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Abstract: Gaseous air pollutants emitted from anthropogenic sources are diverse and form
secondary products through photochemical reactions, complicating the regulatory analysis of
anthropogenic emissions in the atmosphere. Here, we used an environmental chassis dynamometer
and a photochemical smog chamber to conduct a parameter sensitivity experiment to investigate
the formation of secondary products from a direct-injection gasoline passenger car. To simulate the
mitigation of ammonia (NHs) emissions from gasoline vehicle exhausts assuming future emission
controls and to allow photochemical oxidation and aging of the vehicle exhaust, NHs was selectively
removed by a series of five denuders installed between the vehicle and the photochemical smog
chamber. Overall, there were no differences in the formation of secondary organic aerosols and
ozone with or without NHs mitigation. However, the secondary particle formation potential of
ammonium nitrate (NHsNOs) was significantly reduced with NHs mitigation. In addition, NH3
mitigation resulted in increased particle phase acidity due to HNOs in the gas phase not being
neutralized by NHs and condensing onto the liquid particle phase, indicating a potentially
important secondary effect associated with NHs mitigation. The present study provides new
insights into the effects of NHs mitigation on secondary emissions from gasoline vehicle exhaust
and the experimental approach.

Keywords: volatile organic compounds (VOCs); nitrogen oxides (NOx); indoor smog chamber

1. Introduction

Vehicle exhaust emissions are a major source of gaseous and particulate matter (PM) in the urban
atmosphere. The recent regulatory landscape and electrification of vehicles have led to decreases of
primary PM emissions released directly into the atmosphere via vehicle exhaust, such as elemental
carbon (EC), primary organic aerosols (POAs), volatile organic com-pounds (VOCs), and nitrogen
oxides (NOx) [e.g., [1]]. However, there are still concerns about high ozone concentrations due to
transboundary pollution, scattered localized high ozone (Os) concentrations formation due to VOCs
and NOx [e.g., [2]]. Additionally, several studies have shown that secondary PM emissions, such as
secondary organic aerosols (SOAs), are formed in the atmosphere by photochemical reactions of
VOCs and NOx contained in vehicle exhaust [3,4]. Because SOA produced from vehicle exhaust can
be more toxic than SOA produced from VOCs from other sources or from POA produced from
vehicle exhaust [5,6], a better understanding of the properties of SOA produced from vehicle exhaust
is needed.

Although SOAs formed from vehicle exhaust are a major source of SOA in the atmosphere, their
relative contribution varies considerably among studies. In modeling studies, gasoline vehicles have
been reported to account for only 56-79% of SOA formed in the United States as a whole [7] but >290%
in Southern California [8,9]. The relative contributions of diesel and gasoline vehicles to total vehicle
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SOA is also unclear. For example, diesel vehicles are reported to contribute significantly to SOA in
the atmosphere in the U.S. (around 90% of the total vehicle SOA) [10] and in London [11]. However,
in a laboratory-based study, gasoline vehicles produced SOA, but diesel vehicles equipped with DPFs
did not, suggesting that gasoline passenger cars make an important contribution to the SOA
produced by vehicles in urban areas [12]. Thus, to be able to obtain accurate estimates of the
contribution to environmental pollution of different sources of secondary products such as SOA, a
deeper understanding of the characteristics of the secondary products from vehicle exhaust is needed.

The photochemical smog chamber is a useful tool for examining the formation and evolution of
air pollutants under controlled conditions and to parameterize atmospheric processes and reveal
their underlying mechanisms. However, generating realis-tic vehicle emissions under controlled and
reproducible conditions also requires specialized test equipment (e.g., chassis dynamometers) that is
usually not available in large stationary smog chambers. To overcome facility limitations, mobile
smog chambers have been used to evaluate automotive emissions and the photochemical reactions
they undergo in the atmosphere [12-16]. One area of research in which such mobile chambers have
been used is in the investigation of the mechanisms of SOA formation and the effects that vehicle
type (gasoline or diesel, year) [12-14,17,18], emission control technologies [20,21], driving conditions
[22,23], and fuel type [24-27], have on SOA formation in vehicle exhaust, and collectively the results
have demonstrated that SOA formation potentials vary significantly depending on the experimental
parameters.

Evaluating the impacts of vehicle emissions on air quality requires consideration not only of
photochemical reactions involving VOCs and NOx, but also those involving ammonia (NHs), which
is a highly reactive alkaline inorganic gas that can negatively impact the environment [28-30].
Therefore, quantification of NHs emissions from vehicle exhaust is crucial for assessing air quality
impacts and developing effective control strategies. The National Emission Ceilings Directive
2001/81/EC, the Gothenburg Protocol under the United Nations Convention on Long-Range
Transboundary Air Pollution, and the Integrated Pollution Prevention and Control Directive
(2008/1/EC) all aim to reduce emissions of NHs [29]. As the only alkaline inorganic gas with high
reactivity, NHs is known to contribute to the formation of ammonium nitrate (NHsNOs) particles in
automotive emissions [16,18,21,24,25,27]. However, since there is an overall sparsity of knowledge
regarding the role of NHs in the formation of SOA in automotive emissions, more detailed
investigations of potential impacts are needed.

As mentioned above, secondary pollution is caused by the formation of secondary particles and
Os. Previous studies of vehicle emissions based on photochemical smog chamber experiments have
been limited in their assessment of both secondary particles and Os. Therefore, in order to obtain the
novelty of the study, it is necessary to evaluate the Os formation for modern vehicles in this study
compared to previous studies.

Here, we used an environmental chassis dynamometer and a photochemical smog chamber to
conduct a parameter sensitivity experiment to investigate the formation of secondary pollutants, both
secondary particles and ozone, in exhaust from a direct-injection gasoline passenger car with or
without NHs emissions mitigation.

