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Abstract: This paper proposes the GD (Geometric Distribution) algorithm, a novel approach to 

enhance the default Adaptive Data Rate (ADR) mechanism in the Long Range Wide Area Network 

(LoRaWAN). By leveraging the Probability Mass Function (PMF) of the GD model, the GD 

algorithm effectively addresses massive device distribution challenges in real-life scenarios. To 

evaluate the algorithm's performance, the LoRaWAN simulations were conducted using the fixed 

node pattern derived from actual locations of dairy farms in Ratchaburi province, Thailand. The 

research established scenarios for assessing the network's performance namely, DER (Data 

Extraction Rate) and SF (Spreading Factor) assignment. Comparative analyses were performed 

against the uniform random node pattern and established algorithms, including the default ADR 

scheme, EXPLoRa, Quantile Classification of Variance from the Mean (QCVM), and Standard 

Deviation (SD). The GD algorithm demonstrated significant improvements over existing 

methodologies for both fixed and uniform random patterns. The fixed pattern exhibited an 

enhancement of 14.3%, while the uniform random pattern showed 4.8% enhancement over the 

default ADR scheme. Further assessments covered the coverage area, payload size, and energy 

consumption. The GD algorithm consistently achieved the optimal DER values with a coverage area 

and payload size, albeit often at the expense of increased energy consumption. 

Keywords: LoRaWAN; Internet of Things; adaptive data rate; smart dairy farm 

 

1. Introduction 

Low Power Wide Area Network (LPWAN) [1] has now emerged as one of the most popular 

wireless networks for the Internet of Things (IoT). LPWAN has found various applications such as 

smart city, smart logistics, and smart farming. Long Range Wide Area Network (LoRaWAN) [2] is 

one of the LPWAN technologies that has received much attention for the past several years due to its 

low power consumption, large coverage area, high security, long battery life, and low cost. Compared 

with proprietary LPWAN technologies such as NB-IoT [3] and Sigfox [4], the non-proprietary 

LoRaWAN opens for individual users to adopt, build, learn, and research on the technology freely.  

LoRaWAN uses the chirp spread spectrum (CSS) as a signal modulation technique in the 

physical layer. The packet and propagation characteristics are classified into groups of spreading 

factors (SFs) that are determined based on the received signal strength indicator (RSSI) and 

propagation distance of each packet. The typical values of SF are 7-12. The smaller SF offers higher 

data rate and shorter time-on-air (ToA) while the larger SF offers lower data rate and longer ToA. 

Since LoRaWAN adopts the pure ALOHA protocol, which allows simultaneous packet transmission 

by multiple end devices or nodes over a common radio channel; therefore, it inevitably suffers from 

packet loss due to collision. Note that, a packet collision is confirmed when two or more colliding 

packets have the same SF value and frequency, or same chirp rate. To alleviate the problem, altering 

data rate and thus ToA of end devices or SF allocation, is a widely used approach. 
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Various pieces of research focused on the applications of LoRaWAN. Examples include 

deploying gas sensors to remotely collect data for air pollution control [5] and the integration of 

LoRaWaN to the smart water resource management equipped with measurement systems of water 

availability, soil moisture, topography, and plant identification [6,7]. They found that LoRaWAN 

could improve the data transmission and thus the data extraction rate (DER), which is the ratio 

between the success sending data packet and all data packets in a defined period. 

Other previous research explored and improved LoRaWAN performance in different 

environments. The LoRaWAN network infrastructure was implemented for a universal sensor, and 

proved to consume lower energy and operated well under real-life conditions [8]. The LoRaWAN 

performance with mobile nodes was evaluated in an urban environment and was found to provide 

shorter data transmission range than the open environments [9]. The path-loss propagation model 

for LoRaWAN was then optimized in some certain environment to ensure the positive results [10].   

