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Abstract: BReast CAncer gene 1 (BRCA1) and BReast CAncer gene 2 (BRCA2) encode for tumor
suppressor proteins which are critical regulators of the homologous recombination (HR) pathway,
the most precise and important DNA damage response mechanism. Dysfunctional HR proteins
cannot repair double-stranded DNA breaks in mammalian cells, a situation called HR deficiency.
Since their identification, pathogenic variants and other alterations of BRCAI and BRCA2 genes
have been associated with an increased risk of developing mainly breast and ovarian cancer.
Interestingly, HR deficiency is also detected in tumors not carrying BRCA1/2 mutations, a condition
termed “BRCAness”. One of the main mechanisms causing the BRCAness phenotype is the
methylation of the BRCA1/2 promoters and this epigenetic modification is associated with
carcinogenesis and poor prognosis mainly among patients with breast and ovarian cancer. BRCA1
promoter methylation has been suggested as an emerging biomarker of great predictive
significance, especially concerning Poly (ADP-ribose) Polymerase inhibitors (PARP inhibitor-
PARPi) responsiveness, along with or beyond BRCA1/2 mutations. However, as its clinical
exploitation is still insufficient, the impact of BRCA1/2 promoter methylation status needs to be
further evaluated. The current review aims to gather the latest findings about the mechanisms that
underline BRCA1/2 function as well as the molecular characteristics of tumors associated with
BRCA1/2 defects, by focusing on DNA methylation. Furthermore, we critically analyze their
translational meaning and the validity of BRCA methylation biomarkers in predicting treatment
response and we suggest a diagnostic pipeline that could be implemented in liquid biopsy to aid
precision pharmacotherapy in BRCA-associated tumors.

Keywords: BRCA1; BRCA2; promoter methylation; breast cancer; ovarian; cancer; liquid biopsy;
PARP inhibitors

Introduction

BReast CAncer gene 1 (BRCA1) and BReast CAncer gene 2 (BRCA2) encode for proteins that are
well-known mediators of DNA damage response and particularly of double-strand breaks (DSBs)
through homologous recombination (HR) [1,2]. Since the discovery of BRCA1 and BRCA2 genes in
the early 1990s, it was demonstrated that individuals carrying germline BRCA1/2 mutations had a
much higher lifetime risk of developing a malignancy such as Breast Cancer (BrCa), Ovarian Cancer
(OvCa), Prostate Cancer (PrCa), and Pancreatic Cancer (PaCa) compared to the general population
[3-7]. Interestingly, the risk probability of carcinogenesis varies and depends on the type and position
of the actual mutation within the BRCA1/2 genes [8,9]. While the correlation between BRCA1/2
mutations and higher risk for tumorigenesis is well-established, the conclusions regarding impact on
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the survival are still under debate and characterized by conflicting results [10-14]. Later, the major
importance of BRCAI promoter methylation was also highlighted in different types of cancer as it
represents an alternative silencing mechanism of the BRCAI gene [15-17]. In general, aberrant
epigenetic regulation affecting gene expression independently of DNA sequence is very common in
cancer [18]. Specifically, hypermethylation of the 5' promoter region of genes is a frequent epigenetic
event in cancer cells leading generally to gene silencing [19,20]. Interestingly, BRCA1 promoter
methylation was identified only in tumor tissue, indicating its potential oncogenic role [15,16].
Different clinical studies have demonstrated that patients with BrCa, OvCa, PrCa, and PaCa
harboring BRCA1/2 mutations or other aberrations leading to malfunction could receive clinical
benefit with the use of PARPi), such as olaparib and rucaparib, thus succeeding a major advance of
precision medicine for these tumor types [21-27]. Today, additional pieces of clinical research work
have shown the BRCA1/2 impact on a person’s lifetime risk of developing specific types of cancer and
highlight the potential of the aberrant methylation of these genes as prognostic and predictive
biomarkers [28-31]. Therefore, on the eve of precision medicine, the understanding of the tumors
with BRCA1/2 aberrations and their distinct traits remains of utmost significance.

BRCA1/2 molecular mechanism of DNA damage response during Homologous Recombination