2. Materials and Methods
2.1. Vehicle Chassis Dynamometer Experiments

Vehicle tests were performed in an environmental chamber with controlled temperature and
humidity (23°C with 50% relative humidity control, 0°C without relative humidity control, or -7°C
without relative humidity control) at the Japan Automobile Research Institute (JARI). The chassis
dynamometer test facility within JARI complies with the World harmonized Light duty vehicle Test
Procedure (WLTP) for type approval testing. The chamber contained a four-wheel drive chassis
dynamometer for environmental-type experimental testing (Meiden, Japan) on which the test vehicle
was placed. The exhaust pipe of the test vehicle was connected to a dilution tunnel (DLS-ONE-D;
Horiba, Ltd., Kyoto, Japan,) and a constant volume sampler (12 m3/min; CVC-ONE-MV-HE(ESU);
Horiba, Ltd., Kyoto, Japan). Exhaust gases were diluted an average of 24 times with high-efficiency
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particulate air (HEPA). Background air filtered through an activated carbon and a HEPA filter was
maintained at 298 K and 50% relative humidity. Carbon monoxide, carbon dioxide, NOx, total
hydrocarbons, and non-methane hydrocarbons were sampled near the end of the dilution tunnel,
and their concentrations were measured with an exhaust gas analyzer (MEXA7200LE, Horiba, Ltd.,
Kyoto, Japan). EC and primary organic carbon (POC) were collected from the dilution tunnel onto a
quartz filter (Pallflex, 2500QAT-UP, 47 ¢; Pall Corp., NY, USA) and determined by a thermal-optical
carbon analyzer (model 2001; Desert Research Institute, NV, USA) using the IMPROVE protocol.

A small, direct-injection, two-wheel drive, gasoline passenger car of a size that is currently
popular in Japan was tested (vehicle mass: 1340 kg, displacement: approx. 1.5 L, mileage: 23,192 km).
Cold-start operational tests were performed based on the WLTC cycle of operation. For these cold-
start experiments, the vehicle was warmed up by the same test cycle prior to the experiment and then
left for approximately 23.5 h. The cold-start experiment was performed once a day.

2.2. Photochemical Smog Chamber
2.2.1. Facility

A mobile photochemical smog chamber [e.g., [12-16,31]], designed for the evaluation of
secondary particle formation potential from automotive exhaust gases, was installed next to the
environmental chassis dynamometer. The photochemical smog chamber comprised a fixed frame
(2.08 m height x 2.08 m width x 2.66 m depth) fitted with casters, a reactor bag, and a light source.
The reactor bag was made from a transparent, chemically inert, ultraviolet light (UV)—permeable, 54-
pm thick, fluorinated ethylene propylene (FEP) Teflon film. When fully filled with sample gas, the
volume of the bag was 7.5 m3. The bag was fixed inside its own aluminum frame (1.5 m height x 2 m
width x 2 m depth) and the frame was attached to the fixed frame of the smog chamber with a
polytetrafluoroethylene gasket between the two frames such that the reactive gas contact area was
not in contact with the aluminum frame. A reflector made of treated stainless steel (SUS304) was
placed on the underside of the fixed frame, and 80 UV lamps (40 W, UVA340+; Q-Lab Crop. OH USA)
were installed on the reflector with a sheet of FEP Teflon placed between the lamps and the reactor
bag to prevent direct contact. The light transmission through FEP at wavelengths in the range of 290-
800 nm is reported to be >90% [32,33]. The UV lamps were cooled by push-pull ventilation of the
room air through 16 fans and exhausting it through 16 other fans.

2.2.2. Light Source

To trigger photolysis within the vehicle exhaust, particularly that of NO:, which occurs at
wavelengths <420 nm, the lights installed under the photochemical smog chamber were used to
irradiate the reactor bag. A portable light spectrometer (USB2000 UV-VIS; Ocean Optics, Inc., USA)
was used to characterize the irradiance spectrum reaching the inside of the reactor bag. The irradiance
peaked at 350 nm, which was within the range of peak UV irradiances used in other indoor chamber-
based studies (340-370 nm) [14,34-36]. Compared to the sunlight spectrum observed during the
summer season in Tokyo, the installed lamps were found to be reproducing mainly the UV radiation
between 295 and 320 nm.

The photolysis rate constant of NO:z can be used to characterize irradiation intensity. In previous
studies [34-37], the photolysis rate constant has often been calculated from the photolysis rate (Jxoz)
of NO2 and steady-state concentrations of NOx and Os [34,36,37]. However, in the present study, the
Jnoz of NO2 was measured and the photolysis rates of several important species in atmospheric
photochemistry were calculated; the Jno2 values were obtained by NOx and Os analyzers connected
to the photochemical smog chamber under UV illumination from steady-state NOx-Os concentrations.
Using the NO: photolysis intensity determined from the zenith angle [34,36], our light source at 23°C
(photolysis rate: 0.43/min) was comparable to an average morning at the summer solstice in Tokyo
(0.46/min, N 35°4122”, E139°41'30”) and at 0°C (photolysis rate: 0.31/min) to the transit time when
the sun is due south at the winter solstice in Tokyo (0.33/min). Maximum values in previous studies
typically range from 0.12 to 0.54/min [14,34,36], with the present values being close to the median
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value of the other studies. At -7°C (photolysis rate: 0.2/min), our light source was comparable to an
average morning at the time of the summer solstice in Sapporo, a city in the far north of Japan
(0.16/min, N 43°3'51”, E141°30'49").

