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Abstract: This paper proposes the GD (Geometric Distribution) algorithm, a novel approach to
enhance the default Adaptive Data Rate (ADR) mechanism in the Long Range Wide Area Network
(LoRaWAN). By leveraging the Probability Mass Function (PMF) of the GD model, the GD
algorithm effectively addresses massive device distribution challenges in real-life scenarios. To
evaluate the algorithm's performance, the LoRaWAN simulations were conducted using the fixed
node pattern derived from actual locations of dairy farms in Ratchaburi province, Thailand. The
research established scenarios for assessing the network's performance namely, DER (Data
Extraction Rate) and SF (Spreading Factor) assignment. Comparative analyses were performed
against the uniform random node pattern and established algorithms, including the default ADR
scheme, EXPLoRa, Quantile Classification of Variance from the Mean (QCVM), and Standard
Deviation (SD). The GD algorithm demonstrated significant improvements over existing
methodologies for both fixed and uniform random patterns. The fixed pattern exhibited an
enhancement of 14.3%, while the uniform random pattern showed 4.8% enhancement over the
default ADR scheme. Further assessments covered the coverage area, payload size, and energy
consumption. The GD algorithm consistently achieved the optimal DER values with a coverage area
and payload size, albeit often at the expense of increased energy consumption.

Keywords: LoORaWAN; Internet of Things; adaptive data rate; smart dairy farm

1. Introduction

Low Power Wide Area Network (LPWAN) [1] has now emerged as one of the most popular
wireless networks for the Internet of Things (IoT). LPWAN has found various applications such as
smart city, smart logistics, and smart farming. Long Range Wide Area Network (LoRaWAN) [2] is
one of the LPWAN technologies that has received much attention for the past several years due to its
low power consumption, large coverage area, high security, long battery life, and low cost. Compared
with proprietary LPWAN technologies such as NB-IoT [3] and Sigfox [4], the non-proprietary
LoRaWAN opens for individual users to adopt, build, learn, and research on the technology freely.

LoRaWAN uses the chirp spread spectrum (CSS) as a signal modulation technique in the
physical layer. The packet and propagation characteristics are classified into groups of spreading
factors (SFs) that are determined based on the received signal strength indicator (RSSI) and
propagation distance of each packet. The typical values of SF are 7-12. The smaller SF offers higher
data rate and shorter time-on-air (ToA) while the larger SF offers lower data rate and longer ToA.
Since LoRaWAN adopts the pure ALOHA protocol, which allows simultaneous packet transmission
by multiple end devices or nodes over a common radio channel; therefore, it inevitably suffers from
packet loss due to collision. Note that, a packet collision is confirmed when two or more colliding
packets have the same SF value and frequency, or same chirp rate. To alleviate the problem, altering
data rate and thus ToA of end devices or SF allocation, is a widely used approach.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Various pieces of research focused on the applications of LoRaWAN. Examples include
deploying gas sensors to remotely collect data for air pollution control [5] and the integration of
LoRaWaN to the smart water resource management equipped with measurement systems of water
availability, soil moisture, topography, and plant identification [6,7]. They found that LoRaWAN
could improve the data transmission and thus the data extraction rate (DER), which is the ratio
between the success sending data packet and all data packets in a defined period.

Other previous research explored and improved LoRaWAN performance in different
environments. The LoRaWAN network infrastructure was implemented for a universal sensor, and
proved to consume lower energy and operated well under real-life conditions [8]. The LoRaWAN
performance with mobile nodes was evaluated in an urban environment and was found to provide
shorter data transmission range than the open environments [9]. The path-loss propagation model
for LoRaWAN was then optimized in some certain environment to ensure the positive results [10].

A default mechanism used for optimizing data rate, ToA, and energy consumption of an end
device in LoRaWAN is the adaptive data rate (ADR) [11]. The ADR optimizes these parameters by
considering RSSI and link budget. When multiple nodes are placed in a confined area, their RSSI
values are nearly the same, so do their SF values. Although the ADR is activated, the SF vallues are
not sufficiently distributed, thus the packet collisions still occur. Therefore, several previous works
aimed on improving the network performance, reducing packet collision by better SF allocation or
assignment.

