents recorded at
night as there is less traffic on the road compared to day time. The introduction of good road lighting
could also be a contributing factor. In addition, [? ] agrees to this point as one of the findings in their
study was that night accidents can be reduced by the use of good road lighting. Since more people are
usually working during the day, traffic is generally high during this time. Nights are associated with a
high number of fatalities, despite fewer accidents occurring. This might be due to drunk driving. On
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the other hand, [87] mentioned that traffic volume is higher during daylight as a result, more traffic
accident fatalities are recorded.

Variable road surface conditions contribute to the increased number of traffic accidents and deaths.
Dry surface conditions is associated with the most traffic accident fatalities, with 15 658 (15.35%).
Snow road surface conditions accounted for the second highest number of traffic fatalities accidents,
with 6 354 (15.16%), followed by wet conditions, with 322 (13.52%). Wet roads may lead to more
cautious driving than roads with dry surfaces, based on the results. Weather conditions impact on
traffic accident fatalities were examined. A total of 18 869 (15.67%) traffic accident fatalities occurred
in fine weather conditions. In addition, there were 2 718 (13.59%) accidents caused by the weather
conditions, when it was raining. The number of accidents associated with snowfall was the lowest,
with 305 in total. Fog or mist was responsible for 40 (18.59%) traffic accident fatalities.

5.3. Logistic Regression Analysis

The researcher conducted the stepwise regression approach for selecting the significant variables
in explaining the severity of accidents. After determining the significant covariates, we fitted the
binomial logistic regression model since we had a binary response. The methods that were explored in
assessing the covariates were deviance and Akaike information criteria (AIC). The variable with the
highest univariate AIC value and smallest deviance was first included, that was quarter and the other
variables are consequently added based on how they influence the AIC and deviance value. From this
result, it was observed that quarter, speed limit, road surface condition, day of the week, road type,
light conditions, place of accident, number of vehicles and police attendance were significant.

Table 2. Stepwise regression approach for logistic regression model for traffic accident fatalities.

Covariates Df Deviance AIC

None 230649 230687
Quarter 3 230732 230764
The Speed limit 1 230742 230778
The Road surface condition 2 230788 230822
The Weather conditions 4 230819 230849
The Day of week 1 230848 230884
The Road type 3 231059 231091
The Light conditions 1 231046 231082
Place of accident 1 231304 231340
The Number of vehicles 1 232902 232938
Police attendance 1 234040 234076

5.4. Binomial Logistic Regression Model

Table 5.3 shows the estimates, odds ratio, standard errors, z values and p-value for the predictor
variables. The predictors for the logistic regression such as speed limit, and light conditions were
statistically significant at 5% level since they had a p value less than 0.05. The variables road type
classified as others and weather condition classified as snowing had p vaues of 0.182964 and 0.484654,
respectively. The p values are greater than 0.05, hence they are insignificant. The odds ratio of 0.7200
for number of vehicles involved in traffic accident fatalities suggests that for every unit increase in the
number of vehicles involved in a car accident, the likelihood of a traffic fatal accident decreases by
28%. The odds ratio of a person experiencing a fatal accident during the weekends is 1.2 times that of
weekdays. Traffic accident fatalities that occur on a slippery road have 17% less chance of resulting in
a fatal accident compared to an accident that occurred in carriageways.
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Table 3. Logistic regression for traffic accident fatalities.

Covariates Estimate = Odds Ratio Sd Z-Value P-value
Intercept -0.2110327  0.8097476  0.0326297  -6.468 0.0000
Number of Vehicles -0.3284669  0.7200268  0.0070883  -46.339 0.0000
Day:Weekends 0.1610077 1.1746941 0.0114158 14.104 0.0000
Road Type:Slip -0.1888540  0.8279073  0.0297239 -6.354 0.0000
Road Type Round About -0.4055796 0.6665904 0.0210848  -19.236 0.0000
Road Type: Others 0.1125592 1.1191385  0.0845239 1.332 0.182964
Speed limit 0.0046902 1.0047012 0.0004875 9.621 0.0000
Light Conditions: Night 1.2657635 3.5457989  0.0118409  19.904 0.0000

