Pre prints.org

Article Not peer-reviewed version

Augmented Feature Diffusion on
Sparsely Sampled Subgraph

Xinyue Wu and Huilin Chen

Posted Date: 22 July 2024
doi: 10.20944/preprints202407.1674 V1

Keywords: efficiency; scalability; subgraph; graph neural network

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3619072
https://sciprofiles.com/profile/3479547

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 d0i:10.20944/preprints202407.1674.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Augmented Feature Diffusion on Sparsely Sampled
Subgraph

Xinyue Wu 1*@©, Huilin Chen %*

College of Software, Northeastern University, Shenyang 110169, Liaoning, China
College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2601, Australia
* Correspondence: wuxinyue1999@163.com (X.W.); u7326198@anu.edu.au (H.C.)

2

Abstract: Link prediction is a fundamental problem in graphs. Currently, SubGraph Representation Learning
(SGRL) methods provide state-of-the-art solutions for link prediction by transforming the task into a graph
classification problem. However, existing SGRL solutions suffer from high computational costs and lack scal-
ability. In this paper, we propose a novel SGRL framework called Augmented Feature Diffusion on Sparsely
Sampled Subgraph (AFD3S). The AFD3S first uses a conditional variational autoencoder to augment the local
features of the input graph, effectively improving the expressive ability of downstream Graph Neural Networks.
Then, based on a random walk strategy, sparsely sampled subgraphs are obtained from the target node pairs,
reducing computational and storage overhead. Graph diffusion is then performed on the sampled subgraph
to achieve specific weighting. Finally, the diffusion matrix of the subgraph and its augmented feature matrix
are used for feature diffusion to obtain operator-level node representations as inputs for the SGRL-based link
prediction. Feature diffusion effectively simulates the message-passing process, simplifying subgraph represen-
tation learning, thus accelerating the training and inference speed of subgraph learning. Our proposed AFD3S
achieves optimal prediction performance on several benchmark datasets, with significantly reduced storage and

Computational costs.

Keywords: efficiency; scalability; subgraph; graph neural network

1. Introduction

The application of complex networks is becoming increasingly widespread in various fields [1],
such as social networks [2—4], biological networks [5,6], transportation networks [7] and video pro-
cessing tasks [8-27]. Among them, link prediction is one of the significant research directions in
complex networks, aiming to predict the unobserved links between nodes or the likelihood of future
links based on known nodes and network structures [16,20]. The research on link prediction not only
helps us better understand the internal structure and evolution mechanisms of networks but also has
extensive applications in practical fields such as social network analysis [2], bioinformatics [6], skeletal
action recognition [8,10,13-20], and recommendation systems [28], demonstrating significant research
significance and application value in the real world.

In recent years, researchers have proposed various methods and techniques for link prediction,
ranging from early simple heuristic methods (e.g., Common Neighbors [29], Adamic Adar [2], Katz [30],
etc.) to Graph Neural Networks (GNNs) [31-35]. Among these methods, GNNs have become widely
accepted and successful solutions [14-20]. Early GNNs used shallow encoders to learn representations
of source and target nodes, then they aggregated these independent node representations as link
representations, neglecting the relative positions between nodes [36,37], resulting in inferior link
representations [38].To address this issue, SubGraph Representation Learning (SGRL) methods [39-44]
significantly enhanced the expressive power of GNNs by learning the enclosing subgraphs around
target node pairs instead of learning the embeddings of both ends independently. This approach
provides state-of-the-art solutions for link prediction. However, as the graph size increases and the hop
of subgraphs grows, the storage and computational costs for extracting, preprocessing, and learning
enclosing subgraphs for any target node pair also grow exponentially, leading to high complexity and
low computational efficiency [16,20].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0009-0008-3883-1172
https://orcid.org/0009-0006-6730-7471
https://doi.org/10.20944/preprints202407.1674.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

20f19

To improve the computational efficiency of these models, Scaled [45] achieved better scalability by
extracting sparsely sampled subgraphs, while WSEE [46] employed weighted sampling based on node
features as weights to reduce the overhead required for scaling to larger graphs while maintaining the
basic information of the original graph. SSP-AA [41] utilizes sparse subgraphs based on an adaptive
attention mechanism for link prediction. Although these methods enable processing large-scale graphs
through sparse subgraph sampling, they sometimes have to sacrifice some predictive performance as a
trade-off.

We propose a Link Prediction Algorithm via Augmented Feature Diffusion on Sparsely Sampled
Subgraph (AFD3S) to address the issues above. Firstly, we perform local feature augmentation on the
original graph by a generative model to learn the feature distribution of neighbor nodes conditioned
on the central node’s features. The generated features are then fused with the original features to
obtain a feature augmentation matrix, which improves the expressive power of downstream GNNs.
Next, we adopt a random walk approach between the target node pairs to extract sparsely sampled
subgraphs, thereby reducing the storage and computational costs of the subgraphs. Subsequently,
predefined graph diffusion operations are performed on these subgraphs to obtain graph diffusion
matrices. Finally, we perform feature diffusion operations on the subgraph’s diffusion matrix and
its corresponding feature augmentation matrix to get the operator-level node representations of the
subgraph. This representation is then used as input for downstream link prediction tasks. Feature
diffusion simulates the message-passing process between nodes within the subgraph, simplifying
subgraph representation learning and accelerating its training and inference speed, ultimately reducing
the overall model runtime. Extensive experiments on real-world datasets demonstrate that AFD3S
outperforms all baseline models in link prediction, requiring less training time and memory and
achieving significant speedups.

2. Preliminary

Notations. Let G = (V, E) be an input graph, where V = {v1, vy, ..., vx } denotes the set of nodes in
graph G, N represents the number of nodes, and E C V x V is the set of edges. The adjacency matrix is
defined as A € {0,1}N*N, where A;; = lifand only if (v;,v;) € E. Let N; = {v; | A;; = 1} represent
the set of neighbors (neighborhood) of a node v;, and D represents the diagonal degree matrix, where
D;; = Z}Ll Aj;. The feature matrix is denoted as X € RN*4, where each node v is associated with a
d-dimensional feature vector X, .

Definition 1 (Enclosing Subgraph). Given a graph G and a target node pair T = {u, v}, the h-hop enclosing
subgraph of T is a subgraph G, induced from G, with a node set {j || d(j,x) < hord(j,y) < h}, where d(i,])
represents the shortest distance between node i and node j.

Definition 2 (Sampled Subgraph). In a given graph G, the randomly walked sampled h-hop enclosing
subgraph of a target node pair T = {u,v} is obtained by inducing a subgraph Gk from G, with a node set
Vik ¢ SR U SIE, where S?’k represents the set of nodes visited by performing k random walks of length h
starting from node i.

Link Prediction. The goal is to infer the existence of edges between target node pairs T = {u, v}
based on the observed adjacency matrix A and features X. The learning task is to find a likelihood
(or scoring) function f that assigns an interaction likelihood value (or score) to each target node pair
(u,v) ¢ E, where a higher value indicates a higher probability of the existence of a link.