Basically, there are six techniques for improving SF assignments, which were summarized in [2].
The techniques include SNR-based, mathematical model, RSSI-based, ToA, distance-based, and Al
and machine learning techniques.

The SNR-based SF technique focuses on optimizing the gain and transmit power to reduce the
transmission failure associated by noise and interference. In [12] equal-interval-based (EIB) and
equal-area-based (EAB) SF allocation methods were proposed. Both methods compared SNR values
with SNR thresholds based on the gateway specification. In [13], the SNR optimization algorithm was
proposed to improve the packet delivery ratio (PDR) and energy efficiency over the original ADR.

The RSSI-based and ToA techniques were designed to mitigate SF collisions during message
transmission. Specifically, they aimed to prevent multiple devices from transmitting messages using
the same SF values and radio channels simultaneously, thereby enhancing overall network efficiency
and reliability. For instance, the EXPLoRa-SF algorithm compared the RSSI values with the sensitivity
levels and divided them into six groups with equal number of nodes [14]. Then, the EXPLoRa-AT
algorithm proposed to use the “sequential waterfilling” to select the optimal SF values for certain
ToAs for proper selection of radio channel for message transmission [15].

The distance-based technique involves calculating the optimal transmit power allocation by
considering both distance and assigned SF value [16]. The concept of this technique in fact, aligns
closely with SNR-based SF allocation, which focuses on adjusting the transmit power to resist noise
and interference.

In [17] and [18], mathematical models combined with machine learning approaches were
reported. In [18], the reinforcement learning (RL)-based method for SF channel allocation in one-hop
and in the LoRa mesh network was proposed. The equation for properly selecting the new SF value
based on environmental conditions was then developed. The RL method optimized the SF value by
providing positive rewards if the SF effectively reduces collision rates and negative rewards
otherwise. Consequently, the optimal SF value that minimizes data collision rates was determined.
In addition, [18] proposed an algorithm that incorporates node distance information, then utilized
the supervised machine learning for transmit power allocation and employed the RL method for SF
allocation.

Apart from the abovementioned techniques, the statistical approach has become another
promising approach to improve SF assignment. In [19], the researchers proposed the Quantile
Classification of Variance from the Mean (QCVM) method that uses the statistical method namely,
the quantile classification to group RSSI data considering their average and probability density
function (PDF). Then, they proposed the Standard Deviation (SD) classification method that analyzed
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RSSI data of nodes before separating them by the standard deviation (SD) and re-assigning the SF
values [20].

It was known that most SF allocation algorithm developments began with simulations prior to
the actual implementations. The node locations were commonly generated in the uniform random
distribution, which is the default setting in most LoRaWAN simulators. However, the real-life node
patterns often exhibit non-uniform or biased node distributions; thus, the uniform random
distribution does not always give accurate insights in real-world scenarios, and potentially
compromising the efficacy of prior algorithms in such contexts.

This research introduces the Geometric Distribution (GD) algorithm, a novel approach that
leverages the Probability Mass Function (PMF) of the geometric distribution mathematical model [21]
to address the challenge of non-uniform or biased SF node distribution. By incorporating this
framework, the GD algorithm aims to enhance the default Adaptive Data Rate (ADR) mechanism in
the LoRaWAN. The key of the GD algorithm is to identify the optimal distribution format for the
intensive SF values by assigning weights to each SF category. The algorithm seeks to determine the
weight factors (w) that best capture the number of occurrences for each SF. These weight factors (w)
are intricately linked to the geometric distribution factor (p-value) for which we aimed to identify the
optimal value and corresponding weight factors (w) that yield the highest DER.

Our research applied the proposed GD algorithm to the LoRaWAN simulations conducted using
the LoRaSIM simulator. To assess the impact of node distribution on network performance, a
comparative analysis was undertaken. This analysis compared results obtained from the uniform
random node distribution scenario to those obtained from the fixed node distribution assumed based
on locations of dairy farms around the Photharam district, Ratchaburi province, Thailand [22]. This
particular site was selected because it plans to implement Internet of Things (IoT) sensors to collect
behavior data from dairy cows. The novelty of our algorithm lies in its ability to work effectively with
biased node distributions and still achieve high DER values. This adaptability ensures the algorithm's
efficacy across various scenarios, providing valuable insights for improving network performance
under diverse conditions.