Weather Conditions: Fog/Mist -0.1769851  0.8377922  0.0674142  -2.625  0.008656
Weather Conditions: Raining -0.2391297  0.7873128  0.0186169  -12.845 0.0000
Weather Conditions: Snowing  -0.0793410  0.9237249  0.1135330  -0.699  0.484654

Weather Conditions: Others -0.1058903  0.8995233  0.0303448  -3.490  0.000484
Road Surface: Snow -0.0155717  0.9845489  0.0147245  -1.058  0.290266
Road Surface: Wet -0.5092450  0.6009491  0.0435462 -11.694 0.0000
Place of Accident: Urban -0.3623045  0.6960704  0.0141845  -25.542 0.0000
Police Attendance Yes 0.8546232  2.3504886  0.0151043  56.581 0.0000
2nd Quarter 0.1260474 1.1343359  0.0148897 8.465 0.0000
3rd Quarter 0.1066344 1.1125274  0.0148262 7.192 0.0000
4th Quarter 0.0500855 1.0513610  0.0141083 3.550 0.000385

For every one unit increase in speed limit, we expect to see about 0.47% increase in the odds
of experiencing a fatal accident. For light conditions, the parameter is equal to 1.2657635 and the
odds occurring is 3.5457989. This means that the night travellers are 3.5457989 times more likely to
be involved in a fatal accidents than those travelling during the day. There was an increase in traffic
accident fatalities since the odds ratio was greater than one. Traffic accident fatalities that occurred
in urban areas had an odds ratio of 0.6960704 compared to rural areas. Since the odds ratio is less
than one, this shows a decline in traffic accident fatalities as compared to rural area. The odds of
experiencing a fatal accident in the presence of the police is 2.3504886 times more likely to occur as
compared to absence of police.

The Wald test was implemented to assess the achievement of the model. The null hypothesis
assumes that there are no differences in accident severity using factors such as road type, light
conditions, weather conditions, and road surface conditions drawn from an accident dataset. The
alternative hypothesis is that there are differences in accident severity using factors such as road type,
light conditions, weather conditions, and road surface conditions drawn from an accident dataset.
The study rejects the null hypothesis since p < 0.05. The study concludes that there are differences
in accident severity using factors such as road type, light conditions, weather conditions, and road
surface condition drawn from an accident dataset since p = 0.000. The p values were less than 0.05
for the Wald test. Residuals and deviances were also used to assess models. The residual deviance
obtained has a value of 230649 on 173565 degrees of freedom. On the other hand, the null deviance
obtained has a value of 240639 on 173583 degrees of freedom. Since the residual deviance has a value
less than the null deviance, this explains that the model is a better model compared to Random forest.
The parameters are estimated using a method of maximum likelihood discussed under the theoretical
background. Additionally, the pseudo R? value seems not to be good enough as the value is low.

5.5. Analysis of Variance (ANOVA) for Traffic Accident Fatalities

Table 5.4 indicates the analysis of variance for accident severity. The ANOVA was conducted
to assess the impact of each predictor on the regressor (accident severity). The results show that the
explanatory variables are all statistically signficant since the corresponding p-values are less than 5%
level of significance.
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Table 4. Analysis of variance for the logistic regression for traffic accident fatalities.

Df Deviance Residual Df P-value

The Number of Vehicles 1 1839.3 173582 0.000
The Day of Week 1 428.4 173581 0.000
The Road Type 3 588.9 173578 0.000
The Speed limit 1 2061.2 173577 0.000
The Light Conditions 1 262.3 173576 0.000
The Weather Conditions 4 414 173572 0.000
The Road Surface 2 128.3 173570 0.000
Place of Accident 1 750 173569 0.000
Police Attendance 1 3433.9 173568 0.000
Quarter 3 83.2 173565 0.000

5.6. Wald Test Results for Traffic Accident Fatalities

A Wald test was used to identify variables that contributed to traffic accident fatalities. The
variable speed limit had a x? value of 92.6, with one degree of freedom, corresponding to a p value of
0.0. This explains that the speed limit is significant since the p value is less than 0.05. Light conditions
classified as night had a x? = 396.2, with one degree of freedom corresponding to a p value of zero.
Hence, it shows that it contributed significantly since the p value is less than 0.05. On the other hand,
the road type classified as round about had a x> = 1.8. The value of p was 0.18 higher than 0.05,
showing that it is not significant.