BRCA1 and BRCA2 are proteins with a critical role in maintaining genomic stability by
responding to Double-Strand Breaks (DSBs) through the HR pathway [1,32]. It is of note, that BRCA1
targets effectively every DSB through HR!. Repair through HR takes place in the late S phase and G2
of the cell cycle [33]. The ATR and ATM kinases recognize this DNA damage and initiate the repair
process by phosphorylating downstream DNA repair-related targets such as BRCA1 [34]. BRCALI is
a multifunctional nuclear phosphoprotein composed of diverse domains such as BRCA C-terminal
(BRCT) domain, which participates in many biological processes [1,35]. HR is considered an error-
free DNA damage response mechanism and is mediated by BRCA1/2 and other effectors, as follows:
BRCAL1 binds to the DSBs through a protein complex composed of Mrell, Rad50, and NBS1 (MRN
complex) as well as CtIP [36]. Then, this BRCA1-containing multi-protein complex promotes DNA
resection at the 5 end of DSBs, creating single-strand DNA (ssDNA) [37]. Then, BRCA1 employs
Rad51, an important factor with recombinase function, through its interaction with BRCA2 and
PALB2 and drives it to the ssDNA, where it takes place the HR process [38]. A schematic
representation of the main events of HR is illustrated in Figure 1.
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Figure 1. BRCA1l and BRCA2 molecular mechanisms of DNA damage response during in
homologous recombination. i) A double-strand DNA molecule without errors. ii) The DSB of DNA is
typically caused by external factors such as ionizing radiation or chemotherapeutic drugs but also
naturally due to the accumulation of reactive oxygen species. Most of the time, this DNA damage
leads to the uneven loss of numerous nucleotides resulting in two DNA strands that are incompatible
near the breakage point. iii) ATM and ATR kinases are activated in the presence of DSB initiating the
repair process by phosphorylating a set of DNA repair targets. One of the main phosphorylation
targets is the BRCA1, which in turn associates with the Mrell, Rad50, and NBS1 (MRN complex) as
well as CtIP, eventually forming a multi-protein BRCA1 complex. This complex approaches the DSBs
and initiates DNA end resection, creating single-strand DNA (ssDNA) overhangs. iv) After DNA end
resection is completed, BRCA1 recruits PALB2 and BRCA2 which in turn promotes the loading of the
recombination enzyme RADS51 to the ssDNA. v) The second BRCA1-based protein complex starts the
DNA strand invasion and homologous repair mechanism, restoring the genetic information lost at
the breakage. vi) After this multi-step but accurate process is successfully completed, two identical or
almost identical DNA double strands are formed.

DSB: Double-Strand Breaks (DSB)
BRCA1/2-mutated cancers

BRCAI-mutated tumors include all tumors which exhibit a pathogenic mutation and not a
Variant of Unknown Significance (VUS) in the BRCA1 gene [39]. Mutations in BRCAI gene are
detected in different cancers, such as in BrCa (about 5% to 10% of all cases), OvCa (about 20% of
cases), PaCa (about 5% to 10% of all cases), and to a lesser extent in PrCa (about 1% to 5% of all cases)
[40-45]. In clinicopathological settings, these tumors display some distinct features: BRCAI-mutated
BrCa is more often associated with the basal-like triple-negative phenotype (ER-/PR-/HER2-),
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mutated p53, immune cell infiltration (mainly T-cell lymphocytes), whereas BRCA2-mutated BrCa
presents the following features: luminal type, ER+/PR+/HER2- profile, intense immunogenicity and
better survival rates [39,46—48]. Apart from mutations, other genetic aberrations of BRCA1/2 take an
active role in carcinogenesis. For example, researchers analyzed 36 Formalin-Fixed Paraffin-
Embedded (FFPE) OvCa samples by next-generation sequencing (NGS) and found 15 BRCA1 and 12
BRCA2 variants as well as important loss-of-function due to CNV of BRCA1/2 genes [49].

Loss of heterozygosity (LOH) is also a key concept in tumorigenesis. It refers to the loss of an
allele, usually through a mutation, and then the loss of the second allele due to genetic
imbalance/rearrangements, epigenetic regulation, or other mechanisms [50]. LOH is strongly
correlated to BRCA1/2 status as it was found to be relatively frequent in BrCa and OvCa bearing
BRCA1/2 mutations [51]. Moreover, BRCAI1 mutation carriers presented BRCAI promoter
methylation and to a great extent exhibited also LOH. In BRCA1/2 mutation carriers, LOH is
associated with better survival rates and therapeutic implications, as the absence of BRCA1/2 function
due to LOH renders tumors sensitive to PARPi and mainly to platins [51], as LOH is necessary for
tumor sensitivity to platins and LOH absence is connected with a worse prognosis under this type of
treatment [51].

BRCA1-like cancers

Following the establishment of the pivotal role of BRCA1/2 mutations in carcinogenesis, another
emerging group of tumors was associated with BRCA1 dysfunction, the so-called BRCA1-like (or
BRCAness) tumors, which do not exhibit a distinct mutation in the BRCA1 gene but share altogether
common traits [52,53]. BRCAI-like tumors are HR deficient and present chromosomal breaks, DNA
methylation, copy number variations (CNV), and genomic instability [52,54]. Recent studies focus on
describing every aspect of the BRCA1-like tumors, in order to identify cancer subgroups with distinct
characteristics rendering them candidates for efficient therapeutic strategies [48,54].

A broad spectrum of DNA damage response genes directly or indirectly linked to HR status has
been identified including ATM, STK11, TP53, PTEN, CDH1, CHEK2, BARD1, BRIP1, MRE11, RAD50,
NBS1, RAD51C/D, ATR, BAP1, BLM, CDK12, FANCA, FANCC, FANCD2, KRAS, and PALB2 [3,53,55].
However, only a few of the aforementioned genes are found often mutated, such as TP53, which is
mutated in 84% of all BRCAI-like tumors and could serve as a valuable biomarker for stratifying
BRCAI-like tumors [48]. Takamatsu et al, showed that BRCA1/2 wild-type cancers which present
alteration in other HR genes associated with elevated genomic scar scores (model predicting
homologous recombination deficiency). This score differed significantly by sex and the presence of
somatic TP53 mutations and was associated with HR deficiency and

