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Abstract: Gaseous air pollutants emitted from anthropogenic sources are diverse and form 
secondary products through photochemical reactions, complicating the regulatory analysis of 
anthropogenic emissions in the atmosphere. Here, we used an environmental chassis dynamometer 
and a photochemical smog chamber to conduct a parameter sensitivity experiment to investigate 
the formation of secondary products from a direct-injection gasoline passenger car. To simulate the 
mitigation of ammonia (NH3) emissions from gasoline vehicle exhausts assuming future emission 
controls and to allow photochemical oxidation and aging of the vehicle exhaust, NH3 was selectively 
removed by a series of five denuders installed between the vehicle and the photochemical smog 
chamber. Overall, there were no differences in the formation of secondary organic aerosols and 
ozone with or without NH3 mitigation. However, the secondary particle formation potential of 
ammonium nitrate (NH4NO3) was significantly reduced with NH3 mitigation. In addition, NH3 
mitigation resulted in increased particle phase acidity due to HNO3 in the gas phase not being 
neutralized by NH3 and condensing onto the liquid particle phase, indicating a potentially 
important secondary effect associated with NH3 mitigation. The present study provides new 
insights into the effects of NH3 mitigation on secondary emissions from gasoline vehicle exhaust 
and the experimental approach. 

Keywords: volatile organic compounds (VOCs); nitrogen oxides (NOX); indoor smog chamber 
 

1. Introduction 

Vehicle exhaust emissions are a major source of gaseous and particulate matter (PM) in the urban 
atmosphere. The recent regulatory landscape and electrification of vehicles have led to decreases of 
primary PM emissions released directly into the atmosphere via vehicle exhaust, such as elemental 
carbon (EC), primary organic aerosols (POAs), volatile organic com-pounds (VOCs), and nitrogen 
oxides (NOX) [e.g., [1]]. However, there are still concerns about high ozone concentrations due to 
transboundary pollution, scattered localized high ozone (O3) concentrations formation due to VOCs 
and NOX [e.g., [2]]. Additionally, several studies have shown that secondary PM emissions, such as 
secondary organic aerosols (SOAs), are formed in the atmosphere by photochemical reactions of 
VOCs and NOX contained in vehicle exhaust [3,4]. Because SOA produced from vehicle exhaust can 
be more toxic than SOA produced from VOCs from other sources or from POA produced from 
vehicle exhaust [5,6], a better understanding of the properties of SOA produced from vehicle exhaust 
is needed. 

Although SOAs formed from vehicle exhaust are a major source of SOA in the atmosphere, their 
relative contribution varies considerably among studies. In modeling studies, gasoline vehicles have 
been reported to account for only 56–79% of SOA formed in the United States as a whole [7] but ≥90% 
in Southern California [8,9]. The relative contributions of diesel and gasoline vehicles to total vehicle 
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SOA is also unclear. For example, diesel vehicles are reported to contribute significantly to SOA in 
the atmosphere in the U.S. (around 90% of the total vehicle SOA) [10] and in London [11]. However, 
in a laboratory-based study, gasoline vehicles produced SOA, but diesel vehicles equipped with DPFs 
did not, suggesting that gasoline passenger cars make an important contribution to the SOA 
produced by vehicles in urban areas [12]. Thus, to be able to obtain accurate estimates of the 
contribution to environmental pollution of different sources of secondary products such as SOA, a 
deeper understanding of the characteristics of the secondary products from vehicle exhaust is needed. 

The photochemical smog chamber is a useful tool for examining the formation and evolution of 
air pollutants under controlled conditions and to parameterize atmospheric processes and reveal 
their underlying mechanisms. However, generating realis-tic vehicle emissions under controlled and 
reproducible conditions also requires specialized test equipment (e.g., chassis dynamometers) that is 
usually not available in large stationary smog chambers. To overcome facility limitations, mobile 
smog chambers have been used to evaluate automotive emissions and the photochemical reactions 
they undergo in the atmosphere [12–16]. One area of research in which such mobile chambers have 
been used is in the investigation of the mechanisms of SOA formation and the effects that vehicle 
type (gasoline or diesel, year) [12–14,17,18], emission control technologies [20,21], driving conditions 
[22,23], and fuel type [24–27], have on SOA formation in vehicle exhaust, and collectively the results 
have demonstrated that SOA formation potentials vary significantly depending on the experimental 
parameters. 

Evaluating the impacts of vehicle emissions on air quality requires consideration not only of 
photochemical reactions involving VOCs and NOX, but also those involving ammonia (NH3), which 
is a highly reactive alkaline inorganic gas that can negatively impact the environment [28–30]. 
Therefore, quantification of NH3 emissions from vehicle exhaust is crucial for assessing air quality 
impacts and developing effective control strategies. The National Emission Ceilings Directive 
2001/81/EC, the Gothenburg Protocol under the United Nations Convention on Long-Range 
Transboundary Air Pollution, and the Integrated Pollution Prevention and Control Directive 
(2008/1/EC) all aim to reduce emissions of NH3 [29]. As the only alkaline inorganic gas with high 
reactivity, NH3 is known to contribute to the formation of ammonium nitrate (NH4NO3) particles in 
automotive emissions [16,18,21,24,25,27]. However, since there is an overall sparsity of knowledge 
regarding the role of NH3 in the formation of SOA in automotive emissions, more detailed 
investigations of potential impacts are needed. 

As mentioned above, secondary pollution is caused by the formation of secondary particles and 
O3. Previous studies of vehicle emissions based on photochemical smog chamber experiments have 
been limited in their assessment of both secondary particles and O3. Therefore, in order to obtain the 
novelty of the study, it is necessary to evaluate the O3 formation for modern vehicles in this study 
compared to previous studies. 

Here, we used an environmental chassis dynamometer and a photochemical smog chamber to 
conduct a parameter sensitivity experiment to investigate the formation of secondary pollutants, both 
secondary particles and ozone, in exhaust from a direct-injection gasoline passenger car with or 
without NH3 emissions mitigation. 

