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Featured Application: Optimization of premium food can production

Abstract: This research aims to propose a novel approach to evaluate and minimize the scrap rate in the
industrial production of premium food cans with distortion printing. Beyond cost considerations, a critical
aspect of modern food can manufacturing is the aesthetic quality of the graphical display. In addition to
traditional formability requirements, a waving requirement is defined. Detailed real production conditions are
provided and discussed. The material of interest is a double cold-reduced (DR) low-carbon steel sheet and
chromium-coated tin-free steel with a thickness of 0.16 mm. These sheets are laminated on both sides with PET
film before distortion printing on the exterior. A material parameter identification method is proposed and
illustrated to address the challenges in characterizing such a thin sheet. The thickness profile and flange length
are key criteria for this identification. Digital image correlation (DIC) and a microscope are used to measure
the thickness distribution and flange length. Within the manufacturing system, uncertainties arising from
material properties and forming processes can lead to scraps or defects. Finite element analysis (FEA) is
adopted for process analysis and validated with experiment. Uncertainty propagation via metamodeling,
employing radial basis function (RBF) neural networks, is adopted for the scrap rate evaluation. The study
concludes with process optimization recommendations to reduce scrap.

Keywords: waving; scrap rate; distortion printing; food can forming; uncertainty

1. Introduction

Metal packaging is gaining popularity due to its environmental benefits, being 100% recyclable.
Its ability to be sterilized with heat, cost-effectiveness, strength, and short filling time also enhance
its relevance. The most popular type of metal packaging is food cans, also known as sanitary food
cans. The ratio of oxygen transmission rates (ORT) and water vapor transmission rates (WVTR)
significantly impacts shelf life [1]. Metal cans provide a complete barrier against air and moisture,
allowing canned food to be stored for at least two years [2]. Cans increasingly involves combining
metal with other packaging materials, such as laminated steel with plastic film. A new PET-laminated
TFS sheet of low-carbon aluminum-killed steel for deep drawing processes in food cans has been
developed and utilized in industry [3]. There is an increasing demand among customers for premium
packaging solutions. Food can manufacturers have two primary labeling options: 1) paper labeling
and 2) distortion printing, as illustrated in Figure 1. Offset printing involves applying ink and varnish
to flat can sheets before the drawing and re-drawing (DRD) process.

(a)‘§-§-$é.
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Figure 1. Food can labels (a) paper labeling; (b) distortion printing.

Today manufacturing business operators are striving to enhance product quality and accelerate
the development of various technologies. Quality is one of leading criteria in a business success. Total
productive maintenance (TPM) is deployed inside the metal forming industry to improve metal
industry workstations and the overall equipment effectiveness (OEE) is evaluated in [4]. The deep
drawing process is crucial to the metal food packaging industry with a high production rate and
excellent dimensional accuracy. Utilizing a very thin steel sheet, which possess high hardness and
high yield strength, is a key aspect of this production.

Designing tooling and determining production parameters can be challenging due to the need
for extensive trial and error to achieve optimal tooling shapes and production conditions. Advanced
computer modeling to simulate metal forming behavior is beneficial in reducing the time and cost
associated with trial and error. Waving failure is a significant issue in distortion printing food cans,
whereas it is not a concern in traditional cans. Figure 2 shows an accepted can and a rejected can due
to waving defects. For general practice in industry, cans with a waving height greater than 1.0 mm
are rejected. Visual inspections in the production line have revealed a scrap rate of 1.59%,
significantly higher than the target of 0.25%. A high scrap rate can indicate lower production and
quality control %f:ficiency, adversely affecting production output and manufacturing costs.

(b)

Figure 2. Waving defects in food can production: (a) Accepted; (b) Rejected.

Finite Element Analysis (FEA) is an important tool for analyzing and designing the drawing and
redrawing processes. Discrepancies between FEA and experimental results can arise from numerical
errors in the FEA or changes in input variables. Numerous studies have utilized FEA to
deterministically solve sheet metal forming problems. For instance, the effects of tooling conditions
in the deep drawing process of C.R.1 steel cylindrical cups with an initial thickness of 0.9 mm are
studied using FEA and experiments in [5]. Forming optimization of ultra-low carbon steel with a
thickness of 0.7 mm via inverse evolutionary search is discussed in [6]. Optimization and tolerance
prediction of mild steel with thicknesses of 0.725 and 0.775 mm are illustrated using a response
surface model in [7]. For some issues with material models, such as 2090-T3 aluminum alloy with a
thickness of 1.6 mm, a strong asymmetry between tensile and compressive behaviors is shown in [8].
Dual-phase steel (DP600) with a thickness of 1.00 mm is experimentally investigated at large strain
in [9]. Recent interest has emerged in isogeometric algorithms for one-step inverse steel forming with
a thickness of 0.8 mm [10].