5.7. Random Forest Model

The random forest model of 500 trees was fitted with 10 variables being tried at each split. Table
5.5 shows the mean decrease accuracy for each explanatory variable. The mean decrease accuracy
expresses how much accuracy the model losses by excluding each explanatory variable. The variables
number of vehicles, road type, police attendance, light conditions, place of accident and quarter are the
top important variables. The speed limit and weather conditions were the least important variables.
The speed limit had a mean decrease of 102.1669, whereas weather conditions had a mean decrease of
103.2044. Table 5.6 shows the results of random forest model, including 500 number of trees. The Out
Of Bag (OOB) performance error rate was 36.28%, suggesting that the random forest is a fair model.

Table 5. Feature selection for random forest model for traffic accident fatalities.

Covariates Mean Decrease Accuracy
The Number of Vehicles 248.5413
The Day of week 118.059
The Road Type 159.1584
The Speed limit 102.1669
The Light Conditions 119.8348
The Weather Conditions 103.2044
The Road Surface Conditions 108.9508
The Place of Accident 140.143
The Police Attendance 221.5322

The Quarter 120.894
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Table 6. Random forest model for traffic accident fatalities: Confusion matrix.

Type of random tress: Classification
Number of trees : 500
OOB: Estimate of Error Rate: 36.28%

Confusion Matrix ‘ 0 1 class.error
0 | 55548 31244  0.3599871
1| 31734 55058  0.3656328
Variable impotance (Random Forest)
Did_Police_Officer_Attend_Scene_of_Accident 9| Number_of_Vehicles <l

Number_of_Vehicles
Road_Type
Urban_or_Rural_Area
Quarter

Day_of_Week
Light_Conditions
Weather_Conditions
Road_Surface_Conditions

Speed_limit

150

250

MeanDecreaseAccuracy

Did_Police_Officer_Attend_Scene_of_Accident
Speed_limit

Urban_or_Rural_Area

Quarter

Road_Type

Weather_Conditions

Road_Surface_Conditions

Light_Conditions

Day_of Week

0

1000 2000

MeanDecreaseGini

Figure 5. Top features found as most important features in analysing traffic accident fatalities data.

5.8. Model Performance Comparison for Random Forests and Logistic Regression

The target class, accident severity had two labels (Fatal, Non Fatal). The predictors of this classifier
such as road surface conditions were used to fit the random forest model. Data was cross-validated by
dividing 70% of the training data into 5 folds, and keeping 30% for testing. The metric measures that
were adopted for the study were; accuracy, no information rate, kappa, Mcnemar’s test, sensitivity,
specificity, gini index and area under the curve.

Table 7. Comparison of logistic regression and random Forests.

Logistic Regression Model =~ Random Forest Model
Accuracy 0.7985 0.640
Recall 0.1935 0.6429
95% Confidence Interval (0.7964, 0.8005) (0.6376,0642
No Information Rate 0.8920 0.6021
Kappa 0.1147 0.1611
Mcnemar’s Test P-Value 0.0000 0.0000
Sensitivity 0.8620 0.9048
Precision 0.2736 0.9048
Specificity 0.2736 0.2395
Prevalence 0.8920 0.6021
Balanced Accuracy 0.5678 0.5721
Gini Index 0.2801 0.3179
F1 Score 0.2267 0.7517
AUC 0.64 0.6589

