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Abstract: This work studies how the Elo rating system can be applied to score-based sports, where it’s gaining

popularity, and in particular for predicting the result at any point of a game, extending its statistical basis to

stochastic processes. We derive some new theoretical results for this model and use them to implement Elo ratings

for basketball and soccer leagues, where the assumptions of our model are tested and found to be mostly accurate.

We showcase several metrics for comparing the performance of different ratings systems and determine whether

adding a feature has a statistically significant impact. Finally, we propose an Elo model based in a discrete process

for the score that allows us to obtain draw probabilities for soccer matches, and has a performance competitive

with alternatives like SPI ratings.

Keywords: rating systems; Elo; stochastic processes; sports forecasting

1. Introduction

Rating systems track and predict the performance of competitors in pairwise zero-sum games.
They were initially developed to objectively measure the strength of chess players, with the first
successful system proposed by Arpad Elo in 1960, and adopted by the United States Chess Federation
(USCF) adopted it to replace the more problematic Harkness rating system. The International Chess
Federation (FIDE) also started publishing ratings of its players in 1970, and continues to publish them
today. The Elo rating system, or variants of it, are also used by most chess websites, where users are
automatically matched against other players of similar strength, as well as by federations of go and
scrabble players, and several videogames.

The motivation, mathematical basis and problems of the elo rating system are explained in detail
in Elo’s book [2], and the academic literature is summarized in [1]. The system gives each player a real
parameter called their rating, and defines an algorithm to update it with the result of each new game.
Winning a game increases the player’s rating, and losing decreases it, but the increase depends on the
rating of the rival. This allows for the ratings to change as the strength of the players also does. More
sophisticated systems like glicko, proposed by Mark Glickman [3], include two parameters for each
player, representing the strength and its variability, to allow for players gaining strength more quickly
than others.

In his thesis, Glickman also extends Elo ratings to sports like American Football to make predic-
tions about the score (not just the result), and more recently, the idea of applying elo ratings to team
sports has gained popularity. For instance, fivethirtyeight.com has been keeping computing the ratings
of NBA teams since 2014, and other websites like eloratings.net do the same for national soccer teams.

Our contributions are a more formal study of the model underlying the Elo system, with a few
results regarding unbiased estimators for the ratings that are used in our computational analysis of
league games. We derive how the natural extension of the Elo model for games involving a scoreboard
can be used to predict the result during the game, and develop a systematic system for evaluating
different systems.

Finally, we show how a discrete stochastic process can be used to model the score, and integrated
into a novel type of Elo rating system. For comparison, we implement the rating system behind Nate
Silver’s soccer-specific SPI ratings, and show that our system has similar predicting power for the
result of the games, despite only tracking one parameter for each team.
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The remainder of this paper is organized as follows: Section 2 recalls the main aspects of the
(static) Elo rating system. The proposed stochastic extensions of the Elo system are then introduced in
Section 3. Their performance at predicting the results of team sports, namely basketball and soccer, is
analyzed through the computational study presented in Section 4. Finally, Section 5 is devoted to shed
conclusions and expose possible lines of future work.

2. Preliminaries

Although the Elo system has been extensively studied, it’s worth going through its mathematical
and statistical basis in order to see how its assumptions can be extended to stochastic processes later.
We also go through some basic accuracy metrics that can be used to asses its performance, and a
statistical estimator to obtain ratings for players without a preexisting rating.

2.1. The Elo Rating System

Elo’s rating system assumes that in a game between two players A and B, the result can be
expressed giving points pA, pB ∈ [0, 1] to A and B respectively so that pB + pA = 0. The most simple
case is a game with two results, in which pA is 1 if A wins and 0 if B wins, but in chess, a draw is
represented by pA = pB = 1

2 , since, in traditional chess tournaments, the player with the higher
number of wins plus half the number of draws wins. Then, if A and B respectively have Elo ratings rA
and rB, the updated ratings after the game are given by

r′A := rA + K(pA −E[pA|rA, rB]) and r′B := rB + K(pB −E[pB|rB, rA]) (1)

where E[pA|rA, rB] is the expected score of player A in a game against B, given by

E[pA|rA, rB] := FX(rA − rB) (2)

Here, K is a positive constant, and FX is the distribution function of some random variable X
with mean zero. The distribution function of X must also be symmetrical around zero so that
E[pA|rA, rB] + E[pB|rA, rB] = 1. X was originally a normal variable, but it was later changed to
follow a logistic distribution in the FIDE’s ratings. This has been argued to produce better predictions
[2, ch. 8.41], and it also leads to an explicit and more meaningful expression for E[pA]. In fact,
sometimes the update rule is given simply as

r′A := rA + K
(

pA − 1
1 + ec(rA−rB)

)
= rA + K

(
pA − arB

arB + arA

)
(3)

for some c = log(a) ∈ R+.

Figure 1. Expected score versus rating difference.
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It’s also possible to update the ratings with the results of a set of matches (for instance the results
of a tournament). Given a sample M = {mk = (ak, bk, pa

k, pb
k)} of matches with n intervening players

i = 1, . . . , n, where the k-th match is between players ak and bk and ends with scores pa
k for ak and

pb
k = 1 − pa

k for bk, and given initial ratings R := (r1, r2, . . . , rn), we similarly compute:

r′i := ri + K · ∑
k|ak=i

(pa
k −E[pa

k|R]) + K · ∑
k|bk=i

(
pb

k −E[pb
k|R]

)
(4)

Obviously, if a player outperforms their expected score, his rating increases, and otherwise it decreases,
but the total sum of ratings doesn’t change, as we will see later. However, before discussing the update
rule, we need to review the model where the expected score originally comes from, which we will refer
to as the static Elo model.

2.2. Basis of the Static Elo Model

The difficulty in rating chess players versus, for instance, olympic runners, is that in the latter
sport there is a magnitude, the finish time, which doesn’t depend on the rivals. For instance, taking a
weighted mean of the latest times of each athlete would be enough to compare them, and objectively
establish which are better and by how much.

However, Elo considers [2](ch. 8.23) what happens if we don’t know the finish times, and can
only compare athletes by looking at who finishes first in head to head races. If the finish times of
runners A and B follow distributions TA ∼ N(µA, σ2) and TB ∼ N(µB, σ2), and are independent, then:

P[A wins] = P[TA < TB] = P[TA − TB < 0] = Φ
(

µB − µA√
2σ2

)
(5)

In general, if the times follow the same continuous distribution Y with different means, i.e.
TA ∼ Y + µA and TB ∼ Y + µB, we can define X = TA − TB + µB − µA and

P[A wins] = P[TA − TB < 0] = FTA−TB(0) = FX(µB − µA) (6)

which is exactly Eq. (2) for ri = −µi (note that the lower the time, the better the athlete, and the higher
the rating should be). Also, by definition X has mean zero and follows a symmetrical distribution.
Therefore, Elo’s system simply tries to estimate those underlying means µA, µB from several match
results and a given FX .

It also follows that FX(µA − µB) = FX((µA + h)− (µB + h)), so the µi can only be determined up
to addition of a constant (we can only estimate their pairwise differences). Finally, FλX(λµA − λµB) =

FX(µA − µB), so scaling X doesn’t affect the model either (only scales the ratings). This means that
both the average of the ratings and the variance of X are an arbitrary choice, and only the shape of FX
affects the behavior of the model.

Traditionally, 1500 is chosen as the average rating [1](p. 621) although Elo’s initial choice was 2000
as the midpoint and σX = 200

√
2 ≈ 282.84 [2](ch. 8.21). This was replaced by the logistic distribution

FX(x) =
(

1 + 10x/400
)−1

, which has a similar standard deviation of 400π
log(10)

√
3
≈ 315.09.

2.3. Statistical Inference in the Static Model

For the model presented above, the next logical step is to estimate the ratings of the players given
a sample of matches (for instance a tournament). Again, we denote the sample by M = {m1, . . . , m|M|}
with mk = (ak, bk, pa

k, pb
k), and if player i played match k, we will use as shorthand pi,k = pa

i if i = ak
and pi,k = pb

i if i = bk. We also denote the indices of games played by j with Mj := {1 ≤ k ≤ |M| : j =
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ak or j = bk}. Then, an interesting estimator R̂ = (r̂1, . . . r̂n) is the one that reduces to zero the errors ε j
defined by

ε j(M, R̂) := ∑
k|ak=j

(pa
k −E[pa

k|R̂]) + ∑
k|bk=j

(pb
k −E[pb

k|R̂]) =: ∑
k∈Mj

(pj,k −E[pj,k|R̂])

As we will see later, this estimator is related with the adjustment formula in Eq.(4), and in
particular, if it exists, it’s a fixed point when adjusting with that same sample M:

r̂j = r̂′j = r̂j + K ∑
k∈Mj

(pj,k − E[pj,k|R̂]) ⇐⇒ 0 = ∑
k∈Mj

(pj,k − E[pj,k|R̂]) = ε j

In fact, given a sample with n players, there are n − 1 errors to minimize (since they add up to
zero) and n − 1 ratings to adjust (since the sum doesn’t matter), so we should expect the estimator with
zero error to be unique, and thus the only fixed point of the adjustment formula. In Appendix A, we
characterize it’s existence and prove uniqueness in the case that it exists. Convergence is easy to see for
the case of two players i and j, because if the results of a game follow Elo’s model, i.e. Eq.2, and r̂m

j , r̂m
i

are the estimators produced by the sample of the first m games, then by the law of large numbers

ε j = 0 ⇒ FX(r̂m
j − r̂m

i ) =
1
m

m

∑
k=1

FX(r̂m
j − r̂m

i ) =
1
m

m

∑
k=1

pj,k
a.s.−−−→

m→∞
E[pj,k] = FX(rj − ri)

and since FX is continuous and has an inverse, r̂m
j − r̂m

i converges to rj − ri. Note that if the average

estimated rating is the same at every step m, then r̂m
j

a.s.−−−→
m→∞

rj + C for every j. Therefore, when we

look for numerical methods to compute it, it makes sense to keep the average 1
m ∑n

j=1 r̂j constant, and
only worry about convergence of the pairwise differences.