The paper is divided into subsections as follows. Section 2 provides a brief overview of
LoRaWAN. Section 3 delves into the comparison of fixed and random node simulation, while
Sections 4 and 5 expound on the geometric distribution mathematical model and the proposed
algorithm, respectively. Section 6 covers the details of the experiment simulation, and the discussion
and analysis of results are presented in Section 7. The research concludes with a summarizing section
outlining the key findings and implications of the study.

2. LoRaWAN Overview

LoRa is a protocol in the physical layer of an IoT network. This protocol operates in the
industrial, scientific, and medical radio band (ISM band) or 902 — 928 MHz in Thailand. LoRa protocol
can endure the noise floor and interference by Chirp Spread Spectrum (CSS) techniques. The
highlighted advantages are low power consumption and long-range coverage area. The
characteristics of the CSS modulation depend on the LoRa’s parameters such as bandwidth (BW), SF,
Coding Rate (CR), and the airtime defined in terms of the Symbol time (TS) shown in equation (1).
The bit rate (Rv) is related to BW, SF, and CR as shown in equation (2).

2SF

To==— (1)
BW
Ry = SF X~z X CR, (2)

LoRaWAN is a network architecture consisting of end devices or nodes that employ the LoRa
protocol for transmitting and receiving packets, LoRa gateway, network server, and application
server. In LoORaWAN, we can define the data rate, airtime, and signal range by assigning the SF
values, which is the unique parameter in the LoRa modulation, as shown in Figure 1.
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Figure 1. Relationship of SF, data rate, airtime, energy, and sensitivity level.

LoRaWAN utilizes the Adaptive Data Rate (ADR), which is a default mechanism for optimizing
the data rate, airtime, distance, and energy consumption, when the signal strength varies dynamically
such as in the case of dense and moving nodes. The link budget is the RSSI sensitivity level, which
depends on the Signal-to-Noise Ratio (SNR), Noise Figure of receiver (NF), and BW. The link budget
is presented in terms of the sensitivity value (S) shown in equation (3). The SNR limit is dependent
on the end device, and the NF of a typical LoRa gateway chipset is 7 dB [11]. The sensitivity level is
also displayed in Figure 1.

S=-174+10log BW + NF + SNRy;,, 3)

3. Network Simulations for Fixed and Uniform Uniform Random Patterns of Nodes

The network simulation is the important approach to better anticipate the results of the actual
network performance. It also shed some lights on what the network performance would be like in
case the actual implementation cannot take place. However, most previous simulation works relied
on generating a uniform random node pattern that could significantly deviate from the real-world
scenario. This section aims on understanding the effect of node patterns on SF assignment and
network performance by comparing fixed and random node patterns using the default ADR scheme.

Before constructing the node pattern, the propagation path loss model suitable for the study area
was selected for the simulation. In our investigation, we conducted a survey at a considerable number
of dairy farms in the Photharam district of Ratchaburi, Thailand. This area has a potential to adopt
smart livestock technologies, and some farms had already pursued that. We installed the LoRa
gateway at Centermilk Farm and then conducted several drive tests in 5 km radius as shown in Figure
2 to measure the LoRa signal strength before creating a map to locate dairy farms within the test area.
Photharam district is situated outside urban areas, characterized by small buildings and villages.
While present, these structures are not as numerous or densely populated as in urban. This
environment thus aligns better with the suburban Hata-Okumura path loss model [23] as indicated
by equations (4)-(8).
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Figure 2. Location of dairy farms at Photharam district, Ratchaburi, Thailand.

A = 6955+ 26.16log(f) — 13.82log(hy), @)

B = 44.9 — 6.55log(hy), )

a(hy) = (1.11og(f) — 0.7)hy, — (1.56 log(f) — 0.8), ©)
€ =-2(log(L))? - 54, @)
Le=A+Blog(d) —a(hy) +C, ®)

where  Lcis the power of path loss,

d is the distance of end devices in meter,

hw is the height of end devices in meter,

fis the frequency in Kilohertz

hy is the height of the gateway in meter.

