
Article Not peer-reviewed version

Augmented Feature Diffusion on

Sparsely Sampled Subgraph

Xinyue Wu and Huilin Chen *

Posted Date: 22 July 2024

doi: 10.20944/preprints202407.1674.v1

Keywords: efficiency; scalability; subgraph; graph neural network

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3619072
https://sciprofiles.com/profile/3479547

Article

Augmented Feature Diffusion on Sparsely Sampled
Subgraph

Xinyue Wu 1,∗ , Huilin Chen 2,∗

1 College of Software, Northeastern University, Shenyang 110169, Liaoning, China
2 College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2601, Australia
* Correspondence: wuxinyue1999@163.com (X.W.); u7326198@anu.edu.au (H.C.)

Abstract: Link prediction is a fundamental problem in graphs. Currently, SubGraph Representation Learning

(SGRL) methods provide state-of-the-art solutions for link prediction by transforming the task into a graph

classification problem. However, existing SGRL solutions suffer from high computational costs and lack scal-

ability. In this paper, we propose a novel SGRL framework called Augmented Feature Diffusion on Sparsely

Sampled Subgraph (AFD3S). The AFD3S first uses a conditional variational autoencoder to augment the local

features of the input graph, effectively improving the expressive ability of downstream Graph Neural Networks.

Then, based on a random walk strategy, sparsely sampled subgraphs are obtained from the target node pairs,

reducing computational and storage overhead. Graph diffusion is then performed on the sampled subgraph

to achieve specific weighting. Finally, the diffusion matrix of the subgraph and its augmented feature matrix

are used for feature diffusion to obtain operator-level node representations as inputs for the SGRL-based link

prediction. Feature diffusion effectively simulates the message-passing process, simplifying subgraph represen-

tation learning, thus accelerating the training and inference speed of subgraph learning. Our proposed AFD3S

achieves optimal prediction performance on several benchmark datasets, with significantly reduced storage and

computational costs.

Keywords: efficiency; scalability; subgraph; graph neural network

1. Introduction

The application of complex networks is becoming increasingly widespread in various fields [1],
such as social networks [2–4], biological networks [5,6], transportation networks [7] and video pro-
cessing tasks [8–27]. Among them, link prediction is one of the significant research directions in
complex networks, aiming to predict the unobserved links between nodes or the likelihood of future
links based on known nodes and network structures [16,20]. The research on link prediction not only
helps us better understand the internal structure and evolution mechanisms of networks but also has
extensive applications in practical fields such as social network analysis [2], bioinformatics [6], skeletal
action recognition [8,10,13–20], and recommendation systems [28], demonstrating significant research
significance and application value in the real world.

In recent years, researchers have proposed various methods and techniques for link prediction,
ranging from early simple heuristic methods (e.g., Common Neighbors [29], Adamic Adar [2], Katz [30],
etc.) to Graph Neural Networks (GNNs) [31–35]. Among these methods, GNNs have become widely
accepted and successful solutions [14–20]. Early GNNs used shallow encoders to learn representations
of source and target nodes, then they aggregated these independent node representations as link
representations, neglecting the relative positions between nodes [36,37], resulting in inferior link
representations [38].To address this issue, SubGraph Representation Learning (SGRL) methods [39–44]
significantly enhanced the expressive power of GNNs by learning the enclosing subgraphs around
target node pairs instead of learning the embeddings of both ends independently. This approach
provides state-of-the-art solutions for link prediction. However, as the graph size increases and the hop
of subgraphs grows, the storage and computational costs for extracting, preprocessing, and learning
enclosing subgraphs for any target node pair also grow exponentially, leading to high complexity and
low computational efficiency [16,20].

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0009-0008-3883-1172
https://orcid.org/0009-0006-6730-7471
https://doi.org/10.20944/preprints202407.1674.v1
http://creativecommons.org/licenses/by/4.0/

2 of 19

To improve the computational efficiency of these models, Scaled [45] achieved better scalability by
extracting sparsely sampled subgraphs, while WSEE [46] employed weighted sampling based on node
features as weights to reduce the overhead required for scaling to larger graphs while maintaining the
basic information of the original graph. SSP-AA [41] utilizes sparse subgraphs based on an adaptive
attention mechanism for link prediction. Although these methods enable processing large-scale graphs
through sparse subgraph sampling, they sometimes have to sacrifice some predictive performance as a
trade-off.