Finally, there’s another natural way to estimate the ratings for a sample, if X is a logistic variable
and there are only two results in the game (pA ∈ {0, 1}). In that case, the sample can be encoded as
a set of independent variables X1, ..., Xn where X j

k = 1 if j = ak, X j
k = −1 if j = bk, and otherwise (if

k /∈ Mj) X j
k = 0. The static model then gives

P(pa
k = 1) = E[pa

k] = FX(rak − rbk
) = FX

(
n

∑
j=1

X j
krj

)
=

1

1 + eλ ∑n
j=1 rjX

j
k

(7)

which is precisely the formula of the logistic regression of Y := (pa
k : 1 ≤ k ≤ m) against X. Since λ

only depends on the variance of the distribution, and the choice of variance doesn’t affect the model,
we can just estimate r1, . . . rn by doing a logistic regression in the X j.

2.4. Basis of the Elo Adjustment Formula

So far we have worked assuming Eq.(2) holds and each player has a constant "true" rating rj.
However, in practice the strength of chess players or soccer teams changes over time, and hence the
need for a system that updates the ratings with each new game and not with the whole history.

This is the reasoning behind the update formula in Eq.(1): if we consider only one match between
A and B, with estimated ratings r̂A, r̂B and real ratings rA, rB (and for simplicity we pick r̂A + r̂B =

rA + rB = 0), then using Taylor’s expansion, ∃ξ ∈ R such that

E[r̂′A − r̂A] = K ·E[pA − FX(r̂A − r̂B)] = K · FX(2rA)− K · FX(2r̂A) = 2K(rA − r̂A) fX(ξ)

Therefore, for small enough K, in particular for K < (2 maxx∈R fX(x))−1, this gives

|E[r̂′A − rA]| = |E[r̂′A − r̂A] + r̂A − rA| = |1 − 2K f (ξ)||r̂A − rA| < |r̂A − rA|
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and thus if rA is fixed, E[r̂A] converges to rA as r̂A is updated over an increasing number of games. In
practice, K is chosen much smaller than 1

2 max f (R) - for instance, FIDE uses K = 10 for players with

ratings above 2400, and in this case FX(x) = 1
1+10−x/400 so a better K for accelerating the convergence

of the expectancy would be 1
2 fX(0)

= 4·400
2 log(10) ≈ 347.

The reason for the difference is that faster convergence is at the expense of a much higher variance
of r̂′A (the variance is proportional to K2). If we apply the update formula over an infinite number of
games, even if the true ratings of the model stay constant, the computed ratings don’t converge, and
they approach a limiting distribution [5], the variance of which we would like to minimize.

Therefore, the choice of K depends on the dynamic properties of the strength of the players. If we
expect this strength to change significantly from one game to the next, K should be bigger, and if we
expect the skill of the players to be relatively stable (for instance, if many games are played in a small
lapse of time), we choose a lower K. The FIDE uses K = 40 for younger players, who may improve
quickly, and K = 10 as said above for players with rating above 2400, which are usually grandmasters
and don’t improve their play that fast.

2.5. Asymmetric Games

Until now we have assumed that for two players of equal strength each has expected score 1/2,
but in practice this is not true: in chess, for instance, the player with white pieces makes the first
move, and has a slight advantage. In the team sports we will consider later, it is well known that
if a team plays in the home field, it also has an advantage over its rival. To incorporate this in the
Elo rating system, when A has a systemic advantage against B, we can use the following expectancy
formula [3][p. 36]:

E[pA] = FX(rA − rB + L) = 1 − FX(rB − rA − L) = 1 −E[pB] (8)

Here, L is a positive constant, which should obviously be bigger for a bigger advantage of A, since
E[pA] is increasing in L, and L = 0 reduces to our symmetric model. We can estimate it given a sample
of matches, provided of course that we know which player has the systematic advantage in each
match. From now on, we suppose that in the k-th match mk = (ak, bk, pa

k, pb
k) of a sample M, ak has the

advantage. In particular, if X is logistic, L can be estimated as the independent term in the regression
formula in Eq.(7).

2.6. Accuracy Metrics for Elo Rating Systems

In order to determine the predictive accuracy of a rating system, we will use several tools. The
first one, provided by Arpad Elo [2, ch. 2.6], is a statistical test of normality for a sample in which the
players have preexisting ratings R and each player plays m games. Originally the sample was a chess
tournament, or a set of tournaments with the same m [2, ch. 2.7].

Elo proposes to represent the values of the residues ε j(R) in a histogram and to compare them
with the frequencies of a normal variable with mean 0 and the sample variance. Since ε j(R) =

∑k∈Mj E[pj,k|R] is the sum of m variables, if m is high enough and the rating differences aren’t too high,
by the CLT, each ε j should approximately follow a normal distribution, with variance ∑k∈Mj(pj,k|R) ≤
1/2

√
m. More sophisticated normality tests, like the normal probability plot, can be carried out for the

same variables.
In order to compare the accuracy of different systems in the same sample, we propose looking at

the average of the squared residues across all matches, i.e. the mean squared error of p:

MSE :=
1

|M|

|M|

∑
k=1

(
pak ,k − E[pak ,k|R]

)2 (9)
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We can decompose this sum using the known expression of the mean square error, which is the square
of the bias plus the mean variance:

E[(X − a)2] = (E[X]− a)2 + Var(X) (10)

In particular, when applied to the results of the games, we obtain:

MSE =
1

|M|

|M|

∑
k=1

(
E[pak ,k]− E[pak ,k|R]

)2
+

1
|M|

|M|

∑
k=1

Var(pak ,k) (11)

The advantage of this measure is that we don’t require any of the assumptions of a normality test.
The sample can be extended in time (we can update the ratings between games using Eq.(1)) and we
don’t need every player to play the same number of games. Also, if we apply two different rating
systems to the same number of games, we can look at the variance reduction and extrapolate p-values
to determine if one system is better than other.

However, unlike in a linear regression model, the results pa
k don’t have a constant variance, so the

expression MRV := 1
|M| ∑

|M|
k=1 Var(pak ,k) (mean result variance) can only be understood as the expected

variance of a game, i.e. E[Var(pa
k|rak − rbk

)], dependent on some distribution of the rating differences
rak − rbk

. We can only compare results from different samples if we assume this average variance to be
similar, but this isn’t the case in general (for instance, MRV decreases as the dispersion of the ratings
increases).

If we assume the results are binary (pa
k ∈ {0, 1}) we can use other approaches. For instance, if

FX is logistic, as we saw in Eq.(7), the model is equivalent to that of a logistic regression, so we can
derive the statistics of this type of regression. For instance, the deviance D, which is distributed as a
chi-squared variable,

D = −2 · ln
(

likelyhoodElo
likelyhoodsaturated

)
Finally, the effectiveness of the model can be gauged more visually by plotting the receiver

operating characteristic (ROC) curve. Again, this doesn’t work with other possible results besides win
or loss, such as a draw (pa

k = 1
2 ), unless the non-decisive results are removed or imputed (for instance,

to 0 and 1 with probabilities 1 − pa
k and pa

k).

3. Stochastic Elo Models

In many competitive team sports, we don’t just observe the result of the game, but also a stochastic
process St, which determines the result at time T (we will assume T is positive constant, although it
could be any stopping time of St). In practice, St will represent the score difference at time t, positive
when the home team is winning, so the home team wins when ST > 0, while the visiting team wins
when ST < 0.

Our goal is to extend the Elo model to incorporate St, so that the expected result of the game at time
t = 0 matches the static model. In other words, we want to obtain an expression for E[pA|rA, rB, St] =

g(rA, rB, St, t) such that g(rA, rB, 0, 0) = FX(rA − rB + L) = E[pA|rA, rB], i.e. our initial guess matches
that of the original Elo model.

We will study several possible models, but there are some properties they should all verify. First,
since (in the sports we will see) the past states of the scoreboard aren’t relevant to the game, and only
the final score determines the result, St should have the Markov property. As a consequence, both
Xt := E[pA|St] = g(rA, rB, St, t) and Yt := E[ST |St] should be martingales, by the Tower Property of
Conditional Expectation [4](p. 46).
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Furthermore, for s > t, since Ss gives us as much information as Ss and St together, our estimation
at time s should be better than the one at time t, and therefore

E[Var(pA|Ss)] < E[Var(pA|St)] and E[Var(ST |Ss)] < E[Var(ST |St)]

3.1. Continuous Models

Recall that in the original Elo model, team A wins if X + rA − rB + L > 0, and that should match
the odds of ST being positive, so we can assume ST is X + rA − rB + L times some constant. Since the
incentives of the teams are the same at every point of the game (score the most points and have the
opponent score the least), we can also assume the increments St+h − St are independent (for disjoint
intervals) and identically distributed.