A default mechanism used for optimizing data rate, ToA, and energy consumption of an end 

device in LoRaWAN is the adaptive data rate (ADR) [11]. The ADR optimizes these parameters by 

considering RSSI and link budget. When multiple nodes are placed in a confined area, their RSSI 

values are nearly the same, so do their SF values. Although the ADR is activated, the SF vallues are 

not sufficiently distributed, thus the packet collisions still occur. Therefore, several previous works 

aimed on improving the network performance, reducing packet collision by better SF allocation or 

assignment.  

Basically, there are six techniques for improving SF assignments, which were summarized in [2]. 

The techniques include SNR-based, mathematical model, RSSI-based, ToA, distance-based, and AI 

and machine learning techniques. 

The SNR-based SF technique focuses on optimizing the gain and transmit power to reduce the 

transmission failure associated by noise and interference. In [12] equal-interval-based (EIB) and 

equal-area-based (EAB) SF allocation methods were proposed. Both methods compared SNR values 

with SNR thresholds based on the gateway specification. In [13], the SNR optimization algorithm was 

proposed to improve the packet delivery ratio (PDR) and energy efficiency over the original ADR. 

The RSSI-based and ToA techniques were designed to mitigate SF collisions during message 

transmission. Specifically, they aimed to prevent multiple devices from transmitting messages using 

the same SF values and radio channels simultaneously, thereby enhancing overall network efficiency 

and reliability. For instance, the EXPLoRa-SF algorithm compared the RSSI values with the sensitivity 

levels and divided them into six groups with equal number of nodes [14]. Then, the EXPLoRa-AT 

algorithm proposed to use the “sequential waterfilling” to select the optimal SF values for certain 

ToAs for proper selection of radio channel for message transmission [15].  

The distance-based technique involves calculating the optimal transmit power allocation by 

considering both distance and assigned SF value [16]. The concept of this technique in fact, aligns 

closely with SNR-based SF allocation, which focuses on adjusting the transmit power to resist noise 

and interference.  

In [17] and [18], mathematical models combined with machine learning approaches were 

reported. In [18], the reinforcement learning (RL)-based method for SF channel allocation in one-hop 

and in the LoRa mesh network was proposed. The equation for properly selecting the new SF value 

based on environmental conditions was then developed. The RL method optimized the SF value by 

providing positive rewards if the SF effectively reduces collision rates and negative rewards 

otherwise. Consequently, the optimal SF value that minimizes data collision rates was determined. 

In addition, [18] proposed an algorithm that incorporates node distance information, then utilized 

the supervised machine learning for transmit power allocation and employed the RL method for SF 

allocation.  

Apart from the abovementioned techniques, the statistical approach has become another 

promising approach to improve SF assignment.  In [19], the researchers proposed the Quantile 

Classification of Variance from the Mean (QCVM) method that uses the statistical method namely, 

the quantile classification to group RSSI data considering their average and probability density 

function (PDF). Then, they proposed the Standard Deviation (SD) classification method that analyzed 
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RSSI data of nodes before separating them by the standard deviation (SD) and re-assigning the SF 

values [20].  

It was known that most SF allocation algorithm developments began with simulations prior to 

the actual implementations. The node locations were commonly generated in the uniform random 

distribution, which is the default setting in most LoRaWAN simulators. However, the real-life node 

patterns often exhibit non-uniform or biased node distributions; thus, the uniform random 

distribution does not always give accurate insights in real-world scenarios, and potentially 

compromising the efficacy of prior algorithms in such contexts.  

This research introduces the Geometric Distribution (GD) algorithm, a novel approach that 

leverages the Probability Mass Function (PMF) of the geometric distribution mathematical model [21] 

to address the challenge of non-uniform or biased SF node distribution. By incorporating this 

framework, the GD algorithm aims to enhance the default Adaptive Data Rate (ADR) mechanism in 

the LoRaWAN. The key of the GD algorithm is to identify the optimal distribution format for the 

intensive SF values by assigning weights to each SF category. The algorithm seeks to determine the 

weight factors (w) that best capture the number of occurrences for each SF. These weight factors (w) 

are intricately linked to the geometric distribution factor (p-value) for which we aimed to identify the 

optimal value and corresponding weight factors (w) that yield the highest DER.  