2. Materials and Methods 

2.1. Vehicle Chassis Dynamometer Experiments 

Vehicle tests were performed in an environmental chamber with controlled temperature and 
humidity (23°C with 50% relative humidity control, 0°C without relative humidity control, or −7°C 
without relative humidity control) at the Japan Automobile Research Institute (JARI). The chassis 
dynamometer test facility within JARI complies with the World harmonized Light duty vehicle Test 
Procedure (WLTP) for type approval testing. The chamber contained a four-wheel drive chassis 
dynamometer for environmental-type experimental testing (Meiden, Japan) on which the test vehicle 
was placed. The exhaust pipe of the test vehicle was connected to a dilution tunnel (DLS-ONE-D; 
Horiba, Ltd., Kyoto, Japan,) and a constant volume sampler (12 m3/min; CVC-ONE-MV-HE(ESU); 
Horiba, Ltd., Kyoto, Japan). Exhaust gases were diluted an average of 24 times with high-efficiency 
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particulate air (HEPA). Background air filtered through an activated carbon and a HEPA filter was 
maintained at 298 K and 50% relative humidity. Carbon monoxide, carbon dioxide, NOX, total 
hydrocarbons, and non-methane hydrocarbons were sampled near the end of the dilution tunnel, 
and their concentrations were measured with an exhaust gas analyzer (MEXA7200LE, Horiba, Ltd., 
Kyoto, Japan). EC and primary organic carbon (POC) were collected from the dilution tunnel onto a 
quartz filter (Pallflex, 2500QAT-UP, 47 φ; Pall Corp., NY, USA) and determined by a thermal–optical 
carbon analyzer (model 2001; Desert Research Institute, NV, USA) using the IMPROVE protocol. 

A small, direct-injection, two-wheel drive, gasoline passenger car of a size that is currently 
popular in Japan was tested (vehicle mass: 1340 kg, displacement: approx. 1.5 L, mileage: 23,192 km). 
Cold-start operational tests were performed based on the WLTC cycle of operation. For these cold-
start experiments, the vehicle was warmed up by the same test cycle prior to the experiment and then 
left for approximately 23.5 h. The cold-start experiment was performed once a day. 

2.2. Photochemical Smog Chamber 

2.2.1. Facility 

A mobile photochemical smog chamber [e.g., [12–16,31]], designed for the evaluation of 
secondary particle formation potential from automotive exhaust gases, was installed next to the 
environmental chassis dynamometer. The photochemical smog chamber comprised a fixed frame 
(2.08 m height × 2.08 m width × 2.66 m depth) fitted with casters, a reactor bag, and a light source. 
The reactor bag was made from a transparent, chemically inert, ultraviolet light (UV)–permeable, 54-
μm thick, fluorinated ethylene propylene (FEP) Teflon film. When fully filled with sample gas, the 
volume of the bag was 7.5 m3. The bag was fixed inside its own aluminum frame (1.5 m height × 2 m 
width × 2 m depth) and the frame was attached to the fixed frame of the smog chamber with a 
polytetrafluoroethylene gasket between the two frames such that the reactive gas contact area was 
not in contact with the aluminum frame. A reflector made of treated stainless steel (SUS304) was 
placed on the underside of the fixed frame, and 80 UV lamps (40 W, UVA340+; Q-Lab Crop. OH USA) 
were installed on the reflector with a sheet of FEP Teflon placed between the lamps and the reactor 
bag to prevent direct contact. The light transmission through FEP at wavelengths in the range of 290–
800 nm is reported to be >90% [32,33]. The UV lamps were cooled by push-pull ventilation of the 
room air through 16 fans and exhausting it through 16 other fans. 

2.2.2. Light Source 

To trigger photolysis within the vehicle exhaust, particularly that of NO2, which occurs at 
wavelengths <420 nm, the lights installed under the photochemical smog chamber were used to 
irradiate the reactor bag. A portable light spectrometer (USB2000 UV-VIS; Ocean Optics, Inc., USA) 
was used to characterize the irradiance spectrum reaching the inside of the reactor bag. The irradiance 
peaked at 350 nm, which was within the range of peak UV irradiances used in other indoor chamber-
based studies (340–370 nm) [14,34–36]. Compared to the sunlight spectrum observed during the 
summer season in Tokyo, the installed lamps were found to be reproducing mainly the UV radiation 
between 295 and 320 nm. 

The photolysis rate constant of NO2 can be used to characterize irradiation intensity. In previous 
studies [34–37], the photolysis rate constant has often been calculated from the photolysis rate (JNO2) 
of NO2 and steady-state concentrations of NOX and O3 [34,36,37]. However, in the present study, the 
JNO2 of NO2 was measured and the photolysis rates of several important species in atmospheric 
photochemistry were calculated; the JNO2 values were obtained by NOX and O3 analyzers connected 
to the photochemical smog chamber under UV illumination from steady-state NOX-O3 concentrations. 
Using the NO2 photolysis intensity determined from the zenith angle [34,36], our light source at 23°C 
(photolysis rate: 0.43/min) was comparable to an average morning at the summer solstice in Tokyo 
(0.46/min, N 35°41′22”, E139°41′30”) and at 0°C (photolysis rate: 0.31/min) to the transit time when 
the sun is due south at the winter solstice in Tokyo (0.33/min). Maximum values in previous studies 
typically range from 0.12 to 0.54/min [14,34,36], with the present values being close to the median 
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value of the other studies. At −7°C (photolysis rate: 0.2/min), our light source was comparable to an 
average morning at the time of the summer solstice in Sapporo, a city in the far north of Japan 
(0.16/min, N 43°3′51”, E141°30′49”). 