For this to make sense, ST = ST/n + (S2T/n − ST/n) + · · · + (ST − ST−T/n) must be infinitely
divisible. Although the logistic distribution is infinitely divisible [6], the increments aren’t logistic, so
we will suppose that X and ST are normal, and in that case the increments must also follow the normal
distribution by Cramér’s decomposition theorem [7], so St has i.i.d. Gaussian increments and it’s a
Brownian motion with drift:

St = µt + σBt ⇒ E[pA] = P[N(µT, σ2T) > 0] = Φ
(

µT
σ
√

T

)
= Φ

(µ

σ

√
T
)

where Bt is the standard Brownian motion, i.e. B0 = 0, and B has independent and normal increments
Bt − Bs ∼ N(0, |t − s|). If we want this expectation to match the one given by the static model, we
must have

Φ
(µ

σ

√
T
)
= FX(rA − rB + L) = Φ

(
rA − rB + L

T

)
⇒ µ

σ

√
T =

rA − rB + L
σX

(12)

And from this we immediately obtain the expected score conditioned on St = 0:

E[pA|St = 0] = P
[

N(µ(T − t), σ2(T − t)) > 0
]
= Φ

(µ

σ

√
T − t

)
=

= Φ

(
rA − rB + L

σX

√
T − t√

T

)
= FX

(
(rA − rB + L)

√
T − t√

T

)
(13)

Similarly, if we condition on an arbitrary score difference at time t < T, we obtain

E[pA|St = S] = P
[
S + N(µ(T − t), σ2(T − t)) > 0

]
= P

[
N(µ(T − t) + S, σ2(T − t)) > 0

]

= Φ
(

µ

σ

√
T − t +

S
σ

√
T − t

−1
)
= FX

(
(rA − rB + L)

√
T − t√

T
+

σX
σ

S√
T − t

)
Denoting by ut := (T − t)/T the fraction of the time that remains, and by C the constant coefficient

σX
σ
√

T
we have:

E[pA|St = S] = FX

(
(rA − rB + L)

√
ut + C

S√
ut

)
(14)

In the end, we obtain an expression where the term (rA − rB + L)
√

ut depends on the ratings, and
decreases to zero as the time t approaches T, while the term C

√
ut

−1S depends on the score and
becomes larger as the game nears its end, as we would want (unless S = 0). In other words, the
behavior or E[pA|St] as t → T is exactly what we would expect.

Note that setting t = 0 ⇒ √
ut = 1, and assuming a game starts with a score difference of S

points, the expected score is FX(rA − rB + L + CS). This allows us to interpret the constant C as the
handicap (measured in rating points) that each goal or point entails at the start of the game. We could
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in fact use this to estimate C from game data, although we don’t need to pick t ≈ 0. For any t ∈ (0, t),
C should minimize the mean square error

MSE(t) :=
∑k∈M(pak ,k −E[pak ,k|St,k])

2

|M| =
1

|M| ∑
k∈M

(
pak ,k − FX

(√
ut(rak − rbk

+ L) + C
St,k√

ut

))2

as long as the model is correct, and the minimum should be the same for every t. Conversely, if the
function above is minimized for C = C∗ for every t, our model is optimal among a certain class, as the
following result showcases.

Lemma 1. If there are functions f : R → R \ {0} and V : R2 → R and there exists a C∗ ∈ R such that
V(x, C∗ f (x)) ≤ V(x, C f (x)) for every x, C ∈ R, then every g : R → R verifies

V(x, C∗ f (x)) ≤ V(x, g(x)) ∀x ∈ R

Proof. V(x, g(x)) = V
(

x, g(x)
f (x) f (x)

)
≥ V(x, C∗ f (x))

In particular, for V(t, g) = 1
|M| ∑k∈M

(
pak ,k − FX(

√
ut(rA − rB + L) + gSt,k

)2 and the function
f : t 7→ 1/

√
ut, this means that our model is optimal among the ones with a prediction of the form

E[pA] = FX(
√

ut(rA − rB + L) + Sg(t)). If we further suppose that the true expectancy has the form
FX( f (t)(rA − rB + L) + Sg(t)), we can estimate f by looking at the times in the sample where St,k = 0,
and if f : t 7→ √

ut minimizes the mean square error over that restricted sample, our model is optimal
among this wider class.

Finally, assuming we already know or have estimated C = σX
σ
√

T
⇒ σ = σX

C
√

T
, we can obtain the

drift µ = σ√
T

rA−rB+L
σX

and express St in terms of known quantities as

St = µt + σBt =
rA − rB + L

C · T
t +

σX

C
√

T
Bt (15)

Finally, notice also that E[ST ] =
rA−rB+L

C , which gives another way to estimate C.

3.2. Accuracy Metrics for the Stochastic Model

If we take t = T in Eq. (15) we obtain

C · ST ∼ rA − rB + L +
σX√

T
N(0, T) ⇔ C · ST − (rA − rB + L) ∼ N(0, σ2

X) ∼ X (16)

Therefore, the residuals C · ST − (rA − rB + L) follow the same law as X (the variable used for the
static model), and we can do a normality test on them, for instance through a QQ plot or comparing a
histogram with the predicted frequencies for X. We could in principle use Eq.(14) with any distribution
of X, and in that case C · ST minus the rating difference follows the law of X and the same test works.

From Eq.(15) we can also reconstruct the standard Brownian motion St in the model:

1√
T

Bt =
1

σX

(
C · St −

t
T
· (rA − rB + L)

)
(17)

and since 1√
a Bat is a standard Brownian motion if and only if Bt is, taking st = 1 − ut = t/T we get

that 1√
R

Bt =
1√
T

BTst = C · STst − st(rA − rB + L) is a standard Brownian motion in [0, 1] as a function
of st, which is just the fraction of the game time elapsed at t.

From Eq.(15) we can also deduce

Var(ST |St) = Var(ST − St) = Var(µ(T − t) + σBT − Bt) = σ2(T − t) = C−2σ2
X · ut (18)
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That is, if we compute the mean squared error of ST instead of pA at each time t, we should obtain a
linear function in t, and we can test this hypothesis via linear regression.

Recall that we are assuming the increments of St are independent and identically distributed,
and in particular the variance of St+h − St only depends on t. We can test this directly by looking at
the points scored by either team at each interval between 0 and T, or, if St can increase or decrease
by amounts other than one, we can see if the sample variance 1

|M|−1 ∑k∈M(St+1,k − St,k)
2 a.s.−−−−→

|M|→∞

E[(St+1 − St)2] depends on t.
Finally, this continuous model implies expressions for E[pA|St] and E[ST |St] for each t, and we

can check if they behave like martingales in a sample of games.

3.3. Non-Homogeneous Process

In practice , St doesn’t always behave like an homogeneous process in time, that is, more points
may be scored in some sub-intervals of [0, T] than others. In that case, if Var(St) = m(t) for some
increasing function m, we can model the process as

St =
∫ t

0
µdm(t) +

∫ T

0
m′(s)dBs = µ · m(t) + σBm(t) = S′

m(t)

where S′ behaves like the score in the first model. Since this is a map of the process that we were using
before, we can use the homogeneous model to compute

E[pA|St = 0] = E[pA|S′
m(t) = S] = P[S′

m(T) > 0|S′
m(t) = S] =

= FX

(√
m(T)− m(t)

m(T)
(rA − rB + L) + C

√
m(T)

m(T)− m(t)
S

)

which is exactly the same as before, for ut =
m(T)−m(t)

m(T) .

3.4. A Discrete Model

The main difference between this model and the actual score difference is that the former is a
continuous process, but the latter is discrete in value (St ∈ Z) and continuous in time. The process that
fulfills this conditions best is a Skellam process, as described in [11], i.e. the difference of two Poisson
processes with different rates, which model the score of each team or player during the game.

If P1 and P2 are two independent Poisson distributions with mean µ1 and µ2, then their difference
is said to follow a Skellam distribution, P1 − P2 ∼ Sk(µ1 − µ2). If N1(t) and N2(t) are independent
Poisson processes with rates λ1 and λ2, the process

Zt := N1(t)− N2(t) ∼ P(tλ1)− P(tλ2) = Sk(tλ1, tλ2)

has i.d.d. increments as well.
However, in this case, modeling the score with Zt is not so straightforward. For starters, if we

multiply Zt by a constant, we don’t get another Skellam process. Adding a real-valued function of t
also changes the domain of the process from Z to R. Therefore, the only option is to assume that

St ∼ Zt(µ1(rA, rB), µ1(rA, rB)) ⇒ ST ∼ Sk(Tµ1(rA, rB), Tµ2(rA, rB))

This in turn means that we can’t assume homocedasticity of the process, because a Skellam distribution
with parameters µ1 and µ2 has mean µ1 − µ2 and variance µ1 + µ2. Since µ1 and µ2 are non-negative,
the mean is less or equal to the variance, and if we fix µ1 + µ2 = σ, we would put a bound on the
expected final score E[ST ] = µ1 − µ2 ≤ σ, which is not realistic.
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However, the distribution of ST , which should have the same shape as X, now depends on two
parameters, and not just on the rating difference rA − rB. We can remove this degree of freedom fixing
a relation between µ1 and µ2, and for simplicity’s sake, since the probability that Sk(µ1, µ2) takes the
value k is

P[Sk(µ1, µ2) = k] = e−(µ1+µ2)

(
µ1

µ2

)k/2
Ik(2

√
µ1µ2)

we can fix 2
√

µ1µ2 = H to compute Ik only once for each k ∈ Z. Here Ik(·) is the modified Bessel
function of the first kind [9], which doesn’t have a closed form expression.