treatment response to DNA-damaging agents [56]. Alternatively, the evaluation of foci
formation (a biomarker of HR repair) of 4 key HR proteins (BRCA1, Rad51, YH2AX and 53BP1) on
DNA is recommended in order to detect possible HR deficiency and BRCA1-like tumors [57]. As
mentioned above, BRCA1 and Rad51 are key mediators of HR and thus their foci formation is present
in HR-proficient cells, whereas YH2AX and 53BP1 as conventional DNA damage markers build foci
in HR-deficient cells [58]. Interestingly, researchers proved that the positive BRCA1 and RADS51 foci
formation is associated with non-response to olaparib therapy in a study featuring Patient Derived
Xenograft (PDX)-derived Triple Negative Breast Cancer (TNBC) samples with BRCA1/2 defect and
could be used as a predictive marker in the TNBC [59]. The above studies, pointing out the
importance of analyzing a panel of HR genes to identify HR deficiency. Also, identifying a BRCA1-
like tumor and distinguishing it from a BRCAI-mutated tumor is not as simple as anticipated on the
genetic level, making it clear that a multidimensional approach would be more suitable in studying
BRCA1-like tumors.
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BRCA1/2 promoter methylation in cancers

It is widely accepted that aberrant gene promoter methylation represents an epigenetic event
exhibiting an oncogenic role by repressing gene expression in numerous cancers [60-63]. Specifically,
locus-specific hypermethylation takes place on sites rich in CGs of the promoter region of tumor
suppressor genes such as BRCAI, leading to BRCAI transcripts and BRCA1 protein levels
downregulation [64]. In BrCa tissues, BRCAI promoter hypermethylation has been identified in 9 to
24% of all cases [65,66]. In particular, the prevalence of BRCAI promoter methylation is increased in
TNBC [67-69]. In general, an individual with BRCA1 promoter methylation, an event being
particularly encountered in East Asia than Caucasians, has a 4.6 higher risk of developing BrCa than
baseline, according to a meta-analysis [28] including 19,084 individuals, which associated BRCA1
promoter methylation with BrCa occurrence, recurrence, prognosis, and therapy response [28,70].
BRCA1 promoter methylation was present in 44.4% of malignant and 9.7% of normal tissues [28].
Despite the strong evidence that hypermethylation of BRCA1 promoter is detected mainly in cancer
tissue, several studies presented contradictory results, suggesting that BRCA1 promoter methylation
levels in normal tissue might be equal to or exceed the methylation levels of cancer tissues [71-73].

On the other hand, BRCA2 promoter hypermethylation is rarely encountered in BrCa and OvCa
and no statistically significant correlation has been observed to clinical end-points [28], whereas in
ovarian tumor samples, BRCA2 promoter methylation was confirmed in only 4.6% of the cases [31].

From a technical point of view, the overall approach for the quantification of BRCAI promoter
methylation differs between studies likely due to the determination of different cut-offs, different
handling and pre-analytical procedures, lack of a common validation assay and quality of the
biomaterial, eventually leading to discrepancies in calling a sample hypermethylated or not [74]. For
example, in one study, 5% of the TNBC tissue samples showed methylation levels over 80% and were
classified as high-methylated while 25% of them demonstrated methylation levels between 30% and
80% respectively, classified as low-methylated [75]. In another study focusing on OvCa tissues,
researchers considered as a cut-off value the 15% methylation for calling a sample methylated [31].
There are also different methodologies to determine methylation (pyrosequencing, Methylation
Specific PCR, restriction enzyme-based methods, droplet digital PCR, Genome-Wide Methylation
Assays) and therefore the results have to be interpreted according to the used assay to avoid
discrepant results between studies [31,64]. It is clear that BRCA1 promoter methylation should be
examined quantitatively and in relation to methylation zygosity, as samples, many times are
misidentified as hypermethylated without adequate methylation levels [64]. Methylation zygosity
describes the methylation status of all epialleles (alleles that are variably expressed due to epigenetic
modifications). ‘Homozygous methylation” refers to the situation when all epialleles in a cell have
highly methylated promoters resulting in gene silence. ‘Heterozygous methylation” describes a mix
of highly methylated and unmethylated epialleles coexisting within each cell. In these cells, gene
expression is active due to the presence of unmethylated epialleles, despite the presence of highly
methylated epialleles [76]. An important factor that affects the methylation rate determination is
neoplastic cellularity. Tumor cells exhibit drastically different methylation levels thus, sufficient
tumor cellularity will lead to higher mean methylation in cancerous in relation to healthy tissue
[29,31,64]. Collectively, for what is concerned with measuring BRCA1 methylation, for valid
conclusions to be drawn, the establishment of a widely accepted unified analytical procedure is of
utmost importance.

BRCA1/2 promoter methylation in different cancer types

The following section will provide insight into current studies linking the BRCA1/2 promoter
methylation status and other BRCA1/2-related genetic modifications to certain cancer types. Data
from major studies assessing BRCA1 promoter methylation levels among patients with different
types of cancer have been included, to frame the whole spectrum of BRCA1 promoter methylation
applications in clinical settings. Table 1 presents the percentages of BRCAI methylation reported in
BrCa, OvCa, PrCa, and PaCa and correlations that have been made with the disease state.
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Table 1. BRCA1 methylation percentages in tissue and blood cells among cancer types and their

correlations with the disease's clinically significant end-points.