We propose a Link Prediction Algorithm via Augmented Feature Diffusion on Sparsely Sampled
Subgraph (AFD3S) to address the issues above. Firstly, we perform local feature augmentation on the
original graph by a generative model to learn the feature distribution of neighbor nodes conditioned
on the central node’s features. The generated features are then fused with the original features to
obtain a feature augmentation matrix, which improves the expressive power of downstream GNNs.
Next, we adopt a random walk approach between the target node pairs to extract sparsely sampled
subgraphs, thereby reducing the storage and computational costs of the subgraphs. Subsequently,
predefined graph diffusion operations are performed on these subgraphs to obtain graph diffusion
matrices. Finally, we perform feature diffusion operations on the subgraph’s diffusion matrix and
its corresponding feature augmentation matrix to get the operator-level node representations of the
subgraph. This representation is then used as input for downstream link prediction tasks. Feature
diffusion simulates the message-passing process between nodes within the subgraph, simplifying
subgraph representation learning and accelerating its training and inference speed, ultimately reducing
the overall model runtime. Extensive experiments on real-world datasets demonstrate that AFD3S
outperforms all baseline models in link prediction, requiring less training time and memory and
achieving significant speedups.

2. Preliminary

Notations. Let G = (V, E) be an input graph, where V = {v1, v2, ..., vN} denotes the set of nodes in
graph G, N represents the number of nodes, and E ⊆ V ×V is the set of edges. The adjacency matrix is
defined as A ∈ {0, 1}N×N , where Ai,j = 1 if and only if (vi, vj) ∈ E. Let Ni = {νj | Ai,j = 1} represent
the set of neighbors (neighborhood) of a node vi, and D represents the diagonal degree matrix, where
Di,i = ∑n

j=1 Ai,j. The feature matrix is denoted as X ∈ RN×d, where each node v is associated with a
d-dimensional feature vector Xν.

Definition 1 (Enclosing Subgraph). Given a graph G and a target node pair T = {u, v}, the h-hop enclosing
subgraph of T is a subgraph Gh

uν induced from G, with a node set {j ∥ d(j, x) ≤ h or d(j, y) ≤ h}, where d(i, j)
represents the shortest distance between node i and node j.

Definition 2 (Sampled Subgraph). In a given graph G, the randomly walked sampled h-hop enclosing
subgraph of a target node pair T = {u, v} is obtained by inducing a subgraph Gh,k

uν from G, with a node set
Vhk

uν ∈ Sh,k
u ∪ Sh,k

ν , where Sh,k
i represents the set of nodes visited by performing k random walks of length h

starting from node i.

Link Prediction. The goal is to infer the existence of edges between target node pairs T = {u, v}
based on the observed adjacency matrix A and features X. The learning task is to find a likelihood
(or scoring) function f that assigns an interaction likelihood value (or score) to each target node pair
(u, v) /∈ E, where a higher value indicates a higher probability of the existence of a link.

Early link prediction methods mainly relied on network heuristic algorithms, such as common
neighbors [29], Jaccard index [47], and Katz index [30]. While these methods are simple and direct, their
generalization ability on different graph structures is limited. To address this challenge, researchers
proposed various GNN methods, which can independently learn feature representations of node pairs
and predict link probabilities by aggregating these representations [36,37]. However, GNNs still have
limitations in capturing the automorphism of graphs and the nodes’ different roles in the link formation

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

3 of 19

process [38]. To overcome this limitation, SEAL [44] innovatively transformed link prediction into
a graph classification problem on enclosing subgraphs and enhanced the expressive power of node
features by introducing structural labels. This led to the emergence of SGRLs, which have achieved
significant progress in link prediction tasks and demonstrate state-of-the-art performance.

However, despite the breakthrough in SGRLs’ performance for link prediction tasks, they often
face exponential growth in storage and computational costs as the size of graph data and the hop of
subgraphs increase. This results in high temporal and spatial complexity, lacking scalability, which
has become a crucial obstacle to their practical application and deployment. Therefore, improving the
computational efficiency and processing capability of SGRLs has become an important challenge in
current research.