OH exposure is a factor that affects the concentration of SOA and SOA carbon/oxygen ratios 
[e.g., [18]]. OH exposure was determined by using equation (1): 

OH exposure =  −
1
𝑘𝑘OH

�ln
[VOC]F𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
[VOC]I𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

� (1) 

OH exposure (molecules/cm3/h) was calculated based on the average decay rate of toluene as 
measured by the gas chromatography with a flame ionization detector (GC-NMHC analyzer, GL 
Sciences Inc.). The average OH reactivity rate kOH value of toluene (5.63 x 10-12 cm3/molecules/s at 298 
K (25 °C) [38]) and measurement errors in toluene were the potential sources of uncertainty in the 
estimation of OH exposure. 

2.2.3. Instrumentation 

A series of instruments was used to characterize the gas- and particle-phase emissions in the 
reactor bag. Particle number distribution was measured with a scanning mobility particle sizer 
(classifier model 3080 and condensation particle counter (CPC) model 3750; TSI, Inc., MO, USA). 
Particle mass was measured as a 1-h value with a beta-ray absorption PM densitometer (PM712; 
Kimoto, Osaka, Japan). Secondary particle formation was monitored either by a soot-particle time-
of-flight aerosol mass spectrometer or an aerosol chemical speciation monitor (both Aerodyne, Inc. 
MA, USA). Secondary particles were quantified by collecting 1 m3 volume on a quartz filter (Pallflex, 
2500QAT-UP, 47 φ; Pall Corp., NY, USA) after the 5-hour reaction. Nitrate and ammonium ions in 
the particles collected by the quartz filter were determined by ion chromatography (Dionex Integrion; 
Thermo Fisher Scientific Inc., MA, USA). Organic carbon (OC) and EC collected on the quartz filters 
were determined by a thermal–optical carbon analyzer (model 2001; Desert Research Institute, NV, 
USA) using the IMPROVE protocol. 

Gas-phase organic species in a reaction bag were monitored using a proton transfer reaction 
mass spectrometer (PTR-TOF 8000; Ionicon, Innsbruck, Austria). The gas-phase organic species were 
collected into a 5-L vinyl alcohol polymer bag (Smart Bag PA-AAK-5; GL Sciences Inc., Saitama, 
Japan) for before and after the photochemical reaction, and were determined by a gas chromatograph 
equipped with a flame ionization detector (model GC-NMHC, GL Sciences Inc.) for the analysis of 
non-methane hydrocarbons with carbon numbers between 2 and 12. Gas monitors were used to 
determine the concentrations of CO2, NOX-NH3, and O3 (Models 410i, 17i, and 49i, respectively; 
Thermo Fisher Scientific Inc., MA, USA); the monitors were zeroed daily and calibrated at least 
weekly. The concentration of HNO3 gas and the acidity (H+ (aq)) formed in the aqueous liquid phase 
(aq) of the particles were obtained by calculation due to facility limitations. The concentration of 
HNO3 gas was approximated from O3 and HNO3 concentration curves for the photochemical smog 
chamber obtained by using the Statewide Air Pollution Research Center chemical reaction model [39]. 
Acidity (H+ (aq)) was determined by using the ISORROPIA thermodynamic equilibrium model [40]. 

2.2.4. Experimental Procedures 

It shows a summary of the process of injecting the exhaust gas into the photochemical smog 
chamber, performing photochemical oxidation and aging, measuring the sample gas, and cleaning 
the chamber after the experiment. 

It shows a photograph of the experimental chamber with the test vehicle placed on the 
environmental chassis dynamometer. The vehicle exhaust was connected to the photochemical smog 
chamber via an ejector dilutor without (base scenario) or with a denuder line connected between the 
ejector dilutor and photochemical smog chamber. The exhaust gas was injected by the ejector diluter 
(dilution ratio: 12 times; DI-1000; Dekati Ltd., Kangasala, Finland) into the reactor bag of the portable 
smog chamber at a rate of 4.2 L/min. To supply the dilution gas with a constant flow rate into the 
reactor bag, clean air was supplied to the ejector diluter at 50 L/min under the control of a mass flow 
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controller (MQV0050; Azbil Corp., Tokyo, Japan). During a 30-min WLTC cycle, 1.625 m3 of dilution 
gas was introduced into the reactor bag; therefore, before injecting the exhaust gas into the 
photochemical smog chamber, suction was used to reduce the volume of the reactor bag by 
approximately 2 m3. As an additional hydroxyl radical (OH) source when adding the exhaust, H2O2 
(0.25 mL, 30% v/v, 5 ppm equivalent in the reactor in our experiments) was also injected into the 
reactor bag via the make-up air supplied at 5 L/min [16,21,41]. The air supplied to the reactor bag was 
dry, but the exhaust gas contained moisture; at 23°C the relative humidity inside the reactor bag was 
<13%, at 0°C <34%, and at −7°C <43%. 

Clean air was generated by an oil-free scroll compressor equipped with a membrane air dryer 
(SLP-221CD; Anest-Iwata Corp., Kanagawa, Japan); the dehumidified, compressed air was passed 
through a manual air dryer (model 4001; CKD, Aichi, Japan), an oxidation catalyst heated to 350°C, 
Purafil chemical adsorbents (Purafil and Purafil Puracarb AM; Purafil Inc., GA, USA) [36], activated 
carbon, and a molecular sieve, and finally through a HEPA filter. 

The difference between the pressure in the reactor bag and the atmospheric pressure was 
monitored by a differential pressure gauge (GC62; Nagano Keiki Co. Ltd., Japan), and the mass flow 
controller automatically stopped the air supply when the pressure was ≥5 Pa, thus ensuring a 
constant reactor bag volume. After receiving the exhaust gas, the reactor bag was allowed to stand 
for 15 min to allow mixing. To allow determination of the gas concentrations in the exhaust prior to 
the photochemical reaction, 5 L of sample gas was collected into a Smart Bag PA and an aldehyde 
cartridge (InertSep mini AERO DNPH-HR; GL Sciences Inc., Saitama, Japan) over a 20-min period. 