Early link prediction methods mainly relied on network heuristic algorithms, such as common
neighbors [29], Jaccard index [47], and Katz index [30]. While these methods are simple and direct, their
generalization ability on different graph structures is limited. To address this challenge, researchers
proposed various GNN methods, which can independently learn feature representations of node pairs
and predict link probabilities by aggregating these representations [36,37]. However, GNNs still have
limitations in capturing the automorphism of graphs and the nodes’ different roles in the link formation

https://doi.org/10.20944/preprints202407.1674.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 d0i:10.20944/preprints202407.1674.v1

30f19

process [38]. To overcome this limitation, SEAL [44] innovatively transformed link prediction into
a graph classification problem on enclosing subgraphs and enhanced the expressive power of node
features by introducing structural labels. This led to the emergence of SGRLs, which have achieved
significant progress in link prediction tasks and demonstrate state-of-the-art performance.

However, despite the breakthrough in SGRLs” performance for link prediction tasks, they often
face exponential growth in storage and computational costs as the size of graph data and the hop of
subgraphs increase. This results in high temporal and spatial complexity, lacking scalability, which
has become a crucial obstacle to their practical application and deployment. Therefore, improving the
computational efficiency and processing capability of SGRLs has become an important challenge in
current research.

Therefore, our work proposes a new SGRL framework to address the existing problems in
subgraph representation learning. It uses local feature augmentation to enhance the expressive power
of downstream GNNs and employs sparsely sampled subgraphs to effectively reduce the storage and
computational requirements of subgraphs. In addition, introducing subgraph-level diffusion operators
that are easy to pre-compute simplifies the subgraph representation learning process by using feature
diffusion operations to replace traditional expensive message-passing schemes, further accelerating
the training and inference processes of SGRL.

3. Our Model

3.1. Model Framework

The Augmented Feature Diffusion on Sparsely Sampled Subgraph (AFD3S) process consists of
four steps, as Figure 1 illustrates. Firstly, local feature augmentation is applied to the input graph
to obtain a feature augmentation matrix. Secondly, sparsely sampled subgraphs are extracted using
a random walk strategy, starting from the target node pair. Then, a special weighting operation is
performed on the subgraphs, which involves applying a predefined graph diffusion operator to these
subgraphs to obtain the diffusion matrix. Finally, the diffusion matrix performs feature diffusion with
the previously obtained feature augmentation matrix, resulting in an operator-level node representation
of the subgraph. This representation serves as input for downstream link prediction tasks.

‘:Dom QD Aj Diffusion M;
“\Q\é CITT) O ? EDQ ‘ (D(Ay)

S i

(7
o

o X — E),
aoTT S A

GAX W) Z;

Feature Augment

X H

Figure 1. Overview of the framework of model AFD3S.

https://doi.org/10.20944/preprints202407.1674.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 d0i:10.20944/preprints202407.1674.v1

40f19

3.2. Local Feature Augmentation

Existing GNNs [42] mainly focus on designing message-passing schemes to utilize local informa-
tion in graphs to obtain node representations. Although GNNs have achieved remarkable performance
in various graph-based tasks [8,10,13-20], for the limited local neighborhood information of node num-
bers, existing GNNs may not fully aggregate such information, thus affecting the learning effect of the
models. To address this issue, we propose a local augmentation strategy on graphs, which generates
feature distributions of neighbor nodes conditioned on the features of central nodes and utilizes these
generated features during the training process to enhance the expressive power of downstream GNNSs.

To generate more features within the neighborhood N, of a node v, it is first necessary to know
the feature distribution of its neighbor nodes. Since this distribution is related to the central node v, a
generative model is used to learn its distribution conditional on the features of the central node. In this
paper, we use a Conditional Variational Autoencoder (CVAE) [48] to learn the conditional distribution
of the features of the connected neighbor node u (1 € N,) given the central node v. Since the feature
distribution of neighbor node u is related to X,, we condition it on X,. The latent variable z is generated
from a prior distribution py(z|X,), and the generated feature X,, is produced through a generative
distribution conditioned on both z and Xy, pg(X | Xy, 2), i.e., z ~ pg(z|Xy), Xy ~ po(X | Xv, zy). Using
¢ to represent variational parameters and 6 to represent generative parameters, we have:

B Po(Xu,z | Xy)
log po(Xu | X)) = /q¢(z | Xu, Xy) log 9o(z [X, X0)

+KL(9p(z | Xu, Xo)||po(z | Xu, Xu)) (1)

dz

pB(Xu/Z | Xl/)
> z | Xu, Xy) log =H————+dz
= /q‘P(‘ u V) gq¢(z|xu’xv)
the corresponding Evidence Lower Bound (ELBO) [49] can be defined as:
1 & I
L(Xu, Xy;0,¢) = _KL(‘MJ(Z|XWXV)||P9(ZIXV)) + T Z 1082P9(Xu|xwz()) (2)
I=1

where z() = gq,(Xv,Xu,e(l)), e ~ N(0,I), L represents the number of neighbors of node v, KL
refers to the Kullback-Leibler Divergence [50], also known as relative entropy. In information theory
and machine learning, KL divergence measures the difference between two probability distributions.
In this paper, it is used to measure the difference between the posterior distribution and the prior
distribution.

Algorithm 1 CVAE model training

Input: Input graph G, adjacency matrix A, feature matrix X
Output: Feature generation model Qy
1: Initialize Qy
2: while not convergence do
3: foreachv € V do
N, = get_neighbors(A,v)
z = encoder(Xy, Qyp)
X, = generator(z,X,,N,,Q,)
loss = compute_ELBO (X, Xy, 2, Q)
loss.backward ()
optimizer.step()
10: end for
11: end while
12: return Qy

o *® N U

https://doi.org/10.20944/preprints202407.1674.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 d0i:10.20944/preprints202407.1674.v1

50f19

A CVAE model is trained for all nodes during the experiments. The objective during the training
phase is to maximize the ELBO, i.e., Equation (2), by taking pairs of adjacent nodes (X,, X, u €
N,) as input. In the Variational Autoencoders (VAE) context, ELBO is typically considered a loss
function. During the training of a VAE, the objective is to maximize the ELBO, which is the opposite
of minimizing a loss function. Maximizing the ELBO is equivalent to minimizing the sum of the
reconstruction error and the KL divergence, which helps the model learn latent representations that
can generate the data while preserving the structural information in the latent space. During the
generation phase, node features X, are used as conditions, and a latent variable z ~ N(0,1) is sampled
as input to the decoder. Then, a generated feature vector X, associated with node v can be obtained.
Algorithm 1 describes the training process of the CVAE feature generation model.

After training, the generative model is applied to the input graph, and the generated features X,
are used as additional input to perform calculations with the original features X to obtain augmented
feature representations H for the nodes, thus improving the expressive power of downstream GNNSs,
as shown in Equation (3).

H=0c(X,X) (3)

where o represents a specific operation. We provide two ways of using the generated features:
concatenation and averaging. Figure 2 illustrates the local feature augmentation using concatenation.

ol

anas) - \ X
[muna]
Original features — | GNNs

o S

) e . °

Augmented feature matrices

Generated features Generated features

Figure 2. Schematic diagram of concatenated local feature augment. The yellow circles on the graph
correspond to neighboring nodes, generating features from local neighborhood distributions. Then, the
original and generated features are inputs for downstream GNN.