Cancer | Biomaterial BRCA1
Correlation Reference
type methylation (%)
9.1 Diagnosis at a young age Birgisdottir et al [65]
Improved Survival after
3.0 Stefansson et al [68]
chemotherapy
BrCa Tissue 124 Incidence of TNBC Lonning et al [77]
26.0 Worse Survival Chen et al [78]
Improved Survival after
24.1 Glodzik et al [66]
chemotherapy
TNBC Tissue 20.6 Improved Survival Brianese et al [67]
Young age, Advanced stage,
16.3 Kalachand et al [43]
Improved Survival
19 (high
methylation) High methylation with GIS
Durand et al [79]
14 (low and PARPi treatment option
OvCa Tissue
methylation)
89.9 None Pradjatmo et al [80]
Aref-Eshghi et al
52 Partially BRCAness prediction
[49]
19.3 None Sahnane et al
Tissue
HGSOC 14.8 Young age Ruscito et al [81]
100.0 None Rabiau et al [17]
PrCa Tissue
0.0 None Bednarz et al [82]
blood
lymphocyte 0.3 None Zhou et al [83]
PaCa s
Tissue Poorer tumor differentiation,
60.3 Peng et al. [84]
protein expression levels
PaCa Tissue 0.0 None Abdalah et al. [85]
Tissue &
Blood
PaCa 3.6 None Zhen-Lin et al. [86]
lymphocyte
s

Abbreviations: BrCa: Breast Cancer; TNBC: Triple-Negative Breast Cancer; OvCa: Ovarian Cancer; HGSOC:
High-Grade Serous Ovarian Cancer, PaCa: Pancreatic Cancer, GIS: Genomic Instability; PARPi: PARP inhibitor.
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BrCa

BrCa is the most frequently diagnosed malignancy in women globally. In addition to the study
mentioned above [65], a meta-analysis by Wu et al. featuring data from 3,205 women suffering from
BrCa, reported that BRCAI methylation in tumor tissues was statistically significantly correlated to
poor prognosis in terms of overall survival [87]. Interestingly, the researchers also concluded that the
handling and storage of cancerous tissue could affect the tissue quality influencing the methylation
results [87]. In another study by Chen et al., 139/536 (26.0%) tumor samples deriving from patients
with sporadic BrCa exhibited BRCA1 promoter methylation. Interestingly, the scientists observed a
worse 5-year Disease Free Survival (DFS) for patients bearing tumors with BRCA1 methylation in a
statistically significant manner [78]. A meta-analysis in patients with BrCa showed that BRCA1
promoter methylation status was similar between tumor tissue and peripheral blood cells, thus
encouraging its potential use as a blood-based biomarker [28]. However, a study that analyzed
BRCA1 methylation in the blood of early BrCa in younger patients found that only 2 out of 154 blood
cell samples presented hypermethylation of BRCA1 promoter [88]. According to these findings,
someone can speculate that BRCAI promoter methylation is a rare event in the early onset of BrCa,
but more studies are needed for definite conclusions to be drawn. On the other hand, BRCA2
methylation has a very low incidence, about 4% and no correlation was observed with BrCa,
according to a meta-analysis [28]. TNBC is a subtype of BrCa lacking the ER, PR, and HER-2 receptors,
and thus not responding to hormonal therapy (like tamoxifen or aromatase inhibitors) or therapies
that target HER2 receptors (like Herceptin) [89]. TNBC accounts for about 10% to 20% of all BrCa
cases and may be either hereditary or sporadic [90]. TNBC is stimulated by mechanisms, such as
point mutations, large rearrangements, and gene promoter methylation, and interestingly shares the
same clinicopathological characteristics with the BRCAI-mutated tumors [28,67]. Multiple studies
confirmed that BRCA1 promoter methylation and BRCAI mutation status are almost mutually
exclusive, thus tumors featuring BRCA1 promoter methylation are not linked to BRCAI gene
mutations, although there are some rare exceptions observed [28,29,31,43,67-69,91-93]. Interestingly,
according to a study, 62% of BRCAI-mutated and 50% of BRCA1 promoter methylated cancers appear
to be TNBC, whereas 40% to 70% of TNBC is estimated to be HR deficient [68]. Another study
analyzed 237 TNBC tissues identifying hypermethylation of BRCA1 promoter in the 57/237 (24.1%)
of samples [66]. Interestingly, 89.5% of the hypermethylated cases harbored concurrent LOH of
BRCA1 and patients with TNBC harboring BRCA1 promoter methylation presented a significantly
longer DES than non-altered patients [66]. An immense potential of BRCA1 methylation as an early
biomarker for TNBC (also HGSOC), was highlighted in a study showing that BRCA1 promoter
methylation aberrations can be detected in white blood cells almost 5 years earlier than usually
expected, paving the way for timely interventions and a better therapeutic outcome [69].