OH exposure is a factor that affects the concentration of SOA and SOA carbon/oxygen ratios
[e.g., [18]]. OH exposure was determined by using equation (1):

1 [VOC] Final )
OH exposure = —— (ln— 1
Ko\ VOCT i @

OH exposure (molecules/cm3/h) was calculated based on the average decay rate of toluene as
measured by the gas chromatography with a flame ionization detector (GC-NMHC analyzer, GL
Sciences Inc.). The average OH reactivity rate kon value of toluene (5.63 x 10-2 cm?®molecules/s at 298
K (25 °C) [38]) and measurement errors in toluene were the potential sources of uncertainty in the
estimation of OH exposure.

2.2.3. Instrumentation

A series of instruments was used to characterize the gas- and particle-phase emissions in the
reactor bag. Particle number distribution was measured with a scanning mobility particle sizer
(classifier model 3080 and condensation particle counter (CPC) model 3750; TSI, Inc.,, MO, USA).
Particle mass was measured as a 1-h value with a beta-ray absorption PM densitometer (PM712;
Kimoto, Osaka, Japan). Secondary particle formation was monitored either by a soot-particle time-
of-flight aerosol mass spectrometer or an aerosol chemical speciation monitor (both Aerodyne, Inc.
MA, USA). Secondary particles were quantified by collecting 1 m? volume on a quartz filter (Pallflex,
2500QAT-UP, 47 ¢; Pall Corp., NY, USA) after the 5-hour reaction. Nitrate and ammonium ions in
the particles collected by the quartz filter were determined by ion chromatography (Dionex Integrion;
Thermo Fisher Scientific Inc., MA, USA). Organic carbon (OC) and EC collected on the quartz filters
were determined by a thermal-optical carbon analyzer (model 2001; Desert Research Institute, NV,
USA) using the IMPROVE protocol.

Gas-phase organic species in a reaction bag were monitored using a proton transfer reaction
mass spectrometer (PTR-TOF 8000; Ionicon, Innsbruck, Austria). The gas-phase organic species were
collected into a 5-L vinyl alcohol polymer bag (Smart Bag PA-AAK-5; GL Sciences Inc., Saitama,
Japan) for before and after the photochemical reaction, and were determined by a gas chromatograph
equipped with a flame ionization detector (model GC-NMHC, GL Sciences Inc.) for the analysis of
non-methane hydrocarbons with carbon numbers between 2 and 12. Gas monitors were used to
determine the concentrations of CO2, NOx-NHs, and Os (Models 410i, 17i, and 49i, respectively;
Thermo Fisher Scientific Inc., MA, USA); the monitors were zeroed daily and calibrated at least
weekly. The concentration of HNOs gas and the acidity (H* (aq)) formed in the aqueous liquid phase
(aq) of the particles were obtained by calculation due to facility limitations. The concentration of
HNO:s gas was approximated from Os and HNOs concentration curves for the photochemical smog
chamber obtained by using the Statewide Air Pollution Research Center chemical reaction model [39].
Acidity (H* (aq)) was determined by using the ISORROPIA thermodynamic equilibrium model [40].

2.2.4. Experimental Procedures

It shows a summary of the process of injecting the exhaust gas into the photochemical smog
chamber, performing photochemical oxidation and aging, measuring the sample gas, and cleaning
the chamber after the experiment.

It shows a photograph of the experimental chamber with the test vehicle placed on the
environmental chassis dynamometer. The vehicle exhaust was connected to the photochemical smog
chamber via an ejector dilutor without (base scenario) or with a denuder line connected between the
ejector dilutor and photochemical smog chamber. The exhaust gas was injected by the ejector diluter
(dilution ratio: 12 times; DI-1000; Dekati Ltd., Kangasala, Finland) into the reactor bag of the portable
smog chamber at a rate of 4.2 L/min. To supply the dilution gas with a constant flow rate into the
reactor bag, clean air was supplied to the ejector diluter at 50 L/min under the control of a mass flow
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controller (MQV0050; Azbil Corp., Tokyo, Japan). During a 30-min WLTC cycle, 1.625 m? of dilution
gas was introduced into the reactor bag; therefore, before injecting the exhaust gas into the
photochemical smog chamber, suction was used to reduce the volume of the reactor bag by
approximately 2 m3. As an additional hydroxyl radical (OH) source when adding the exhaust, H2O:
(0.25 mL, 30% v/v, 5 ppm equivalent in the reactor in our experiments) was also injected into the
reactor bag via the make-up air supplied at 5 L/min [16,21,41]. The air supplied to the reactor bag was
dry, but the exhaust gas contained moisture; at 23°C the relative humidity inside the reactor bag was
<13%, at 0°C <34%, and at —7°C <43%.

Clean air was generated by an oil-free scroll compressor equipped with a membrane air dryer
(SLP-221CD; Anest-Iwata Corp., Kanagawa, Japan); the dehumidified, compressed air was passed
through a manual air dryer (model 4001; CKD, Aichij, Japan), an oxidation catalyst heated to 350°C,
Purafil chemical adsorbents (Purafil and Purafil Puracarb AM; Purafil Inc., GA, USA) [36], activated
carbon, and a molecular sieve, and finally through a HEPA filter.

The difference between the pressure in the reactor bag and the atmospheric pressure was
monitored by a differential pressure gauge (GC62; Nagano Keiki Co. Ltd., Japan), and the mass flow
controller automatically stopped the air supply when the pressure was =5 Pa, thus ensuring a
constant reactor bag volume. After receiving the exhaust gas, the reactor bag was allowed to stand
for 15 min to allow mixing. To allow determination of the gas concentrations in the exhaust prior to
the photochemical reaction, 5 L of sample gas was collected into a Smart Bag PA and an aldehyde
cartridge (InertSep mini AERO DNPH-HR; GL Sciences Inc., Saitama, Japan) over a 20-min period.