Our research applied the proposed GD algorithm to the LoRaWAN simulations conducted using 

the LoRaSIM simulator. To assess the impact of node distribution on network performance, a 

comparative analysis was undertaken. This analysis compared results obtained from the uniform 

random node distribution scenario to those obtained from the fixed node distribution assumed based 

on locations of dairy farms around the Photharam district, Ratchaburi province, Thailand [22].  This 

particular site was selected because it plans to implement Internet of Things (IoT) sensors to collect 

behavior data from dairy cows. The novelty of our algorithm lies in its ability to work effectively with 

biased node distributions and still achieve high DER values. This adaptability ensures the algorithm's 

efficacy across various scenarios, providing valuable insights for improving network performance 

under diverse conditions. 

The paper is divided into subsections as follows. Section 2 provides a brief overview of 

LoRaWAN. Section 3 delves into the comparison of fixed and random node simulation, while 

Sections 4 and 5 expound on the geometric distribution mathematical model and the proposed 

algorithm, respectively. Section 6 covers the details of the experiment simulation, and the discussion 

and analysis of results are presented in Section 7. The research concludes with a summarizing section 

outlining the key findings and implications of the study. 

2. LoRaWAN Overview 

LoRa is a protocol in the physical layer of an IoT network. This protocol operates in the 

industrial, scientific, and medical radio band (ISM band) or 902 – 928 MHz in Thailand. LoRa protocol 

can endure the noise floor and interference by Chirp Spread Spectrum (CSS) techniques. The 

highlighted advantages are low power consumption and long-range coverage area. The 

characteristics of the CSS modulation depend on the LoRa’s parameters such as bandwidth (BW), SF, 

Coding Rate (CR), and the airtime defined in terms of the Symbol time (TS) shown in equation (1). 

The bit rate (Rb) is related to BW, SF, and CR as shown in equation (2). 

𝑇𝑠 =
2𝑆𝐹

𝐵𝑊
, (1) 

𝑅𝑏 = 𝑆𝐹 ×
𝐵𝑊

2𝑆𝐹 × 𝐶𝑅, (2) 

LoRaWAN is a network architecture consisting of end devices or nodes that employ the LoRa 

protocol for transmitting and receiving packets, LoRa gateway, network server, and application 

server. In LoRaWAN, we can define the data rate, airtime, and signal range by assigning the SF 

values, which is the unique parameter in the LoRa modulation, as shown in Figure 1. 
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Figure 1. Relationship of SF, data rate, airtime, energy, and sensitivity level. 

LoRaWAN utilizes the Adaptive Data Rate (ADR), which is a default mechanism for optimizing 

the data rate, airtime, distance, and energy consumption, when the signal strength varies dynamically 

such as in the case of dense and moving nodes. The link budget is the RSSI sensitivity level, which 

depends on the Signal-to-Noise Ratio (SNR), Noise Figure of receiver (NF), and BW. The link budget 

is presented in terms of the sensitivity value (S) shown in equation (3). The SNR limit is dependent 

on the end device, and the NF of a typical LoRa gateway chipset is 7 dB [11]. The sensitivity level is 

also displayed in Figure 1. 

𝑆 = −174 + 10 𝑙𝑜𝑔 𝐵 𝑊 + 𝑁𝐹 + 𝑆𝑁𝑅𝑙𝑖𝑚, (3) 

3. Network Simulations for Fixed and Uniform Uniform Random Patterns of Nodes 

The network simulation is the important approach to better anticipate the results of the actual 

network performance. It also shed some lights on what the network performance would be like in 

case the actual implementation cannot take place. However, most previous simulation works relied 

on generating a uniform random node pattern that could significantly deviate from the real-world 

scenario. This section aims on understanding the effect of node patterns on SF assignment and 

network performance by comparing fixed and random node patterns using the default ADR scheme.  