3.3. Subgraph Sampling and Graph Diffusion

Since SEAL [44] and its variants (WESLP [51], WalkPool [52], etc.) lack scalability, the size of
subgraphs grows exponentially as the hop / increases. Nodes with high degrees tend to have very
large enclosing subgraphs, even for small hops, resulting in the models’ high temporal and spatial
complexity. Therefore, the proposed model utilizes sparsely sampled subgraphs (Definition 2) instead
of enclosing subgraphs when extracting subgraphs for a target node pair. By introducing sparsely
sampled subgraphs, the model can effectively reduce the size of subgraphs while maintaining sufficient
information, thus lowering the temporal and spatial complexity of the model. Figure 3 illustrates the
extraction of a sampled subgraph for the target node pair (1, v), Sﬁ’k ={a,b,c,d,e}, Slﬁ'k ={f, g hij},
Vbl,ﬂ;k ={a,b,c,d,e f,g h,ijuv}, where the walk length / is 2, and the number of walks k is 3.

By comparing the definitions of enclosing subgraph (Definition 1) and sparsely sampled subgraph,
we can draw the following important conclusions: (i) The sampled subgraph Gl is a subgraph of
enclosing subgraph G/, because random walks of length & cannot reach nodes that are more than &
steps away from the starting node; (ii) The size of the sampled subgraph is limited to O(hk), which can
be linearly controlled by adjusting the parameters of walk length & and several walks k, in contrast to
the exponential growth of enclosing subgraph in Definition 1. By replacing dense enclosing subgraphs
with their corresponding sparsely sampled subgraphs, AFD3S reduces the computational and storage

https://doi.org/10.20944/preprints202407.1674.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 d0i:10.20944/preprints202407.1674.v1

6 of 19

overhead of subgraphs, providing scalability while still maintaining the flexibility to control the degree
of sparsity and scalability through its sampling parameters h and k.

Q O
O O
o % 4 o %
o 0 0 2 o 0 O &/
O Sampler
(i o

O

Original Graph with target nodes u, v Sampled subgraph with target nodes u, v
Figure 3. Target node pair (u, v) extraction sampled subgraph.

To obtain the sparsely sampled subgraph Gl for the target node pair T = {u,v}, with the
corresponding adjacency matrix Ay, to further capture the structural relationships and similarities
between nodes, while simulating the process of information diffusion between nodes, the AFD3S
utilizes predefined graph diffusion operators to perform specific weighted operations on the sampled
subgraph and obtain the corresponding diffusion matrix:

Muv - l/J(Auv) (4)

where, M, represents the diffusion matrix of the sampled subgraph, and Gﬁf denotes the specific
graph diffusion operator. ¥ can be varied by using different diffusion operators to capture differ-
ent structural features in the graph, such as adjacency matrices/Laplacian operators for capturing
connectivity, triangle/motif-based operators [53] for capturing inherent community structures, and
Personalized PageRank (PPR)-based operators [54] for identifying important connections. Each opera-
tor and its powers can constitute different diffusion operators in AFD3S. The graph diffusion operator
used in this model is the multiple powers of the adjacency matrix, which captures and represents the
multi-hop neighborhood relationships of nodes in the graph, providing rich topological features for
graph structure analysis and GNNs.

3.4. Feature Diffusion

The diffusion matrix My, of the sampled subgraph is used to perform feature diffusion oper-
ations with the corresponding feature augmentation matrix H,;,, obtaining the operator-level node
representation Z,; of the subgraph:

Zuv == Muv . Huv (5)

Feature diffusion simulates the process of information diffusion between nodes, simplifying
subgraph representation learning. The operator-level node feature representation not only contains
its information but also integrates information from its neighbor nodes, thus capturing the structural
characteristics within the subgraph. Specifically, feature diffusion operations help with:

1. Feature smoothing: In deep GNNSs, information may propagate excessively between nodes,
leading to overly similar node representations and the issue of over-smoothing. Adjusting
the diffusion matrix can somewhat alleviate this problem, maintaining the diversity of node
representations.

https://doi.org/10.20944/preprints202407.1674.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 d0i:10.20944/preprints202407.1674.v1

7 of 19

2. Enhancing node representations: A node’s feature vector can integrate features from its direct
and indirect neighbors through diffusion operations, making the node representation richer and
more comprehensive.

3. Simulating graph structure: The diffusion matrix essentially reflects the structural information of
the graph. Multiplying it with the feature augmentation matrix can simulate information trans-
mission between nodes based on the graph structure, simplifying the subgraph representation
learning process and accelerating training and inference speeds.

4. Improving prediction performance: In link prediction tasks, this node representation fused with
structural information can improve the model’s accuracy in predicting potential links, as it can
better capture the interdependencies between nodes.

5. Computational efficiency: Compared to performing complex graph neural network operations
on the entire graph, this subgraph-level diffusion operation can significantly reduce the amount
of computation, making the model more efficient for applications on large-scale graphs.

In experiments, one can apply a set of different graph diffusion operators to the same sampled
subgraph to obtain a set of linear diffusion matrices Ml(fl),), vy ME{,} These diffusion matrices are then
applied to the feature augmentation matrix H,, of the subgraph to yield a set of operator-level node

representations ZES,), ves ZE;/) Furthermore, it holds that:

ZSB = MSB “Hyy (6)

where M,(jg represents the diffusion matrix corresponding to the adjacency matrix of the subgraph
when the i-th diffusion operator is applied. Then, the operator-level node representation matrices
Z,(jg of all sampled subgraphs are concatenated to form the final joint node representation, which is
given by

Zuv - @ Z% (7)
i=0

where the @ symbol represents the concatenation operation of a set of feature vectors. When con-
catenating node representation matrices with mismatched dimensions, it is necessary to ensure that
the rows belonging to the same node are properly aligned. For any missing rows, zero-padding is
used, similar to the zero-padding strategy in graph pooling, thus ensuring the uniformity of matrix
dimensions and data integrity.

3.5. Training and Prediction

After obtaining the final operator-level node feature matrix Z,,, of the sampled subgraph, the first
step is to reduce the dimensionality of the node representation matrix. This can be achieved through a
fully connected layer consisting of a learnable weight matrix W and a nonlinear activation function J.
The purpose of this step is to reduce the dimensionality of the node representation while preserving
important information. Next, a pooling operation is performed on the reduced representation. This
typically involves aggregating the representations of the target node and its common neighbors.
Pooling methods can be center pooling or center-common-neighbor pooling, which help further extract
and integrate critical information. Finally, the pooled representation is input into a learnable function ¢,
such as a Multi-Layer Perceptron(MLP), which transforms the node representation into the probability
puv of a link existing. This probability can then be used for link prediction tasks. The above process is
formulated as follows:

puv = §(pool (6(ZyW))) 8)

During the training process, the model optimizes the weight matrix W and the parameters of
function { by minimizing the difference between the predicted link probability and the actual existence
of the link. This is typically achieved through optimization techniques such as backpropagation and

https://doi.org/10.20944/preprints202407.1674.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 d0i:10.20944/preprints202407.1674.v1

8 of 19

gradient descent. The training loss function employs the binary cross-entropy loss function, whose
formula is as follows:
1

L=- £ Z [10g puy + (1 — yuv) log(1 — puy)] ®)
| label| (u,v) €& 1per

where &, represents the entire training set, |,y | represents the number of samples, y,,, indicates
whether there exists an edge between nodes u and v, and p,,, represents the predicted probability of
the existence of an edge. This loss function minimizes the cross-entropy between the predicted results
and the true labels. Algorithm 2 describes the process of AFD3S for link prediction training.