The logistic regression achieved an accuracy of 79.85%. This means 79.85% of the data is predicted
correctly. The random forest achieved an accuracy of 64.01%. The results show that logistic regression
is a better classifier for predicting accident severity since it had the highest accuracy percentage. The
performance of the logistic regression was very close to random forest, with a small difference of
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15.84%. However, the random forest model had higher sensitivity, 90.48%, Gini index of 31.79% and
F1 Score, 75.17%. Logistic regression recorded both the highest specificity and no information rate
with values of 27.36% and 89.20% respectively. Figure 5.2 shows the receiver operating curve (ROC)
comparing the two methods. When the area is big, mainly greater than 60% and the curve is above
50% diagonal line, it suggests that the model correctly predicts the accident severity.

Model Comparison

1.00-

0.75-

Logistic Regression Model
= Random Forest Model

Sensitivity
=)
S

0.25-

1.00 075 0.50 025 0.00
Specificity

Figure 6. ROC for logistic and random forest models comparing traffic accident fatalities.

Table 5.7 indicates that for logistic regression and random forest, the AUC was significantly higher
than 0.5. The random forest had a higher area under the curve of 65.89% compared to the logistic
regression. Logistic regression was the most accurate classifier with the highest prevalence of 89.20%
and recall of 19.35%.

5.9. Confidence Intervals

Two methods were used to find confidence intervals from the dataset. Confidence intervals
estimates were obtained using the standard method discussed under the theoretical background. The
second method used the shortest width CI for odds ratio (OR) in logistic regression based on a theorem
by [23]. The two methods were discussed in the theoretical background section. From Table 5.8, it
can be seen that the predictors: number of vehicles, speed limit, and light conditions: Night do not
contain 0. The 95% confidence intervals displayed show that light conditions had a minimum bound
of 0.2125 and highest bound of 0.2589. The null hypothesis is given as Hy = There is no association
between the light conditions variable and the traffic fatal accident. The alternative hypothesis is given
as Hj = There is an association between the light conditions variable and the traffic fatal accident. The
lower bound and the upper bound are less than one. Hence, light conditions are significant and had
an influence on the increase in traffic accident fatalities. The predictor weather conditions snowing
include 0 since it has a minimum bound of —0.0091 and highest bound of 0.0859. This shows the
parameter is statistically insignificant.

Looking at the 95% confidence interval, the variable urban has a significant effect on the traffic
fatalities since the lower and upper bounds are —0.3901 and —0.3345, respectively. The 95% confidence
interval for the variable "did the police officer attend the scene of the accident” had a minimum bound
of 0.8250 and highest bound of 0.8842. This does not include zero and the positive values demonstrate
that there is a greater risk of traffic fatal accidents. In summary, the fourth quarter result seems to be
significant as the lower bound is 0.0224 and the upper bound is 0.0777. This is because zero is not
included in this 95% confidence interval assuming normality. Looking at the variable speed limit with
parameter estimate 3 = 0.0046902 and ¢ = 0.0004875. The 95% CI intervals for shortest width for odds
ratio (OR) in logistic regression are given by:
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95% CI = (6‘871'96(7, €B+1.960')

( 60'0046902_ 1.96x0.0004875 60'0046902+ 1.96 x0.0004875 )
7

= (1.003741683; 1.005661667)

The confidence intervals for speed limit do not include 1. This indicates that the speed limit is
statistically significant. Additionally, the variable light conditions had a lower bound of 3.4644550 and
an upper bound of 3.629052751. It does not contain 1 and we conclude that it is statistically significant.

Table 8. Wald CI and Shortest width CI results for traffic accident fatalities.