It is clear that BRCA1 promoter methylation is a strong candidate both as a prognostic and a
predictive biomarker; nevertheless, intratumor heterogeneity and differences in epialleles render
BRCA1 promoter methylation as a marker only partially effective. It is well-known that the dynamic
evolution of a tumor leads to different tumor cell subpopulations with distinct genetic, epigenetic,
and phenotypic traits. The different epialleles in these subpopulations could determine the response
to treatment as in the case of BRCAl mutations. Scientists now focus their attempts on deep
sequencing to catch all sample epialleles. In a relevant study, researchers using bisulfite sequencing
found lower methylation in epialleles of core breast tumors than in tumor periphery, [94]. These
methylation differences were rendered to the hypoxic microenvironment of the tumor’s, core leading
to this heterogeneous phenotype; such tumor biology aspects need to be considered for developing
effective treatment schemes [94]. On the other hand, the combination of the BRCAI promoter
methylation status with other markers has been used to assess prognosis and therapy response with
more accuracy. In TNBC, researchers revealed that the combination of low pRb expression levels,
high p16 expression levels, PTEN absence, and BRCAI promoter methylation exhibited a similar
phenotype to BRCAI-mutated tumors [70].

Collectively, BRCA1 promoter methylation is detected frequently in BrCa, especially in TNBC,
and has been associated with survival and other prognostic and therapy response end-points. Further
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studies analyzing all epialleles at a cellular level and/or combined with additional markers are
awaited towards the establishment of BRCA1 promoter methylation as a useful tool in the clinical
management of BrCa.

OvCa

Although first identified in breast, BRCAI mutations and other gene aberrations were soon
shown to have a significant role also in OvCa [95]. The presence of
germline BRCA1 and BRCA2 mutations in patients with OvCa ranges from 5% to 20%, also somatic
mutations are rare (2% and 8%, respectively) [95]. OvCa is the second cancer type that has been
extensively studied as regards to BRCA1 promoter methylation status. A recent meta-analysis of 15
studies concluded that BRCA1 promoter methylation was present in 430/2636 tumors (16.3%).
However, methylation percentages were not consistent between studies, ranging from 6.2% to 73.7%
[43], and this is probably attributed similarly to breast cancer to variations in analytical methods and
different methylation cut-offs used in each study. Nevertheless, BRCA1 promoter-methylated tumors
share similar clinicopathological characteristics with the BRCAI-mutated as they are associated with
younger age and advanced disease but no correlation with survival or platinum sensitivity has been
reported [43]. In general, studies are not in agreement regarding a possible correlation between
BRCA1 methylation and survival [79-81]. OvCa patients with homozygous BRCAI1 promoter
methylation showed higher PFS than patients bearing BRCAI-mutated tumours [43,49]. Another
study showing BRCA1 promoter hypermethylation in 17/88 (19.3%) OvCa and BRCA2 methylation
in 4/86 (4.6%) reported no correlation with clinicopathological characteristics (age, stage, histology
type) [31]. Interestingly, BRCA1/2 promoter methylation is never observed in non-neoplastic ovarian
tissue at any histological type, confirming its cancer-specific role [31].

HGSOC, a most lethal OvCa subtype accounting for 70% to 80% of OvCa cases is linked to rapid
intraperitoneal spread [96]. The majority of BRCA1 promoter methylation cases concern younger
patients with HGSOC of advanced stage [43]. A study including 172 HGSOC tissues, concluded that
the combined examination of BRCA1/2 sequencing, CNVs, and methylation could lead to a more
accurate diagnosis of “BRCAness” phenotype, with an estimated Area Under the Curve (AUC) of
0.77 and accuracy of 0.75, thus worthy to be validated in bigger cohorts of patients [49]. Interestingly,
another study using HGSOC-derived PDX models harboring BRCA1 mutations showed a response
to rucaparib and so did two chemo-naive HGSOC-PDX models with homozygous BRCAI
methylation [97]. Moreover, the donor-patients responded to rucaparib as well [97]. On the other
hand, two PDX models with heterozygous BRCAI methylation presented some BRCAI mRNA and
protein expressions and failed to respond to the rucaparib, suggesting that it is homozygous BRCA1
methylation that predicts PARPi sensitivity [97]. The above results again highlight the significance of
assessing BRCA1 methylation zygosity very carefully to predict clinical outcomes. The zygosity status
is thus considered an emerging factor of clinical significance to support decisions for different
therapeutic strategies [29,49].

Collectively, these results point out a potential predictive and to a lesser extent prognostic role
for BRCA gene methylation in OvCa. Survival rates in relation to BRCAI methylation should be
further studied for conclusions to be drawn. For sure, a determining factor is the quantitative analysis
in terms of methylation zygocity as it is of utmost importance for guiding treatment options.

Prostate Cancer (PrCa)

PrCais the most frequent cancer in men. Although the majority of PrCa cases present an indolent
clinical course, PrCa remains a leading cause of cancer-related deaths [98]. Germline mutations in
BRCA1/2 genes increase significantly the risk of developing PrCa. Although BRCA2 mutations have
been found only in 1-3% of cases, BRCA2 mutation carriers are two-fold to four-fold more likely to
develop an aggressive tumor at a younger age compared to the general population [99]. Genetic
alterations affecting BRCA1 gene and representing part of BRCAness phenotype also seem to play a
role in PrCa development and metastasis [100]. In PrCa, BRCA1 promoter methylation status has not
been considered of the same clinical importance as in BrCa and OvCa, as there are controversial
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results between studies. BRCAI promoter methylation was absent in all of the 31 prostate cancer
samples examined, although other BRCA1 aberrations, such as BRCAI imbalance, could bear some
value in evaluating PrCa prognosis [82]. Another study examined BRCA1 promoter methylation both
in non-malignant and malignant tissues, reporting contrasting results; Specifically, BRCAI promoter
methylation was observed in all malignant tissues (prostate intraepithelial neoplasia, peri-tumor
tissue, and adenocarcinoma) but also in 15/17 normal samples [17]. Clearly, further studies are
required to enlighten the topic and reveal any significance.