To determine how µ1 and µ2 depend on the ratings, we can take E[ST ] = µ1 − µ2 to be linear in
the rating gap ∆r = rA − rB + L as in Eq.(15), and then if we pick σX so that C = 1, from the product
and difference of µ1 and µ2 we obtain a second degree equation

(x + µ1)(x − µ2) = x2 + ∆rx − H2

4

⇒ µ1 =
1
2

(
∆r +

√
∆2

r + H2
)

and µ2 =
1
2

(
−∆r +

√
∆2

r + H2
)

from which we finally obtain not just a prediction for pA, but also a probability for each possible final
score, and in this case the probability that ST = 0 is positive, so we can include draws in our model. In
particular, if we assign a result of pA = pB = 1/2 for draws,

E[pA] = P[ST < 0] +
1
2
P[ST = 0] = P[Sk(µ1, µ2) < 0] +

1
2
P[Sk(µ1, µ2) = 0] (19)

Similarly, if we consider that expression as a function of ∆r, it can be shown that it’s increasing (see
Appendix B), and with limits 0 and 1 at −∞ and ∞. Therefore, E[pA] = FX(rA − rB + L) for some
random variable X, and then this model is also an extension of a static Elo model.

4. Computational Study

Next, we evaluate the performance of the proposed stochastic extensions of the Elo system in a
computational study implemented in Python. All the results discussed can be replicated with the code
available at github using real data from reference databases for each sport, which are also included
for download through the previous link. In the case of soccer, a comparison with the more complex
methodology of the Soccer Power Index (SPI) developed by Nate Silver [13] is also carried out.

4.1. Experimental Setup

In order to evaluate a rating model with any of the accuracy metrics exposed in Section 2.6, a sample
of matches M for which both players have a rating is needed. Furthermore, the update formula in Eq.
(1) needs preexisting ratings, so we will have to use some of the games in our dataset to estimate the
starting ratings of each team, using the estimator R̂ defined in Section 2.3.

On the other hand, the proposed stochastic models are designed for sports or games where
the result depends on a numerical score (S) and the match has a fixed duration (T), such as soccer,
basketball or ice hockey, although we will omit the latter in the experimental results for brevity.
Moreover, we will focus on league competitions, where each team plays more games and we can use a
bigger sample to obtain R̂. For instance, in the Premier League, 20 teams play 380 matches, while in
the World Cup, 32 teams play 64 matches.

Most national leagues have a similar format, consisting in yearly seasons in which most of the
participating teams remain the same from one year to the next, and all teams play the same number
of games each week. We can design an algorithm to extract rated games from any of these sports as
follows:

• The expected result is determined by Eq. (8) with constant L.
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• During each season, we denote by "entering teams" to the teams that didn’t play the previous
season (during the first season, they are all entering teams).

• We divide each season in two parts (I and II), the former comprised of the games that start before
every entering team has played at least m games.

• During part I, in each match between two non-entering teams, we update their ratings (from the
previous season) according to Eq. (1) using a fixed factor K.

• When part I ends, we compute the rating estimator R̂ for each entering team using the games in
part I and the current ratings of non-entering teams.

• During part II, since we have ratings for all teams, we can just update them every match using
Eq. (1) with the same K-factor.

In this way, we have a rating before the start of the game for the matches between non-entering
teams in part I of each season, and all matches in part II, and we can use them to evaluate the rating
system.

This algorithm has (hyper-) parameters m, K and L, that is, respectively the length of part I of
each season, the sensitivity of the Elo system to new results, and the home field advantage. We will fix
m and estimate K and L by minimizing the mean square error defined in Eq. (9).

4.2. Basketball Results

Basketball has several advantages regarding the Elo system. First, it only admits two results (win or
loss), so the result follows a Bernoulli distribution and the logistical model in Eq. (7) can be used. In
addition, the score variable St has a relatively large range (each team scores around 100 points) and
changes quickly (by 1, 2 or 3 points each time), so we don’t lose too much by approximating it by a
continuous variable.

On the other hand, an NBA basketball match lasts 48 minutes divided in 4 12-minute quarters,
but if the scoreboard is even at the end of that time, additional 5-minute quarters are played until one
team is ahead. We will ignore these extra quarters for the sake of simplicity, since we assume T is fixed,
but our prediction at the end of the game will be slightly wrong when St = 0.

Our dataset for basketball will consist of the NBA league games between the seasons 2000-01 and
2023-24, obtained from www.basketball-reference.com, which registers every change in the score and
its time (in seconds).

4.2.1. Static Elo

We implement the algorithm described above for m = 20 and FX corresponding to a normal variable
X ∼ N(0, 200), in a training set of seasons 2000-01 to 2009-10, and in four different ways to test the
effectiveness of the Elo model and the significance of its parameters:

• Without Elo, simply assuming E[pk,ak
] = phome := |M|−1 ∑

|M|
k=1 pk,ak

=: FX(L).
• Fixing K = 0 and minimizing MSE as a function of L (no change in strength).
• Fixing L = 0 and minimizing MSE as a function of K (no home advantage).
• Minimizing MSE as a function of K and L (standard Elo system).

To avoid overfitting in K and L, we also implement the algorithm for the optimal values K∗ and
L∗ in a validation set consisting of seasons 2010-11 to 2023-24. The mean squared errors in the training
and testing sets are summarized in Table 1:

Table 1. Mean squared error of different Elo models vs. sample variance.

K∗ L∗ MSE MSEtest
No Elo -53.78 0.23876 0.24394

0 -60.89 0.26498 0.29590
14.71 0 0.22333 0.22308
16.19 -60.74 0.21179 0.21744
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We can see straight away that the Elo explains a significant part of the variance (around 11%), and
both parameters are useful, since setting them to zero increases the mean squared error. The reduction
is similar in the training and testing sets, so cross-validation shows the robustness of the algorithm in
Section 4.1.

Notice also that the K-factor and home field advantage are similar to those of chess, where
|L∗| ≈ 50 [2]( ch. 8.93). The sign of L∗ only reflects that in basketball (and American sports in general)
the visiting team is listed first.

We note that setting K = 0 (which amounts to leaving the rating of a team unchanged until it’s
relegated) increases the variance, but still has predictive power, as evidenced by the ROC curves shown
in Figure 2.

(a) Training set. (b) Test set.

Figure 2. ROC curve for each of the Elo system implementations.

And finally, setting L = 0 barely changes the curve, because the map from FX(z) to FX(z + L) is a
monotone increasing bijection, and the order of the expected result under the two models are the same
for equal K∗ (and indeed the K-factors are very similar).

After fitting our model and obtaining the sample, we could expect that for a subsample of matches
with rating difference rA − rB ≈ r, the average result would be close to FX(r + L), but this isn’t the
case as evidenced by Figure 3.

Figure 3. Observed expectation of pA vs. rA − rB versus predicted value FX(D(rA − rB) + L).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2024                   doi:10.20944/preprints202407.1974.v1

https://doi.org/10.20944/preprints202407.1974.v1


13 of 27

We observe that the normal distribution function FX overestimates the effect of the rating differ-
ence in the expected result of a match. We can obtain a better predictor if we multiply rA − rB by a
"dampening" constant D ≤ 1, just like in Fig. 3 of [8].

If we minimize the MSE on K, L and D (only using D for the calculation of the mean squared error,
since otherwise it’s equivalent to scaling X), we obtain optimal parameters K∗ ≈ 19.61, L∗ ≈ −58.9
and D∗ ≈ 0.786, reducing the MSE to 0.21064 in the test set.

This seems a small improvement in MSE, but it’s straightforward to test the significance of the
reduction in variance by looking at the variables X := (pA − FX(L+ rA − rB))

2 and Y := (pA − FX(L+

DrA − DrB))
2 for a random game.

In order to check if Z := X − Y has a positive mean from our sample of games, we sample the
difference zk = (pa

k − FX(L + rak − rbk
))2 − (pa

k − FX(L + Drak − Drbk
))2 and argue that by the central

limit theorem, the sample mean of Z approximately follows a normal distribution with n times the
sample variance of Z. In our testing data, Z has negative mean with p ≈ 1.2 · 10−6, so D significantly
improves our predictions.

4.2.2. Stochastic Elo

Our algorithm leaves us with 12500 rated games out of the 12933 games in the training set, and 17437
out of the 17820 originally in the testing set. These 17437 matches are the ones used for the analysis of
our stochastic model.

We start by estimating the only parameter of the stochastic model, C. As we showed in Lemma
1, if the model is correct, the optimal value C∗ should minimize the error MSE(t) at every time t, so
we minimize the average of that function at different times for a more robust estimation of C∗. In the
training set, we obtain C∗ ≈ 10.91, and we can compare the function MSE(t) for higher and lower
values, as shown in Figure 4. Since every curve lies above the curve for C = 10.91, Lemma 1 suggests
that our formula for the expected result is optimal among the family E[pA] = FX(∆r

√
ut + g(t)St). We

also note that the error doesn’t reach zero at the final time t = T of 2880 seconds, since a tied score at
that time results in an extra time being played. Our model assumes a fixed duration, so in order to
predict the result beyond minute 48 we would need to model another (shorter) match.