In our research, we assigned 1,500 nodes to represent 1,500 connected dairy cows raised on the
dairy farms in Photharam district, Ratchaburi. Note that, the connected dairy cows are those tagged
with the IoT sensors. We introduced node positions in the 2D plane with x and y coordinates, as
expressed in equations (9) and (10). Subsequently, we calculated the distance D from the node to a
gateway using the Pythagorean formula as shown in equation (11).

A

X = C X Dppax COS (—), 9
B
A

Y = C X Dy Sin (E)' (10)

D =, /x?+y?, (11)

where  Dwmax is the coverage area in meter,

x and y are the positions in the 2-dimensional plane,

D is the distance between the node and the gateway in meter,

A, B, and C are the values between 0 to 1.

First, we utilized the LoRaSim simulator to randomize A, B, and C constants to generate the
uniform random node pattern as shown in Figure 3. Then, we assigned certain values of A, B, and C
constants using Equations (9)-(11) to reflect the actual locations of dairy farms, and consequently, the
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connected cows raised on those farms. The actual or fixed pattern shown in Figure 4 clearly exhibits
a biased node distribution where most nodes are confined within 2 km radius from the center.

L] MO0 &

Figure 3. Uniform random node pattern.

Figure 4. Fixed node pattern.

After the node pattern was constructed, the node’s SF values of both patterns were assigned
using the default ADR mechanism in LoRaSim. The proportion of SF assignment was observed and
measured and the DER values were computed. The results are shown in the Table 1. At distances 2
and 3 km for both uniform random and fixed patterns, every node is assigned as SF7. The DER values
are nearly identical at around 51%. At 4 and 5 km, more nodes are distributed to SF8 and SF9
respectively, but the majority is still SF7. For the fixed node pattern, above 89% of nodes are SF7,
while the number is clearly lower for the uniform random pattern. This disparity in SF assignment
directly affects DER values, with the uniform random pattern exhibiting 6.2% and 8.7% higher than
those of the fixed pattern at 4 and 5 km, respectively. The results somewhat indicate insufficiency of
the default ADR scheme in handling actual node distributions.

Table 1. The DER of the original ADR for the uniform random and fixed node patterns.
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7
Coverage area _ Pattern %SF7 %SF8  %SF9  %SF10 %SF11 %SF12 DER Value

Uniform 100.00 0.00 0.00 0.00 0.00 0.00 0.514

2 km random
Fixed 100.00 0.00 0.00 0.00 0.00 0.00 0.510
Uniform 100.00 0.00 0.00 0.00 0.00 0.00 0512

3 km random
Fixed 100.00 0.00 0.00 0.00 0.00 0.00 0514
Uniform 87.60 12.40 0.00 0.00 0.00 0.00 0.600

4 km random
Fixed 96.53 3.47 0.00 0.00 0.00 0.00 0.538
Uniform 70.33 15.40 14.27 0.00 0.00 0.00 0.676

5km random
Fixed 89.53 493 553 0.00 0.00 0.00 0.589

4. Geometric Distribution Approach

To tackle challenges arising from the biased node distribution, a novel algorithm designed to
optimize the SF assignment for each node called the geometric distribution (GD) algorithm is
proposed here. The geometric distribution is basically known as a discrete probability distribution
used to model events with two outcomes in repeated trials until success is achieved. The Probability
Mass Function (PMF) is a measure providing probabilities for possible values of a random variable.
In an attempt to distribute the biased number of SF nodes, the probability of success rate (p-value) of
the PMF is the key feature.

The PMF is presented in equation (12). Notably, the PMF exhibits a distinct characteristic— the
probability of success is highest on the first trial (x =1) and decreases in subsequent trials. The p-value
is a crucial parameter, influencing the likelihood of success and the overall distribution of success
rates. Figure 5 presents a visual representation of the probability of success derived from the GD
PMF.

Px)=1-p)'p,x=1,2,3,.. (12)

1 T T T T T

Probability of success

1 2 3 4 5 i

Figure 5. The probability of success from the GD PMF at (a) p = 0.8, (b) p = 0.6, and (c) p =0.2.