To improve quality, it is essential to account for uncertainty in the design process. Several studies
have addressed uncertainties in sheet metal forming. A methodology for reliability calculations of
structures to estimate the reliability of 0.81 mm sheet metal forming operations using forming limit
diagrams (FLD) to assess material breakage is presented in [11]. A metamodel of linear and quadratic
interpolation response surfaces to evaluate the reliability of the sheet metal forming process of an
austenitic stainless steel named HyTens 800 with a thickness of 1 mm using the LS-DYNA solver and
MCS is presented in [12]. MCS, the response surface method, and most probable point analysis are
used to quantify probabilistic characteristics of shape and dimensional errors in forging and extrusion
to minimize systematic errors, as presented in [13]. A comparison between stochastic and interval
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methods, two prominent uncertainty quantification techniques, to evaluate their impact on the
robustness and predictive accuracy of a sheet metal forming process simulation (specifically, the
springback of a simple flanging of 1 mm steel sheet) is presented in [14].

The uncertainty analysis of deep drawing of Aluminum alloy AA 5754-O with a thickness of 1
mm, using a quarter model of C3D8R, ABAQUS/Explicit solver, and surrogate model, is presented
in [15]. A procedure to evaluate the robustness of defect and cost predictions in quality inspections
of low-volume productions (e.g., a few tens per year of a hardness testing machine), addressing how
model uncertainties for defectiveness prediction can be assessed and their impact on selecting
effective and affordable inspection strategies, is presented in [16]. A procedure combining Response
Surface Methodology (RSM) with Finite Element Analysis (FEA) and Monte Carlo Simulation (MCS)
is applied to a real stamping process (LNE 380 steel transmission cross member) to optimize
experimental problems with multiple responses, incorporating uncertainties in empirical function
coefficients, as presented in [17].

Most literature focuses on steel with a thickness of approximately 1 mm (not a very thin sheet
like this work) and often disregards uncertainty in the process. This work focuses on a relatively new
material with a smaller thickness and uncertainty in real production. Also, this paper explores
options to reduce the scrap rate relevant to the industry. There are few works in the literature focusing
on new industrial food can production with distortion printing to evaluate and improve the scrap
rate under waving criteria and uncertainty. This paper subsequentially presents waving defect in
food can forming, material parameter identification and scrap rate optimization.

2. Waving Defect in Food Can Forming

The Materials and Methods should be described with sufficient details to allow others to
replicate and build on the published results. Please note that the publication of your manuscript
implicates that you must make all materials, data, computer code, and protocols associated with the
publication available to readers. Please disclose at the submission stage any restrictions on the
availability of materials or information. New methods and protocols should be described in detail
while well-established methods can be briefly described and appropriately cited.

The manufacturer of food can with distortion printing has serious concern about defects related
to the waving requirement. This section outlines the issues associated with distortion printing in food
cans, the can forming processes, the analysis of can forming, and the definition of waving failure.

2.1. Distortion Printing in Food Can

Recently, the premium can products industry, which relies on distortion printing, has raised
requirements beyond engineering functions. The DRD process is fundamental in manufacturing food
cans. The industry defines the product code as ABCxDEF. For example, 307x113 is a can with a
diameter of 307 (i.e., 3+ 07/16 inch) and a height of 113 (i.e, 1+13/16 inch). Currently, the factory
in this study produces DRD food cans follows: 307x113 (40%), 211x109 (20%), 300x103 (16%), 300x200
(14%) and others (10%). This study focuses on the 307x113 DRD as a case study.

Achieving a successful food can with distortion printing requires both the art and science of
forming. For the 307x113 DRD, an industrial guideline is shown in Figure 3 and includes the
following recommendations: To minimize the scrap rate, text should not be placed within 6 mm from
the bottom edge or within 8 mm from the top or seamed edge. Additionally, graphic designs
featuring text or straight lines in these areas are susceptible to distortion issues.

Bottom side

[SIDE)
30M1302)
Text Area 32x 265 mm. Seam(Top) side [SIDE]
Printing Area 46 x 265 mm. S<TEXT AREA>”

Figure 3. Guideline for design of distortion printing.
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Distortion printing can be analyzed by printing a grid pattern on a flat sheet and then forming
into the cylindrical shape of food cans. Grid technology is applied in the food can forming process to
produce new designs and prints. There are four stages in distortion printing: (1) a grid is printed on
a flat sheet and then a can is formed, (2) The distorted grid is carefully analyzed by measuring the
extent of distortion in each square to create a new distorted grid, (3) The new distorted grid is re-
printed, and then forming again (if it is not uniform, repeat the process), and (4) Once a uniform grid
pattern is achieved, the new results are used to create the distorted artwork required by the
customer’s design. The uncertainty is not taken into account here. Figure 4 shows the design process
on a sheet (36 cans per sheet). Grid adjustment can be performed using two methods: compensation
and rotation. Compensation involves pushing or pulling from the original grid. These grid
adjustment methods are used to avoid waving problems. In a real production, the scrap rate before
grid adjustment is 8.33%, or 150 scrap pieces from a test run of 1,800 pieces. After grid adjustment,
the scrap rate is decreased to 1.59%, or 5,649 scrap pieces from 356,229 pieces.