To obtain NH3-free exhaust gas, NH3 was selectively removed by installing a series of five 
stainless steel concentric tube denuders (DN-315; Sunset Laboratory Inc., OR, USA) between the 
ejector dilutor and the photochemical smog chamber. The inner wall of the denuder was impregnated 
with 10% malic acid in ethanol that was allowed to dry before use. The NH3 collection efficiency of 
the series of experiment was 85% at 23°C, 98% at 0°C, and 98% at −7°C by calculating the NH3 
concentration in the reactor bag compared to without the denuder line. 

UV light irradiation was started at about 2-hour after the exhaust gas from one WLTC run was 
started to inject into the photochemical smog chamber. The irradiation duration was 5-h, which 
corresponds to the average daily solar irradiation duration in Japan. During the UV irradiation, the 
instruments described in Section 2.2.3 collected samples of gas from the reactor bag and continuously 
measured their concentrations. The volume of the reactor bag was maintained by introducing clean 
air as make-up gas at 5 L/min; 25% dilution was achieved during the 5-h photochemical reaction. 

Immediately after the end of the photoreaction period, 5 L of sample gas was collected in a Smart 
Bag PA and an aldehyde cartridge over a 20-min period. The sample gas was collected in the Smart 
Bag PA while mixing at 20 mL/min of 10 ppm nitric oxide and in the aldehyde cartridge with a 
potassium iodide cartridge with a potassium iodide cartridge in series in front to avoid reactions with 
the O3 collection device and analyzer, respectively. Particles in a reaction bag after 5-h photochemical 
reaction were collected on a quartz filter with a volume of 1.00 m3 at a flow rate of 50 L/min by a 
pump with mass flow control, and secondary particles were quantified by measuring the 
concentrations of ionic components (NO3−, NH4+), OC, and EC. 

2.2.5. Data analysis 

Emission factors (EFc) for the aerosols and gases detected in the reactor bag were calculated 
using the following equation and are reported as mass per mass of fuel burned (mg/kg-fuel): 

EFC =  
[C]

[CO2]
× EFCO2  (2) 

where [C] is the background- and dilution-corrected concentration of the gas or aerosol compositions 
in mg/m3, [CO2] is the background- and dilution-corrected concentration of CO2 in the chamber in 
g/m3; and EFCO2 is the emission factor of CO2 measured by a gas analyzer with the dilution tunnel 
shown in Section 2.1 in g/kg-fuel. The emission factors for SOA (secondary aerosol), NH4NO3, and 
NH3 (primary gas) were determined from the concentrations in the smog chamber. The emission 
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factors for EC and primary organic carbon (POC) (primary aerosols) and NOx and NMHC (primary 
gases) were determined from the concentrations in the dilution tunnel. 

To quantify O3 and HNO3 gas formation in the smog chamber, we corrected for the rate of 
dilution air introduced into the smog chamber (0.04/h). To quantify secondary organic aerosol and 
NH4NO3 particle formation in the smog chamber, we corrected for the loss of aerosol particles to the 
reactor bag walls. Briefly, aerosol particle loss to the bag walls was treated as a first-order process 
with rate constants determined from decay measurements of inert tracer species (black carbon or 
sulfate seed) [42]. An aerosol particle wall loss rate constant without dilution was calculated using 
black carbon that is not lost due to reaction but only decays in concentration through dilution or wall 
loss, measured on a microAeth black carbon monitor (model MA350; AethLabs, CA, USA) [43]. Smog 
chambers with near-spherical surface volume ratios have the lowest aerosol particle wall loss rate 
constants [44], and compared to previous studies (e.g., 0.46 to 0.66 /h [e.g., [45]]), the aerosol particle 
wall loss rate constant in the present study (0.12/h) was smaller. 

For the quantification of SOA, the most common measurement, secondary organic carbon (SOC), 
was quantified as organic carbon (OC) [46–48], which was collected on a quartz fiber filter and 
quantified by a thermal–optical carbon analyzer. The conversion of OC, where only carbon was 
quantified, to organic aerosol, which also contains carbon and hydrogen and oxygen, was performed 
by multiplying OC by a constant conversion factor, the organic mass-to-organic carbon (OM/OC) 
ratio, to estimate the total amount of SOA and POA [46] in equation (3): 

EFSOA = EFSOC  × OM/OCSOA_T  −  EFPOC  × OM/OCPOA_T (3) 

where OM/OCSOA_T is the OM/OC ratio of OA containing mainly SOA and some POA in the chamber 
after the photochemical reaction, as observed by soot-particle time-of-flight aerosol mass 
spectrometry that is a standard high resolution time-of-flight aerosol mass spectrometer (HR-ToF-
AMS) allowed to analyze elements in organics [47–49] coupled with a diode-pumped, Nd:YAG, 
intracavity, 1064-nm infrared laser vaporizer. The OM/OC ratios obtained were 1.8 at −7°C, 2.0 at 0°C, 
and 2.2 at 23°C. OM/OCPOA_T is the OM/OC ratio including only POA, also observed by HR-ToF-AMS, 
and the value was 1.2 at all three temperatures. Our OM/OC ratio values are consistent with the 
OM/OC ratio of 1.2 for POA reported for gasoline vehicles (1.2) [48], 2.0 reported from smog chamber 
experiments [48], and the range of 1.7 ± 0.5 for Southern California atmosphere [49]. Further 
investigations are needed to discuss the suitability of the OM/OC ratios used in our experiment, and 
this study only uses it as an empirical coefficient. 

3. Results and Discussion 

3.1. Primary Gas and Particle Emissions 

It shows a comparison of emission results from the present study versus previously published 
data. For the gasoline vehicle tested under the WLTC mode in the present study, the emission factors 
at 23°C for NMHC (161–187 mg/kg-fuel) and NOX (97–116 mg/kg-fuel) were generally lower than 
those reported from previous studies; NHMC and NOX emissions in previous studies were in rather 
large ranges of 4–34980 mg/kg-fuel and 34–21970 mg/kg-fuel, respectively [14,15,24,27,50]. 