Algorithm 2 Augmented Feature Diffusion on Sparsely Sampled Subgraph (AFD3S)

Input: Input graph G, adjacency matrix A, feature matrix X
Output: Link prediction model
1: Initialize Q, W, ¢
2: H = local_augment(A, X, o)
3: while not convergence do
4 for each (u,v) € E do
5 G%‘, A,y = Sampler(A, h,k,u,v)
6: fori=1—rdo
7 Mig = 9 (Aw)
;) M) H,,
9

: end for
10: Z,, = aggregate_Z(Z,S%), s Zurv))
1L Puv = {(pool(6(ZuwW)))
12: loss = compute_loss(Q, pw, Yuw)
13: loss.backward ()
14: optimizer.step()
15: end for
16: end while
17: return ()

4. Experiment

4.1. Datasets and Baselines

Datasets: We used nine real-world network datasets, including weighted and unweighted,
undirected, attributed, and non-attributed graph data. The experiments divided these datasets into
two categories: non-attributed and attributed datasets. For both attributed and non-attributed datasets,
except for Cora, CiteSeer, and PubMed, which were divided into 70% training set, 10% validation set,
and 20% test set according to specific experimental settings, the edges of the remaining datasets were
randomly divided into 85% training set, 5% validation set, and 10% test set. The experimental datasets
include NS [55], a collaboration network of network science researchers, Power [43], an electrical
power grid of the western United States, Yeast [56], a protein-protein interaction network, PB [57], a
political blog network, Cora [58], a citation network in the field of machine learning, CiteSeer [59], a
scientific publication citation network, PubMed [59], a diabetes-related scientific publication citation
network, and Texas and Wisconsin [60], web page datasets collected by computer science departments
of different universities.

Table 1 details the statistical information of these datasets, with the first four being non-attributed
networks and the last five being attributed networks. Node represents the number of nodes, Edge

https://doi.org/10.20944/preprints202407.1674.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 d0i:10.20944/preprints202407.1674.v1

90f19

represents the number of edges, Avg Deg represents the average degree of the network, Feat represents
the feature dimension of the nodes, and Type represents the network type.

Table 1. Statistics of network datasets

Datasets Node Edge AvgDeg Feat Type
NS 1466 2742 375 NA Collaboration Network
Power 4941 6594 267 NA Electricity Network
Yeast 2375 11693 985 NA Biological Network
PB 1222 16714 2736 NA Blog Network
Cora 2708 4488 331 1433 Citation Network
CiteSeer 3327 3870 233 3703 Citation Network
PubMed 19717 37676 382 500 Citation Network
Texas 183 143 156 1703 Web Network
Wisconsin 251 197 157 1703 Web Network

Baselines: In this section, we experimentally analyze the proposed link prediction model AFD3S
and compare it with nine existing advanced link prediction models on nine different real-world
datasets. These include two message-passing graph neural network (MPGNNs) models: GCN [61]
and GIN [62]; three autoencoder (AE) models: GAE, VGAE [63], and GIC (Graph InfoClust) [64]; and
four SGRLs: SEAL [44], WESLP [51], Scaled [45], and WalkPool [52].

4.2. Experimental Setup

Experimental Environment: Equipped with AMD Ryzen 7 5800H CPU, 32GB memory The
hardware environment of NVIDIA GeForce RTX 3070 Laptop GPU (8GB graphics memory) runs on the
Windows 11 64-bit operating system, using PyCharm 2023.2.1 as the development tool, Python 3.10.9
as the development language, and PyTorch 1.12.1 and PyTorch Geometry 2.0.9 as the development
framework.

Experimental Settings: For SGRLs and the AFD3S method on non-attributed datasets, the hop of
the enclosing subgraphs, #, is typically set to 2 (except for the WalkPool on the Power dataset, where &
is set to 3). For sparsely sampled subgraphs, the walk length / is set to 2, and the number of walks k is
set to 50. On attributed datasets, the hop of the enclosing subgraphs, , is generally set to 3 (while the
WalkPool sets it to 2). The settings for sparsely sampled subgraphs are the same as for non-attributed
datasets. Additionally, in the AFD3S, the zero-one [38] labeling scheme is uniformly adopted to label
all datasets, while models like SEAL and Scaled use DRNL [44] for labeling. The central common
neighbor pooling readout function employs a simple mean aggregation approach. These settings and
choices aim to ensure consistency and performance optimization of the models while accommodating
the characteristics of different datasets and models. Moreover, for all datasets, the percentages of
training, validation, and test sets across all models are uniformly set to 85%, 5%, and 10%, respectively,
with a 1:1 sampling ratio for positive and negative samples.

In the AFD3S model, the neural network utilizes SIGN [65], and for the non-attributed datasets,
Node2Vec is employed to generate 256-dimensional feature vectors for each node. In the process of
feature augmentation, o uniformly adopts concatenation as the augmentation method. For all datasets,
the hidden dimension after pooling in Equation (8) is set to 256, and an MLP with a 256-dimensional
hidden layer is adopted in the experiments. To maintain consistency, the dropout rate is set to 0.5 for
all models, the learning rate is set to 0.0001, and the Adam optimizer is used for 50 training epochs.
During the training process, except for the MPGNN model, which uses full-batch training on the input

https://doi.org/10.20944/preprints202407.1674.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 d0i:10.20944/preprints202407.1674.v1

10 of 19

graph, the batch size for other models is set to 32. These settings ensure the experiments’ fairness and
comparability while fully utilizing the potential of the AFD3S model.

Evaluation Metrics: This paper adopts AUC and AP as the evaluation standards for model
performance, aiming to accurately assess the performance of the AFD3S in solving the link prediction
problem. Additionally, to fully demonstrate the computational efficiency and scalability of the AFD3S,
this study further compares the performance of the AFD3S with existing popular SGRLs in terms of
average preprocessing time, average training time, average inference time, and total running time.

4.3. Results and Analysis

Link Prediction: For all models, on both attributed and non-attributed datasets, this study
presents the average AUC and AP scores over 10 runs with different fixed random seeds on the test
data. Table 2 displays the AUC results for both non-attribute and attribute datasets, while Table 3
displays the AP results for both non-attribute and attribute datasets. The optimal values are marked in
bold.

Based on the data in Tables 2 and 3, it is evident that the proposed AFD3S demonstrates exceptional
performance in terms of average AUC and AP results on both non-attributed and attributed datasets,
achieving optimal levels. Specifically, on attributed datasets, compared to the advanced benchmark
model WalkPool, the AUC results of the AFD3S show improvements of 6.44% on Cora, 9.32% on
CiteSeer, 10.23% on Texas, and 14.57% on Wisconsin. Simultaneously, the AUC and AP results of the
AFD3S on non-attributed datasets also exhibit a certain degree of improvement.