(@) (b) (o)

- e Line art

(d) (e)

Figure 4. Design process of distortion printing: (a) Flat sheet; (b) Drawing; (c) Redrawing; (d) Layout
of grid adjustment by rotation; (e) Layout of grid adjustment by compensation.

2.2. Can Forming Process

The deep drawing process is a forming technique that occurs under a combination of both tensile
and compressive conditions. In the metal packaging industry, deep drawing is typically carried out
using rigid tools, which consist of a punch, a die, and a blank holder. The can forming process begins
with blanking a flat sheet. After the blank is inserted, the blank holder closes, clamping the sheet
between the die and the blank holder. This process slows down the flow of the sheet while it is being
drawn, thereby preventing wrinkles from forming under the blank holder. The punch stretches the
sheet over the die radius and forms it in the die, with the necessary punch force continually increasing.
It is essential that the sheet metal is stretched as much as possible without reaching the material’s
limits. The cup then undergoes re-drawing, and the final step is to trim the excess.

DRD process is fundamental in manufacturing food cans. The process for the 307x113 DRD and
the relevant tooling are shown in Figure 5. It begins with blanking a flat sheet and then drawing a
cup. The re-drawing process shapes the final form, and the excess flange is trimmed. The initial blank
diameter is 157.60 mm, while the outer diameters of the drawing and re-drawing are 114.10 mm and
83.75 mm, respectively. The tooling material used is JIS SKD11.
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Figure 5. DRD process: (a) Blanking; (b) Drawing; (c) Redrawing; (d) Trimming; (e) Drawing tooling;
(f) Redrawing tooling; (g) Real production setup.

Lubricant plays an important role in the DRD process. In this production, a lubricant made from
white mineral oil is applied to both sides of PET-laminated tin-free steel sheets via rollers before
forming. To simulate the DRD process, the coefficient of friction (COF) is required. COF of the tin-
free steel sheet is measured by using a slip tester and a force gauge (Digicon, model FG-620SD), as
shown in Figure 6. The tester adheres to multiple national and international standards, including
ASTM D1894, the standard test method for COF of plastic film and sheeting. Measured COF of the
tin-free steel sheet after lubricant application is 0.03.
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Figure 6. Friction tester: (a) Setup; ( b) Force gauge; (c) Weight 2.157 kg.

2.3. Analysis of Can Forming

One of the most significant industrial advantages of the deep drawing process is its high
production rates. The success of FEA in the design and optimization of metal forming strongly
depends on its ability to accurately describe the material’s mechanical behavior. An FEA model needs
the following: raw material properties, forming process parameters (e.g., formability, earing and
waving evaluation, lubrication or surface properties, blank holder force, and tooling modifications),
and the desired shape of the product. This study experimentally investigates the effect of processing
and material conditions on food can distortion.

In this study, three-dimensional FEA is utilized. The geometry of the drawing and redrawing
processes is shown to be axisymmetric. The geometry of the FEA model is based on the tool set
drawings acquired from the actual process. The can forming process is simulated using a nonlinear
explicit finite element method, with the LS-DYNA solver adopted for this work. The formed part is
modeled as a half model for illustration purposes. The DRD process is shown in Figure 7.

(a) (b)

Figure 7. DRD simulation via FEA: (a) Drawing; (b) Redrawing.

Shell elements are used to model both the tooling surface and the blank. The tooling is modeled
as a rigid body, while the blank is deformable. The tooling speed is set at approximately 1,000 mm/s.
For illustration purposes, the formed part is modeled as a half model. A shell element with the
Belytschko-Tsay formulation, seven integration points across the thickness, and a shear correction
factor of 0.833 is adopted. The material model used is Barlat’89, with an exponent of 6.0 in Barlat’s
yield function. The material properties include a Young’'s modulus of 207 GPa, a tangent modulus of
100 MPa, a Poisson’s ratio of 0.28, and a mass density of 7.83 g/mm?. The PET-laminated tin-free steel
sheet is found to exhibit anisotropy based on tensile tests in Section 3.

Before using the FEA model developed in this section to further study the process, it must be
validated to ensure the accuracy of the simulation results. This validation involves running the FEA
model based on the actual process parameters used in the current production line.

2.4. Waving Failure Definition

The definition of waving is illustrated in Figure 8. Common waving locations in distortion
printing are found either on the sidewall of the food cans near the flange after re-drawing. Waving
can lead to customer complaints and claims. Despite implementing a modified design layout and
corrective actions to address these waving issues, the problem persists.
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Figure 8. Definition of waving.

This study also aims to define the waving value using FEA. The center of the half-model blank
is identified, with an initial radius of 78.8 mm. To define the waving value from material deformation,
a group of nodes with a radius of 72.74 mm (92.3% of the initial radius) is selected, as shown in Figure
10. To accurately capture the waving value, an evaluation of the number of nodes (3, 5, 9, and 17)
needed for the calculation is conducted. The distance range between 3, 5 and 9 nodes is
approximately the same at 0.09, while that of 17 nodes is larger at 0.21. In this study, the group of 17
nodes is deemed suitable for defining the waving value (Z and AZ), as shown in Figure 9.