Pancreatic Cancer (PaCa)

Generally, PaCa is characterized by poor prognosis [101]. Pancreatic Ductal Adenocarcinoma
(PDAC), the predominant form of PaCa is a highly aggressive tumor with rising incidence and the
lowest survival rate amongst all the major cancers. Germline BRCA1/2 mutations are detected in
approximately 5-10% of cases of hereditary PDAC and approximately 3% of cases of sporadic PDAC
[45]. Similarly, with PrCa, BRCA2 mutations seem to be associated with an increased risk of PDAC
development [45]. Regarding BRCA mutations and survival, the few studies exploring possible
associations have presented controversial findings [45,102-104]. Moreover, the findings supporting
the role of BRCA1 promoter methylation in PaCa are not conclusive yet. Indeed, Peng et al. examined
surgical samples of PDAC, reporting BRCA1 promoter methylation in more than half of the cancerous
samples (60.3%) [84]. However, Zhou et al. evaluated the promoter methylation status of BRCAI and
BRCA2? in the peripheral blood lymphocytes of 655 patients suffering from PaCa and reported BRCA1
promoter methylation levels ranging from 0.0% to 3.3%, and the BRCA2 from 0.0% to 7.6%. As the
mean values were extremely low (0.3% and 0.1% respectively), the researchers considered the
occurrence of BRCA1 and BRCA2 promoter methylation in PaCa as highly unlikely [83]. Abdallah et
al. assessed the promoter methylation levels of BRCA1 in 121 FFPE PDAC samples by using different
analytical methods to exclude possible low sensitivity and observed no methylation in any of the
PDAC samples [85]. In 2022, Zhen-Lin et al. examined tissue samples from patients with PDAC and
reached similar conclusions. The mean BRCA1 promoter methylation levels were found to be low
(3.62%). To ensure the results, an additional detection method was used by which the unmethylated
status of BRCA1 promoter was confirmed. Thus, they concluded in concordance with previous
studies that BRCA1 promoter methylation was rather unusual [86].

BRCA1/2 methylation in liquid biopsy as a predictive biomarker

The emergence of liquid biopsy has revolutionized clinical oncology, introducing an alternative
to traditional tissue sampling for exploring genetic aberrations and dynamic changes in the tumor
[105-108]. Some of its most significant advantages are its non-invasive character and the powerful
potential for effective disease monitoring by repeated sampling for controlling therapy efficacy and
resistance onset [109,110]. In cancer, circulating tumor DNA (ctDNA) is an important blood
component released in the bloodstream by dying tumor cells, reflecting molecular patterns of the
cancer cells. It is mainly comprised of around 150 bp nucleic acid fragments and because of its
relatively short length, an increased tumor volume is required for accurate assessment [88,110]. The
application of liquid biopsy in assessing the BRCA1 promoter methylation status is on the rise,
especially in OvCa. A study evaluating BRCA1 promoter methylation status in plasma cfDNA from
patients with OvCa before and during treatment observed occurrence at 60% before treatment, and
a 24% epigenetic shift to the unmethylated state during treatment, which was correlated to OvCa
recurrence. Researchers concluded that BRCA1 promoter methylation in cfDNA can be used as a
marker for treatment monitoring (Elazezy et al. 2021). In a relevant study, researchers found cfDNA
hypermethylated BRCA1 in about 57% of OvCa patients of all cancer stages, suggesting its use as a
diagnostic and prognostic marker [111]. Similarly, the hypermethylation of BRCA1 and RASSFI1A
was detected in 68% of the tumor tissues but also in the corresponding cfDNA in all stages of OvCa,
being present in the majority of early-stage OvCa cfDNAs, suggesting an early event in OvCa [112]
and making BRCA1 an ideal marker for OvCa monitoring in liquid biopsy. Melnikov et al, used the
methylation of a five-gene panel (BRCA1, HIC1, PAX5, PGR & THBS1) for OvCa detection in cfDNA,
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reaching a sensitivity of 85% and a specificity of 61% [113]. These results indicate the importance of
using multiple methylation biomarkers in ¢fDNA to achieve maximum effectiveness in cancer
detection.