Table 2. Average AUC for attributed and non-attributed datasets (over 10 runs). The best value is

marked in bold.
Model NS Power PB Yeast Cora CiteSeer PubMed Texas Wisconsin
GCN 91751108 69412000 90802025 9129:111 | 89145120 87892145 92721021 6742103 7277096
GIN 83.261381 58281761 8842i909 84.004104 | 68.7410714 69.63i277 82494289 63464587 70.821g25
GAE 92502171 68172160 91525035 93131057 | 90201005 8842:115 94531060 68671695 75104860
VGAE 91831149 662350018 91.19:085 90194135 | 92174072 90244110 9214010 746liger 74.39-830
GIC 90.881185 62.014125 73.65i136 88784063 | 91421704 9299114 91041061 65.164787 75.241g45
SEAL 98.631067 85.2841091 95.071035 97564032 | 90.2911g9 88.121085 97.821028 71.681685 77.9611037
WESLP | 98684012 85311035 94681041 97411015 | 89914135 89.011105 96.69i053 71154441 77.98187
Scaled 98.88+1050 83.991084 94531057 97681017 | 90.551018 87.69+167 97941043 70121744 76.891998
WalkPool 98.92i0_52 9025:&0464 95~50i026 98.16i020 92~24i(l‘65 89.9711'01 98.3610'11 78~44i9.83 79.57111'02
AFD3S 98.98.1 028 90.38.080 95.841029 98421026 | 98.68:013 99.29.028 99.12.011 88.671518 94.14.395

Table 3. Average AP for attributed and non-attributed datasets (over 10 runs). The best value is marked

in bold.
Model NS Power PB Yeast Cora CiteSeer PubMed Texas Wisconsin
GCN 92.641178 71.264181 93.141029 93.024131 91.214120 89991119 94.214031 69.711863 75.0347.48
GIN 83461001 59771311 8993103 86124180 | 70644031 71884945 83.871017 65.621005 73.124875
GAE 9360215 700917 93031027 95211045 | 92284048 90921105 96162071 71021731 7731is15
VGAE 902514100 67971088 9271033 92151110 | 9348106 923lirg0 9393402 76771031 7627475
GIC 91424157 64120115 729841106 90.07:045 | 93014100 94131124 92741046 66331507 77.871708
SEAL 9861105 86961115 95131026 98.6dr00s | 92444001 9041.115 98121041 73021509 793411103
WESLP | 9862000 87.01.005 94321037 9773102 | 9241 003 91021114 97.875003 7294438 79.62:073
Scaled 98.68i0_33 85~01i0471 94.18i0_37 98~43i0421 92-35i0.21 89~72i1.38 98.08i0_33 73~01i6.54 78~97i9.15
WalkPool | 98721073 91.031042 95224041 98.71i015 | 94121105 91.851140 98144055 81.04195 79.98111.42
AFD3S 98.751027 91171068 95.341037 98.761021| 98.841018 99371031 99.051012 91141292 94.081380

https://doi.org/10.20944/preprints202407.1674.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 d0i:10.20944/preprints202407.1674.v1

11 0f 19

1.0
0.9 1
0.8 1
s
<«
0.7' -)
A .
. / =e= GCN \ O ./
—m= GIN
\. . A= GAE \/
\ I VGAE
0.6 .t GIC
¥ SEAL
WESLP
Scaled
= = WalkPool
== AFD3S
0.5

NS Power PB Yeast Cora CiteSeerPubMed TexasWisconsin
Datasets

Figure 4. The average AUC of all models on attributed and non-attributed datasets (over 10 runs).

1.0
0.9
0.8
g . \I . . ‘/ \ \\ },l
Y — hor
0.7 1 . X3 ya
\ | \ /-
. ! =8= GCN '/
\ I == GIN
L A= GAE
VGAE
0.6 \tl GIC
SEAL
WESLP
Scaled
= = WalkPool
=== AFD3S
0.5 T T T T T T T T T
NS Power PB Yeast Cora CiteSeerfPubMed Texas Wisconsin
Datasets

Figure 5. The average AP of all models on attributed and non-attributed datasets (over 10 runs).

https://doi.org/10.20944/preprints202407.1674.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

12 of 19

The significant advantage is the importance of node features in node classification and graph
classification tasks. The node features of attributed datasets provide direct, rich, and semantically
clear information whose expressive power is often superior to node features generated based on
random walks. This direct utilization of original node features helps improve the interpretability
and stability of the model while reducing additional computational costs. Furthermore, the AFD3S
incorporates the neighboring node features of the central node during the local feature augmentation
process, enabling it to capture complex relationships between nodes. This approach fully utilizes
the multi-source information of graph data, providing superior performance for downstream tasks
of GNNs. Therefore, the superior performance of the AFD3S on various datasets demonstrates its
effectiveness and practicability in link prediction tasks.

Computational Efficiency: To further validate the computational efficiency and scalability of
the AFD3S, this paper selects three currently popular and performance-advanced SGRLs—SEAL,
GCN+DE (distance encoding) [60], and WalkPool, and conducts comparative experiments on all
datasets. The comparative experiments mainly focus on four key indicators: preprocessing time,
average training time (50 epochs), average inference time, and total runtime (50 epochs), aiming to
comprehensively demonstrate the computational efficiency of the AFD3S in practical applications.
Tables 4 and 5 present the experimental results on non-attributed and attributed datasets. In these
tables, “Train” represents the average training time for 50 epochs, “Inference” represents the average
inference time, “Preproc.” represents the preprocessing time, and “Runtime” represents the average
runtime for 50 epochs. The fastest values are bolded, and the maximum (minimum) speedup ratio in
“Speed up” refers to the ratio of the time required by the slowest (fastest) SGRL methods to the AFD3S
model.

Through experimental results, we can observe that the AFD3S proposed in this paper has achieved
significant acceleration in training, inference, and running time compared with other SGRLs on all
datasets. Specifically, the training speed is improved by 3.34 to 17.95 times, the inference speed is accel-
erated by 3 to 61.05 times, and the overall running time is shortened by 2.27 to 14.53 times. Although
the preprocessing time of the AFD3S model is relatively high, due to the significant improvement in
training and inference speeds, this difference is effectively offset, making the maximum acceleration
reach 14.53 times on the Yeast dataset. It is worth noting that as the scale of the dataset increases,
the computational time acceleration effect of the AFD3S becomes particularly evident. The highest
acceleration multiples are achieved on the three large PubMed, PB, and Yeast datasets, demonstrating
the excellent performance of the AFD3S in computational efficiency and scalability.

This gain is primarily attributed to the innovative strategies employed by the AFD3S. Adopting a
random walk-based strategy to sample sparse subgraphs instead of enclosing subgraphs significantly
reduces subgraphs’ storage and computational overhead. As the graph size increases, the scale
of extracted subgraphs decreases from exponential to linear, reducing computational complexity
and improving model efficiency. Additionally, the randomness in random walks brings additional
regularization benefits to the model, further enhancing its performance. Meanwhile, the AFD3S
utilizes easily pre-computed subgraph-level diffusion operators to replace expensive message-passing
schemes through feature diffusion, significantly improving training and inference speeds. These
optimization measures collectively enable the AFD3S to demonstrate excellent computational efficiency
and scalability in link prediction tasks.

https://doi.org/10.20944/preprints202407.1674.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024

d0i:10.20944/preprints202407.1674.v1

13 of 19

Table 4. Comparison of the computation time between SGRLs and AFD3S models on the non-attributed

datasets. The optimal time is marked in bold.