Before constructing the node pattern, the propagation path loss model suitable for the study area 

was selected for the simulation. In our investigation, we conducted a survey at a considerable number 

of dairy farms in the Photharam district of Ratchaburi, Thailand. This area has a potential to adopt 

smart livestock technologies, and some farms had already pursued that. We installed the LoRa 

gateway at Centermilk Farm and then conducted several drive tests in 5 km radius as shown in Figure 

2 to measure the LoRa signal strength before creating a map to locate dairy farms within the test area. 

Photharam district is situated outside urban areas, characterized by small buildings and villages. 

While present, these structures are not as numerous or densely populated as in urban. This 

environment thus aligns better with the suburban Hata-Okumura path loss model [23] as indicated 

by equations (4)-(8). 
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Figure 2. Location of dairy farms at Photharam district, Ratchaburi, Thailand. 

𝐴 = 69.55 + 26.16 𝑙𝑜𝑔( 𝑓) − 13.82 𝑙𝑜𝑔( ℎ𝑏), (4) 

𝐵 = 44.9 − 6.55 𝑙𝑜𝑔( ℎ𝑏), (5) 

𝑎(ℎ𝑚) = (1.1 𝑙𝑜𝑔( 𝑓) − 0.7)ℎ𝑚 − (1.56 𝑙𝑜𝑔( 𝑓) − 0.8), (6) 

𝐶 = −2(𝑙𝑜𝑔(
𝑓

28
))2 − 5.4, (7) 

𝐿𝑐 = 𝐴 + 𝐵 𝑙𝑜𝑔( 𝑑) − 𝑎(ℎ𝑚) + 𝐶, (8) 

where  Lc is the power of path loss,  

d is the distance of end devices in meter,  

hm is the height of end devices in meter,  

f is the frequency in Kilohertz 

hb is the height of the gateway in meter. 

In our research, we assigned 1,500 nodes to represent 1,500 connected dairy cows raised on the 

dairy farms in Photharam district, Ratchaburi. Note that, the connected dairy cows are those tagged 

with the IoT sensors. We introduced node positions in the 2D plane with x and y coordinates, as 

expressed in equations (9) and (10). Subsequently, we calculated the distance D from the node to a 

gateway using the Pythagorean formula as shown in equation (11). 

𝑥 = 𝐶 × 𝐷𝑚𝑎𝑥 cos (
𝐴

𝐵
), (9) 

𝑦 = 𝐶 × 𝐷𝑚𝑎𝑥 sin (
𝐴

𝐵
), (10) 

𝐷 = √𝑥2 + 𝑦2, (11) 

where  Dmax is the coverage area in meter, 

x and y are the positions in the 2-dimensional plane, 

D is the distance between the node and the gateway in meter, 

A, B, and C are the values between 0 to 1. 

First, we utilized the LoRaSim simulator to randomize A, B, and C constants to generate the 

uniform random node pattern as shown in Figure 3. Then, we assigned certain values of A, B, and C 

constants using Equations (9)-(11) to reflect the actual locations of dairy farms, and consequently, the 
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connected cows raised on those farms. The actual or fixed pattern shown in Figure 4 clearly exhibits 

a biased node distribution where most nodes are confined within 2 km radius from the center.  

 

Figure 3. Uniform random node pattern. 

 

Figure 4. Fixed node pattern. 