(a) C > C∗. (b) C < C∗.

Figure 4. Mean squared error as a function of time.

Next, Figure 5 shows the result of checking the normality of the score process by computing
the normal residues C · ST − L − D(rA − rB) and comparing them with the quantiles of a normal
distribution. Here, again, ST is the score after the first 48 minutes, not the final score of the game. As
expected from Eq. (16), the residuals more or less follow a normal distribution, but the mean is not
zero, meaning the home team scores better (in terms of ST) than the Elo model predicts. The standard
deviation is also smaller than the expected value of the model, namely σX = 200. From the first plot
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we can also tell that the residuals are somewhat correlated to the Elo difference, but not to an extent
that would invalidate the model.

(a) Residues vs. Elo difference. (b) Residues vs. standard normal quan-
tiles.

Figure 5. Tests for the model residues C · ST − L − D(rA − rB).

Finally, Figure 6 checks the lineal relationship between the score variance and time, as described
in 18, computing the quantities

MSES(t) :=
1

|M|

|M|

∑
i=1

(ST −E[ST |St])
2 a.s.−−−−→

|M|→∞
E[(ST −E[ST |St])

2] = Vart(ST) =
σ2

X
C2 ut

The resulting function is close to a line, but the variance still drops more quickly at the end of the
match than at the beginning, suggesting ST is not completely homogeneous in time. Figure 7 plots the
average number of points scored at each 10-second interval of the game by either team, in order to
approximate the variance of that interval (they are in fact equal if we assume the score is the difference
of two independent Poisson processes as in the discrete model). However, Figure 7 shows that the
process is very homogeneous in time, except for brief periods before the end of each quarter.

Figure 6. Score prediction variance MSES(t) vs. match time.
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Figure 7. Average increase in combined score vs. match time.

4.3. Soccer Results

Soccer is somewhat more challenging than basketball when it comes to applying Elo models. First,
since our database consists of league games, we don’t have extra times, at the expense of allowing
for draws (pA = pB = 1

2 ) if the score is tied at the end of the match. We should note that in both the
Premier League and the Spanish First Division, teams are awarded 3 points for a victory, 1 for a tie and
0 for each loss, so this isn’t entirely a zero-sum game, whereas in the Elo model pA + pB = 1.

Although there are no extra times, there is time added at the end of each half-time, but our
database only keeps track of the minute in which each goal is scored, and every goal scored in the
added time will appear in the minute 90 or 45. Finally, St is relatively small (usually ST < 5), so
approximating it by a continuous variable is problematic.

Our dataset for soccer consists of the seasons 2003-04 to 2023-24 of the Spanish and English first
division leagues, both counting 5320 games. We use the former for training and the latter for testing.
The data was obtained from fbref.com.

4.3.1. Static Elo

Since the league structure is similar to the NBA, we will use the same algorithm in Section 4.1 to
obtain rated games, this time with a sample of m = 12 for part I and the same X ∼ N(0, 200), now
adding also the dampened model to the table along with the optimal D. The corresponding results are
presented in Table 2.

Table 2. Mean squared error of different Elo models vs. sample variance.

K∗ L∗ D∗ MSE MSEtest
No Elo 48.11 - 0.17881 0.18188

0 52.12 1 0.17248 0.19252
9.90 0 1 0.16346 0.16136

10.80 52.68 1 0.15420 0.15396
11.82 52.50 0.874 0.15387 0.15341

Just like we saw for basketball, both K and L are clearly significant, but the reduction in variance
for adding D is much smaller. The statistical test described for basketball this time gives us that D is
significant with p ≈ 0.0013, and the optimum D∗ is closer to 1.

4.3.2. Stochastic Elo

After implementing the static Elo system, we are left with 7176 matches out of the 7980 in our
testing set, and we will use these for the analysis of the stochastic model.
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However, in this case the irregularity of the process versus the recorded time is stronger. As
shown in Figure 8, the number of goals scored by every team each minute increases as the game nears
its end, and has two spikes in the added time of each half. This makes the simple model we used for
basketball less effective. If we estimate C by minimizing the average of MSES(t) at evenly spaced
points t, with linear ut =

T−t
T , the resulting functions MSE(t) and MSES(t) ≈ Var(ST |St) are depicted

in Figures 9 and 10, respectively.

Figure 8. Average number of goals each minute.

(a) C > C∗. (b) C < C∗.

Figure 9. Mean squared error as a function of time.

Figure 10. Score prediction variance MSES(t) vs. match time.

To tackle this problem, we model the process as a non-homogeneous process, with ut equal to
the fraction of goals in our sample scored after time t. To show the results with this modification,
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Figures 11 and 12 replaces the match time in the x axis with the modified time 1 − ut. The last plot
showcases that the score variance (conditioned on St) is almost exactly proportional to ut, and that our
assumptions on the process St are reasonable.

(a) C > C∗. (b) C < C∗.

Figure 11. Mean squared error as a function of 1 − ut.

Figure 12. Score prediction variance MSES(t) vs. modified time 1 − ut .

Finally, Figure 13 plots the residues C · ST − L − D(rA − rB) and compare them to the standard
normal quantiles and their respective rating differences L + D(rA − rB). The distribution of the
residues is close to normal, except for slightly thicker tails. The correlation between the residues and
the rating differences is virtually zero compared with the one we saw for basketball.
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(a) Residues vs. Elo difference. (b) Residues vs. standard normal quan-
tiles.

Figure 13. Tests for the model residues C · ST − L − D(rA − rB).

4.3.3. Discrete Elo model

Lastly, we implement the discrete score model based on the Skellam process. As we showed,
this is a particular case of an Elo model, and thus the same algorithm can be used to estimate the
parameters K, L and D. In this case we use m = 12 and the function FX defined in Eq.(19). To estimate
the only non-Elo parameter of the model,

H = 2
√

µ1µ2 = 2
√
E[goalshome] +E[goalsaway] = 2

√
E[goalshome · goalsaway]

we use the sample mean of the product of the goals in our training sample, obtaining H ≈ 2.578. The
corresponding results are presented in Table 3.

Table 3. Mean squared error of restricted Elo models vs. sample variance.

K∗ L∗ D∗ MSE MSEtest
No Elo 0.56115 - 0.17881 0.18188

0 0.61525 1 0.17256 0.19258
0.11702 0 1 0.16348 0.16141
0.12888 0.61560 1 0.15424 0.15397
0.14781 0.62004 0.86536 0.15389 0.15334

Despite the distribution function being different, the mean squared error is very close to that of
the standard Elo model with normal FX . However, this model also predicts probabilities for the three
possible results, and thus it allows computing metrics like log-loss [10].

For comparison, we implement the rating system used by the Soccer Power Index (SPI) developed
by Nate Silver [13], which uses 2 rating parameters for each team: one for their offense (their capacity
to score goals) and another for their defense. A concise but complete explanation of the SPI system is
given in Appendix C.

The SPI system achieves a MSE of 0.1518 versus the 0.1533 of the discrete Elo system, and the
squared errors are significantly lower, with a p-value of 5 · 10−5. The average log-loss at time zero is
also better, with 1.411 beating the 1.432 for the discrete Elo and a p-value of 8 · 10−6. However, both
systems also give probabilities for the result being a victory, loss or draw at any time t during the game,
namely

P[pA = 1] = P[Sk(µ1 · ut, µ2 · ut) + St > 0]

P[pA = 1/2] = P[Sk(µ1 · ut, µ2 · ut) + St = 0]

P[pA = 0] = P[Sk(µ1 · ut, µ2 · ut) + St < 0]
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where µ1 and µ2 are the expected goals by the home team (A) and the visiting team, respectively.
Computing these for every time t, we obtain the results shown in Figure 14. Note that in the log-loss
curve, the Elo system beats SPI in the second half - for instance, at t = 72 minutes, the log-losses are
0.857 vs. 0.841 with a p-value of 2 · 10−7 showing that the Elo loss achieves a lower loss. This suggests
that despite being a 1-parameter model and its relative simplicity, the discrete Elo system is on par
with SPI in terms of predictive power when it comes to mid-game predictions (conditioned on St).

(a) Mean Squared Error. (b) Log-Loss.

Figure 14. Evolution of model error metrics vs. modified time 1 − ut.

5. Conclusions

In this work, it has been shown how the model underlying the Elo system has a natural extension
for fixed-duration sports with which it possible to model the score of each team. The proposed
stochastic Elo system can be easily implemented for league competitions using the algorithm in Section
4.1, which in turn uses the estimator defined in Section 2.3, and supported by the results proved in
Appendix A.

A discrete model for soccer has been also proposed, which is also an Elo system at time t = 0, but
models the goal difference as a discrete process, thus providing probabilities for each possible outcome
of a match. Moreover, we saw that this system has accuracy comparable with that of a biparametric
rating system like SPI across the duration of a soccer game. This suggests that the simplicity of the Elo
system may favor it as an alternative to sport-specific models, and its use will continue to increase.

5.1. Future Work

These results certainly apply to games or sports with a score board and fixed duration in time,
but they could be replicated for other sports with different scoring systems, like table tennis, where the
game ends when the first player gets a score of 21, regardless of how long it takes. It’s possible that an
Elo system can be derived from these type of "race" processes as we did for our Skellam process.

The concept of predicting the result of a match mid-game could also be applied to chess, where
there is no objective score St but it’s common to obtain an "evaluation" from the state of the board,
using chess engines. Some chess websites store extremely large databases of computer evaluated
games in which a study of this kind could be performed.