In general, gasoline vehicle emissions contribute more to final pollutant emissions during cold 
starts in cold environments than at room temperature [15,21,22]. This is because the engine and drive-
related systems take time to stabilize, and the aftertreatment system needs time to reach its optimum 
activation temperature. Several previous studies have highlighted the need to consider the effects of 
low-temperature environments when evaluating emissions and air pollution [15,21]. The present 
emission factors for the low-temperature environments were 521–562 mg/kg-fuel for NMHC and 
107–119 mg/kg-fuel for NOX at 0°C, and 763–1210 mg/kg-fuel for NMHC and 89–97 mg/kg-fuel for 
NOX at −7°C. At these low temperatures, the NMHC emissions exceeded those of the 23°C 
environment, whereas there was no marked change in NOX emissions. These emission levels were 
similar to those observed for gasoline vehicle emissions in previous study where NMHC emissions 
were in the range of 1676–2064 mg/kg-fuel at 22°C and 5362–5778 mg/kg-fuel at −7°C, and NOX 
emissions were in the range of 123–131 mg/kg-fuel at 22°C and 384–408 at −7°C [24]. 
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Secondary pollution is suggested to occur when NH3 reacts with nitrogen oxides in the 
atmosphere to form NH4NO3 [21,24,25,27,50]. For the gasoline vehicle used in the present study, the 
emission factor for NH3 was in the range of 25–28, 25–40, and 23–73 mg/kg-fuel at 23°C, 0°C, and 
−7°C, respectively. Thus, NH3 emissions tended to be greatest at −7°C. Previous studies have reported 
NH3 emissions with considerable variation, ranging from 4 to 3206 mg/kg-fuel at 23°C. 

In interpreting these results it is important to consider the causes of the large variations in the 
reported values. Factors contributing to these large variations include regulatory age [12–14,17], 
engine maintenance history, and the type of aftertreatment equipment installed on the vehicle [20,21]; 
thus, it is important to note the likelihood of individual vehicle effects when interpreting the results. 

3.2. Primary and Photochemical Reacted Exhaust 

It shows the PM composition (sum of primary emissions and secondary formation potentials as 
emissions) in the diluted exhaust gas after it was subjected to UV irradiation for 5 h. The graph also 
summarizes the primary emissions of NMHC, NOX, and NH3, and the secondary formation potentials 
of SOA, NH4NO3, acidity in aerosols, and O3, in order to allow comparison of overall emissions, 
including primary emissions and secondary formation potentials. 

The repeatability of the particle mass composition measurements (n = 2) at 23°C was 9.3% for 
EC, 5.6% for POA, 11.0% for SOA, 13.4% for NH4NO3, and 5.1% for O3; at 0°C it was 37.7% for EC, 
72.0% for POA, 7.6% for SOA, 24.9% for NH4NO3, and 30.0% for O3; and at −7°C it was 42.8% for EC, 
9.9% for POA, 58.2% for SOA, 7.7% for NH4NO3, and 14.1% for O3. 

The emission percentages of the particle mass composition varied slightly with temperature, 
with the secondary particles, ammonium nitrate (79.6% at 23°C, 58.8% at 0°C, and 38.3% at -7°C) and 
SOA (19.2% at 23°C, 35.7% at 0°C, and 47.5% at -7°C), comprising 79.6%, 58.8%, and 38.3% of the 
particles, respectively. The primary particles, EC, POA, and POA were 0.8%, 4.0%, and 12.3% at 23°C, 
0°C, and -7°C, respectively, and 0.4%, 1.5%, and 1.9% at 23°C, 0°C, and -7°C, respectively. 

The PM composition after UV irradiation varied with temperature. Among the primary particles, 
EC accounted for 0.8%, 5.4%, and 12.3% of the total PM composition at 23°C, 0°C, and −7°C, 
respectively, and POA accounted for 0.4%, 1.3%, and 1.9%, respectively. Among the secondary 
particles, NH4NO3 accounted for 79.6%, 46.7%, and 38.3% of the total PM composition at the three 
temperatures, and SOA accounted for 19.2%, 46.6%, and 47.5%, respectively. Thus, the majority of 
aerosols remaining after photochemical reaction were secondary aerosols of NH4NO3 and SOA. 
Overall, the primary particles accounted for only 1.2%, 6.7%, 14.2% of the total PM at 23°C, 0°C, and 
−7°C, respectively. 

Recent emission controls targeting primary particles have generally been based on worst-case 
scenarios such as under conditions of very low temperature (e.g., −7°C) [e.g., [51]]. However, the 
present findings show that when secondary particles formed by atmospheric photochemical 
reactions are considered, the worst-case scenario for total PM emissions is actually at 23°C, and that 
under this scenario the PM emissions are dominated by secondary particles. Additionally, our results 
indicate that NH3 mitigation resulted in significant acidity (H+) formation in the low-temperature 
environment. Further studies are needed to elucidate the impacts of vehicle type and humidity 
conditions on the secondary particle composition of vehicle exhaust. 

3.3. Effects of Ammonia Mitigation 

3.3.1. NH4NO3 Particle Formation 

NH3 mitigation by using a series of five NH3 denuders had a marked effect on the amount of 
secondary NH4NO3 particles formed during UV irradiation. Without NH3 mitigation, NH4NO3 
particles were emitted at 208 ± 28, 74 ± 12, and 49 ± 4 mg/kg-fuel at 23°C, 0°C, and −7°C, respectively, 
whereas with NH3 mitigation the emissions were 2, 3, and 19 mg/kg-fuel, respectively, which was a 
considerable reduction. Thus, the NH3 removal efficiency of the series of denuders was 85% at 23°C, 
98% at 0°C, and 98 at −7°C, and the reduction of NH4NO3 particle formation was 99%, 96%, and 61% 
at 23°C, 0°C, and −7°C, respectively. These findings show that although NH3 mitigation was effective 
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at reducing NH4NO3 particle formation, the reduction was not necessarily linear with environmental 
temperature. In addition, although we do not yet have a complete explanation for the discrepancy 
between the collection efficiency of the denuders and the reduction rate of NH4NO3 particle formation, 
we consider that it is likely due to the rather complicated chemical equilibrium of NH4NO3 particle 
formation, as described below. 