To obtain NHs-free exhaust gas, NHs was selectively removed by installing a series of five
stainless steel concentric tube denuders (DN-315; Sunset Laboratory Inc., OR, USA) between the
ejector dilutor and the photochemical smog chamber. The inner wall of the denuder was impregnated
with 10% malic acid in ethanol that was allowed to dry before use. The NHs collection efficiency of
the series of experiment was 85% at 23°C, 98% at 0°C, and 98% at —7°C by calculating the NHs
concentration in the reactor bag compared to without the denuder line.

UV light irradiation was started at about 2-hour after the exhaust gas from one WLTC run was
started to inject into the photochemical smog chamber. The irradiation duration was 5-h, which
corresponds to the average daily solar irradiation duration in Japan. During the UV irradiation, the
instruments described in Section 2.2.3 collected samples of gas from the reactor bag and continuously
measured their concentrations. The volume of the reactor bag was maintained by introducing clean
air as make-up gas at 5 L/min; 25% dilution was achieved during the 5-h photochemical reaction.

Immediately after the end of the photoreaction period, 5 L of sample gas was collected in a Smart
Bag PA and an aldehyde cartridge over a 20-min period. The sample gas was collected in the Smart
Bag PA while mixing at 20 mL/min of 10 ppm nitric oxide and in the aldehyde cartridge with a
potassium iodide cartridge with a potassium iodide cartridge in series in front to avoid reactions with
the Os collection device and analyzer, respectively. Particles in a reaction bag after 5-h photochemical
reaction were collected on a quartz filter with a volume of 1.00 m? at a flow rate of 50 L/min by a
pump with mass flow control, and secondary particles were quantified by measuring the
concentrations of ionic components (NOs-, NH4*), OC, and EC.

2.2.5. Data analysis

Emission factors (EFc) for the aerosols and gases detected in the reactor bag were calculated
using the following equation and are reported as mass per mass of fuel burned (mg/kg-fuel):

o, X EF¢o, (2)

where [C] is the background- and dilution-corrected concentration of the gas or aerosol compositions
in mg/m3, [CO] is the background- and dilution-corrected concentration of CO:z in the chamber in
g/m3; and EFcoz is the emission factor of CO2 measured by a gas analyzer with the dilution tunnel
shown in Section 2.1 in g/kg-fuel. The emission factors for SOA (secondary aerosol), NHsNOs, and
NH:s (primary gas) were determined from the concentrations in the smog chamber. The emission
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factors for EC and primary organic carbon (POC) (primary aerosols) and NOx and NMHC (primary
gases) were determined from the concentrations in the dilution tunnel.

To quantify Os and HNOs gas formation in the smog chamber, we corrected for the rate of
dilution air introduced into the smog chamber (0.04/h). To quantify secondary organic aerosol and
NH:NGQO:s particle formation in the smog chamber, we corrected for the loss of aerosol particles to the
reactor bag walls. Briefly, aerosol particle loss to the bag walls was treated as a first-order process
with rate constants determined from decay measurements of inert tracer species (black carbon or
sulfate seed) [42]. An aerosol particle wall loss rate constant without dilution was calculated using
black carbon that is not lost due to reaction but only decays in concentration through dilution or wall
loss, measured on a microAeth black carbon monitor (model MA350; AethLabs, CA, USA) [43]. Smog
chambers with near-spherical surface volume ratios have the lowest aerosol particle wall loss rate
constants [44], and compared to previous studies (e.g., 0.46 to 0.66 /h [e.g., [45]]), the aerosol particle
wall loss rate constant in the present study (0.12/h) was smaller.

For the quantification of SOA, the most common measurement, secondary organic carbon (SOC),
was quantified as organic carbon (OC) [46—48], which was collected on a quartz fiber filter and
quantified by a thermal-optical carbon analyzer. The conversion of OC, where only carbon was
quantified, to organic aerosol, which also contains carbon and hydrogen and oxygen, was performed
by multiplying OC by a constant conversion factor, the organic mass-to-organic carbon (OM/OC)
ratio, to estimate the total amount of SOA and POA [46] in equation (3):

EFs0a = EFsoc X OM/OCs0a 1 — EFpoc X OM/OCpoap 1 3)

where OM/OCsoa_t is the OM/OC ratio of OA containing mainly SOA and some POA in the chamber
after the photochemical reaction, as observed by soot-particle time-of-flight aerosol mass
spectrometry that is a standard high resolution time-of-flight aerosol mass spectrometer (HR-ToF-
AMS) allowed to analyze elements in organics [47-49] coupled with a diode-pumped, Nd:YAG,
intracavity, 1064-nm infrared laser vaporizer. The OM/OC ratios obtained were 1.8 at -7°C, 2.0 at 0°C,
and 2.2 at 23°C. OM/OCroa_r is the OM/OC ratio including only POA, also observed by HR-ToF-AMS,
and the value was 1.2 at all three temperatures. Our OM/OC ratio values are consistent with the
OM/OC ratio of 1.2 for POA reported for gasoline vehicles (1.2) [48], 2.0 reported from smog chamber
experiments [48], and the range of 1.7 + 0.5 for Southern California atmosphere [49]. Further
investigations are needed to discuss the suitability of the OM/OC ratios used in our experiment, and
this study only uses it as an empirical coefficient.

3. Results and Discussion
3.1. Primary Gas and Particle Emissions

It shows a comparison of emission results from the present study versus previously published
data. For the gasoline vehicle tested under the WLTC mode in the present study, the emission factors
at 23°C for NMHC (161-187 mg/kg-fuel) and NOx (97-116 mg/kg-fuel) were generally lower than
those reported from previous studies; NHMC and NOx emissions in previous studies were in rather
large ranges of 4-34980 mg/kg-fuel and 34-21970 mg/kg-fuel, respectively [14,15,24,27,50].