Covaraites Estimate 95% Shortest width CI Std.Error  95% CI standard
Number of Vehicles -0.3284669 0.7100925; 0.73010000 0.0070883  -0.3424; -0.3146
Day:Weekends 0.1610077  1.148702141; 1.2021274009  0.0114158 0.1386; 0.1834
Road Type:Slip -0.1888540 0.7810525515; 0.8775729826  0.0297239

Road Type: Round About -0.4055796  0.639604151; 0.6947151372  0.021084

Road Type: Others 0.1125592  0.9482779306; 1.320784719  0.0845239 -0.0531; 0.2782
Speed limit 0.0046902 1.003741683 ; 1.005661667  0.0004875 0.0037 ; 0.0056
Light Conditions: Night 1.2657635 3.46445501 ; 3.629052751 0.0118409 0.2125 ;0.2589
Weather Conditions: Raining -0.2391297 0.759102227 ;0.816571684 0.0186169

Weather Conditions: Snowing -0.0793410  0.7394373794 ; 1.153941738  0.1135330 -0.3019; 0.1432
Road Surface conditionaal: Snow  -0.0155717  0.9565409105 ; 1.013377002  0.0147245  -0.0444;0.0133
Road Surface: Wet -0.5092450 0.551785689; 0.654492961 0.0435462

Place of Accident: Urban -0.3623045  0.676985029; 0.7156937836  0.0141845  -0.3901; -0.3345
Police Attendance Yes 0.8546232 2.281923601 ;2.42111366 0.0151043 0.8250 ;0.8842
4th Quarter 0.0500855 1.022686749 ;1.080839191 0.0141083 0.0224 ;0.0777

Table 9. Goodness of fit.

McFadden psedo R square  Cox and snell r square  Nagelkerke R square
0.04151248 0.05592391 0.07456521

Table 10. Wald test results for traffic accident fatalities.

Covaraites Estimate ~ Wald x> DF P-value
Intercept -0.2110327 41.8 1 0.00
Number of Vehicles -0.3284669 2147.3 1 0.0
Day:Weekends 0.1610077 198.9 1 0.00
Road Type:Slip -0.1888540 40.4 1 0.00
Road Type Round About -0.4055796 1.8 1 0.18
Road Type: Others 0.1125592 370.0 1 0.00
Speed limit 0.0046902 92.6 1 0.00
Light Conditions: Night 1.2657635 396.2 1 0.00
Weather Conditions: Fog/Mist -0.1769851 6.9 1 0.0087
Weather Conditions: Raining -0.2391297 12.2 1 0.00048
Weather Conditions: Snowing  -0.0793410 165.0 1 0.00
Weather Conditions: Others -0.1058903 1 1 0.48
Road Surface: Snow -0.0155717 1.1 1 0.29
Road Surface: Wet -0.5092450 136.8 1 0.00
Place of Accident: Urban -0.3623045 652.4 1 0.00
Police Attendance Yes 0.8546232 3201.5 1 0.00
2nd Quarter 0.1260474 71.7 1 0.0
3rd Quarter 0.1066344 51.7 1 0.00
1

4th Quarter 0.0500855 12.6 0.00039
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6. Summary, Conclusions and Recommendations

The objective of this section is to provide a summary of all findings, to draw conclusions from
the findings, and to propose possible recommendations to reduce road traffic fatalities in the United
kingdom. Additionally, the study identifies areas for further study. Our study compared logistic
regression with random forest on variables that were critical to increasing accident severity. This
study employed logistic regression analysis instead of other statistical techniques used in past studies.
Considering that the target variable, accident severity, had two categories, logistic regression was
identified as the suitable method for the analysis of accident data.

In this study, statistical and machine learning methods for analysing traffic accident fatalities were
compared. Based on a logistic regression model and a random forest, the study examined factors that
influence traffic accident fatality. This study discussed at length the independent variables that were
selected to analyse the traffic accident dataset. The logistic regression method was found to provide
better results than the random forest as it had a higher accuracy rate than that of the random forest.
Data was analysed using the R software package. Independent variables such as Road Type: Slip,
whether a police officer attended the scene of the accident, and quarter had an effect on increasing
traffic accident fatalities. They had p values that were less than 0.05. The study found the speed limit
and quarter to be the most important variables in increasing the traffic accident fatalities since both
recorded p values less than 0.05.