NH4NO3 is formed when nitric acid (produced by the oxidation of NOX) reacts homogeneously 
with gaseous NH3. It has been noted that the secondary formation of NH4NO3 from gasoline vehicle 
emissions is due to the presence of NH3 and NOX in the emissions [52]. It is also known that nitrate 
radicals (NO3) and dinitrogen pentoxide (N2O5) are involved in the formation of nitric acid (HNO3) 
gas from NOX [53]. The rate of photolysis of NO3 radicals by visible light (wavelength 420–690 nm) is 
about 10 times faster than that of nitrogen dioxide; therefore, the atmospheric NO3 radicals 
concentration is very low during the daytime (i.e., under conditions involving visible light) [54]. 

NO3 ∙  + ℎ𝜈𝜈 → NO +  O ∙ (4) 

NO3 ∙  + ℎ𝜈𝜈 → NO2 +  O� P3 � ∙ (5) 

Recently, however, it has been found that marked amounts of nitrate are present during the 
evening and morning twilight hours, and occasionally during the day when light levels are low [55]. 
Studies assessing the importance of this nitrate radical generation during the day have also been 
published [56,57]. During the night, NO3 radical is produced by the reaction of NO2 with O3; NO3 
radical reacts with NO2 to produce N2O5, and the produced N2O5 then reacts with liquid water 
droplets on aerosol particles to produce HNO3: 

N2O5 +  H2O → 2HNO3 (6) 

When HNO3 is present in the atmosphere, it tends to react with basic species such as NH3 gas. 
The neutralization reaction between NH3(g) and HNO3 gas (HNO3(g)) to form NH4NO3 particles 
(NH4NO3(p)) is reversible and is considered the main source of particulate nitric acid aerosols 
(NH4NO3(p)) in urban air [58]. The reaction is as follows: 

NH3(g)  + HNO3(g)  ⇆  NH4NO3(p) (7) 

The equilibrium constant for the reaction in equation (7) depends on the gas concentration, 
relative humidity, and temperature [59−61]. The formation of particulate NH4NO3 is enhanced under 
conditions of high gas concentration, high relative humidity, and low temperature [60]. Aqueous 
ammonium nitrate exhibits temperature dependence, and the amount of particulate ammonium 
nitrate is determined from the amount above the equilibrium concentration of HNO3 and available 
NH3. Aqueous NH4NO3 also exhibits a temperature dependence, and the amount of particulate 
NH4NO3 is determined from the concentration of HNO3 and NH3 above the equilibrium of equation 
(7). Only NH4NO3 particles tended to be reduced by selective NH3 mitigation; the reason is that the 
equilibrium reaction is not established due to the elimination of NH3 gas on the left side of equation 
(7). 

It shows a contour map of the emission coefficients of NH4NO3 particles formed in the 
equilibrium reaction in equation (7) versus the emission coefficients of HNO3 and NH3 gases. The 
contour plots for NH4NO3 particles were calculated in ISORROPIA [40] using the concentrations of 
HNO3 and NH3 precursor gases for the NH4NO3 particles, converted to emission factors and plotted. 
The equilibrium constant for the reaction in equation (6) shows that the formation of NH4NO3 
particles is less temperature-dependent when the emissions of HNO3 and NH3 are sufficiently high. 
In the present study, when NH3 mitigation was used, the concentration of NH3 was reduced, and 
thus the formation of NH4NO3 particles was reduced at both temperature conditions of 23°C, 0°C, 
and −7°C compared to the base scenario without NH3 mitigation. Compared to at 23°C, the HNO3 
concentration produced from NOX emissions at 0°C and −7°C tended to decrease due to a slowing of 
the photochemical reaction. The measured value of the NH4NO3 particle agrees with the calculated 
value if it is the same color as the background contour map. Not all plots matched the calculated 
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values, tending to be slightly overestimated at 23°C and slightly underestimated at 0°C and −7°C. In 
this study, the concentration of HNO3 gas was not directly measured, and NH3 gas is generally quite 
difficult to accurately measure due to its sticky nature. Therefore, the consistency with the calculated 
(color scheme in contour maps) and observed (color scheme in plots) NH4NO3 values may be 
attributed to experiments based on limited resources for measuring the precursor gas NH3 and 
calculating HNO3. Further research should clarify the consistency with the calculated and observed 
NH4NO3 values based on highly sensitive and accurate measurements of the precursor gases. 
Regardless, our experiments indicate that selective NH3 mitigation using NH3 denuders tended to 
reduce NH4NO3 particles in relative to without NH3 mitigation. 

Since the HNO3 concentration was lower at the lower temperatures, the trend of increasing 
acidity (H+) due to NH3 removal also tended to be less at lower temperatures. Given that the aerosol 
formation potential was evaluated under dry conditions in the present study, further studies are 
needed to evaluate changes in the NH4NO3 particle formation potential and acidity (H+) due to NH3 
removal in relation to humidity. 

It has been reported that the increase in NH4NO3 mass after photochemical reaction of gasoline 
vehicle exhaust is due more to the presence of NH3 than to a reduction in NOX emissions [21,52]. 
Gasoline particulate filters (GPFs) with catalysts, an aftertreatment device for gasoline vehicles, are 
reported to reduce NOX emissions from the tailpipe by 16.6% [21] or 87.6% [52], but it has been 
reported previously that more NH4NO3 was produced in the photochemical smog chamber than in 
an experiment without GPFs [21]. Overall, the role of NH3 in gasoline direct-injection vehicles with 
and without GPFs should be further investigated, as NH3 may contribute significantly to the 
formation of secondary inorganic aerosols, primarily in the form of NH4NO3. NH3 can also be 
produced in three-way catalysts from NOX emitted from the engine and H2 produced through water–
gas shift and hydrocarbons steam reforming reactions [62,63]. Such NH3 is known to pass through 
GPF systems or be oxidized to N2O, NOX, or N2 [62,63]. To address this, three-way catalysts are 
usually coated with precious metals such as Pt, Rh, or Pd on a ceramic or metal substrate. In general, 
Rh reduces NOX, whereas Pd or Pt oxidizes CO and CH4 emissions [64]. The composition of the 
catalytically active metal, the air/fuel ratio, and the operating temperature all play important roles in 
the formation of NH3, which itself is a factor in the secondary formation of NH4NO3 particles, and of 
N2O, a global warming potential. Also, catalysts with Pd/Rh or Pt/Rh as active metals produce NH3 
[65,66] and N2O [67]. In the present study, we did not evaluate the differences in the amount of 
NH4NO3 particles formation potentials relative to differences in NH3 emissions. However, it is 
reasonable to assume that the difference in the ratio of NH4NO3 particles to overall PM between the 
previous study [21,52] and our study was most likely the cause of the difference in the amount of 
NOX and NH3 in the tailpipe detected in the present study. 