Figure 9. Selected nodes used to define waving value.

All selected nodes have a similar radial distance from the origin. At the end of the forming
process, the Z-coordinates (vertical axis) of all selected nodes are retrieved for further calculation.
The waving value (AZ) is defined as the difference between the maximum and minimum Z values
from all nodes. To avoid overlapping, only five points are shown in Figure 10. Z1 represents the lower
level, while Z> represents the upper level. AZ: from Ziis always greater than AZ: from Z. For
example, at COF of 0.03 and BHF of 24,000 N, AZ: and AZ2 are 0.92 and 0.75 mm, respectively.
Consequently, only AZ from Ziis used for waving evaluation.

Figure 10. Nodes used to define the waving value (Z1, Z2 and AZ).
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3. Material Parameter Identification

This section focuses on material parameter identification, a crucial aspect of simulation. Steel for
can-making is supplied either as tin plate, which has a very thin layer of tin electro-deposited onto
both sides, or as tin-free steel, which contains no tin. The material used in this study is a tin-free steel
sheet (SPTFS in JIS G 3315: chromium-coated tin-free steel). Tin-free steel is electrolytic chromium-
plated steel consisting of a thin layer of chromium and a layer of chromium oxide deposited on a
cold-rolled sheet steel base (black plate), giving it a beautiful, lustrous metallic finish on both sides.
Tin-free steel is superior to tinplate for lacquer and plastic film applications, as it does not peel off,
whereas tinplate is more prone to lacquer and plastic film peeling. This section includes an
investigation of material properties via tensile tests, parameter identification via thickness
distribution, and parameter identification via flange length.

3.1. Material Tests

The material used is a tin-free steel sheet known as SPTFS MR DR-8 (JIS G 3315). This tin-free
steel sheet has a thickness of 0.16 mm and a hardness of DR-8. It is laminated on both sides with PET
film, with a thickness of 13 microns on the outside and 20 microns on the inside. This material offers
superior performance in terms of resource conservation, energy efficiency, and environmental
protection. The doubly reduced (DR) temper is produced to achieve extremely high yield strength in
chromium-coated tin-free steel, as indicated by the Rockwell superficial hardness values (HR3TSm).
Using the DR method, the base metal’s thickness is reduced a second time on a temper mill after
annealing, increasing material strength while decreasing elongation.

In this application, there are two types of low-carbon steels: 1) Aluminum-killed steel (Al-
Killed), which is deoxidized with aluminum during production to remove carbon monoxide,
resulting in lower oxygen content and improved surface finish, and 2) Super Ultra Low Carbon
(SULC) steel. The cost of SULC is approximately 2% higher than Al-Killed steel. The main difference
between these steels, based on the chemical composition of tin mill black plate (TMBP), is the carbon
content. Al-Killed steel has a higher carbon content (max 1,600 ppm), while SULC steel has a lower
carbon content (max 60 ppm). Other elements are largely the same, with Si=400, P =200, S =500, and
Mn = 6,000 (max).

The material properties are not uniform in all directions (anisotropy). Consequently, distortion
printing results in waving, leading to a relatively high scrap rate in production. Tensile tests of
material properties are conducted in three directions (RD(0°), DD (45°) and TD (90°)) at a speed of 5
mm/min using a Shimadzu Model Autograph AG-X plus 50 kN (Lab3) at 25°C and 51% RH. The test
results are averaged from five samples per direction. Both Al-Killed steel and SULC steel have similar
yield points and tensile strengths, as shown in Table 1. SULC offers better earing than Al-Killed, as
illustrated in Figure 11. Therefore, Al-Killed steel is suitable for lacquering, while SULC is more
suitable for distortion printing.

Table 1. Mechanical properties of Al-killed steel and SULC steel (from Lab3).

Al-Killed steel SULC steel
Description (Lacquering) (Distortion printing)
RD DD TD RD DD TD
1. Yield point (MPa) 626 642 672 613 626 662
2. Tensile strength (MPa) 626 654 698 614 640 677
3. R value 0.09 0.15 0.08 0.10 0.13 0.15

4. Elongation (%) 1.0 2.0 2.2 1.9 1.8 1.9

d0i:10.20944/preprints202407.1994.v1
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Figure 11. Earing and Flange length from different materials: (a) SULC; (b) Al-Killed.

In the context of distortion printing, further investigation of SULC is required. Some test results
are inconsistent with common standards, such as unusually low R values. Due to this issue,
additional tests from two laboratories are engaged. The averaged results from the three laboratories,
across three directions, are shown in Table 2.

Table 2. Mechanical properties of SULC obtained from 3 laboratories.