After the node pattern was constructed, the node’s SF values of both patterns were assigned 

using the default ADR mechanism in LoRaSim. The proportion of SF assignment was observed and 

measured and the DER values were computed. The results are shown in the Table 1. At distances 2 

and 3 km for both uniform random and fixed patterns, every node is assigned as SF7. The DER values 

are nearly identical at around 51%. At 4 and 5 km, more nodes are distributed to SF8 and SF9 

respectively, but the majority is still SF7. For the fixed node pattern, above 89% of nodes are SF7, 

while the number is clearly lower for the uniform random pattern. This disparity in SF assignment 

directly affects DER values, with the uniform random pattern exhibiting 6.2% and 8.7% higher than 

those of the fixed pattern at 4 and 5 km, respectively. The results somewhat indicate insufficiency of 

the default ADR scheme in handling actual node distributions. 

Table 1. The DER of the original ADR for the uniform random and fixed node patterns. 
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Coverage area Pattern %SF7 %SF8 %SF9 %SF10 %SF11 %SF12 DER Value 

2 km 

Uniform 

random 
100.00 0.00 0.00 0.00 0.00 0.00 0.514 

Fixed 100.00 0.00 0.00 0.00 0.00 0.00 0.510 

3 km 

Uniform 

random 
100.00 0.00 0.00 0.00 0.00 0.00 0.512 

Fixed 100.00 0.00 0.00 0.00 0.00 0.00 0.514 

4 km 

Uniform 

random 
87.60 12.40 0.00 0.00 0.00 0.00 0.600 

Fixed 96.53 3.47 0.00 0.00 0.00 0.00 0.538 

5 km 

Uniform 

random 
70.33 15.40 14.27 0.00 0.00 0.00 0.676 

Fixed 89.53 4.93 5.53 0.00 0.00 0.00 0.589 

4. Geometric Distribution Approach 

To tackle challenges arising from the biased node distribution, a novel algorithm designed to 

optimize the SF assignment for each node called the geometric distribution (GD) algorithm is 

proposed here. The geometric distribution is basically known as a discrete probability distribution 

used to model events with two outcomes in repeated trials until success is achieved. The Probability 

Mass Function (PMF) is a measure providing probabilities for possible values of a random variable. 

In an attempt to distribute the biased number of SF nodes, the probability of success rate (p-value) of 

the PMF is the key feature.   

The PMF is presented in equation (12). Notably, the PMF exhibits a distinct characteristic— the 

probability of success is highest on the first trial (x = 1) and decreases in subsequent trials. The p-value 

is a crucial parameter, influencing the likelihood of success and the overall distribution of success 

rates. Figure 5 presents a visual representation of the probability of success derived from the GD 

PMF. 

𝑃(𝑥) = (1 − 𝑝)𝑥−1𝑝, 𝑥 = 1, 2, 3, … (12) 

 

Figure 5. The probability of success from the GD PMF at (a) p = 0.8, (b) p = 0.6, and (c) p = 0.2. 

5. The Geometric Distribution Algorithm for SF Assignment 

Reverting to the DER results run by the default ADR scheme, a significant challenge arose since 

more than 70% of all nodes from the uniform random and fixed patterns were assigned SF7 at 4 and 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2024                   doi:10.20944/preprints202407.2033.v1

https://doi.org/10.20944/preprints202407.2033.v1


 8 

 

5 km. To significantly improve the DER, we needed to find the optimal SF distribution by 

redistributing the number of SF7 nodes using the PMF and determined the weight factor for each SF. 

Initially, we employed a weight factor (w), as defined in equations (13) 

* * *
max 1 max 2 max 6 max

,...,N w N w N w N
SF SF SF SF

= + + + , (13) 

where  NSF max is the total number of majority SF nodes 

 wn is the weight factor of new SF7 (n = 1) to new SF12 (n = 6) and is defined as 

𝑤𝑛 = 𝑝(1 − 𝑝)𝑛−1, (14) 

where  n = 1-6 

From (12), the summation of w1 to w6 must be 1, that is 

∑ 𝑝(1 − 𝑝)𝑛−16
𝑛=1 = 1, (15) 

By using this approach, the weight factor always decreases when p in equation (14) increases. 

The summation of the new weight factors must be 1, as shown in (15). The numbers of new SF7-SF12 

respectively, are obtained by multiplying w1 – w6 by NSF max, respectively. 