3.3.2. Acidity Formation 

Less total PM emissions (sum of primary and secondary particles) were observed with NH3 
mitigation compared to without. These lower total PM emissions are attributed to the fact that with 
NH3 mitigation, the nitric acid gas produced by the oxidation of NOX reacts uniformly with the NH3 
gas to neutralize it and produce fewer NH4NO3 particles; with NH3 removal, the nitric acid gas 
condenses onto liquid particles (aq: particles in the liquid phase), forming acidity (H+ (aq)) (i.e., 
forming the net of Equations. (8) and (9)): 

HNO3(g)   ⇆  H+(aq) + NO3
−(aq) (8) 

HNO3(g)   ⇆  HNO3(aq) (9) 

The acidity (H+ (aq)) showed an increasing trend with NH3 mitigation, but no change in nitrate 
gas formation was obtained. The decrease in NH4NO3 and the increase in acidity confirm that no 
neutralization reaction between nitrate and NH3 gases occurred. Less HNO3 gas was produced with 
decreasing temperature due to a decrease of OH exposure (6.1 × 107 at 23°C, 3.3 × 107 at 0°C, and 1.9 
× 107 molecules/cm3/h at −7°C), indicating a slowdown in the progress of the atmospheric oxidation 
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reaction. The removal efficiency of NH3 gas was 85%, 98%, and 98% at 23°C, 0°C, and −7°C, 
respectively. Although there was a small amount of NH3 gas remaining at 23°C, it was neutralized 
such that there was no marked increase in acidity (H+). These findings suggest that a small amount 
of residual NH3 gas can be neutralized, but that excessive NH3 mitigation promotes acidification. 
Further studies are needed to assess the human health effects of such increased acidity, as well as the 
effects on air quality, rainfall, soil, and vegetation. 

3.3.3. SOA Formation 

No marked difference in SOA formation potential was observed with NH3 mitigation. Without 
NH3 mitigation, SOA was emitted at 50.2 ± 5, 73.8 ± 1, and 61.1 ± 36 mg/kg-fuel at 23°C, 0°C, and −7°C, 
respectively, whereas with NH3 mitigation it was emitted at 63.3, 78.9, and 42.5 mg/kg-fuel, 
respectively. The effect of NH3 on SOA formation has been demonstrated by previous photochemical 
smog chamber experiments and model analyses, showing that ammonium salts formed by the 
reaction of NH3 with organic acids in SOA derived from styrene and a-pinene cause an increase of 
SOA formation [68], and that NH3 competes with aldehydes to reduce the yield of secondary 
ozonides, which decreases SOA formation [69,70]. Although the organic acids and ozonides in 
photochemically reacted gasoline vehicle exhaust were not quantified in the present study, it is 
unlikely that they would have an effect on the reaction dependent on the presence of NH3. It is 
reasonable to assume that the differences in the values of SOA formation due to NH3 mitigation 
obtained in this study was due to experimental variability given the limited number of experiments. 

The trend of SOA formation can be quantified in terms of effective SOA yield (Y), defined as the 
measured SOA mass divided by the mass of SOA precursors reacted. Since SAO yields vary widely 
among VOC components [71,72], only a portion of NMHC emissions are SOA precursors. Due to the 
limited number of laboratory studies available in the literature, SOA production data are not 
available for all precursors. Although SOA yields remain a subject of debate, presenting the data as 
SOA yields accounts for differences in SOA production across experiments. Our estimates of SOA 
yields (0.372–0.866) varied but were comparable to previously reported values (0.07–0.9) [e.g., [24]]. 
SOA yield (Y) has been shown to be a function of SOA concentration (Mo) according to a classical 
model [73−75], and the relationship is described as follows: 

Y =  Mo��
αiΚom,i

1 + Κom,iMo
� (10) 

where Kom,i and i are the mass-based gas-particle equilibrium partition coefficient and stoichiometric 
coefficient of product i, respectively, and Mo is the total mass concentration of organic matter (mg/m3). 
“Mo” is a common notation in previous studies, but Mo was obtained in this study by multiplying the 
dilution- and particle loss-corrected OC concentrations observed in the reaction bag after 5-h of 
photochemical reaction by the OM/OCSOA_T ratio used in equation (3). Our effective SOA yield 
estimates varied considerably, but they plotted roughly backwards and forwards on the SOA yield 
curves for each environmental temperature (23°C, 0°C, and −7°C). With NH3 mitigation, the obtained 
SOA yields may be judged as deviating somewhat from the SOA yield curve obtained for the 0°C 
condition; however, based on the relationship between the NMHC and SOA formation potentials, it 
is reasonable to interpret this as simply the variation obtained from the series of experiments. The 
relationship between SOA yield and temperature remains a subject of debate, with reports of both 
higher [12] and lower [24] SOA yields under low-temperature conditions for SOA produced from 
gasoline vehicle exhaust. Considering a gas–particle equilibrium based on the concept of effective 
evaporation enthalpy of a liquid becoming a gas [e.g., [76,77]], the higher SOA yield at low 
temperatures is considered to be a natural phenomenon in which less volatile gases condense into 
the particle phase, leading to more particle formation. 