Another question we didn’t consider when optimizing the parameters of the Elo system, such
as K or L, is whether the distribution function FX can also be inferred from a large enough sample
of games. Obviously, the space of distribution functions isn’t finite-dimensional, but a method for
choosing FX hasn’t been proposed, even among a finite-dimensional family of distributions.

Finally, there are games (such as checkers) for which there is a concept of perfect play, i.e. a
strategy that guarantees a victory or a draw. It’s easy to see that an expected result above 1/2 implies
an upper bound in ratings from the original model, but the Elo system doesn’t have an upper bound
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built in. However, some models derived from race processes not only produce odds for a win, draw or
loss, but also have a maximum or minimum rating associated with perfect play.

For instance, given ratings r1, r2 ∈ R≥0, we consider Poisson processes P1(t) and P2(t) with rates
r1 and r2, and arrival times T1(n) and T2(n). Suppose player 1 wins when T > T2(k) < T1(k), player 2
wins when T > T1(k) < T2(k) and they tie when T1(k) > T < T2(k), for fixed k ∈ Z, T ∈ R. Then the
strength of a player decreases with r, but if r1 = 0 player 1 will never lose, and 0 is a lower bound for
ratings. To the best of our knowledge, this type of systems haven’t been studied computationally at all.

Supplementary Materials: The computer code for our computational study, as well as the basketball and soccer
databases, can be downloaded at https://github.com/gonzalogomezabejon/StochasticElo.
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Appendix A. Proofs Regarding the Static Rating Estimators

In this appendix we characterize the existence of the rating estimators R̂ that give zero errors
εi(R̂, M) for a sample of matches M (assuming FX is continuous), and prove uniqueness of R̂ (up
to adding a constant). We also prove that the vector ε(R, M) is a descent direction for the problem
min{∥ε(R, M)∥1 : R ∈ Rm}.

Recall that our sample is given by M = {(ak, bk, pa
k, pb

k) : k = 1, . . . , |M|}, where ak ∈ {1, . . . , m} is
the "home" player or team, bk ∈ {1, . . . , m}, is the "visiting" player, and pa

k = pak ,k is the score of player
ak, that is, 1 if ak wins and 0 if ak loses, or an intermediate value like 1

2 if there is a draw. Conversely,
the score of bk is pb

k = 1 − pa
k.

We want to characterize the existence of the static estimator, that is, the set of ratings R̂ =

(r̂1, r̂2, . . . , r̂m) that verifies, for every player j,

0 = ε j(R̂, M) := ∑
k|j=ak

(pa
k −E[pa

k|R̂]) + ∑
k|j=bk

(pb
k −E[pb

k|R̂]) = ∑
k∈Mj

(pj,k −E[pj,k|R̂])

where Mj := {1 ≤ k ≤ |M| : j = ak or j = bk} and pak ,k = pa
k, pbk ,k = pb

k. For the expectancy we
use E[pa

k|R] = FX(ra − rb + L), where L is a non-negative constant (L = 0 is the standard symmetric
case). Finally, we define a digraph GM = ({1, . . . n}, AM) where ij ∈ AM if and only if for some k,
{i, j} = {ak, bk} and pi,k > 0. We want to show:

Theorem A1 (Existence). For any sample M with GM weakly connected (connected as an undirected graph),
there exists an estimator R̂ with ε(R̂, M) = 0 if and only if GM is strongly connected (that is, for every pair of
players i, j there is a directed (i, j)-path).

Theorem A2 (Uniqueness). If there are two estimators R = (r1 . . . rn) and R′ = (r′1 . . . r′n) such that
ε j(M, R) = ε j(M, R′) = 0 ∀j = 1 . . . n, then r1 − r′1 = r2 − r′2 = · · · = rn − r′n

Lemma A1.
n

∑
j=1

ε j(R, M) = 0

Proof.
n

∑
j=1

ε j(R, M) =
n

∑
j=1

∑
k∈Mj

(pj,k −E[pj,k|R]) =
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=
|M|

∑
k=1

(
pak ,k + pbk ,k −E[pak ,k|R]−E[pbk ,k|R]

)
=

|M|

∑
i=1

(1 − 1) = 0

Lemma A2. If the players are partitioned in two sets {1, . . . n} = I ∪ J with I ∩ J = ∅, then

∑
i∈I

εi(R, M)− ∑
j∈J

ε j(R, M) = 2
bk∈J

∑
ak∈I

(
pak ,k −E[pak ,k|R]

)
− 2

ak∈J

∑
bk∈I

(
pak ,k −E[pak ,k|R]

)
Proof. We sort the games of M in the sets M = MI I ∪ MI J ∪ MJ I ∪ MJ J where the set MPQ := {1 ≤
k ≤ |M| : ak ∈ P, bk ∈ Q} contains the indices of the matches where the first player is in the set P and
the second in Q. Then, by Lemma A1,

∑
i∈I

εi(R, M)− ∑
j∈J

ε j(R, M) = 2 ∑
i∈I

εi(R, M) = 2 ∑
i∈I

∑
k∈Mi

(pi,k −E[pi,k|R]) =

= 2 ∑
i∈I

∑
k∈Mi∩MI I

(pi,k −E[pi,k|R]) + 2 ∑
i∈I

∑
k∈Mi∩MI J

(pi,k −E[pi,k|R]) + 2 ∑
i∈I

∑
k∈Mi∩MJ I

(pi,k −E[pi,k|R])

but since MI I only contains games between players in I, again by Lemma A1,

∑
i∈I

∑
k∈Mi∩MI I

(pi,k −E[pi,k|R]) = ∑
i∈I

εi(R, MI I) = 0

and finally, since every game in MI J has exactly one player in I,

∑
i∈I

∑
k∈Mi∩MI J

(pi,k −E[pi,k|R]) = ∑
k∈MI J

(pak ,k −E[pak ,k|R]) =
bk∈J

∑
ak∈I

(
pak ,k −E[pak ,k|R]

)
and we use the same argument in MJ I to obtain

∑
i∈I

∑
k∈Mi∩MJ I

(pi,k −E[pi,k|R]) = ∑
k∈MJ I

(pbk ,k −E[pbk ,k|R]) = −
ak∈J

∑
bk∈I

(
pak ,k −E[pak ,k|R]

)
as we wanted (since pak ,k + pbk ,k = 1 = E[pak ,k|R] +E[pbk ,k|R]).

Proof of theorem A1. (⇒) If the static estimator R̂ exists but GM isn’t strongly connected, then there
are players i and j such that there are no (i, j)-paths in GM. In that case, if we define I := {1 ≤ p ≤ n :
∃P (i, p)-path in GM} as the set of players reachable from i in GM, and J := {1 . . . n} \ I to be the set of
players not reachable from I. By construction, in a game ak ∈ I and bk ∈ J, if pak ,k > 0 we would have
an edge between ak ∈ I and bk ∈ J, which contradicts the definition of I and J, so pak ,k = 0.

Note that i ∈ I and j ∈ J so the sets aren’t empty, and since GM is weakly connected, there must
be a game between a player in J to another in I, let’s say w.l.o.g. that (al , bl) ∈ I × J, and in that case,
by lemma A2,

0 = ∑
i∈I

εi(R̂, M)− ∑
j∈J

ε j(R̂, M) = 2
bk∈J

∑
ak∈I

(
pak ,k −E[pak ,k|R̂]

)
− 2

ak∈J

∑
bk∈I

(
pak ,k −E[pak ,k|R̂]

)
=

= 2
bk∈J

∑
ak∈I

(
0 − FX(r̂ak − r̂bk

+ K)
)
− 2

ak∈J

∑
bk∈I

(
1 − FX(r̂ak − r̂bk

+ K)
)
≤ 2(0 − FX(r̂al − r̂bl

+ K)) < 0
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since FX(x) ∈ (0, 1) for any x ∈ R, and that’s not possible.

(⇐) On the other hand, suppose GM is strongly connected. Then we show that r̂ exists by proving
a stronger proposition: if we fix r1, r2, . . . , rn−m, there are r̂n−m+1(a), . . . , r̂n ∈ R such that for every
j ∈ {n − m + 1, . . . , n}, we have ε j((r1, . . . , r̂n), M) = 0. To do this, we show by induction in m that
there exist continuous functions ϕm : Rn−m → Rm for 1 ≤ m ≤ n − 1 such that εh((⃗r, ϕm (⃗r)), M) = 0
for any r⃗ ∈ Rn−m and h ≥ n − m + 1, and also, that every component of ϕm() is non-decreasing in
each of its arguments (that is, r⃗′ ≥ r⃗ ⇒ ϕm (⃗r′) ≥ ϕm (⃗r)). For brevity, we write εi (⃗r) instead of εi (⃗r, M).