Averaged results

Description Labl Lab2 Lab3
RD DD TD RD DD TD RD DD TD
1. Yield point (MPa) 448 423 427 500 519 539 613 626 662
2. Tensile strength (MPa) 468 440 434 517 534 567 614 640 677
3. R value A5 .10 .17 40 54 60 .10 .13 .15
4. Elongation (%) na n/a n/a n/a na na 19 18 19

The yield point and tensile strength values obtained from the three laboratories (Lab 1: ASTM
ES8, Lab 2: DIN 50114, and Lab 3: JIS no.5) show a significant discrepancy. It is important to note that
the thinness of the steel sheet may have contributed to these variations, as most testing apparatus are
designed for materials with a thickness of approximately 1 mm.

Figure 12 displays the samples subjected to tensile tests in three directions from the three
laboratories. The breakage exhibits minimal elongation, and necking is negligible, raising concerns
about the accuracy of these tests, particularly R-value at 5% strain. The subsequent sections address
the material parameter identification method proposed in this study. The normal anisotropy ratio (R)
is an averaged one from (R00 + R90 + 2R45)/4. While the planar anisotropy parameter (4R) is
defined as (R0O + R90 — 2R45)/2. It reflects earing behavior.

Labl@ RD (0°) Labl@ DD (45°)
Labl@ TD (90°)
Lab2@ RD (0°) Lab2@ DD (45°)

Lab2@ TD (90°)
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Lab3@ RD (0°) Lab3@ DD (45°) Lab3@
TD (90°)

Figure 12. Samples after tensile tests for 3 directions from 3 labs.

3.2. Parameter Identification via Thickness Distribution

This section demonstrates the use of inverse analysis to identify the material parameter,
specifically the normal anisotropy ratio (R). The thickness distribution, as shown in Figure 13, serves
as the primary criterion. While the initial sheet thickness is assumed to be constant, variations occur
in certain areas due to the forming process.

Figure 13. Thickness measurement locations on the side-wall.

The thickness distribution is examined through a cross-sectional analysis. Specimens are
prepared by molding them with resin. Samples are sectioned in three directions (RD, DD, and TD).
The molded specimens are ground and polished to reveal the thickness profiles, as shown in Figure
14. A digital microscope (Olympus, Model DSX500-MSU) with a maximum magnification of 250x,
along with an image analysis software, is used to measure the thickness values at nine different
locations per direction. For each location, three measurements are taken, and the average value is
used to represent the thickness at that location.

(@) (b) (©

Figure 14. Thickness measurement: (a) Molded specimens; ( b) 250x image; (c) digital microscope.

Digital Image Correlation (DIC) is the second technique used to obtain thickness distribution.
DIC evaluates the surface strain levels of sheet metal parts after forming. Prior to forming, laminated
tin-free steel blanks undergo grid marking using offset printing with a dot pattern (dot diameter of
1.5 mm and spacing of 2.0 mm), as shown in Figure 15.

After forming, the laminated tin-free steel sheet is recorded from various viewing angles using
the handheld ARGUS system, enabling the measurement of principal strains. The results provide
strain distributions on the parts, including major and minor strains. ARAMIS sensors measure
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statically loaded specimens and parts using a contact-free, material-independent method based on
the principle of DIC. Thickness is determined by the major and minor strains, assuming the constant
volume deformation, at RD, DD, and TD at nine different locations per direction. The thickness is
calculated using the relationship t = fo-exp(er), where ¢ is thickness, fois base steel thickness of 0.16
mm, major strain (€1), minor strain (¢2), €+ = - (e1+€2) as shown in Figure 16.

4.50 mm

(a) (b)

|
gt

)t

(©) (d) (e)

Figure 15. DIC measurement: (a) Setup; ( b) Grid configuration; (c) Flat sheet; (d) Drawing; (¢) Redrawing.
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Figure 16. Strain distribution from DIC: (a) Major strain after drawing; (b) Minor strain after drawing;
(c) Major strain after redrawing; (d) Minor strain after redrawing.

The thickness distribution at nine locations from ten samples on the can wall, obtained through
both microscopy and DIC, is compared and presented in Figure 17. The results from these methods
show negligible differences, consistent with trend in [18].
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Comparison of Microscope and DIC measurement
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Figure 17. Comparison of microscope and DIC measurement.

The thickness measurements at the nine locations are further analyzed using the Sum of Squared
Error (SSE), also known as the residual sum of squares, which represents the difference between the
experimental values and FEA values. A lower SSE indicates a better agreement with the experimental
data.

Figure 18 shows SSE thickness in relation to R (dependent variables ranging from 0.3 to 0.9). It
indentifies an optimal R value at 0.5 in FEA for die radius of 1.5 mm and COF of 0.03 as independent

variables.
SSE Thickness
0.000250
§ 0.000200
-2 0.000150
£ 0.000100
& 0.000050
% 0.
0.000000
0.2 03 0.4 05 06 07 08 09 1
R

Figure 18. SSE average thickness as a function of R.