Our estimated yield of SOA at 23°C was higher compared to previous reported values (lower 
SOA yields of 0.07–0.7 with lower OH exposure of 0.1–1.5 × 107 molecules/cm3/h), which we attribute 
to a higher OH exposure (higher SOA yields of 0.731–0.866 with higher OH exposure of 6.0–6.3 × 107 
molecules/cm3/h), and many studies support a higher SOA yield with higher OH exposure [e.g., [20]]. 
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In the present study, we found that the lower the temperature, the lower the OH exposure. We believe 
that the lower SOA yield at lower temperatures is due to there being less SOA formation as a result 
of a slowing of the oxidation process. Consequently, our data indicate that the higher NMHC 
emissions at low temperatures (0°C and −7°C), which are often used as worst-case scenarios for 
atmospheric environmental policymaking, did not lead to the greatest SOA formation potential. We 
also suggest that the reduction of NH3 did not lead to a reduction in SOA formation. However, we 
would like to emphasize that the actual experimental data suggest that the yield of SOA formed from 
gasoline vehicle emissions is also highly dependent on environmental temperature conditions. 

3.3.4. O3 Formation 

No marked differences in O3 emissions were observed with NH3 mitigation. Without NH3 
mitigation, O3 was emitted at 1053 ± 53, 553 ± 48, and 239 ± 34 mg/kg-fuel at 23°C, 0°C, and −7°C, 
respectively, whereas with NH3 mitigation it was emitted at 1093, 585, and 234 mg/kg-fuel, 
respectively. The effect of NH3 on O3 formation can be evaluated through compound-limited 
photochemical smog chamber experiments; however, few such studies exist in the literature. In one 
study, a photochemical smog chamber was used to investigate the effect of NH3 on secondary aerosol 
formation by photooxidation of toluene and NOX under different O3 formation regimes, and the study 
showed that although NH3 concentration does not affect O3 formation, it does affect secondary 
particle formation and composition [78]. 

O3 formation potential (OFP) index, which quantifies the relative impact of individual VOCs on 
O3 formation, has been widely used to help develop cost-effective ground-level ozone pollution 
control strategies [79,80]. For a given VOC or VOC mixture, OFP is determined by using maximum 
incremental reactivity (MIR) index [79−90]. MIR is defined as the gram of change in O3 per gram of 
VOC defined as the O3 change caused by the reaction of a quantity of VOC. The MIR index was 
developed using the Statewide Air Pollution Research Center (SAPRC) chemical reaction model built 
on a semi-explicit chemical mechanism [81,82,89,90]. Generally, the calculation of OFP index uses 
MIR index developed under high NOX conditions, thus limiting the O3-forming region to conditions 
where VOC concentrations are limited or at least VOC and NOX mixing is limited [83]. For most 
studies of gasoline vapor emissions and gasoline vehicle emissions with low NOX emissions [e.g., 
80,84−88], however, OFP index have been derived by multiplying MIR index by observed VOC 
emission factors. Thus, the OFP index (mg-O3/kg-fuel) of emitted NMHC can be calculated using the 
MIR index [89,90] and Equation (11): 

OFP index = �MIR𝑖𝑖 × C𝑖𝑖 (11) 

where MIRi is the maximum incremental reactivity of VOC composition i (mg-O3/mg-VOC), and Ci 
is the emission factor [mg/kg-fuel] of VOC composition i (VOC type: alkanes, alkenes, aromatics, 
aldehydes). 

It shows a comparison of the OFP index (calculated by VOC concentration in the reaction bag) 
and O3 formation potentials as emissions (measured in a reaction bag); the percentage contributions 
of alkenes and aromatics to the OFP are also indicated. In general, alkenes, aromatics, and aldehydes 
contribute more to higher MIR index [88]. In the present study, alkenes contributed 31%, 35%, and 
33% to the OFP index at 23°C, 0°C, and −7°C, respectively, aromatics contributed 40%, 43%, and 47%, 
respectively, whereas aldehydes contributed 12%, 4.3%, and 1.7%, respectively. The distribution of 
the alkenes and aromatics did not change significantly with ambient temperature. There was almost 
no change in the contribution of VOC categories to OFP index due to NH3 removal. The calculated 
OFP index results are interpreted as representative of the relative O3 formation potential as emissions 
from different fuel compositions. They do not suggest the possibility of changing ozone 
concentrations in urban areas [86]. In the present study, the OFP index does not agree in trend with 
the O3 formation potential; assessment by OFP index generally requires the use of detailed 
atmospheric chemistry models that account for many important additional factors (such as local 
meteorology and all sources of ozone precursors) [86]. Because the present study is too small in scope 
(i.e., single vehicle and single fuel type), we cannot conclude that the observations conclusively 
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explain the performance of the technologies considered. However, the present observations 
contribute to our understanding of the potential for changes in the composition of vehicle emissions 
to have a positive effect on the suppression of atmospheric ozone formation. That is, our findings 
emphasize that the ratios of VOCs contributing to the OFP index were largely independent of 
ambient temperature and the presence of NH3 mitigation. 

4. Conclusions 

The formation potentials of secondary particles and O3 from gasoline vehicle exhaust were 
examined at different temperatures with or without NH3 mitigation. Among the total PM emitted, 
which included that produced by photochemical oxidation reactions, POA and EC accounted for only 
a small fraction, whereas the contribution of the secondary particles NH4NO3 and SOA was 
dominant. The yield of SOA was lower at lower temperatures. In a parameter sensitivity analysis, 
using a denuder to selectively reduce the concentration of NH3 gas in the vehicle exhaust was found 
to have a marked effect on reducing the formation of NH4NO3 but not of SOA or O3. Increased acidity 
(H+) was also observed with NH3 mitigation. Overall, the present study highlights the importance of 
using photochemical smog chamber experiments to gain an informed understanding of the potential 
toxic effects and atmospheric and environmental impacts of vehicle emissions when implementing 
source control measures such as NH3 emission limits. 
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