First, we note that since GM is weakly connected, ε j((r1, r2, . . . , rn)) is strictly decreasing in rj, but
non-decreasing in any other rating ri for i ̸= j:

r′j > rj ⇒ ε j((r1 . . . r′j . . . rn)) = ∑
ak=j

(pa
k − FX(r′j − rbk

+ L)) + ∑
bk=j

(pb
k − FX(r′j − rak − L)) <

< ∑
ak=j

(pa
k − FX(rj − rbk

+ L)) + ∑
bk=j

(pb
k − FX(rj − rak − L)) = ε j((r1 . . . rj . . . rn))

since one of the sums is non-empty and FX is strictly increasing. From the same expression it’s easy to
see that r′i ≥ ri ⇒ ε j((r1 . . . r′i . . . rn)) ≥ ε j((r1 . . . ri . . . rn))

For the base case of induction, m = 1, it’s easy to show that the increasing function f : x 7→
εn((r1, . . . , rn−1, x)) has a unique zero, because

f (x) = ∑
k|ak=n

(pa
k − FX(x − rbk

+ L)) + ∑
k|bk=n

(pb
k − FX(x − rak − L)) −−−→

x→∞ ∑
k∈Mn

(pn,k − 1) < 0

(since GM is strongly connected, player n scores less than 1 in some match k) and similarly

f (x) = ∑
k|ak=n

(pa
k − FX(x − rbk

+ L)) + ∑
k|bk=n

(pb
k − FX(x − rak − L)) −−−−→

x→−∞ ∑
k∈Mn

pn,k < 0

and f is obviously continuous (FX is continuous), so just applying the intermediate value theorem
allows us to define ϕ1((r1, . . . , rn−1)) as the only zero of f . To see that ϕ1 is non-decreasing in every
coordinate of its argument, we check that

r⃗′ ≥ r⃗ = (r1 . . . rn−1) ⇒ ε j (⃗r′, ϕ1 (⃗r′)) = 0 = ε j (⃗r, ϕ1 (⃗r)) ≤ ε j (⃗r′, ϕ1 (⃗r)) ⇒ ϕ1 (⃗r) ≤ ϕ1 (⃗r′)

and the last implication is a consequence of εn being strictly decreasing in rn.
To see that ϕ1 is continuous, we note that for any convergent sequence {⃗rk}k∈N with r⃗∗ = limk r⃗k,

we have
lim

k
εn (⃗r∗, ϕ1 (⃗rk)) = lim

k
εn (⃗rk, ϕ1 (⃗rk)) = lim

k
0 = 0 = εn (⃗r∗, ϕ1 (⃗r∗))

and since εn((⃗r∗, ·)) = f (·) is strictly monotone and continuous, and therefore bijective, ϕ1 (⃗r∗) =

limk ϕ1 (⃗rk).
Now for the induction step: suppose ϕm−1 exists and is non-decreasing in and with respect

to every coordinate, and m < n. For fixed r⃗ = (r1, r2, · · · rn−m), we will show that the continuous
function f : x 7→ εn−m+1((⃗r, x, ϕm−1((⃗r, x)))), which inherits continuity from FX and ϕm−1, is strictly
decreasing.

Suppose x′ > x. Then, by our induction hypothesis ϕm−1((⃗r, x′)) ≥ ϕm−1((⃗r, x′)). Let’s define
I := {i|(⃗r, x′, ϕm−1 (⃗r, x′))i > (⃗r, x, ϕm−1 (⃗r, x))i} and J := {1 . . . n} \ I = {j|(⃗r, x′, ϕm−1 (⃗r, x′))j =

(⃗r, x, ϕm−1 (⃗r, x))j}, and note that 1 ∈ J since dim(⃗r) = n − m ≥ 1, and n − m + 1 ∈ I. Note that
i ∈ I ⇒ i = n − m + 1 or i > n − m + 1, and in the latter case εi (⃗r, x, ϕm−1 (⃗r, x)) = 0 by definition of
ϕm−1. Using that fact, and then lemmas A1 and A2,
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f (x) = εn−m+1 (⃗r, x, ϕm−1 (⃗r, x)) = ∑
i∈I

εi (⃗r, x, ϕm−1 (⃗r, x)) =

1
2

(
∑
i∈I

εi(R)− ∑
j∈J

ε j(R)

)
=

bk∈J

∑
ak∈I

(pak ,k −E[pak ,k|R])−
bk∈I

∑
ak∈J

(pak ,k −E[pak ,k|R])

where R = (⃗r, x, ϕm−1 (⃗r, x)). Therefore,

f (x′)− f (x) =
bk∈J

∑
ak∈I

(E[pak ,k|R]−E[pak ,k|R′])−
bk∈I

∑
ak∈J

(E[pak ,k|R]−E[pak ,k|R′]) < 0

since at least one of the sums is non-empty (GM is connected) and FX(Ri − Rj ± L)−FX(R′
i − R′

j ± L) =
FX(Ri − Rj ± L)− FX(R′

i − Rj ± L) < 0 for any game between j ∈ J and i ∈ I.
We also check that f (x) approaches a positive number as x goes to infinity. Since ϕm−1 (⃗r, x) is

non-decreasing in x, its coordinates either have a limit as x goes to infinity, or they also go to infinity
(by the monotone convergence theorem), and we can define

I := {i| lim
x→∞

(⃗r, x′, ϕm−1 (⃗r, x′))i = ∞} and J := {j| lim
x→∞

(⃗r, x′, ϕm−1 (⃗r, x′))j ∈ R}

for which again, n − m + 1 ∈ I and 1 ∈ J, and as before,

f (x) =
bk∈J

∑
ak∈I

(pak ,k −E[pak ,k|R])−
bk∈I

∑
ak∈J

(pak ,k −E[pak ,k|R]) −−−→x→∞

bk∈J

∑
ak∈I

(pak ,k − 1)−
bk∈I

∑
ak∈J

(pak ,k − 0) < 0

since GM is connected and therefore one of the sums is non-empty. An analogous argument
shows that as limx→−∞ f (x) > 0, and thus, for any given r⃗, f (x) has a unique zero, which we denote
by g(⃗r), and with that we can define ϕm := (g(⃗r), ϕm−1((⃗r, g(⃗r)))).

Now, we can show that g(·) is non-decreasing, because if r⃗′ ≥ r⃗, then by induction hypothesis,
ϕm−1 (⃗r′, g(⃗r)) ≥ ϕm−1 (⃗r, g(⃗r)), and hence

εn−m+1 (⃗r, g(⃗r), ϕm−1 (⃗r, g(⃗r)) = 0 = εn−m+1 (⃗r, g(⃗r), ϕm−1 (⃗r, g(⃗r)) ≥ εn−m+1 (⃗r′, g(⃗r), ϕm−1 (⃗r′, g(⃗r))

which implies (by the fact that x 7→ εn−m+1((⃗r, x, ϕm−1((⃗r, x)))) is strictly decreasing and continu-
ous, i.e. bijective) that g(⃗r′) ≥ g(⃗r).

This in turn implies that ϕm is non-decreasing by composition of g and ϕm−1, and to conclude the
induction, we only need to check that g is continuous. This is similar to the base case, using that for
any convergent sequence {⃗rk}k∈N with r⃗∗ = limk r⃗k, we have

lim
k

εn−m+1 (⃗r∗, g(⃗rk), ϕm−1 (⃗r∗, g(⃗rk))) = lim
k

εn−m+1 (⃗rk, g(⃗rk), ϕm−1 (⃗rk, g(⃗rk))) = 0 = εn−m+1 (⃗r∗, g(⃗r∗), ϕm−1 (⃗r∗, g(r⃗∗
)
))

and invoking that f ∗ : x 7→ εn−m+1((⃗r, x, ϕm−1((⃗r, x)))) is bijective again.
Our induction works for m = 1 . . . n − 1, and to complete the proof (for m = n) we consider

R̂ = (0, ϕn−1(0)). By definition of ϕn−1, we know that ε2(R̂) = ε3(R̂) = · · · = εn(R̂) = 0, and by
lemma A1, ε1(R̂) = ∑n

i=2 εi(R̂) = 0, as we wanted.

Proof of theorem A2 (uniqueness). Let’s suppose there are two rating vectors R = (r1, . . . , rn) and
Q = (q1, . . . , qn) such that ε(R, M) = ε(Q, M) = 0. The residues ε are the same for the normalized
ratings with mean zero R′ = R − 1

n ∑ i = 1nri and Q ∑n
i=1 ri = ∑n

i=1 qi = 0. Therefore, if R − Q isn’t
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constant, R′ − Q′ ̸= 0, and there are i, j ∈ {1, . . . , n} such that r′i < q′i and r′j > q′j. In that case, let
I := {1 ≤ i ≤ n : r′i < q′i} and J := {1 ≤ j ≤ n : r′j ≥ q′j}.

0 = ∑
i∈I

ε(R′, M)− ∑
j∈J

ε(R′, M)−
(

∑
i∈I

ε(Q′, M)− ∑
j∈J

ε(Q′, M)

)
=

= 2 ∑
k∈MI J

pak ,k −E[pak ,k|R′]− (pak ,k −E[pak ,k|Q′])− 2 ∑
k∈MJ I

pak ,k −E[pak ,k|R′]− (pak ,k −E[pak ,k|Q′]) =

= 2 ∑
k∈MI J

(
FX(q′ak

− q′bk
+ L)− FX(r′ak

− r′bk
+ L)

)
+ 2 ∑

k∈MJ I

(
FX(r′ak

− r′bk
+ L)− FX(q′ak

− q′bk
+ L)

)
but every term in the sums is positive, because for any players (i, j) ∈ I × J, we have that

r′i − q′i < 0 ≤ r′j − q′j ⇒ r′i − r′j < q′i − q′j ⇒ FX(r′i − r′j + L) < FX(q′i − q′j + L), and similarly FX(r′j − r′i +
L) > FX(q′j − q′i + L). Since one of the sums is non-empty (otherwise I and J would be disconnected
in the undirected GM), the one of the two sums is positive and the other is non-negative, which is a
contradiction. Therefore, ε(R, M) = 0 = ε(Q, M) ⇒ R′ = Q′ and therefore R must be equal to Q plus
a constant.