The GD algorithm was then developed and is shown in Algorithm I. First, we input the highest 

number of nodes with similar SF, which in our case is the SF7, to the proposed GD algorithm. Then, 

SF7 nodes were separated using the GD approach. The process entered a loop starting at p = 1 and 

the corresponding weight factors w[x] were multiplied by the SF7 count (NSF max) to obtain the number 

of new SFs.  The loop iterated as the p-value decreased by 0.1 decrement. The weight factors were 

recalculated at each p-value and thus, the number of new SFs was obtained.  The loop continued 

until the p-value reached 0.1, marking the end of the algorithm. The resulting set of weight factors at 

the p-value equal 1 to 0.1 is presented in Table 2. 

Algorithm I: Geometric distribution 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

Input: Number of highest SF (NSF max) 

Define: Weight factor (w) 

              Geometric distribution factor (p) 

Initialize: p = 1 

Do 

     // Calculate the weight factor of each SF 

     w[x]  p * (1 - p) ^ (x - 1) let x = 1, 2, 3, 4, 5, 6 

     // Calculate the number of each SF  

     SF[y]  NSF max* w[x] let x = 1, 2, 3, 4, 5, 6 and y = 7, 8, 9, 10, 11, 12 

    // Return the new number of each SF  

    Return SF[7], SF[8], SF[9], SF[10], SF[11], SF[12] 

    p  p – 0.1  

While p > 0.1 // p starts at 1 to 0.1, with 0.1 decrement 

Table 2. The resulting set of weight factor (w) with p-value = 1 to 0.1. 

p-value w1 w2 w3 w4 w5 w6 

1 1 0 0 0 0 0 

0.9 0.90 0.09 0.01 0.00 0.00 0.00 

0.8 0.80 0.16 0.03 0.01 0.00 0.00 

0.7 0.70 0.21 0.06 0.02 0.01 0.00 

0.6 0.60 0.24 0.10 0.04 0.02 0.01 

0.5 0.51 0.25 0.13 0.06 0.03 0.02 

0.4 0.42 0.25 0.15 0.09 0.05 0.03 

0.3 0.34 0.24 0.17 0.12 0.08 0.06 

0.2 0.27 0.22 0.17 0.14 0.11 0.09 

0.1 0.21 0.19 0.17 0.16 0.14 0.13 

The complete implementation workflow is shown in Figure 6. Initially, nodes were classified 

according to sensitivity levels outlined in Figure 1. After applying the GD algorithm, the sets of 
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weight-classified SF nodes were input to the simulation to determine Data Extraction Rate (DER) 

values for probabilities ranging from p = 1 to 0.1. The p-value that produced the optimal SF and DER 

values was selected, and finally, the optimized SF values were applied to the nodes. 

 

Figure 6. GD algorithm-based SF assignment workflow. 

6. Geometric Distribution Algorithm Performance Assessment 

To assess the performance of the GD algorithm, we designed three experiments for network 

simulation with two node patterns: uniform random and fixed as depicted in Figures 3 and 4, 

respectively. Following this, we employed the LoRaSim simulator to generate the uniform random 

node pattern and to compute DER values for all experiments. Experiment 1 was the evaluation of the 

GD algorithm for both uniform random and fixed patterns. Experiment 2 was the comparison of the 

optimal SF assignment and corresponding DER values obtained from the GD algorithm and other 

previous works for both uniform random and fixed patterns. The parameters for experiments 1 and 

2 were configured according to the specifications outlined in Table 3. The third experiment was the 

comparison of the GD algorithm-based network performance of the fixed pattern with other previous 

works by considering key parameters namely, coverage area (2 to 5 km.), payload size (10 to 255 

bytes), and energy consumption with the simulation time from 1 to 12 hours.  

Table 3. Simulation parameters. 