Therefore, our work proposes a new SGRL framework to address the existing problems in
subgraph representation learning. It uses local feature augmentation to enhance the expressive power
of downstream GNNs and employs sparsely sampled subgraphs to effectively reduce the storage and
computational requirements of subgraphs. In addition, introducing subgraph-level diffusion operators
that are easy to pre-compute simplifies the subgraph representation learning process by using feature
diffusion operations to replace traditional expensive message-passing schemes, further accelerating
the training and inference processes of SGRL.

3. Our Model

3.1. Model Framework

The Augmented Feature Diffusion on Sparsely Sampled Subgraph (AFD3S) process consists of
four steps, as Figure 1 illustrates. Firstly, local feature augmentation is applied to the input graph
to obtain a feature augmentation matrix. Secondly, sparsely sampled subgraphs are extracted using
a random walk strategy, starting from the target node pair. Then, a special weighting operation is
performed on the subgraphs, which involves applying a predefined graph diffusion operator to these
subgraphs to obtain the diffusion matrix. Finally, the diffusion matrix performs feature diffusion with
the previously obtained feature augmentation matrix, resulting in an operator-level node representation
of the subgraph. This representation serves as input for downstream link prediction tasks.

Figure 1. Overview of the framework of model AFD3S.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

4 of 19

3.2. Local Feature Augmentation

Existing GNNs [42] mainly focus on designing message-passing schemes to utilize local informa-
tion in graphs to obtain node representations. Although GNNs have achieved remarkable performance
in various graph-based tasks [8,10,13–20], for the limited local neighborhood information of node num-
bers, existing GNNs may not fully aggregate such information, thus affecting the learning effect of the
models. To address this issue, we propose a local augmentation strategy on graphs, which generates
feature distributions of neighbor nodes conditioned on the features of central nodes and utilizes these
generated features during the training process to enhance the expressive power of downstream GNNs.

To generate more features within the neighborhood Nν of a node v, it is first necessary to know
the feature distribution of its neighbor nodes. Since this distribution is related to the central node v, a
generative model is used to learn its distribution conditional on the features of the central node. In this
paper, we use a Conditional Variational Autoencoder (CVAE) [48] to learn the conditional distribution
of the features of the connected neighbor node u (u ∈ Nν) given the central node v. Since the feature
distribution of neighbor node u is related to Xν, we condition it on Xν. The latent variable z is generated
from a prior distribution pθ(z|Xν), and the generated feature Xu is produced through a generative
distribution conditioned on both z and Xν, pθ(X | Xν, z), i.e., z ∼ pθ(z|Xν), Xu ∼ pθ(X | Xν, zν). Using
ϕ to represent variational parameters and θ to represent generative parameters, we have:

log pθ(Xu | Xν) =
∫

qϕ(z | Xu, Xν) log
pθ(Xu, z | Xν)

qϕ(z | Xu, Xν)
dz

+KL(qϕ(z | Xu, Xν)∥pθ(z | Xu, Xν))

≥
∫

qϕ(z | Xu, Xν) log
pθ(Xu, z | Xν)

qϕ(z | Xu, Xν)
dz

(1)

the corresponding Evidence Lower Bound (ELBO) [49] can be defined as:

L(Xu, Xν; θ, ϕ) = −KL(qϕ(z|Xu, Xν)∥pθ(z|Xν)) +
1
L

L

∑
l=1

log2 pθ(Xu|Xν, z(l)) (2)

where z(l) = gϕ(Xv , Xu , ϵ(l)), ϵ(l) ∼ N (0, I), L represents the number of neighbors of node v, KL
refers to the Kullback-Leibler Divergence [50], also known as relative entropy. In information theory
and machine learning, KL divergence measures the difference between two probability distributions.
In this paper, it is used to measure the difference between the posterior distribution and the prior
distribution.