The speed limit variable plays a great role in increasing traffic accident fatalities. Lower speeds
resulted in fewer fatalities. There are several factors that influence the speed limits. For instance,
drivers tend to reduce the speed they travel at if it is raining. In this study, the results are consistent
with those of [88], who argued that drivers would take more care in wet conditions by adjusting their
speed and driving habits accordingly. Additionally, [89] noted that a reduction in speed limits achieves
low crash rates and reduces severe injuries and fatalities.

The variable Day: Weekends had an odds ratio 1.1746941 indicating that fatal accidents are
1.1746941 times more likely to occur as compared to Day Weekdays. In addition, it had a p value 0.0000
which means that it had an influence on increasing accidents fatalities during Weekends. Research
done by other researchers does not concur with this finding. For instance, [83] stated that most fatal
accidents occur during the weekdays rather than on weekends. The number of fatal accidents is
generally higher during the weekdays since more people travel to work, increasing the chance of
accidents. For night light condition had odds ratio 3.5457989, which means fatalities are 3.5457989
more likely to occur as compared to the day light condition. This indicate that it had an influence on
increasing traffic accident fatalities. These results seem to be consistent with our studies. According to
[76], light condition is associated with greater severity. Moreover, the Weather Conditions: Raining
had a p value of 0.0000 and Road Type: Slip had a p value of 0.0000. This indicates that there was an
increase in traffic accident fatalities since the p values are less than 0.05.

There is a small difference in the performance of statistical and machine learning methods in
traffic accident fatalities. Based on Table 5.7, the random forest model had an accuracy of 64.01 %,
while the logistic regression model had an accuracy of 79.85%. This shows a slight difference of
15.84%. A random forest error rate of 35.99% was observed, compared to 20.15% error rate for logistic
regression. The results proved that the logistic regression model performed better in predicting the
accident severity (fatal and non-fatal). Despite the fact that Logistic Regression had an area, F1 score
and gini index lower than the Random forest it still remains a better fit model since it had a higher
accuracy rate.

The variables that were used to predict the traffic accident fatalities are displayed in Table 5.3.
It can be seen that the variable Road Surface: Wet is significantly associated with a fatal accident
since it has p value 0.0000 which is less than 0.05. Also, Table 5.5 indicates the importance of the
variables that were used. It can be seen that the variables speed limit, police presence and quarter
had an increasing influence on accident fatalities. The speed limit, police presence and quarter had a
mean decrease accuracy 102.1669, 221.5322 and 120.894 respectively. Table 5.3 shows that speed limit,
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police presence and quarter had p values that were less than 0.05. This means they had an influence on
increasing accident fatalities. Additionally, the variables, light conditions and Day: Weekends, had a
high association with accident fatatlities since they had p values equal to 0.0000. Traffic fatalities are
significantly related to the speed limit. By using the odds ratio, the study explored the relationship
between traffic fatalities and explanatory factors. From the findings of the study, the predictor number
of vehicles had odds ratio 0.7200268 which means traffic fatalities are 0.7200268 times less likely to
occur. This indicate that it did not increase traffic accident fatalities. Furthermore, the variable police
attendance at the scene of the accident, had the odds ratio of 2.350, suggesting that it was 2.350 times
likely to occur compared to police non attendance. This indicate that it had an influence on increasing
traffic accident fatalities.

In light of the previous comparison on traffic accident fatalities, this study recommends that two
statistical learning methods: ordered probit model and multinomial logistic regression be compared
with support vector machines and artificial neural networks which non parametric. This is because
support vector machine and artificial neural networks are non parametric methods with less research
work done on their comparison with traditional methods. For all people using the roads, regardless
of whether they use public transportation or not, there is still a need for more policy developments
to make the roads safer. For example, breaking road rules should lead to fines or a ban on driving
to reduce traffic fatalities. Training should be provided to drivers to prevent accidents since many
accidents are caused by human error. The study was conducted in a developed country. The accuracy
of statistical as well as machine learning methods in estimating traffic fatalities needs to be compared
with accident records from developing countries. Comparing the results between developing and
developed countries should provide insight into where improvement can be made.
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