Parameter Value 

Number of nodes 1,500 

Number of gateway 1 

Node transmitted power 14 dBm 

Simulation time 43,200 sec (12 Hours) 

Average sending message time 1,800 sec (30 minutes) 

Bandwidth 125 kHz 

Frequency (AS923) 923 MHz 

Path-loss model Suburban Hata-Okumura 

Payload size 255 bytes 

Coverage area 5 km 

7. Results and Discussion 

A. Experiment 1: Evaluation of the GD Algorithm for Uniform Random and Fixed Patterns 

By using the GD algorithm, the new SF assignment for both uniform random and fixed patterns 

are presented in Figures 7 and 8, respectively. For both patterns, the SF values are assigned across 

different probability values (p-value) ranging from 1 to 0.1. At p = 1, the SF distribution aligns with 

the default ADR scheme. As the p-value decreases, the number of SF7 nodes gradually separates into 

SF8-SF12, due to the weight factor (w).  
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Figure 7. SF assignment for the uniform random pattern using the GD algorithm. 

 

Figure 8. SF assignment for the fixed pattern using the GD algorithm. 

By decreasing the p-value, the DER values of both patterns increase until reaching the optimal 

DER value at p = 0.5 and then decrease monotonically as shown in Figure 9. The optimal DER value 

of the fixed pattern is approximately 73.5%, slightly better than that of the uniform random pattern 

(71.8%), and both DER values are clearly higher than the default ADR scheme. The numbers of new 

SFs for the uniform random and fixed patterns at p = 0.5 are shown as the bar graphs in Figures 7 and 

8, respectively. Note that, the optimal p-values and corresponding DER values might be different for 

different node distributions. 
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Figure 9. DER values after applying the GD algorithm to the fixed and uniform random patterns. 

B. Experiment 2: Comparison of the GD Algorithm with Previous Reported Algorithms 

In this experiment, the simulation was conducted to compare DER values between the GD 

algorithm at the optimal p = 0.5, the default ADR scheme [11], and previously reported algorithms 

namely, EXPLoRa [14], QCVM [19], and SD [20]. Tables 4 and 5 display the SF assignment for uniform 

random and fixed patterns, respectively. The result in Figure 10 clearly addresses a substantial impact 

of SF distribution on the DER value. Optimizing the SF distribution with the GD algorithm results in 

the overall highest DER at 4.8% and 14.3% improvement over the default ADR scheme for uniform 

random and fixed patterns, respectively. 

Table 4. SF allocation from the GD algorithm at p = 0.5, default ADR scheme, and previous 

algorithms for the uniform random pattern. 

Algorithm %SF7 %SF8 %SF9 %SF10 %SF11 %SF12 

Default ADR 70.00 16.53 13.47 0.00 0.00 0.00 

EXPLoRa 16.67 16.67 16.67 16.67 16.67 16.67 

QCVM 33.40 33.40 33.20 0.00 0.00 0.00 

SD 25.60 37.47 14.27 14.47 6.33 1.87 

GD  

(p = 0.5) 
34.73 33.13 24.60 4.07 2.07 1.40 

Table 5. SF allocation from the GD algorithm at p = 0.5, default ADR scheme, and previous 

algorithms for the fixed pattern. 

Algorithm %SF7 %SF8 %SF9 %SF10 %SF11 %SF12 

Default ADR 89.67 5.40 4.93 0.00 0.00 0.00 

EXPLoRa 16.67 16.67 16.67 16.67 16.67 16.67 

QCVM 33.40 33.40 33.20 0.00 0.00 0.00 

SD 35.20 32.73 17.33 12.67 1.33 0.73 

GD  

(p = 0.5) 
45.53 27.67 16.93 5.40 2.67 1.80 
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Figure 10. DER comparison between different algorithms for fixed and uniform random patterns. 