In general, gasoline vehicle emissions contribute more to final pollutant emissions during cold
starts in cold environments than at room temperature [15,21,22]. This is because the engine and drive-
related systems take time to stabilize, and the aftertreatment system needs time to reach its optimum
activation temperature. Several previous studies have highlighted the need to consider the effects of
low-temperature environments when evaluating emissions and air pollution [15,21]. The present
emission factors for the low-temperature environments were 521-562 mg/kg-fuel for NMHC and
107-119 mg/kg-fuel for NOx at 0°C, and 763-1210 mg/kg-fuel for NMHC and 89-97 mg/kg-fuel for
NOx at -7°C. At these low temperatures, the NMHC emissions exceeded those of the 23°C
environment, whereas there was no marked change in NOx emissions. These emission levels were
similar to those observed for gasoline vehicle emissions in previous study where NMHC emissions
were in the range of 1676-2064 mg/kg-fuel at 22°C and 5362-5778 mg/kg-fuel at -7°C, and NOx
emissions were in the range of 123-131 mg/kg-fuel at 22°C and 384—408 at -7°C [24].
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Secondary pollution is suggested to occur when NHs reacts with nitrogen oxides in the
atmosphere to form NHsNO:s [21,24,25,27,50]. For the gasoline vehicle used in the present study, the
emission factor for NHs was in the range of 25-28, 25-40, and 23-73 mg/kg-fuel at 23°C, 0°C, and
-7°C, respectively. Thus, NHs emissions tended to be greatest at -7°C. Previous studies have reported
NHs emissions with considerable variation, ranging from 4 to 3206 mg/kg-fuel at 23°C.

In interpreting these results it is important to consider the causes of the large variations in the
reported values. Factors contributing to these large variations include regulatory age [12-14,17],
engine maintenance history, and the type of aftertreatment equipment installed on the vehicle [20,21];
thus, it is important to note the likelihood of individual vehicle effects when interpreting the results.

3.2. Primary and Photochemical Reacted Exhaust

It shows the PM composition (sum of primary emissions and secondary formation potentials as
emissions) in the diluted exhaust gas after it was subjected to UV irradiation for 5 h. The graph also
summarizes the primary emissions of NMHC, NOx, and NHs, and the secondary formation potentials
of SOA, NH4NO:s, acidity in aerosols, and Os, in order to allow comparison of overall emissions,
including primary emissions and secondary formation potentials.

The repeatability of the particle mass composition measurements (1 = 2) at 23°C was 9.3% for
EC, 5.6% for POA, 11.0% for SOA, 13.4% for NHsNOs, and 5.1% for Os; at 0°C it was 37.7% for EC,
72.0% for POA, 7.6% for SOA, 24.9% for NHsNOs, and 30.0% for Os; and at —7°C it was 42.8% for EC,
9.9% for POA, 58.2% for SOA, 7.7% for NHiNOs, and 14.1% for Os.

The emission percentages of the particle mass composition varied slightly with temperature,
with the secondary particles, ammonium nitrate (79.6% at 23°C, 58.8% at 0°C, and 38.3% at -7°C) and
SOA (19.2% at 23°C, 35.7% at 0°C, and 47.5% at -7°C), comprising 79.6%, 58.8%, and 38.3% of the
particles, respectively. The primary particles, EC, POA, and POA were 0.8%, 4.0%, and 12.3% at 23°C,
0°C, and -7°C, respectively, and 0.4%, 1.5%, and 1.9% at 23°C, 0°C, and -7°C, respectively.

The PM composition after UV irradiation varied with temperature. Among the primary particles,
EC accounted for 0.8%, 5.4%, and 12.3% of the total PM composition at 23°C, 0°C, and -7°C,
respectively, and POA accounted for 0.4%, 1.3%, and 1.9%, respectively. Among the secondary
particles, NHsNOs accounted for 79.6%, 46.7%, and 38.3% of the total PM composition at the three
temperatures, and SOA accounted for 19.2%, 46.6%, and 47.5%, respectively. Thus, the majority of
aerosols remaining after photochemical reaction were secondary aerosols of NH«NOs and SOA.
Overall, the primary particles accounted for only 1.2%, 6.7%, 14.2% of the total PM at 23°C, 0°C, and
-7°C, respectively.

Recent emission controls targeting primary particles have generally been based on worst-case
scenarios such as under conditions of very low temperature (e.g., —7°C) [e.g., [51]]. However, the
present findings show that when secondary particles formed by atmospheric photochemical
reactions are considered, the worst-case scenario for total PM emissions is actually at 23°C, and that
under this scenario the PM emissions are dominated by secondary particles. Additionally, our results
indicate that NHs mitigation resulted in significant acidity (H*) formation in the low-temperature
environment. Further studies are needed to elucidate the impacts of vehicle type and humidity
conditions on the secondary particle composition of vehicle exhaust.

3.3. Effects of Ammonia Mitigation
3.3.1. NH4NO:s Particle Formation

NHs mitigation by using a series of five NHs denuders had a marked effect on the amount of
secondary NHsNOs particles formed during UV irradiation. Without NHs mitigation, NHsNOs
particles were emitted at 208 + 28, 74 + 12, and 49 + 4 mg/kg-fuel at 23°C, 0°C, and -7°C, respectively,
whereas with NHs mitigation the emissions were 2, 3, and 19 mg/kg-fuel, respectively, which was a
considerable reduction. Thus, the NHs removal efficiency of the series of denuders was 85% at 23°C,
98% at 0°C, and 98 at -7°C, and the reduction of NH4NOs particle formation was 99%, 96%, and 61%
at 23°C, 0°C, and -7°C, respectively. These findings show that although NHs mitigation was effective
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at reducing NHsNO:s particle formation, the reduction was not necessarily linear with environmental
temperature. In addition, although we do not yet have a complete explanation for the discrepancy
between the collection efficiency of the denuders and the reduction rate of NHsNOs particle formation,
we consider that it is likely due to the rather complicated chemical equilibrium of NH4sNO:s particle
formation, as described below.