Following the determination of R, a comparison of the average thickness distribution on the can
wall between experimental results (averaged from Microscope and DIC) and FEA (with R at 0.5,
COF at 0.03, BHF at 16,000 N) is shown in Figure 19. The findings indicate that FEA can accurately
predict the average thickness distribution, showing a good agreement with the experimental data.
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Thickness Distribution from Experiment and FEA
0.170

0.168
0.166
0.164
0.162
.2 0.160

Thickness (mm)

0.158

0.156

=@=FExperiment (Averaged) ==fe=FEA
0.154

P1 P2 P3 P4 P5 P6 P7 P8 P9

Measurement Position

Figure 19. Comparison of averaged thickness distribution from Experiment and FEA.

3.3. Parameter Identification via Flange Length

To identify AR, the flange length of the can in different direction is used. All cans are marked to
indicate RD. The flange length at five locations after re-drawing from the experiment is measured
using a digital microscope (Keyence, Model VHX-7000) with a maximum magnification of 30x. These
five locations for SULC and Al-killed are shown in Figure 20 (labeled as follows: 1 =RD, 2 =22.5°, 3
=DD, 4=67.5° and 5=TD).

(@) (b)

Figure 20. Flange length measurement locations: (a) SULC; ( b) Al-killed.

From 10 samples of each type of steel (Al-killed and SULC), the average flange length after re-
drawing at five locations is presented in Figure 21. Al-killed steel exhibits shorter and more
nonuniform flange lengths compared to SULC, with ranges of 1.24 mm for SULC and 1.76 mm for
Al-killed. For distortion printing purposes, SULC is preferable.
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Flange length from SULC and Al-Killed

& W.
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Figure 21. Averaged flange length from SULC and Al-Killed.

To further investigate production variations, a larger sample size of 1,800 samples are analyzed.
These samples are categorized into four groups: G1 (poor, waving height > 2.0 mm), G2 (fair, waving
height 1.1 - 2.0 mm), G3 (good, waving height 0.5 - 1.0 mm), and G4 (excellent, waving height < 0.5
mm). Experimental measurements are conducted using a microscope. The flange lengths obtained
from each group are presented in Figure 22. The results indicate the following distribution: G1
(waving height > 2 mm, 0.4%), G2 (waving height 1.1 - 2.0 mm, 1.5%), G3 (waving height 0.5 - 1.0
mm, 55.56%), and G4 (waving height <0.5 mm, 42.85%). G4 is selected to represent the standard case
for further analysis.

Flange length from waving grade G1 to G4
8.00
7.00

6.00 0-----‘—”"ffj:::::f‘-.~.~\

= Po———— §
= 5.00 e

4.00 =
& 3.00
2.00
1.00
0.00

mm)

leng

=@=—\Vaving G1 ==lll=\Naving G2 Waving G3 Waving G4

Flang

P1 P2 P3 P4 P5

Measurement Position

Figure 22. Comparison of flange length distribution between waving grade G1 to G4.

FEA with die radius of 1.5 mm, COF of 0.03, R of 0.5 and AR value of -0.06 and 0.06 are
compared with experimental results (waving G4) in Figure 23. The trend shows that AR at -0.06 gives

a better agreement with the experiment in terms of the trend. Further parameter adjustments could
improve the predictive accuracy.
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Flange length between Experiment and FEA (AR of -0.06 and 0.06)
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Figure 23. Flange length distribution from Waving G4 and FEA (Difference of AR).

FEA with die radius of 1.5 mm, R of 0.5, AR of -0.06, BHE of 24,000 N and COF of 0.03 and 0.06
are compared with experimental results (waving G4) in Figure 24. A higher value of COF results in a
greater restraining force leading to a greater flange length. However, the waving values remain
largely unchanged (1.19 and 1.06 for COF = 0.03 and 0.06, respectively).

Flange length between Experiment and FEA

7.00 ././.\-\.
g
<
oD
)

Experiment (Waving G4) =@=FEA (BHF 24,000 N and COF 0.03)
=@=FEA (BHF 24,000 N and COF 0.06)

P1 P2 P3 P4 P5

Measurement Position

Figure 24. Flange length distribution from Waving G4 and FEA (Difference of COF).

FEA with die radius of 1.5 mm, R of 0.5, AR of -0.06, COF of 0.06 and BHF of 16,000 N and
24,000 N are compared with experimental results (waving G4) in Figure 25. A higher value of BHF
results in a greater restraining force leading to a greater flange length. However, the waving values
remain largely unchanged (1.09 and 1.06 for BHF = 16,000 and 24,000 N, respectively).
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Flange length between Experiment and FEA
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Figure 25. Flange length distribution from Waving G4 and FEA (Difference of BHF).