Theorem A3. ε(R, M) is a descent direction for the problem minR∈Rn ∥ε(R, M)∥2
2

Proof. We want to show that (∇∥ε(R, M)∥2
2)

Tε(R, M) < 0 for ε ̸= 0. First, the partial derivatives of εi
are, for i ̸= j,

dεi(R, M)

drj
=

d
drj

ak=i

∑
k

pi,k − FX(ri − rbk
+ L) +

d
drj

bk=i

∑
k

pi,k − FX(ri − rak − L) =

=
bk=j

∑
ak=i

fX(rak − rbk
+ L) +

bk=i

∑
ak=j

fX(rbk
− rak − L) = ∑

k∈Mi∩Mj

fX(rak − rbk
+ L)

since fX is symmetric around zero, and for i = j,

dε j(R, M)

drj
=

d
drj

ak=j

∑
k

− fX(rj − rbk
+ L) +

d
drj

bk=j

∑
k

− fX(rj − rak − L) = − ∑
k∈Mj

fX(rak − rbk
+ L)

so the scalar product we want is

(∇∥ε∥2
2)

Tε =
n

∑
i=1

εi(R, M) · d
dri

∥ε(R, M)∥2
2 =

n

∑
i=1

n

∑
j=1

2εi(R, M)ε j(R, M)
dε j(R, M)

dri
=

= −2
n

∑
i=1

εi(R, M)2 ∑
k∈Mi

fX(rak − rbk
+ L) + 4 ∑

i ̸=j
εi(R, M)ε j(R, M) ∑

k∈Mi∩Mj

fX(rak − rbk
+ L) =

= 2
|M|

∑
k=1

(
2εak (R, M)εbk

(R, M)− εak (R, M)2 − εbk
(R, M)2

)
fX(rak − rbk

+ L) =

= −2
|M|

∑
k=1

(
εak (R, M)− εbk

(R, M)
)2 fX(rak − rbk

+ L) ≤ 0

And if ε(R, M) ̸= 0, by lemma A1 there must be strictly negative and non-negative components of
ε(R, M), and a game between one of each (by weak connectedness of GM), so at least one pairing
(ak, bk) of M has εak ̸= εbk

, and the associated term of the sum above is strictly positive, giving
(∇∥ε∥2

2)
Tε < 0
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Appendix B. Proof That the Discrete Model Is an Elo Model

Here we prove that the discrete model proposed in section 3.4 is a particular type of Elo model, or
in other words, that if E[pA] = P[Sk(µ1, µ2) > 0] + 1

2P[Sk(µ1, µ2) = 0] for

µ1 =
1
2

(
∆r +

√
∆2

r + H2
)

and µ2 =
1
2

(
−∆r +

√
∆2

r + H2
)

there exists a continuous distribution X with domain R for which E[pA] = FX(∆r)

Proof. Let’s denote

F(x) := P[Sk(µ1(x), µ2(x)) > 0] +
1
2

tP[Sk(µ1(x), µ2(x)) = 0] =

= P
[

Sk

(√
x + H2 − x

2
,

√
x + H2 − x

2

)
> 0

]
+

1
2
P
[

Sk

(√
x + H2 − x

2
,

√
x + H2 − x

2

)
= 0

]
Here we are assuming H2 > 0, since 1

4 H2 is the expectation of a non-negative quantity (the product of
the goals scored by each team). This means that µ1 is strictly increasing in ∆r, and µ2 = H2

4µ1
is strictly

decreasing in ∆r.
On the other hand, gk(a, b) := P[Sk(a, b) ≥ k] is increasing in a and decreasing in b, because for

any ε > 0, we have

gk(a + ε, b) = P[Sk(a + ε, b) ≥ k] = P[Sk(a, b) + P(ε) ≥ k] > P[Sk(a, b) ≥ k] = gk(a, b)

gk(a, b) = P[Sk(a, b) ≥ k] > P[Sk(a, b)− P(ε) ≥ k] = gk(a, b + ε)

where P(ε) is a Poisson variable with mean ε.
This two propositions imply that F(∆r) = 1

2P[Sk(µ1, µ2) ≥ 1]+ 1
2P[Sk(µ1, µ2) ≥ 0] = g1(µ1,µ2)+g0(µ1,µ2)

2
is strictly increasing in µ1 and decreasing in µ2, and therefore increasing as a function of ∆r. To finish,
we only need to show that E[pA] goes to 1 as ∆r approaches +∞, and 0 when ∆r goes to −∞, since
any monotone function with that asymptotic behavior is a distribution function.

As ∆r goes to infinity, µ1 goes to infinity and µ2 goes to zero, so

F(∆r) = P[P(µ1) > P(µ2)] +
1
2
P[P(µ1) = P(µ2)] ≥ P[P(µ1) > 0 = P(µ2)] =

= (1 − e−µ1)e−µ2 −−−→
∆r→∞

(1 − e−∞)e0 = 1

And of course F(∆r) = 1
2 (P[Sk(µ1, µ2) ≥ 1] + P[Sk(µ1, µ2) ≥ 0]) ≥ 1, so by the sandwich rule,

F(∆r) −−−→
∆r→∞

1

A similar argument shows that when ∆r goes to −∞,

F(∆r) ≤ P[P(µ1) > 0] +
1
2
P[P(µ2) = 0] +

1
2
P[P(µ1) > 0] ≤

≤ 3
2
(1 − e−µ1) +

1
2

e−µ2 −−−→
∆r→∞

3
2
(1 − e0) +

1
2

e−∞ = 0

and F is bounded below by zero, so both limits hold and F is the distribution function of some variable
X.
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Appendix C. Implementation of the Rating System from SPI

The SPI rating system that we used as a benchmark to compare our discrete model is described
in [12] and [13]. The system uses two rating parameters for each team instead of only one, namely
OFFA, which is higher the more goals team A is likely to score, and DEFA, which is higher the more
goals A will allow its rivals to score.

In a match between A and B, in which A scores GA goals and B scores GB, we define the Adjusted
Goals Scored of A as

AGSA := (GA − DEFB)
0.424 · AVGBASE + 0.548

max(0.25, 0.424 · DEFB + 0.548)
+ AVGBASE

where AVGBASE is the average number of goals scored by each team in a game. Similarly, the Average
Goals Allowed of A is defined as

AGAA := (GB − OFFB)
0.424 · AVGBASE + 0.548

max(0.25, 0.424 · OFFB + 0.548)
+ AVGBASE

and both quantities are similarly defined for B. The model then states that E[AGSA] = OFFA and
E[AGAA] = DEFA. From this, given some starting values for both parameters for both teams, we can
infer AGSA, AGAA, AGSB and AGAB for each game, and correct the parameters by

OFF′
A = λAGSA + (1 − λ)OFFA DEF′

A = λAGAA + (1 − λ)DEFA

OFF′
B = λAGSB + (1 − λ)OFFB DEF′

B = λAGAB + (1 − λ)DEFB

(A1)

Since AGAA and AGSA are linear in GB and GA respectively, we obtain the expectation of GB and GA
from them as follows:

E[GA] = fA,B := (OFFA − AVGBASE)
max(0.25, 0.424 · DEFB + 0.548)

0.424 · AVGBASE + 0.548
+ DEFB

E[GB] = gB,A := (DEFA − AVGBASE)
max(0.25, 0.424 · OFFB + 0.548)

0.424 · AVGBASE + 0.548
+ OFFB

There are two issues with this: first, gA,B and fB,A should also match E[GA] and E[GB] respectively, but
they don’t necessarily match: in practice, we use E[GA] =

fA,B+gA,B
2 for estimating the win and draw

odds in our code. The second issue is that the resulting value of E[GA] or E[GB] could be negative,
and in that case, we impute 10−6 as the expected goals of that team.

Finally, in order to account for the home field advantage, supposing A and B play on A’s field,
we modify the formulas above as follows:

AGSA := (GA − DEFB)
0.424 · AVGBASE + 0.548

max(0.25, 0.424 · DEFB + 0.548)
+ AVGAWAY

AGAA := (GB − OFFB)
0.424 · AVGBASE + 0.548

max(0.25, 0.424 · OFFB + 0.548)
+ AVGHOME

where AVGHOME is the average number of goals scored by home teams in our dataset, and AVGAWAY
the average goals scored by the visiting player. The formulas for
fA,B = (OFFA − AVGAWAY)

max(0.25,0.424·DEFB+0.548)
0.424·AVGBASE+0.548 + DEFB, fB,A, gA,B and gB,A are modified accord-

ingly.
Finally, in order to use this model in the same dataset as the Elo system, we use the same algorithm

as in 4.1 replacing the unbiased estimator for ratings by 50 iterations of the update formulas A1 from
the arbitrary starting point OFFi = DEFi = 1, which quickly converges to a fixed point.
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The only parameter of the model is the update sensibility λ in A1, which plays a similar role as K
does for the Elo system, and we also introduce a dampening parameter D so that the result predictions
are done with D · OFFA, D · DEFA, D · OFFB and D · DEFB instead of the original parameters. In our
training dataset for soccer, we find the minimum MSE at the point λ∗ ≈ 0.02 and D ≈ 0.9.
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