NH4NO:s is formed when nitric acid (produced by the oxidation of NOx) reacts homogeneously
with gaseous NHs. It has been noted that the secondary formation of NHsNO:s from gasoline vehicle
emissions is due to the presence of NHs and NOx in the emissions [52]. It is also known that nitrate
radicals (NOs) and dinitrogen pentoxide (N20s) are involved in the formation of nitric acid (HNOs)
gas from NOx [53]. The rate of photolysis of NOs radicals by visible light (wavelength 420-690 nm) is
about 10 times faster than that of nitrogen dioxide; therefore, the atmospheric NOs radicals
concentration is very low during the daytime (i.e., under conditions involving visible light) [54].

NO;- +hv > NO+ O- 4)

NO; * + hv - NO, + 0( °P)- )

Recently, however, it has been found that marked amounts of nitrate are present during the
evening and morning twilight hours, and occasionally during the day when light levels are low [55].
Studies assessing the importance of this nitrate radical generation during the day have also been
published [56,57]. During the night, NOs radical is produced by the reaction of NO2 with Os; NOs
radical reacts with NO:z to produce N20s, and the produced N20s then reacts with liquid water
droplets on aerosol particles to produce HNO:s:

N,O0s + H,0 — 2HNO, )

When HNQO: is present in the atmosphere, it tends to react with basic species such as NHs gas.
The neutralization reaction between NHs(g) and HNOs gas (HNOs(g)) to form NHiNOs particles
(NHsNOs(p)) is reversible and is considered the main source of particulate nitric acid aerosols
(NHsNOs(p)) in urban air [58]. The reaction is as follows:

NH;(g) +HNO3(g) S NH,NOs(p) (7)

The equilibrium constant for the reaction in equation (7) depends on the gas concentration,
relative humidity, and temperature [59-61]. The formation of particulate NHsNO:s is enhanced under
conditions of high gas concentration, high relative humidity, and low temperature [60]. Aqueous
ammonium nitrate exhibits temperature dependence, and the amount of particulate ammonium
nitrate is determined from the amount above the equilibrium concentration of HNOs and available
NHs. Aqueous NH4NOs also exhibits a temperature dependence, and the amount of particulate
NH4NO:s is determined from the concentration of HNOs and NHs above the equilibrium of equation
(7). Only NH4NOQO:s particles tended to be reduced by selective NHs mitigation; the reason is that the
equilibrium reaction is not established due to the elimination of NHs gas on the left side of equation
(7).

It shows a contour map of the emission coefficients of NHsNOs particles formed in the
equilibrium reaction in equation (7) versus the emission coefficients of HNOs and NHs gases. The
contour plots for NHsNO:s particles were calculated in ISORROPIA [40] using the concentrations of
HNO:s and NHs precursor gases for the NHsNOs particles, converted to emission factors and plotted.
The equilibrium constant for the reaction in equation (6) shows that the formation of NHsNO:s
particles is less temperature-dependent when the emissions of HNOs and NHs are sufficiently high.
In the present study, when NHs mitigation was used, the concentration of NHs was reduced, and
thus the formation of NH4NOs particles was reduced at both temperature conditions of 23°C, 0°C,
and -7°C compared to the base scenario without NHs mitigation. Compared to at 23°C, the HNO:s
concentration produced from NOx emissions at 0°C and -7°C tended to decrease due to a slowing of
the photochemical reaction. The measured value of the NHsNO:s particle agrees with the calculated
value if it is the same color as the background contour map. Not all plots matched the calculated
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values, tending to be slightly overestimated at 23°C and slightly underestimated at 0°C and -7°C. In
this study, the concentration of HNOs gas was not directly measured, and NHs gas is generally quite
difficult to accurately measure due to its sticky nature. Therefore, the consistency with the calculated
(color scheme in contour maps) and observed (color scheme in plots) NHsNOs values may be
attributed to experiments based on limited resources for measuring the precursor gas NHs and
calculating HNO:s. Further research should clarify the consistency with the calculated and observed
NH4NOs values based on highly sensitive and accurate measurements of the precursor gases.
Regardless, our experiments indicate that selective NHs mitigation using NHs denuders tended to
reduce NH4NOs particles in relative to without NHs mitigation.

Since the HNO:s concentration was lower at the lower temperatures, the trend of increasing
acidity (H*) due to NHs removal also tended to be less at lower temperatures. Given that the aerosol
formation potential was evaluated under dry conditions in the present study, further studies are
needed to evaluate changes in the NH4NOs particle formation potential and acidity (H*) due to NHs
removal in relation to humidity.

It has been reported that the increase in NH4sNOs mass after photochemical reaction of gasoline
vehicle exhaust is due more to the presence of NHs than to a reduction in NOx emissions [21,52].
Gasoline particulate filters (GPFs) with catalysts, an aftertreatment device for gasoline vehicles, are
reported to reduce NOx emissions from the tailpipe by 16.6% [21] or 87.6% [52], but it has been
reported previously that more NH4NOs was produced in the photochemical smog chamber than in
an experiment without GPFs [21]. Overall, the role of NHs in gasoline direct-injection vehicles with
and without GPFs should be further investigated, as NHs may contribute significantly to the
formation of secondary inorganic aerosols, primarily in the form of NHsNOs. NHs can also be
produced in three-way catalysts from NOx emitted from the engine and Hz produced through water—
gas shift and hydrocarbons steam reforming reactions [62,63]. Such NHs is known to pass through
GPF systems or be oxidized to N20, NOx, or N2 [62,63]. To address this, three-way catalysts are
usually coated with precious metals such as Pt, Rh, or Pd on a ceramic or metal substrate. In general,
Rh reduces NOx, whereas Pd or Pt oxidizes CO and CH4 emissions [64]. The composition of the
catalytically active metal, the air/fuel ratio, and the operating temperature all play important roles in
the formation of NHs, which itself is a factor in the secondary formation of NHsNO:s particles, and of
N:0O, a global warming potential. Also, catalysts with Pd/Rh or Pt/Rh as active metals produce NHs
[65,66] and N20 [67]. In the present study, we did not evaluate the differences in the amount of
NH4NOs particles formation potentials relative to differences in NHs emissions. However, it is
reasonable to assume that the difference in the ratio of NHsNQO:s particles to overall PM between the
previous study [21,52] and our study was most likely the cause of the difference in the amount of
NOx and NHs in the tailpipe detected in the present study.