4. Scrap Rate Optimization

All production processes exhibit some degree of variation, which can lead to scrap or defects in
areal DRD production. In can manufacturing systems, these uncertainties arise from various sources.
Once these sources are identified and defined, the uncertainty of the forming process can be directly
investigated using MCS. However, MCS is resource-intensive. To mitigate this, a metamodel can be
employed to reduce the cost of MCS, allowing for the evaluation of the scrap rate. Additionally,
process improvements are proposed to enhance the scrap rate. The workflow of this study is
proposed and shown in Figure 26. The forming process, waving failure definition, distortion printing
design, and material testing work together to create forming modeling. The model interacts with
material parameter identification until the criteria are met. The waving evaluation is incorporated as
part of the objective function. Variation is identified for uncertainty propagation, allowing the scrap
rate to be evaluated and optimized.
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Figure 26. Workflow of the proposed method for scrap rate optimization.

4.1. Uncertainty Propagation via Metamodeling

The approach of uncertainty propagation begins with identifying parameters that exhibit
variation. Assuming the tooling configuration is robust or somewhat rigid, this study focuses on five
parameters: COF, R, AR, 6, and BHF. The R values are defined as follows: R45 =R —A R/2, R90 =
R+ 6, and ROO = 2R + § — R90. The waving value can be obtained through FEA. While MCS can
directly investigate the uncertainty of the forming process, using FEA for uncertainty propagation is
resource-intensive. Therefore, metamodeling with Latin hypercube sampling (LHS) is adopted to
make MCS more practical.

LHS is a statistical method used to generate a near-random sample of parameter values from a
multidimensional distribution. This sampling method is employed to construct computer
experiments or for MCS, ensuring that all portions of the uncertain parameters are represented. LHS
is utilized to create a sampling space for metamodeling. In MATLAB, LHS can be implemented using
the command lhsdesign(n,p), which returns a Latin hypercube sample matrix of size n-by-p. In this
work, n = 40 and p = 5. Once the range of each parameter is defined, the absolute value of each
parameter can be obtained. FEA models are then created and evaluated according to the sample
matrix. The results are applied to RBF to create a metamodel. The RBF implementation in MATLAB
can be referenced from [19]. Uncertainty propagation is a method that transmits the uncertainties of
independent variables through a model to estimate the uncertainty of the response. In this work, the
response is the waving value.

The effect of uncertainty from the parameters of interest is investigated using MCS. In this study,
MCS with 100,000 samples is conducted in MATLAB. These samples are analyzed to create the
probability density function (PDF). The scrap rate (SR) is defined as the ratio of the number of
prediction samples with a waving value greater than 1.0 mm. Five parameters are used to define
variation in this study. Let N(m,0) represent a normal distribution with the mean () and the standard
deviation (o). The parameters under uncertainty are as follows: The friction coefficient (COF) is

d0i:10.20944/preprints202407.1994.v1
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defined by N(0.03, 0.003). R is defined by N(0.5, 0.05). AR is defined by N(-0.05, 0.006). 6 is defined
by N(-0.02, 0.003). And the blank holder force (BHF) is defined by N(20,000, 3,000).

4.2. Process Improvement for Scrap Rate

The DRD process is executed using the relevant tooling discussed in Section 2.2. The punch is
shaped according to the customer’s specifications for the base of the part. The DRD process involves
complex material flow and force distributions, with the key to successful operation being the ability
to control the metal’s flow. Several factors influence the extent of stretch and flow during the metal
forming process, including the mechanical properties of the metal, the geometry of the part being
formed, friction, and processing conditions.

According to the simulation results, a significant factor in the DRD process is the blank holder
radius. It is proposed to explore the blank holder lip (adding radius to the blank holder) as shown in
Figure 27. This exploration is expected to improve the material flow.

%5 . Blank holder radius
>>>> > ; Blank holder radius
>>>> 0%

o« R>
>>>>)

>
XX

555 $o%
>>>>>)>)

=

>)) )

(a) (b)

Figure 27. Tooling modification at blank holder radius: (a) drawing; (b) redrawing,.

There are four scenarios, each defined by the blank holder radius at drawing and redrawing:
(R1,R2). The scenarios are as follows: Case 1 is (1.5, 1.5). Case 2 is (2.0, 2.0). Case 3 is (2.0,1.5). And Case
4 is (1.5, 2.0). The design space and the waving value from four scenarios are shown in Table 3. These
scenarios are evaluated using the uncertainty propagation method presented in the previous section.
The results of interest are SR and PDF of the waving, as shown in Figure 28.

Table 3. The design space and corresponding waving value.