5. The Geometric Distribution Algorithm for SF Assignment

Reverting to the DER results run by the default ADR scheme, a significant challenge arose since
more than 70% of all nodes from the uniform random and fixed patterns were assigned SF7 at 4 and
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5 km. To significantly improve the DER, we needed to find the optimal SF distribution by
redistributing the number of SF7 nodes using the PMF and determined the weight factor for each SF.
Initially, we employed a weight factor (w), as defined in equations (13)

W,

1*NSFmax +W2

NSE max = *Nor max - W " NgE max / (13)

where  Nsrmax is the total number of majority SF nodes
wn is the weight factor of new SF7 (n =1) to new SF12 (n = 6) and is defined as

w, =p(1—-p)"7Y, (14)

where n=1-6
From (12), the summation of wn to we must be 1, that is

peip(—p)" 7t =1, (15)

By using this approach, the weight factor always decreases when p in equation (14) increases.
The summation of the new weight factors must be 1, as shown in (15). The numbers of new SF7-SF12
respectively, are obtained by multiplying w1 — ws by Nsrmax, respectively.

The GD algorithm was then developed and is shown in Algorithm I. First, we input the highest
number of nodes with similar SF, which in our case is the SF7, to the proposed GD algorithm. Then,
SF7 nodes were separated using the GD approach. The process entered a loop starting at p =1 and
the corresponding weight factors w[x] were multiplied by the SF7 count (Nsrmax) to obtain the number
of new SFs. The loop iterated as the p-value decreased by 0.1 decrement. The weight factors were
recalculated at each p-value and thus, the number of new SFs was obtained. The loop continued
until the p-value reached 0.1, marking the end of the algorithm. The resulting set of weight factors at
the p-value equal 1 to 0.1 is presented in Table 2.

Algorithm I: Geometric distribution

1: Input: Number of highest SF (Nsr max)

2: Define: Weight factor (w)

3: Geometric distribution factor (p)
4: Initialize: p = 1
5: Do
6: /I Calculate the weight factor of each SF
7
8
9

wix]€p*(U-p)~"(x-1)letx=1,2,3,4,5,6
// Calculate the number of each SF
SF[y] € Nspmax*wx]letx=1,2,3,4,5,6andy=17,8,9, 10, 11, 12
10:  // Return the new number of each SF
11:  Return SF[7], SF[8], SF[9], SF[10], SF[11], SF[12]
12:. p<p-0.1
13:While p > 0.1 // p starts at 1 to 0.1, with 0.1 decrement

Table 2. The resulting set of weight factor (w) with p-value =1 to 0.1.

p-value W1 W2 W3 W4 Ws Ws
1 1 0 0 0 0 0
0.9 0.90 0.09 0.01 0.00 0.00 0.00
0.8 0.80 0.16 0.03 0.01 0.00 0.00
0.7 0.70 0.21 0.06 0.02 0.01 0.00
0.6 0.60 0.24 0.10 0.04 0.02 0.01
05 0.51 0.25 0.13 0.06 0.03 0.02
0.4 0.42 0.25 0.15 0.09 0.05 0.03
0.3 0.34 0.24 0.17 0.12 0.08 0.06
0.2 0.27 0.22 0.17 0.14 0.11 0.09
0.1 0.21 0.19 0.17 0.16 0.14 0.13

The complete implementation workflow is shown in Figure 6. Initially, nodes were classified
according to sensitivity levels outlined in Figure 1. After applying the GD algorithm, the sets of
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weight-classified SF nodes were input to the simulation to determine Data Extraction Rate (DER)
values for probabilities ranging from p =1 to 0.1. The p-value that produced the optimal SF and DER
values was selected, and finally, the optimized SF values were applied to the nodes.

Input the number of

Group the nodes highest SFT Input the number of new
according to the SF's —»| and analyze to getthe ——» SFs and simulate the
sensitivity level. number of new SFs for network to find the DERSs.

p-value 0.1 io 1

}

Select the p-value and

Apply new SF values to the optimal SF values
nodes. that produce the optimal
DERs.