Algorithm 1 CVAE model training

Input: Input graph G, adjacency matrix A, feature matrix X
Output: Feature generation model Qϕ

1: Initialize Qϕ

2: while not convergence do
3: for each v ∈ V do
4: Nν = get_neighbors(A, ν)
5: z = encoder(Xν, Qϕ)
6: Xu = generator(z, Xv , Nv , Qϕ)
7: loss = compute_ELBO(Xω, Xν, z, Qϕ)
8: loss.backward()
9: optimizer.step()

10: end for
11: end while
12: return Qϕ

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

5 of 19

A CVAE model is trained for all nodes during the experiments. The objective during the training
phase is to maximize the ELBO, i.e., Equation (2), by taking pairs of adjacent nodes (Xν, Xu, u ∈
Nν) as input. In the Variational Autoencoders (VAE) context, ELBO is typically considered a loss
function. During the training of a VAE, the objective is to maximize the ELBO, which is the opposite
of minimizing a loss function. Maximizing the ELBO is equivalent to minimizing the sum of the
reconstruction error and the KL divergence, which helps the model learn latent representations that
can generate the data while preserving the structural information in the latent space. During the
generation phase, node features Xν are used as conditions, and a latent variable z ∼ N (0, I) is sampled
as input to the decoder. Then, a generated feature vector X̄ν associated with node v can be obtained.
Algorithm 1 describes the training process of the CVAE feature generation model.

After training, the generative model is applied to the input graph, and the generated features X̄ν

are used as additional input to perform calculations with the original features X to obtain augmented
feature representations H for the nodes, thus improving the expressive power of downstream GNNs,
as shown in Equation (3).

H = σ(X, X̄) (3)

where σ represents a specific operation. We provide two ways of using the generated features:
concatenation and averaging. Figure 2 illustrates the local feature augmentation using concatenation.

Figure 2. Schematic diagram of concatenated local feature augment. The yellow circles on the graph
correspond to neighboring nodes, generating features from local neighborhood distributions. Then, the
original and generated features are inputs for downstream GNNs.

3.3. Subgraph Sampling and Graph Diffusion

Since SEAL [44] and its variants (WESLP [51], WalkPool [52], etc.) lack scalability, the size of
subgraphs grows exponentially as the hop h increases. Nodes with high degrees tend to have very
large enclosing subgraphs, even for small hops, resulting in the models’ high temporal and spatial
complexity. Therefore, the proposed model utilizes sparsely sampled subgraphs (Definition 2) instead
of enclosing subgraphs when extracting subgraphs for a target node pair. By introducing sparsely
sampled subgraphs, the model can effectively reduce the size of subgraphs while maintaining sufficient
information, thus lowering the temporal and spatial complexity of the model. Figure 3 illustrates the
extraction of a sampled subgraph for the target node pair (u, v), Sh,k

u = {a, b, c, d, e}, Sh,k
ν = { f , g, h, i, j},

Vh,k
uν = {a, b, c, d, e, f , g, h, i, j, u, v}, where the walk length h is 2, and the number of walks k is 3.

By comparing the definitions of enclosing subgraph (Definition 1) and sparsely sampled subgraph,
we can draw the following important conclusions: (i) The sampled subgraph Gh,k

uν is a subgraph of
enclosing subgraph Gh

uν, because random walks of length h cannot reach nodes that are more than h
steps away from the starting node; (ii) The size of the sampled subgraph is limited to O(hk), which can
be linearly controlled by adjusting the parameters of walk length h and several walks k, in contrast to
the exponential growth of enclosing subgraph in Definition 1. By replacing dense enclosing subgraphs
with their corresponding sparsely sampled subgraphs, AFD3S reduces the computational and storage

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

6 of 19

overhead of subgraphs, providing scalability while still maintaining the flexibility to control the degree
of sparsity and scalability through its sampling parameters h and k.

Figure 3. Target node pair (u, v) extraction sampled subgraph.