Datasets SEAL GCN+DE WalkPool AFD3S Speed up
NS Train 491 +0.23 3-58:|:0.12 7.66i0.09 2-21i0.01 347(162)
Inference 0~14i0.01 0'1Oi0.01 0~41i0,02 0.06i0.01 683(167)
Preproc. 17.86 11.73 12.18 30.21 0.59(0.39)
Runtime 275.28 198.98 427.03 187.84 2.27(1.06)
Power Train 11.7340.02 8.62027 18.4610.7¢ 5.23 1031 3.53(1.65)
Inference 0~33j:0.01 0-25:|:0.01 0.8710.()6 0.13 19,01 6.69(1.92)
Preproc. 4448 28.59 3351 65.12 0.68(0.44)
Runtime 658.14 479.4 1024.55 403.55 2.54(1.19)
Yeast Train 24-03i0.40 18-41i0471 174-80i1.06 9-33i0.01 1874(197)
Inference 0.541 .05 0.460.06 8.0510.11 0.159.01 53.67(3.07)
Preproc. 115.02 82.19 90.75 166.30 0.69(0.49)
Runtime 1362.85 1040.72 9443.17 649.90 14.53(1.60)
PB Train 64.62i5_59 55-82:|:1.59 133-30i0.52 1523:!:0.21 875(367)
Inference 2~43i0.10 2-01:|:0‘O9 6.48i0_15 0-27i0.01 24(744)
Preproc. 531.79 398.81 136.29 310.53 1.71(0.44)
Runtime 3947.45 3346.80 7291.50 1001.73 7.28(3.34)

Table 5. Comparison of the computation time between SGRLs and AFD3S models on the attributed

datasets. The optimal time is marked in bold.

Datasets SEAL GCN+DE WalkPool AFD3S Speed up
Cora Train 18-3711,49 14-85i0.53 18-5310,91 5.36.0.16 346(277)
Inference 0-73i0.12 0-62:|:0‘08 1-00i0.15 0.15.40.02 667(413)
Preproc. 113.32 80.48 27.43 36.36 3.17(0.75)
Runtime 1090.94 872.68 1034.33 303.15 3.60(2.88)
CiteSeer Train 12~54iO.69 11~43:|:0.71 15.32:5:0.34 4-59i0.12 334(249)
Inference 0~58i0.10 0.5210_07 0.8710.05 0-17i0.02 512(306)
Preproc. 93.52 71.97 22.82 73.01 1.28(0.31)
Runtime 768.72 685.98 859.27 331.26 2.59(2.07)
PubMed Train 533'19i4.64 42373:‘:2.67 150~27:|:6‘22 29-71i3.61 1795(506)
Inference 38.46:5:1.08 34.44:“.21 8.10:&1'06 0.63i0.15 6105(1286)
Preproc. 141.76 106.00 341.12 543.27 0.63(0.20)
Runtime 30150.31 24311.00 8474.72 2591.31 11.64(3.27)
Texas Train 0~32i0.01 0'31i0.01 0~55i0.01 0.14:|:0.01 393(221)
Inference O-Olj:O.OO 0~01:|:0.00 0.0310.01 0.0149.00 300(100)
Preproc. 2.55 1.87 0.92 1.24 2.06(0.74)
Runtime 20.46 18.55 32.54 8.91 3.65(2.08)
Wisconsin Train 0.47:|:0.01 0.43:‘:0‘01 0.85:|:0.04 0-21:|:0.02 405(205)
Inference O~O2i0.00 0-02i0.00 0.06i0,00 0.0110.00 6.00(2.00)
Preproc. 3.29 2.63 1.08 1.56 2.11(0.69)
Runtime 29.27 25.19 49.38 12.89 3.83(1.95)

Ablation Study: We conducted an ablation study to further explore the key factors contribut-
ing to the performance gains of the AFD3S, specifically verifying the effectiveness of local feature
augmentation and graph diffusion operations on the predictive performance of the AFD3S. Three
variants of the AFD3S were designed and compared with the original AFD3S in terms of AUC and AP
metrics for link prediction across all datasets. The three variants are: 1) Variant AFD3S_, which does
not perform local feature augmentation and graph diffusion operations; 2) Variant AFD3S™, which
performs local feature augmentation but does not perform graph diffusion operations; 3) Variant
AFD3S., which performs graph diffusion operations but does not perform local feature augmentation.

The experimental results are presented in Figures 6 and 7.

https://doi.org/10.20944/preprints202407.1674.v1

do0i:10.20944/preprints202407.1674.v1

14 of 19

1.00
AFD3S ~
AFD3S *
AFD3S

0957 AFD3S

090 |
S

0585
<

080

0.75 A

0.70 -

NS Power PB Yeast Cora CiteSeer PubMed Texas Wisconsin
Datasets

Figure 6. Experimental results of link prediction AUC using AFD3S and its three variants

1.00 ~
AFD3S =
AFD3S *
AFD3S}

0557 AFD3S

090

% 0.85 A

0.80

0.75 A

0.70 -

NS Power PB Yeast Cora CiteSeer PubMed Texas Wisconsin
Datasets

Figure 7. Experimental results of link prediction AP using AFD3S and its three variants

Observing the experimental results, it can be seen that on most datasets, among the three variants
of AFD3S, the link prediction performance of Variant AFD3S™ using local augmentation alone and
Variant AFD3S’, using graph diffusion alone both show some degree of improvement compared to
Variant AFD3S_ without any augmentation. This proves the effectiveness of the two augmentation
strategies proposed in this paper for AFD3S in link prediction tasks. Furthermore, when local feature
augmentation and graph diffusion operations are used simultaneously (i.e., the original AFD3S), the

https://doi.org/10.20944/preprints202407.1674.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 d0i:10.20944/preprints202407.1674.v1

150f 19

performance is improved on all datasets, with significant improvements on most datasets. The main
reason is that after local feature augmentation, the subsequent graph diffusion operation amplifies this
augmentation effect, significantly improving subsequent prediction performance.

Specifically, since the AFD3S extracts sparsely sampled subgraphs of target node pairs to reduce
subgraphs’ storage and computational efficiency, it cannot, in most cases, include all i-hop neighbor
nodes of the target node pairs as enclosing subgraphs can. However, the local feature augmentation
operation is based on the original input graph, fusing features from other neighbor nodes of the central
node through feature augmentation, thus compensating for the shortcomings of sparse subgraphs.
This augmentation is further amplified by the graph diffusion operation, and it can capture the
structural relationships and similarities between nodes. At the same time, it simulates the information
diffusion process between nodes through feature diffusion to simplify the information transmission
and aggregation operations in subgraph representation learning, accelerating the training and inference
speed of downstream tasks.

In summary, AFD3S improves the link prediction performance and reduces subgraphs’ storage
and computational overhead, enhancing the model’s computational efficiency and scalability. It
provides an efficient and practical solution for graph analysis tasks.

Parameter Sensitivity: We also conducted a sensitivity analysis on the two hyperparameters of
the extracted sparsely sampled subgraph, namely the walk length / and the number of walks k, to
investigate the impact of the size of the sampled subgraph on the link prediction performance of the
AFD3S. Due to certain similarities across different datasets, experiments were performed on the Power
non-attribute and Cora attribute datasets as examples. All other parameters remained unchanged in
the experiments except for the test variable to maintain fairness. The experimental results are shown
in Figures 8 and 9.