Figure 6. GD algorithm-based SF assignment workflow.

6. Geometric Distribution Algorithm Performance Assessment

To assess the performance of the GD algorithm, we designed three experiments for network
simulation with two node patterns: uniform random and fixed as depicted in Figures 3 and 4,
respectively. Following this, we employed the LoRaSim simulator to generate the uniform random
node pattern and to compute DER values for all experiments. Experiment 1 was the evaluation of the
GD algorithm for both uniform random and fixed patterns. Experiment 2 was the comparison of the
optimal SF assignment and corresponding DER values obtained from the GD algorithm and other
previous works for both uniform random and fixed patterns. The parameters for experiments 1 and
2 were configured according to the specifications outlined in Table 3. The third experiment was the
comparison of the GD algorithm-based network performance of the fixed pattern with other previous
works by considering key parameters namely, coverage area (2 to 5 km.), payload size (10 to 255
bytes), and energy consumption with the simulation time from 1 to 12 hours.

Table 3. Simulation parameters.

Parameter Value
Number of nodes 1,500
Number of gateway 1
Node transmitted power 14 dBm
Simulation time 43,200 sec (12 Hours)
Average sending message time 1,800 sec (30 minutes)
Bandwidth 125 kHz
Frequency (AS923) 923 MHz
Path-loss model Suburban Hata-Okumura
Payload size 255 bytes
Coverage area 5 km

7. Results and Discussion
A. Experiment 1: Evaluation of the GD Algorithm for Uniform Random and Fixed Patterns

By using the GD algorithm, the new SF assignment for both uniform random and fixed patterns
are presented in Figures 7 and 8, respectively. For both patterns, the SF values are assigned across
different probability values (p-value) ranging from 1 to 0.1. At p = 1, the SF distribution aligns with
the default ADR scheme. As the p-value decreases, the number of SF7 nodes gradually separates into
SF8-SF12, due to the weight factor (w).
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Figure 7. SF assignment for the uniform random pattern using the GD algorithm.
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Figure 8. SF assignment for the fixed pattern using the GD algorithm.

By decreasing the p-value, the DER values of both patterns increase until reaching the optimal
DER value at p = 0.5 and then decrease monotonically as shown in Figure 9. The optimal DER value
of the fixed pattern is approximately 73.5%, slightly better than that of the uniform random pattern
(71.8%), and both DER values are clearly higher than the default ADR scheme. The numbers of new
SFs for the uniform random and fixed patterns at p = 0.5 are shown as the bar graphs in Figures 7 and
8, respectively. Note that, the optimal p-values and corresponding DER values might be different for
different node distributions.
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Figure 9. DER values after applying the GD algorithm to the fixed and uniform random patterns.

B. Experiment 2: Comparison of the GD Algorithm with Previous Reported Algorithms

In this experiment, the simulation was conducted to compare DER values between the GD
algorithm at the optimal p = 0.5, the default ADR scheme [11], and previously reported algorithms
namely, EXPLoRa [14], QCVM [19], and SD [20]. Tables 4 and 5 display the SF assignment for uniform
random and fixed patterns, respectively. The result in Figure 10 clearly addresses a substantial impact
of SF distribution on the DER value. Optimizing the SF distribution with the GD algorithm results in
the overall highest DER at 4.8% and 14.3% improvement over the default ADR scheme for uniform
random and fixed patterns, respectively.

Table 4. SF allocation from the GD algorithm at p = 0.5, default ADR scheme, and previous
algorithms for the uniform random pattern.

Algorithm %SF7 %SF8 %SF9 %SF10 %SF11 %SF12
Default ADR 70.00 16.53 13.47 0.00 0.00 0.00
EXPLoRa 16.67 16.67 16.67 16.67 16.67 16.67
QCVM 33.40 33.40 33.20 0.00 0.00 0.00
SD 25.60 37.47 14.27 14.47 6.33 1.87
D 34.73 33.13 24.60 4.07 2.07 1.40
(p=0.5)

Table 5. SF allocation from the GD algorithm at p = 0.5, default ADR scheme, and previous
algorithms for the fixed pattern.