C. Experiment 3: Network Performance Evaluation of the GD Algorithm Based on Coverage Area, Payload 

Size, and Energy Consumption 

We aimed on assessing the GD algorithm on the expansion of the coverage area as it is a crucial 

factor influencing SF assignment [20,21]. By expanding the coverage area from 2 to 5 km (to reflect 

the actual farm area), the proposed GD algorithm achieved the DER of 74%, higher than other 

algorithms, as shown in Figure 11. The DER of the default ADR scheme also improved at 4-5 km due 

to more node allocation to SF8 and SF9.  

We also assessed the GD algorithm on the payload size, which plays an important role in 

defining the range of transmitted data. From Figure 12, a decline in DER as the payload size increases 

is observed for all algorithms. Remarkably, the proposed algorithm demonstrates notable 

improvement, surpassing the default ADR scheme by more than 13% at a payload size of 255 bytes. 

This finding indicates the potential of the GD algorithm to successfully carry the larger load over the 

air. 

The time-on-Air (ToA) and node power are also one of the important factors determining the 

energy consumption of the node, which after combining all nodes, amounts to the total energy 

consumption of the network. Note that, the energy consumption of gateway and servers are omitted 

here. The relationship between ToA and energy consumption (E), measured in joules, is represented 

by equation (16). Figure 13 displays the energy consumption when increasing the simulation time 

from 1 hour to 12 hours. Since ToA increases with the SF value, the SF assignments can then be used 

to justify the results. For EXPloRa where there are a greater number of large SF nodes, the energy 

consumption is clearly higher than other algorithms. On the other hand, the default ADR scheme 

offers the lowest energy consumption as almost 90% of the nodes are SF7. The proposed GD 

algorithm offers relatively the same energy consumption as the SD, but slightly higher than that of 

the QCVM due to neither SF10, SF11 nor SF12 were assigned for QCVM.  

𝐸 =
∑ (𝑇𝑎𝑖𝑟𝑡𝑖𝑚𝑒 × (𝑇𝑋𝑛𝑜𝑑𝑒 + 2) × 𝑉𝑆

𝑛=1 )

106
, (16) 

where  Tairtime is the time on air of the successfully sent node in seconds.  

TXnode is the transmission power (dBm) of the successfully sent node. 

V is the supplied voltage to the node (3 V) [2] 
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Figure 11. The DER values vs the coverage area for different algorithms. 

 

Figure 12. The DER values vs the payload size (Bytes) for different algorithms. 
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Figure 13. Energy consumptions from 1 hour to 12 hours of simulation time for different algorithms. 

8. Conclusions 

This research endeavored to enhance the performance of the LoRaWAN by addressing collision 

probability issues, specifically aiming to reduce instances of the same SF. Various algorithms 

employed in the past often incorporated RSSI optimization on random and normally distributed 

node patterns. Our contribution to this domain introduced a novel algorithm based on the geometric 

distribution (GD), where we applied this algorithm to real-world scenarios that possessed certain 

node patterns. Results from our study indicated that the proposed algorithm achieved significant 

improvements in both optimal SF assignment and DER values compared to previous algorithms. 

Specifically, the fixed pattern exhibited an impressive enhancement of 14.3%, while the uniform 

random pattern exhibited 4.8% enhancement over the default ADR scheme. 

Expanding the coverage area and increasing the package size further underscored the efficacy 

of the proposed algorithm, consistently yielding the highest DER values. However, it was important 

to note that achieving these improvements required allowing higher energy consumption since larger 

SF values were also assigned. 

Looking ahead, the GD algorithm emerges as a valuable tool for resource allocation, especially 

in scenarios, where there are mostly the same SF nodes in one area. This algorithm holds promise for 

optimizing resource distribution and finding the most efficient pathways. Furthermore, the 

application of this algorithm extends beyond LoRaWAN to other wireless communication 

technologies, including Sigfox, Wi-Fi, and 5G. The adaptability and effectiveness of the geometric 

distribution algorithm position it as a potential solution for future advancements in long range 

wireless communication optimization. 
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