# COF BHF r00 r45 r90 casel case2 case3 case4

1 0.044 21736 0482 0482 0458 0558 0436 0475 0595
2 0.043 16136 0472  0.538 0452  1.220 1.126 1.157 1.250
3 0.011 18536 0475 0.508 0508  0.544  0.431 0.502  0.565
4 0.049 16936 0485 0485 0.535 0398 0315 0374  0.407
5 0.031 17464 0458 0458 0545 0490 0418 0439  0.509
6 0.018 23064 0452 0452 0468 0305 0.231 0.273  0.360
7 0.021 22000 0488 0498 0.515 0397 0286 0309  0.402
8 0.024 18800  0.402  0.548 0.502  1.504 1.395 1.435 1.530
9 0.053 23336 0455 0.545 0455 1.292 1.224 1.252 1.348
10 0.056 16400 0452 0528 0492 0976  0.834  0.895 1.067
11 0.028 19064 0465 0465 0475 0377 0239 0292 0411
12 0.054 19864 0418 0525 0.532  1.000 0.809  0.889 1.059
13 0.059 22536 0472 0472 04838 0497 0423 0433 0517
14 0.023 23600 0425 0.535 0.505 1.300 1.215 1.257 1.395
15 0.046 17200 0455 0455 0478 0550 0415 0454  0.600
16 0.013 20400 0.445 0518 0518  0.841 0.724  0.753 0939
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17 0.016 19600 0432 0.542 0485 1.226 1.150 1.211 1.329
18 0.041 21464 0415 0532 0522 1.063 0955 0.994 1.116
19 0.038 22264 0488 0488 0.525 0370 0312 0343  0.397
20 0.058 22800 0462 0505 0.528 0.710 0.650  0.665  0.745
21 0.029 18264 0472 0515 0498 0.685 0573 0592  0.724
22 0.014 21200 0468 0468 0465 0340  0.281 0.338  0.381
23 0.048 20936 0492 0492 0482 0539 0421 0.455  0.557
24 0.051 18000  0.468 0495 0542 0530 0433 0475 0.566
25 0.039 16664 0462 0462 0472 0422 0321 0.340  0.465
26 0.033 20664 0418 0.522 0.538 1.011 0.825  0.851 1.023
27 0.036 23864 0475 0475 0512 0421 0352 0392 0425
28 0.026 19336 0478 0478 0.548 0424 0354 0387  0.427
29 0.034 20136 0512 0512 0462 0580 0524 0552 0.600
30 0.019 17736  0.502 0502 0495 038 0307 0325 0.397
31 0.046 18904 0.511 0514  0.461 0.698  0.609  0.656  0.752
32 0.036 17104 0456 0456 0.529 0392 0365 0379 0412
33 0.057 22104 0491 0511 0486  0.657 0582  0.611 0.711
34 0.054 21904 0499 0499 0476 0582 0552 0569  0.684
35 0.023 23504 0486 0489 0.536 0330 0297 0314 0.340
36 0.029 21104 0406 0531  0.531 1.150 1.066 1.080 1.208
37 0.031 22704 0446 0526 0.501 0970  0.836  0.850 1.010
38 0.037 17504 0479 0479 0479 0477 0298 0347  0.492
39 0.019 21304 0401 0529 0.541 1.244 1.128 1.174 1.311
40 0.041 16704 0496 0496  0.491 0.481 0354 0411 0.512

Uncertainty from these parameters affects SR. COF and BHF may vary due to process control,
while the R-value, a material property, fluctuates during manufacturing. The R-value significantly
impacts SR due to the nature of the waving. The shape of the PDF from these scenarios is somewhat
normally distributed, assuming the inputs follow a normal distribution. The behavior of the input
parameter variations depends on real system observations and process control capabilities.

The predicted SR of 7.9% in Case 1 is similar to the 8.3% obtained in the original case without
the compensation and rotation techniques presented in Section 2.1. Case 2 offers the best scrap rate
value, with an estimated SR of 1.6%, although this is still higher than the industry-desirable rate of
0.25%. In real production, techniques such as compensation and rotation, mentioned in Section 2.1,
are useful for reducing graphical distortion. By analogy, similar improvements could reduce the
predicted SR from 1.6% to an even lower value. However, this study focuses on material flow during
the forming process, and such graphical techniques do not impact this evaluation. Additionally, Case
3 may be preferable for industry since the final part shape remains unchanged.
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Figure 28. scrap rate: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

Figure 29 presents an FEA prediction based on the nominal values in Case 2. The improved
thinning distribution, observed through reduced deformation and less thinning, indicates a positive
impact. Future work could explore and implement further improvements to enhance SR.

T

(b)

Figure 29. Nominal thinning prediction: (a) before modification; (b) after modification.

5. Conclusions

The industrial production of food cans has evolved from traditional labeling to premium cans
with distortion printing, which have different quality requirements. In addition to traditional
formability, waving is now a critical quality requirement. To save materials, modern food cans use
stronger materials and a thinner sheet. This study utilizes a double cold-reduced (DR) low-carbon
steel sheet and chromium-coated tin-free steel with a thickness of 0.16 mm. An FEA model is
developed to simulate the forming process, and a material parameter identification method is
proposed and illustrated, achieving a good agreement with real-world data. In response to real
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manufacturing processes, the scrap rate is the key performance index. This work presents an
uncertainty propagation method to estimate the scrap rate in can forming under waving
requirements, addressing both uncertain parameters and a large number of design variables. Scrap
rate optimization is conducted, and several possible scenarios are proposed and evaluated using the
uncertainty propagation method. The predicted results in the base case show a good agreement with
observations from real production. Recommendations to improve the scrap rate are also proposed.
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