Algorithm %SF7 %SF8 %SF9 %SF10 %SF11 %SF12
Default ADR 89.67 5.40 4.93 0.00 0.00 0.00
EXPLoRa 16.67 16.67 16.67 16.67 16.67 16.67
QCVM 33.40 33.40 33.20 0.00 0.00 0.00
SD 35.20 32.73 17.33 12.67 1.33 0.73
6D 45.53 27.67 16.93 5.40 2.67 1.80

(p=0.5)
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Figure 10. DER comparison between different algorithms for fixed and uniform random patterns.

C. Experiment 3: Network Performance Evaluation of the GD Algorithm Based on Coverage Area, Payload
Size, and Energy Consumption

We aimed on assessing the GD algorithm on the expansion of the coverage area as it is a crucial
factor influencing SF assignment [20,21]. By expanding the coverage area from 2 to 5 km (to reflect
the actual farm area), the proposed GD algorithm achieved the DER of 74%, higher than other
algorithms, as shown in Figure 11. The DER of the default ADR scheme also improved at 4-5 km due
to more node allocation to SF8 and SF9.

We also assessed the GD algorithm on the payload size, which plays an important role in
defining the range of transmitted data. From Figure 12, a decline in DER as the payload size increases
is observed for all algorithms. Remarkably, the proposed algorithm demonstrates notable
improvement, surpassing the default ADR scheme by more than 13% at a payload size of 255 bytes.
This finding indicates the potential of the GD algorithm to successfully carry the larger load over the
air.

The time-on-Air (ToA) and node power are also one of the important factors determining the
energy consumption of the node, which after combining all nodes, amounts to the total energy
consumption of the network. Note that, the energy consumption of gateway and servers are omitted
here. The relationship between ToA and energy consumption (E), measured in joules, is represented
by equation (16). Figure 13 displays the energy consumption when increasing the simulation time
from 1 hour to 12 hours. Since ToA increases with the SF value, the SF assignments can then be used
to justify the results. For EXPloRa where there are a greater number of large SF nodes, the energy
consumption is clearly higher than other algorithms. On the other hand, the default ADR scheme
offers the lowest energy consumption as almost 90% of the nodes are SF7. The proposed GD
algorithm offers relatively the same energy consumption as the SD, but slightly higher than that of
the QCVM due to neither SF10, SF11 nor SF12 were assigned for QCVM.

— Zfl:l(Tairtime X (TXnode + 2) X V)
106 ’
where  Tuirime is the time on air of the successfully sent node in seconds.

TXnode is the transmission power (dBm) of the successfully sent node.
V is the supplied voltage to the node (3 V) [2]

E

(16)
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Figure 13. Energy consumptions from 1 hour to 12 hours of simulation time for different algorithms.

8. Conclusions

This research endeavored to enhance the performance of the LoRaWAN by addressing collision
probability issues, specifically aiming to reduce instances of the same SF. Various algorithms
employed in the past often incorporated RSSI optimization on random and normally distributed
node patterns. Our contribution to this domain introduced a novel algorithm based on the geometric
distribution (GD), where we applied this algorithm to real-world scenarios that possessed certain
node patterns. Results from our study indicated that the proposed algorithm achieved significant
improvements in both optimal SF assignment and DER values compared to previous algorithms.
Specifically, the fixed pattern exhibited an impressive enhancement of 14.3%, while the uniform
random pattern exhibited 4.8% enhancement over the default ADR scheme.

Expanding the coverage area and increasing the package size further underscored the efficacy
of the proposed algorithm, consistently yielding the highest DER values. However, it was important
to note that achieving these improvements required allowing higher energy consumption since larger
SF values were also assigned.

Looking ahead, the GD algorithm emerges as a valuable tool for resource allocation, especially
in scenarios, where there are mostly the same SF nodes in one area. This algorithm holds promise for
optimizing resource distribution and finding the most efficient pathways. Furthermore, the
application of this algorithm extends beyond LoRaWAN to other wireless communication
technologies, including Sigfox, Wi-Fi, and 5G. The adaptability and effectiveness of the geometric
distribution algorithm position it as a potential solution for future advancements in long range
wireless communication optimization.
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