As far as BrCa concerns, studies of BRCA1/2 methylation in liquid biopsy are less. Cristall et al,
introduced the mDETECT method for detecting ctDNA to manage TNBC. This assay examined many
common hypermethylated genome regions including BRCA1 promoter, reaching an AUC of 0.97 for
detecting a tumor with a sensitivity of 93% and a specificity of 100%. Interestingly, BRCAI promoter
methylation was present in cfDNA of about 25% of TNBC cases and 5% of healthy samples [114]. Liu
et al found that cfDNA methylation frequency was higher (but still low) in patients with breast ductal
cancers than in healthy individuals [115]. Low ¢fDNA BRCA1 methylation frequency (below 5%) was
also reported in BrCa by Sturgeon et al. However, BRCAI methylation was more often present in
lymph-node-positive patients [116]. According to a meta-analysis, the hypermethylation of BRCA1
in cfDNA, among other markers, was associated with poor prognosis in ER+/PR+ BrCa [117]. In a
recent work by Yen et al, researchers introduced the Guardant INFINITY, a cfDNA-based test that
simultaneously examined BRCAI methylation and genomic alterations for the management of
advanced BrCa. In specific, 3% of patients had germline mutations in BRCA1, BRCA2, or ATM and
almost 9% of patients had methylated the BRCA1 gene. Only one patient presented concomitant
methylation and mutation at the BRCA1 gene [118]. Interestingly, methylation of BRCA1 was not
detected in the 3210 cancer-free samples, implying the great specificity of BRCA1 methylation as a
biomarker for cancer detection and monitoring.

In PaCa, only one recent study in ¢fDNA is available. Unlike PaCa tissue where methylation is
low, Koukaki et al identified high methylation levels of BRCA1 and BRCA2 in plasma cfDNA, ranging
between 46% and 63% in a group of 105 PaCa patients, associated further with poorer survival [119].
The evaluation of CTCs, although challenging as CTCs are extremely few (1 cancer cell:10 billion
healthy cells) [120] presents another liquid biopsy alternative BRCA1 loss is linked to vimentin and
cytokeratin-positive CTCs, showing an EMT stimulation through BRCA1 loss [59,65]. Unfortunately,
there is no available study examining the BRCA1 methylation status in CTCs. This could be due to
technical reasons as CTCs counts are low. Perhaps, analysis of methylation in CTCs could be
applicable in metastatic cancer where CTCs are more abundant.

Based on these limited observations presented above, the highest BRCA1/2 methylation
percentages in liquid biopsy were reported in PaCa. Then, was more often detectable in OvCa than
BrCa, but more studies are needed to confirm results. In OvCa, BRCAI methylation correlated with
diagnosis and treatment monitoring but in BrCa the detectable methylation was correlated to specific
cancer subtypes and poor prognosis. We believe that it is of utmost importance the design of new
larger liquid biopsy-based studies in those and other cancer types, such as in PrCa, to explore
BRCA1/2 methylation as predictive liquid biopsy biomarkers to aid treatment decisions in a
minimally invasive manner, which also allows dynamic monitoring.

BRCA1/2 methylation and treatment strategies

Through the evaluation of BRCAI promoter methylation in tumor tissue or liquid biopsy and as
this assessment becomes more concrete in terms of methylation zygosity and methylation levels,
specific groups of patients are identified, who are likely to experience clinical benefit from a specific
treatment strategy [31]. PARPis (including olaparib, rucaparib, veliparib, talazoparib, niraparib) are
considered a primary treatment option for patients with BRCAI mutations and especially for TNBC
and HGSOC [29,30,48,49,59,69,75,121-123]. However, not all tumors in these cancer subtypes are
sensitive to PARPi due to tumor heterogeneity [124,125]. Consequently, not all TNBC patients
carrying BRCA1 Wild Type (WT) will benefit from PARPi, as much as non-TNBC patients, carrying
a BRCAI mutation [46,124]. It has been shown that PARPi is also effective in those patients presenting
homozygous BRCAI methylated tumors [39,49,75,123,126,127]. Thus, all alleles of BRCAI must be
evaluated. Homozygous BRCA1 methylation carriers (and not heterozygous) show similar treatment
outcomes as BRCAI mutation carriers [128]. In general, BRCAI-methylated tumors present
similarities to BRCAI-mutated tumors as regards to the HR pathway activity but are substantially
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less differentiated according to their pathological traits [68,69]. A study recommends that
methylation levels for multiple genes engaged in the HR pathway need to be evaluated, to recognize
eligible patients for PARPi treatment [49]. Interestingly, secondary BRCAI mutations occurring
within the BRCAI ring domain can lead to platinum and PARPi resistance [129,130]. Partially
predictive for PARPi effectiveness are also the LOH status of BRCA1/2 mutations implying a defective
HR [39,75]. To identify a possible correlation between BRCA1 promoter methylation status and LOH,
studies in PDX models were conducted using a suitable scoring system for measuring LOH. They
confirmed that LOH is linked to homozygous BRCA1 promoter methylation that could induce
sufficient HR deficiency to permit PARPi activity [29]. The truth is that heterozygous BRCAI
promoter methylation carriers cannot have a significantly improved clinical status under PARPi
treatment due to remaining BRCA1 activity. It is of note, that low methylation levels may be
attributed either to a monoclonal cancer with heterozygous BRCA1 promoter methylation status or a
heterogenous cancer with some cells exhibiting homozygous BRCA1 promoter methylation status
[51,75]. The complete or almost complete loss of BRCA1/2 system activity is a requirement for HR
deficiency and thus PARPI sensitivity [51]. According to a study, BRCA1/2 deficient status and
consequently HR deficiency can be determined through the absence of BRCA1 and Rad51 [59,88].
Other studies suggest the simultaneous evaluation of BRCA1 methylation and BRCA1 protein
expression or PALB2 promoter methylation alone as predictive for therapy response [59,124,131-133].