3.3.2. Acidity Formation

Less total PM emissions (sum of primary and secondary particles) were observed with NHs
mitigation compared to without. These lower total PM emissions are attributed to the fact that with
NHs mitigation, the nitric acid gas produced by the oxidation of NOx reacts uniformly with the NHs
gas to neutralize it and produce fewer NHsNOs particles; with NHs removal, the nitric acid gas
condenses onto liquid particles (aq: particles in the liquid phase), forming acidity (H* (aq)) (i.e.,
forming the net of Equations. (8) and (9)):

HNO;3(g) S H*(aq) +NO;™ (aq) ®)

HNO;(g) S HNO3(aq) )

The acidity (H* (aq)) showed an increasing trend with NHs mitigation, but no change in nitrate
gas formation was obtained. The decrease in NHsNOs and the increase in acidity confirm that no
neutralization reaction between nitrate and NHs gases occurred. Less HNOs gas was produced with
decreasing temperature due to a decrease of OH exposure (6.1 x 107 at 23°C, 3.3 x 107 at 0°C, and 1.9
x 107 molecules/cm3/h at —7°C), indicating a slowdown in the progress of the atmospheric oxidation
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reaction. The removal efficiency of NHs gas was 85%, 98%, and 98% at 23°C, 0°C, and -7°C,
respectively. Although there was a small amount of NHs gas remaining at 23°C, it was neutralized
such that there was no marked increase in acidity (H*). These findings suggest that a small amount
of residual NHs gas can be neutralized, but that excessive NHs mitigation promotes acidification.
Further studies are needed to assess the human health effects of such increased acidity, as well as the
effects on air quality, rainfall, soil, and vegetation.

3.3.3. SOA Formation

No marked difference in SOA formation potential was observed with NHs mitigation. Without
NHs mitigation, SOA was emitted at 50.2£5, 73.8 £ 1, and 61.1 + 36 mg/kg-fuel at 23°C, 0°C, and -7°C,
respectively, whereas with NHs mitigation it was emitted at 63.3, 78.9, and 42.5 mg/kg-fuel,
respectively. The effect of NHs on SOA formation has been demonstrated by previous photochemical
smog chamber experiments and model analyses, showing that ammonium salts formed by the
reaction of NHs with organic acids in SOA derived from styrene and a-pinene cause an increase of
SOA formation [68], and that NHs competes with aldehydes to reduce the yield of secondary
ozonides, which decreases SOA formation [69,70]. Although the organic acids and ozonides in
photochemically reacted gasoline vehicle exhaust were not quantified in the present study, it is
unlikely that they would have an effect on the reaction dependent on the presence of NHs. It is
reasonable to assume that the differences in the values of SOA formation due to NHs mitigation
obtained in this study was due to experimental variability given the limited number of experiments.

The trend of SOA formation can be quantified in terms of effective SOA yield (Y), defined as the
measured SOA mass divided by the mass of SOA precursors reacted. Since SAQ yields vary widely
among VOC components [71,72], only a portion of NMHC emissions are SOA precursors. Due to the
limited number of laboratory studies available in the literature, SOA production data are not
available for all precursors. Although SOA yields remain a subject of debate, presenting the data as
SOA yields accounts for differences in SOA production across experiments. Our estimates of SOA
yields (0.372-0.866) varied but were comparable to previously reported values (0.07-0.9) [e.g., [24]].
SOA vyield (Y) has been shown to be a function of SOA concentration (Mo) according to a classical
model [73-75], and the relationship is described as follows:

oK om i
Y — M Z 1-*om,1 1
° (1 + KomiMo (10)

where Kom,i and i are the mass-based gas-particle equilibrium partition coefficient and stoichiometric
coefficient of product i, respectively, and Mo is the total mass concentration of organic matter (mg/m?).
“M," is a common notation in previous studies, but Mo was obtained in this study by multiplying the
dilution- and particle loss-corrected OC concentrations observed in the reaction bag after 5-h of
photochemical reaction by the OM/OCsoa_t ratio used in equation (3). Our effective SOA yield
estimates varied considerably, but they plotted roughly backwards and forwards on the SOA yield
curves for each environmental temperature (23°C, 0°C, and -7°C). With NHs mitigation, the obtained
SOA yields may be judged as deviating somewhat from the SOA yield curve obtained for the 0°C
condition; however, based on the relationship between the NMHC and SOA formation potentials, it
is reasonable to interpret this as simply the variation obtained from the series of experiments. The
relationship between SOA vyield and temperature remains a subject of debate, with reports of both
higher [12] and lower [24] SOA yields under low-temperature conditions for SOA produced from
gasoline vehicle exhaust. Considering a gas—particle equilibrium based on the concept of effective
evaporation enthalpy of a liquid becoming a gas [e.g., [76,77]], the higher SOA yield at low
temperatures is considered to be a natural phenomenon in which less volatile gases condense into
the particle phase, leading to more particle formation.