To obtain the sparsely sampled subgraph Gh,k
uν for the target node pair T = {u, v}, with the

corresponding adjacency matrix Auν, to further capture the structural relationships and similarities
between nodes, while simulating the process of information diffusion between nodes, the AFD3S
utilizes predefined graph diffusion operators to perform specific weighted operations on the sampled
subgraph and obtain the corresponding diffusion matrix:

Muν = ψ(Auν) (4)

where, Muν represents the diffusion matrix of the sampled subgraph, and Gh,k
uν denotes the specific

graph diffusion operator. ψ can be varied by using different diffusion operators to capture differ-
ent structural features in the graph, such as adjacency matrices/Laplacian operators for capturing
connectivity, triangle/motif-based operators [53] for capturing inherent community structures, and
Personalized PageRank (PPR)-based operators [54] for identifying important connections. Each opera-
tor and its powers can constitute different diffusion operators in AFD3S. The graph diffusion operator
used in this model is the multiple powers of the adjacency matrix, which captures and represents the
multi-hop neighborhood relationships of nodes in the graph, providing rich topological features for
graph structure analysis and GNNs.

3.4. Feature Diffusion

The diffusion matrix Muv of the sampled subgraph is used to perform feature diffusion oper-
ations with the corresponding feature augmentation matrix Huv, obtaining the operator-level node
representation Zuv of the subgraph:

Zuν = Muν · Huν (5)

Feature diffusion simulates the process of information diffusion between nodes, simplifying
subgraph representation learning. The operator-level node feature representation not only contains
its information but also integrates information from its neighbor nodes, thus capturing the structural
characteristics within the subgraph. Specifically, feature diffusion operations help with:

1. Feature smoothing: In deep GNNs, information may propagate excessively between nodes,
leading to overly similar node representations and the issue of over-smoothing. Adjusting
the diffusion matrix can somewhat alleviate this problem, maintaining the diversity of node
representations.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

7 of 19

2. Enhancing node representations: A node’s feature vector can integrate features from its direct
and indirect neighbors through diffusion operations, making the node representation richer and
more comprehensive.

3. Simulating graph structure: The diffusion matrix essentially reflects the structural information of
the graph. Multiplying it with the feature augmentation matrix can simulate information trans-
mission between nodes based on the graph structure, simplifying the subgraph representation
learning process and accelerating training and inference speeds.

4. Improving prediction performance: In link prediction tasks, this node representation fused with
structural information can improve the model’s accuracy in predicting potential links, as it can
better capture the interdependencies between nodes.

5. Computational efficiency: Compared to performing complex graph neural network operations
on the entire graph, this subgraph-level diffusion operation can significantly reduce the amount
of computation, making the model more efficient for applications on large-scale graphs.

In experiments, one can apply a set of different graph diffusion operators to the same sampled
subgraph to obtain a set of linear diffusion matrices M(0)

uν , ..., M(r)
uν . These diffusion matrices are then

applied to the feature augmentation matrix Huν of the subgraph to yield a set of operator-level node
representations Z(0)

uν , ..., Z(r)
uν . Furthermore, it holds that:

Z(i)
uν = M(i)

uν · Huν (6)

where M(i)
uν represents the diffusion matrix corresponding to the adjacency matrix of the subgraph

when the i-th diffusion operator is applied. Then, the operator-level node representation matrices
Z(i)

uν of all sampled subgraphs are concatenated to form the final joint node representation, which is
given by

Zuν =
r⊕

i=0

Z(i)
uν (7)

where the
⊕

symbol represents the concatenation operation of a set of feature vectors. When con-
catenating node representation matrices with mismatched dimensions, it is necessary to ensure that
the rows belonging to the same node are properly aligned. For any missing rows, zero-padding is
used, similar to the zero-padding strategy in graph pooling, thus ensuring the uniformity of matrix
dimensions and data integrity.

3.5. Training and Prediction

After obtaining the final operator-level node feature matrix Zuν of the sampled subgraph, the first
step is to reduce the dimensionality of the node representation matrix. This can be achieved through a
fully connected layer consisting of a learnable weight matrix W and a nonlinear activation function δ.
The purpose of this step is to reduce the dimensionality of the node representation while preserving
important information. Next, a pooling operation is performed on the reduced representation. This
typically involves aggregating the representations of the target node and its common neighbors.
Pooling methods can be center pooling or center-common-neighbor pooling, which help further extract
and integrate critical information. Finally, the pooled representation is input into a learnable function ζ,
such as a Multi-Layer Perceptron(MLP), which transforms the node representation into the probability
puν of a link existing. This probability can then be used for link prediction tasks. The above process is
formulated as follows:

puν = ζ(pool(δ(ZuνW))) (8)