The experimental results show that the AFD3S performs excellent prediction even when using
smaller & and k values. Notably, when the extracted subgraph is too large, the prediction performance
decreases compared to a smaller subgraph. This is likely because a larger subgraph may contain nodes
and edges irrelevant to the target link prediction task. Such noise and irrelevant information may
interfere with the model’s learning process, leading the model to capture incorrect patterns and thus
reducing prediction accuracy. This finding further proves that the AFD3S can extract key information
from sparse and small sampled subgraphs, significantly improving computational efficiency while
ensuring prediction performance. Additionally, it demonstrates the superiority and scalability of
AFD3S in handling large-scale graph data. The AFD3S can more effectively cope with large-scale
graph data by reducing computational and storage overhead, providing strong support for practical

applications.
AUC on Power AP on Power
90.5 1 T
I3 —— Il o A —— Il
Fon h=2 h=2
91.0 1 ; .
90.0 4 : .
ke b3 WA b3
90.8
89.5 -
2 5 00
3 3 :
v 59,0 A 2 :
= - 4
88.5 - .
88.0 1

87.5 - T T T T T T T T T T
20 40 60 80 100 20 40 60 80 100
k: number of walks k: number of walks

Figure 8. AUC and AP results of AFD3S on Power under different sampled subgraph sizes.

https://doi.org/10.20944/preprints202407.1674.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 d0i:10.20944/preprints202407.1674.v1

16 of 19

AUC on Cora AP on Cora
98.7 4 a a
98.8 4
98.6 a .
-9 98.7 4
98.5 4
g)
o S 986
Y 984 A m“
=] o,
= <
9.3 %31
5.2 —— k= 8.4 —— k=
2 b2 h=2
A b3 A b3
98" E T T T T T 98.3 L T T T T T
20 40 60 80 100 20 40 60 80 100
k: number of walks k: number of walks

Figure 9. AUC and AP results of AFD3S on Cora under different sampled subgraph sizes.

5. Conclusions

In this paper, we propose a novel SubGraph Representation Learning (SGRL) framework called
Augmented Feature Diffusion on Sparsely Sampled Subgraph (AFD3S). AFD3S integrates neigh-
borhood features for central nodes through local feature augmentation and utilizes a random walk
strategy to sample sparse subgraphs, effectively reducing the storage and computational requirements
of the subgraphs. Additionally, by introducing subgraph-level diffusion operators that can be eas-
ily precomputed, AFD3S employs feature diffusion operations to replace the traditional expensive
message-passing schemes, simplifying the subgraph representation learning process and further ac-
celerating the training and inference processes. Finally, experimental results on multiple real-world
datasets show that compared to existing SGRLs, the proposed AFD3S significantly improves compu-
tational speed and exhibits higher link prediction performance. These results fully demonstrate the
excellent performance, computational efficiency, and scalability of the AFD3S for link prediction tasks.

Author Contributions: Conceptualization, methodology, formal analysis, investigation, data curation, visualiza-
tion, writing—original draft preparation, X.W. and H.C.; supervision, resources, project administration, funding
acquisition, writing—review and editing, X.W. and H.C.. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: There is no data associated with this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Nie, M.; Chen, D.; Wang, D. Reinforcement learning on graphs: A survey. IEEE Transactions on Emerging
Topics in Computational Intelligence 2023.

2. Adamic, L.A.; Adar, E. Friends and neighbors on the web. Social networks 2003, 25, 211-230.

3. Chen, L.; Xie, Y,; Zheng, Z.; Zheng, H.; Xie,]. Friend recommendation based on multi-social graph
convolutional network. IEEE Access 2020, 8, 43618-43629.

4. Huang, X.; Chen, D.; Ren, T.; Wang, D. A survey of community detection methods in multilayer networks.
Data Mining and Knowledge Discovery 2021, 35, 1-45.

5. Oyetunde, T.; Zhang, M.; Chen, Y.; Tang, Y.; Lo, C. BoostGAPFILL: improving the fidelity of metabolic
network reconstructions through integrated constraint and pattern-based methods. Bioinformatics 2017,
33, 608-611.

6. Zitnik, M.; Agrawal, M.; Leskovec,]. Modeling polypharmacy side effects with graph convolutional
networks. Bioinformatics 2018, 34, i457-i466.

https://doi.org/10.20944/preprints202407.1674.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 d0i:10.20944/preprints202407.1674.v1

17 of 19

7. Zhang, W.; Xu, D.; others. Evolving model for the complex traffic and transportation network considering
self-growth situation. Discrete Dynamics in Nature and Society 2012, 2012.

8. Wang, L. Analysis and Evaluation of Kinect-based Action Recognition Algorithms. Master’s thesis, School
of the Computer Science and Software Engineering, The University of Western Australia, 2017.

9. Wang, L.; Huynh, D.Q.; Mansour, M.R. Loss switching fusion with similarity search for video classification.
2019 IEEE international conference on image processing (ICIP). IEEE, 2019, pp. 974-978.

10. Wang, L.; Huynh, D.Q.; Koniusz, P. A comparative review of recent kinect-based action recognition

algorithms. IEEE Transactions on Image Processing 2019, 29, 15-28.

11. Wang, L.; Koniusz, P.; Huynh, D.Q. Hallucinating idt descriptors and i3d optical flow features for action
recognition with cnns. Proceedings of the IEEE/CVF international conference on computer vision, 2019,
pp- 8698-8708.

12. Wang, L.; Koniusz, P. Self-supervising action recognition by statistical moment and subspace descriptors.
Proceedings of the 29th ACM international conference on multimedia, 2021, pp. 4324-4333.
13. Koniusz, P.; Wang, L.; Cherian, A. Tensor representations for action recognition. IEEE Transactions on

Pattern Analysis and Machine Intelligence 2021, 44, 648—665.

14. Qin, Z; Liu, Y,; Ji, P; Kim, D.; Wang, L.; Anwar, S.; Gedeon, T. Fusing higher-order features in graph neural
networks for skeleton-based action recognition. IEEE Transactions on Neural Networks and Learning Systems
2022, 35, 4783-4797.

15. Wang, L.; Koniusz, P. Uncertainty-dtw for time series and sequences. European Conference on Computer
Vision. Springer, 2022, pp. 176-195.

16. Wang, L.; Koniusz, P. 3mformer: Multi-order multi-mode transformer for skeletal action recognition.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5620—
5631.

17. Wang, L.; Koniusz, P. Temporal-viewpoint transportation plan for skeletal few-shot action recognition.
Proceedings of the Asian Conference on Computer Vision, 2022, pp. 4176-4193.

18. Wang, L.; Liu, J.; Koniusz, P. 3D Skeleton-based Few-shot Action Recognition with JEANIE is not so Naive.
arXiv preprint arXiv:2112.12668 2021.

19. Wang, L,; Liu, J.; Zheng, L.; Gedeon, T.; Koniusz, P. Meet JEANIE: a Similarity Measure for 3D Skeleton
Sequences via Temporal-Viewpoint Alignment. International Journal of Computer Vision 2024, pp. 1-32.

20. Wang, L. Robust human action modelling. PhD thesis, The Australian National University (Australia),
2023.

21. Wang, L.; Koniusz, P. Flow dynamics correction for action recognition. ICASSP 2024-2024 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024, pp. 3795-3799.

22. Wang, L.; Sun, K.; Koniusz, P. High-order tensor pooling with attention for action recognition. ICASSP
2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024,
pp- 3885-3889.

23. Chen, W,; Xiao, H.; Zhang, E.; Hu, L.; Wang, L.; Liu, M.; Chen, C. SATO: Stable Text-to-Motion Framework.
ACM-MM 2024.