In OvCa, patients that have BRCA1 hypermethylation are very likely to have high genomic
instability, being good candidates for PARPi therapy. On the other hand, low levels of methylation
were associated with poor outcomes post-platinum [79]. In a relevant study, TNB patients with
BRCAI-methylated tumors were sensitive to adjuvant chemotherapy and had better survival as
compared with TNB patients with BRCAl-unmethylated tumors [30]. A patient with TNBC
presenting high BRCA1 promoter methylation levels and a BRCA2 VUS experienced a complete
response after Olaparib/Eribulin combination treatment [75]. Rucaparib was evaluated in 9 cell lines
of BrCa, OvCa and PaCa of various BRCA1/2 statuses such as methylation, LOH, and mutation [134].
Particularly, cytotoxic effect was caused in UACC3199, a BrCa cell line methylated at BRCA1
promoter, being equal to or even exceeding carboplatin efficiency. The importance of BRCA1
promoter methylation for PARPi efficiency is thereby confirmed. Furthermore, a study noted that
BRCA1 and BRCA2 methylation frequencies varied between CpG sites across their promoters. Some
CpG sites were methylated more frequently in BRCA1/2 mutated cancers, while others were more
often methylated in sporadic carcinomas, suggesting the use of BRCA methylation as a screening test
to identify patients with BRCA germline mutation or BRCAness who may benefit from therapies
such as PARPi [135].

In contrast to mutations, methylation status can change due to tumor microenvironment over
the lifespan of a tumor or during treatment [136]. This might lead to the emergence of PARPi
treatment resistance either during treatment or at recurrence [39,43,93,137]. Retention of homozygous
BRCA1 methylation, a shift to heterozygous BRCAI methylation, or complete loss of BRCAI
methylation may be observed following chemotherapy, e.g. under cisplatin/rucaparib treatment [29].
Loss of BRCA1 promoter methylation restores BRCA1 function and thus HR activity [29,93,137],
driving PARPi treatment resistance. Methylation reversion in recurrent tumors is associated with
resistance and shorter PFS, as illustrated in studies of paired primary-recurrent ovarian tumors [137].
To the best of our knowledge, studies analyzing BRCA1 methylation in ¢fDNA in relation to
treatment response are missing. Only in one recent report, researchers used methylation and
mutation analysis to assess how clinical resistance to PARPis developed in a cohort of 35 metastatic
BrCa bearing BRCA1/2 mutations. Guardant INFINITY (explained above) was employed to analyze
tumors' DNA and corresponding cfDNA. Results showed that the most common resistance
mechanism was BRCA1/2 reversion mutation and less frequent alterations in the 53BP1-Shieldin
pathway [138]. Liquid biopsy seems to be also promising in PrCa, but available data concern only
gene sequencing results and no methylation. In a phase II study of abiraterone acetate in
chemotherapy-naive metastatic castration-resistant prostate cancer patients, the targeted sequencing
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of BRCA1, BRCA2, and other 11 genes in cfDNA after one cycle of treatment could be indicative of
cancer prognosis and treatment response [139].

Conclusions

BRCA1 promoter methylation status is a promising predictive and prognostic biomarker in BrCa
and OvCa but also in PrCa and PaCa is worthy of further attention. Apart from germline/somatic
BRCA1/2 mutations, other aberrations can lead to tumors bearing similar features, a phenotype called
BRCA1-like or “BRCAness”. Specifically, BRCA1 promoter methylation, a cancer-specific mechanism,
accounts for most cases of BRCA1-like tumors. It has become clear from several studies that to predict
treatment response in PARPi, BRCA1 promoter methylation needs to be assessed quantitatively, both
concerning methylation levels and in terms of methylation zygosity. This is why some researchers
point out the term hypermethylation, thus showing that methylation levels must exceed a certain cut-
off, to be of clinical, prognostic, or therapeutic significance. A combination of a comprehensive
evaluation of BRCAI methylation, Rad51 foci formation, and BRCA1 protein expression analysis in
tumor samples is considered predictive for “BRCAness”, although other genes may be of significance
as well, e.g. PTEN. Currently, liquid biopsy as a cancer monitoring tool has attracted particular
interest in clinical oncology. Evaluating BRCA1/2 in tumor-derived material in the blood can
demonstrate an early diagnosis and predict therapy response thus, leading to personalized solutions
for effective treatment. The analysis of BRCA1/2 methylation in liquid biopsy could reveal how
methylation patterns are influenced by cancer evolution and treatment and moreover, define patient
subgroups at different time-points which may benefit from PARPi. In Figure 2, we suggest a
diagnostic pipeline that could be implemented in liquid biopsy to aid precision pharmacotherapy in
BRCA-associated tumors. PARP] is a relatively new therapy with a particular effect in tumors with
identified BRCA1/2 or HR deficiency. PARPi therapy is often combined with other chemotherapy
agents and stands in the epicenter targeting the underlying molecular mechanisms. As genetic testing
becomes less expensive and more comprehensive, validation, optimization, and unifying of assays
analyzing BRCA1/2 methylation alone or combined with other biomarkers in a clinical setting are
expected to change the scenery in prognosis and predicting treatment response in multiple cancer

types.
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Figure 2. A suggested diagnostic pipeline to identify cancer patients who will benefit from PARPi
treatment. Abbreviation: PARPi: PARP inhibitors
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