During the training process, the model optimizes the weight matrix W and the parameters of
function ζ by minimizing the difference between the predicted link probability and the actual existence
of the link. This is typically achieved through optimization techniques such as backpropagation and

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

8 of 19

gradient descent. The training loss function employs the binary cross-entropy loss function, whose
formula is as follows:

L = − 1
|Elabel | ∑

(u,ν)∈Elabel

[yuν log puν + (1 − yuν) log(1 − puν)] (9)

where Elabel represents the entire training set, |Elabel | represents the number of samples, yuν indicates
whether there exists an edge between nodes u and v, and puν represents the predicted probability of
the existence of an edge. This loss function minimizes the cross-entropy between the predicted results
and the true labels. Algorithm 2 describes the process of AFD3S for link prediction training.

Algorithm 2 Augmented Feature Diffusion on Sparsely Sampled Subgraph (AFD3S)

Input: Input graph G, adjacency matrix A, feature matrix X
Output: Link prediction model Ω

1: Initialize Ω, W, δ

2: H = local_augment(A, X, σ)
3: while not convergence do
4: for each (u, v) ∈ E do
5: Gh,k

uv , Auv = Sampler(A, h, k, u, v)
6: for i = 1 → r do
7: M(i)

uv = ψ(i)(Auv)
8: Z(i)

uv = M(i)
uv · Huv

9: end for
10: Zuv = aggregate_Z(Z(0)

uv , ..., Z(r)
uv)

11: puv = ζ(pool(δ(ZuvW)))
12: loss = compute_loss(Ω, pw, yw)
13: loss.backward()
14: optimizer.step()
15: end for
16: end while
17: return Ω

4. Experiment

4.1. Datasets and Baselines

Datasets: We used nine real-world network datasets, including weighted and unweighted,
undirected, attributed, and non-attributed graph data. The experiments divided these datasets into
two categories: non-attributed and attributed datasets. For both attributed and non-attributed datasets,
except for Cora, CiteSeer, and PubMed, which were divided into 70% training set, 10% validation set,
and 20% test set according to specific experimental settings, the edges of the remaining datasets were
randomly divided into 85% training set, 5% validation set, and 10% test set. The experimental datasets
include NS [55], a collaboration network of network science researchers, Power [43], an electrical
power grid of the western United States, Yeast [56], a protein-protein interaction network, PB [57], a
political blog network, Cora [58], a citation network in the field of machine learning, CiteSeer [59], a
scientific publication citation network, PubMed [59], a diabetes-related scientific publication citation
network, and Texas and Wisconsin [60], web page datasets collected by computer science departments
of different universities.

Table 1 details the statistical information of these datasets, with the first four being non-attributed
networks and the last five being attributed networks. Node represents the number of nodes, Edge

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

9 of 19

represents the number of edges, Avg Deg represents the average degree of the network, Feat represents
the feature dimension of the nodes, and Type represents the network type.

Table 1. Statistics of network datasets

Datasets Node Edge Avg Deg Feat Type

NS 1466 2742 375 NA Collaboration Network

Power 4941 6594 267 NA Electricity Network

Yeast 2375 11693 985 NA Biological Network

PB 1222 16714 2736 NA Blog Network

Cora 2708 4488 331 1433 Citation Network

CiteSeer 3327 3870 233 3703 Citation Network

PubMed 19717 37676 382 500 Citation Network

Texas 183 143 156 1703 Web Network

Wisconsin 251 197 157 1703 Web Network

Baselines: In this section, we experimentally analyze the proposed link prediction model AFD3S
and compare it with nine existing advanced link prediction models on nine different real-world
datasets. These include two message-passing graph neural network (MPGNNs) models: GCN [61]
and GIN [62]; three autoencoder (AE) models: GAE, VGAE [63], and GIC (Graph InfoClust) [64]; and
four SGRLs: SEAL [44], WESLP [51], Scaled [45], and WalkPool [52].

4.2. Experimental Setup

Experimental Environment: Equipped with AMD Ryzen 7 5800H CPU, 32GB memory The
hardware environment of NVIDIA GeForce RTX 3070 Laptop GPU (8GB graphics memory) runs on the
Windows 11 64-bit operating system, using PyCharm 2023.2.1 as the development tool, Python 3.10.9
as the development language, and PyTorch 1.12.1 and PyTorch Geometry 2.0.9 as the development
framework.