24. Fang, S.; Wang, L.; Zheng, C.; Tian, Y.; Chen, C. SignLLM: Sign Languages Production Large Language
Models. arXiv preprint arXiv:2405.10718 2024.

25. Chen, Q.; Wang, L.; Koniusz, P.; Gedeon, T. Motion meets Attention: Video Motion Prompts. arXiv preprint
arXiv:2407.03179 2024.

26. Wang, L.; Yuan, X.; Gedeon, T.; Zheng, L. Taylor videos for action recognition. ICML 2024.

27. Zhu, L.; Wang, L.; Raj, A.; Gedeon, T.; Chen, C. Advancing Video Anomaly Detection: A Concise Review
and a New Dataset. arXiv preprint arXiv:2402.04857 2024.

28. Li, L.; Medo, M,; Yeung, C.H.; Zhang, Y.C.; Zhang, Z.K.; Zhou, T. Recommender systems. Physics reports
2012, 519, 1-49.

29. Newman, M.E. Clustering and preferential attachment in growing networks. Physical review E 2001,
64, 025102.
30. Katz, L. A new status index derived from sociometric analysis. Psychometrika 1953, 18, 39-43.

31. Chen, D.; Nie, M,; Xie, E; Wang, D.; Chen, H. Link Prediction and Graph Structure Estimation for
Community Detection. Mathematics 2024, 12, 1269.
32. Hamilton, W.L. Graph representation learning; Morgan & Claypool Publishers, 2020.

https://doi.org/10.20944/preprints202407.1674.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 d0i:10.20944/preprints202407.1674.v1

18 of 19

33. Nie, M.; Chen, D.; Wang, D. Graph embedding method based on biased walking for link prediction.
Mathematics 2022, 10, 3778.

34. Wu, Z; Pan, S.; Chen, F; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural
networks. IEEE transactions on neural networks and learning systems 2020, 32, 4-24.

35. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A
review of methods and applications. Al open 2020, 1, 57-81.

36. Dai, H.; Dai, B.; Song, L. Discriminative embeddings of latent variable models for structured data.
International conference on machine learning. PMLR, 2016, pp. 2702-2711.

37. Li, Y;; Tarlow, D.; Brockschmidt, M.; Zemel, R. Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493 2015.

38. Zhang, M,; Li, P; Xia, Y.; Wang, K; Jin, L. Labeling trick: A theory of using graph neural networks for
multi-node representation learning. Advances in Neural Information Processing Systems 2021, 34, 9061-9073.

39. Cai, L.; Li, J.; Wang, J.; Ji, S. Line graph neural networks for link prediction. IEEE Transactions on Pattern
Analysis and Machine Intelligence 2021, 44, 5103-5113.

40. Chen, H.; Chen, J.; Liu, D.; Zhang, S.; Hu, S.; Cheng, Y.; Wu, X. Link Prediction Based on the Sub-graphs
Learning with Fused Features. International Conference on Neural Information Processing. Springer, 2023,
pp- 253-264.

41. Li, W;; Gao, Y,; Li, A.; Zhang, X.; Gu, J.; Liu,]. Sparse Subgraph Prediction Based on Adaptive Attention.
Applied Sciences 2023, 13, 8166.

42. Scarselli, F; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model.
IEEE transactions on neural networks 2008, 20, 61-80.

43. Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world networks. nature 1998, 393, 440-442.

44. Zhang, M.; Chen, Y. Link prediction based on graph neural networks. Advances in neural information
processing systems 2018, 31.

45. Louis, P; Jacob, S.A.; Salehi-Abari, A. Sampling enclosing subgraphs for link prediction. Proceedings of
the 31st ACM International Conference on Information & Knowledge Management, 2022, pp. 4269-4273.

46. Hu, G. Weighted Sampling based Large-scale Enclosing Subgraphs Embedding for Link Prediction.
Authorea Preprints 2023.

47. Jaccard, P. Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines.
Bull Soc Vaudoise Sci Nat 1901, 37, 241-272.

48. Sohn, K.; Lee, H.; Yan, X. Learning structured output representation using deep conditional generative
models. Advances in neural information processing systems 2015, 28.
49. Hoffman, M.D.; Johnson, M.]. Elbo surgery: yet another way to carve up the variational evidence lower

bound. Workshop in Advances in Approximate Bayesian Inference, NIPS, 2016, Vol. 1.

50. Kullback, S.; Leibler, R.A. On information and sufficiency. The annals of mathematical statistics 1951,
22,79-86.

51. Yuan, W.; Han, Y.; Guan, D.; Han, G;; Tian, Y.; Al-Dhelaan, A.; Al-Dhelaan, M. Weighted enclosing
subgraph-based link prediction for complex network. EURASIP Journal on Wireless Communications and
Networking 2022, 2022, 65.

52. Pan, L; Shi, C.; Dokmani¢, I. Neural link prediction with walk pooling. arXiv preprint arXiv:2110.04375
2021.

53. Granovetter, M. The strength of weak ties: A network theory revisited. Sociological theory 1983, pp. 201-233.

54. Gasteiger,].; WeiSenberger, S.; Gliinnemann, S. Diffusion improves graph learning. Advances in neural
information processing systems 2019, 32.

55. Newman, M.E. Finding community structure in networks using the eigenvectors of matrices. Physical
review E 2006, 74, 036104.

56. Von Mering, C.; Krause, R.; Snel, B.; Cornell, M.; Oliver, 5.G.; Fields, S.; Bork, P. Comparative assessment
of large-scale data sets of protein—protein interactions. Nature 2002, 417, 399-403.

57. Ackland, R; others. Mapping the US political blogosphere: Are conservative bloggers more prominent?
BlogTalk Downunder 2005 Conference, Sydney. BlogTalk Downunder 2005 Conference, Sydney, 2005.

58. Sen, P; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective classification in network
data. Al magazine 2008, 29, 93-93.

https://doi.org/10.20944/preprints202407.1674.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 d0i:10.20944/preprints202407.1674.v1

19 of 19

59. Pei, H.,; Wei, B.; Chang, K.C.C; Lei, Y,; Yang, B. Geom-gcn: Geometric graph convolutional networks.
arXiv preprint arXiv:2002.05287 2020.

60. Li, P; Wang, Y.; Wang, H.; Leskovec, J. Distance encoding—design provably more powerful gnns for
structural representation learning. arXiv preprint arXiv:2009.00142 2020, p. 61.

61. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv preprint

arXiv:1609.02907 2016.

62. Xu, K.; Hu, W,; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826 2018.

63. Kipf, T.N.; Welling, M. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 2016.

64. Mavromatis, C.; Karypis, G. Graph infoclust: Maximizing coarse-grain mutual information in graphs.

Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 2021, pp. 541-553.
65. Frasca, F; Rossi, E.; Eynard, D.; Chamberlain, B.; Bronstein, M.; Monti, F. Sign: Scalable inception graph
neural networks. arXiv preprint arXiv:2004.11198 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202407.1674.v1

	Introduction
	Preliminary
	Our Model
	Model Framework
	Local Feature Augmentation
	Subgraph Sampling and Graph Diffusion
	Feature Diffusion
	Training and Prediction

	Experiment
	Datasets and Baselines
	Experimental Setup
	Results and Analysis

	Conclusions
	References