Our estimated yield of SOA at 23°C was higher compared to previous reported values (lower
SOA yields of 0.07-0.7 with lower OH exposure of 0.1-1.5 x 107 molecules/cm?h), which we attribute
to a higher OH exposure (higher SOA yields of 0.731-0.866 with higher OH exposure of 6.0-6.3 x 107
molecules/cm3/h), and many studies support a higher SOA yield with higher OH exposure [e.g., [20]].
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In the present study, we found that the lower the temperature, the lower the OH exposure. We believe
that the lower SOA yield at lower temperatures is due to there being less SOA formation as a result
of a slowing of the oxidation process. Consequently, our data indicate that the higher NMHC
emissions at low temperatures (0°C and -7°C), which are often used as worst-case scenarios for
atmospheric environmental policymaking, did not lead to the greatest SOA formation potential. We
also suggest that the reduction of NHs did not lead to a reduction in SOA formation. However, we
would like to emphasize that the actual experimental data suggest that the yield of SOA formed from
gasoline vehicle emissions is also highly dependent on environmental temperature conditions.

3.3.4. Os Formation

No marked differences in O3 emissions were observed with NHs mitigation. Without NHs
mitigation, Os was emitted at 1053 + 53, 553 + 48, and 239 + 34 mg/kg-fuel at 23°C, 0°C, and -7°C,
respectively, whereas with NHs mitigation it was emitted at 1093, 585, and 234 mg/kg-fuel,
respectively. The effect of NHs on Os formation can be evaluated through compound-limited
photochemical smog chamber experiments; however, few such studies exist in the literature. In one
study, a photochemical smog chamber was used to investigate the effect of NHs on secondary aerosol
formation by photooxidation of toluene and NOx under different Os formation regimes, and the study
showed that although NHs concentration does not affect Os formation, it does affect secondary
particle formation and composition [78].

Os formation potential (OFP) index, which quantifies the relative impact of individual VOCs on
Os formation, has been widely used to help develop cost-effective ground-level ozone pollution
control strategies [79,80]. For a given VOC or VOC mixture, OFP is determined by using maximum
incremental reactivity (MIR) index [79-90]. MIR is defined as the gram of change in Os per gram of
VOC defined as the Os change caused by the reaction of a quantity of VOC. The MIR index was
developed using the Statewide Air Pollution Research Center (SAPRC) chemical reaction model built
on a semi-explicit chemical mechanism [81,82,89,90]. Generally, the calculation of OFP index uses
MIR index developed under high NOx conditions, thus limiting the Os-forming region to conditions
where VOC concentrations are limited or at least VOC and NOx mixing is limited [83]. For most
studies of gasoline vapor emissions and gasoline vehicle emissions with low NOx emissions [e.g.,
80,84-88], however, OFP index have been derived by multiplying MIR index by observed VOC
emission factors. Thus, the OFP index (mg-Os/kg-fuel) of emitted NMHC can be calculated using the
MIR index [89,90] and Equation (11):

OFP index = z MIR; X C; (11)

where MIRi is the maximum incremental reactivity of VOC composition i (mg-Os/mg-VOC), and C;
is the emission factor [mg/kg-fuel] of VOC composition i (VOC type: alkanes, alkenes, aromatics,
aldehydes).

It shows a comparison of the OFP index (calculated by VOC concentration in the reaction bag)
and Os formation potentials as emissions (measured in a reaction bag); the percentage contributions
of alkenes and aromatics to the OFP are also indicated. In general, alkenes, aromatics, and aldehydes
contribute more to higher MIR index [88]. In the present study, alkenes contributed 31%, 35%, and
33% to the OFP index at 23°C, 0°C, and -7°C, respectively, aromatics contributed 40%, 43%, and 47%,
respectively, whereas aldehydes contributed 12%, 4.3%, and 1.7%, respectively. The distribution of
the alkenes and aromatics did not change significantly with ambient temperature. There was almost
no change in the contribution of VOC categories to OFP index due to NHs removal. The calculated
OFP index results are interpreted as representative of the relative Os formation potential as emissions
from different fuel compositions. They do not suggest the possibility of changing ozone
concentrations in urban areas [86]. In the present study, the OFP index does not agree in trend with
the Os formation potential; assessment by OFP index generally requires the use of detailed
atmospheric chemistry models that account for many important additional factors (such as local
meteorology and all sources of ozone precursors) [86]. Because the present study is too small in scope
(i.e., single vehicle and single fuel type), we cannot conclude that the observations conclusively
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explain the performance of the technologies considered. However, the present observations
contribute to our understanding of the potential for changes in the composition of vehicle emissions
to have a positive effect on the suppression of atmospheric ozone formation. That is, our findings
emphasize that the ratios of VOCs contributing to the OFP index were largely independent of
ambient temperature and the presence of NHs mitigation.

4. Conclusions

The formation potentials of secondary particles and Os from gasoline vehicle exhaust were
examined at different temperatures with or without NHs mitigation. Among the total PM emitted,
which included that produced by photochemical oxidation reactions, POA and EC accounted for only
a small fraction, whereas the contribution of the secondary particles NHiNOs and SOA was
dominant. The yield of SOA was lower at lower temperatures. In a parameter sensitivity analysis,
using a denuder to selectively reduce the concentration of NHs gas in the vehicle exhaust was found
to have a marked effect on reducing the formation of NHsNOs but not of SOA or Os. Increased acidity
(H*) was also observed with NHs mitigation. Overall, the present study highlights the importance of
using photochemical smog chamber experiments to gain an informed understanding of the potential
toxic effects and atmospheric and environmental impacts of vehicle emissions when implementing
source control measures such as NHs emission limits.
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