Experimental Settings: For SGRLs and the AFD3S method on non-attributed datasets, the hop of
the enclosing subgraphs, h, is typically set to 2 (except for the WalkPool on the Power dataset, where h
is set to 3). For sparsely sampled subgraphs, the walk length h is set to 2, and the number of walks k is
set to 50. On attributed datasets, the hop of the enclosing subgraphs, h, is generally set to 3 (while the
WalkPool sets it to 2). The settings for sparsely sampled subgraphs are the same as for non-attributed
datasets. Additionally, in the AFD3S, the zero-one [38] labeling scheme is uniformly adopted to label
all datasets, while models like SEAL and Scaled use DRNL [44] for labeling. The central common
neighbor pooling readout function employs a simple mean aggregation approach. These settings and
choices aim to ensure consistency and performance optimization of the models while accommodating
the characteristics of different datasets and models. Moreover, for all datasets, the percentages of
training, validation, and test sets across all models are uniformly set to 85%, 5%, and 10%, respectively,
with a 1:1 sampling ratio for positive and negative samples.

In the AFD3S model, the neural network utilizes SIGN [65], and for the non-attributed datasets,
Node2Vec is employed to generate 256-dimensional feature vectors for each node. In the process of
feature augmentation, σ uniformly adopts concatenation as the augmentation method. For all datasets,
the hidden dimension after pooling in Equation (8) is set to 256, and an MLP with a 256-dimensional
hidden layer is adopted in the experiments. To maintain consistency, the dropout rate is set to 0.5 for
all models, the learning rate is set to 0.0001, and the Adam optimizer is used for 50 training epochs.
During the training process, except for the MPGNN model, which uses full-batch training on the input

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

10 of 19

graph, the batch size for other models is set to 32. These settings ensure the experiments’ fairness and
comparability while fully utilizing the potential of the AFD3S model.

Evaluation Metrics: This paper adopts AUC and AP as the evaluation standards for model
performance, aiming to accurately assess the performance of the AFD3S in solving the link prediction
problem. Additionally, to fully demonstrate the computational efficiency and scalability of the AFD3S,
this study further compares the performance of the AFD3S with existing popular SGRLs in terms of
average preprocessing time, average training time, average inference time, and total running time.

4.3. Results and Analysis

Link Prediction: For all models, on both attributed and non-attributed datasets, this study
presents the average AUC and AP scores over 10 runs with different fixed random seeds on the test
data. Table 2 displays the AUC results for both non-attribute and attribute datasets, while Table 3
displays the AP results for both non-attribute and attribute datasets. The optimal values are marked in
bold.

Based on the data in Tables 2 and 3, it is evident that the proposed AFD3S demonstrates exceptional
performance in terms of average AUC and AP results on both non-attributed and attributed datasets,
achieving optimal levels. Specifically, on attributed datasets, compared to the advanced benchmark
model WalkPool, the AUC results of the AFD3S show improvements of 6.44% on Cora, 9.32% on
CiteSeer, 10.23% on Texas, and 14.57% on Wisconsin. Simultaneously, the AUC and AP results of the
AFD3S on non-attributed datasets also exhibit a certain degree of improvement.

Table 2. Average AUC for attributed and non-attributed datasets (over 10 runs). The best value is
marked in bold.

Model NS Power PB Yeast Cora CiteSeer PubMed Texas Wisconsin
GCN 91.75±1.68 69.41±0.90 90.80±0.43 91.29±1.11 89.14±1.20 87.89±1.48 92.72±0.24 67.42±9.39 72.77±6.96
GIN 83.26±3.81 58.28±2.61 88.42±2.09 84.00±1.94 68.74±2.74 69.63±2.77 82.49±2.89 63.46±8.87 70.82±8.25
GAE 92.50±1.71 68.17±1.64 91.52±0.35 93.13±0.57 90.21±0.98 88.42±1.13 94.53±0.69 68.67±6.95 75.10±8.69
VGAE 91.83±1.49 66.23±0.94 91.19±0.85 90.19±1.38 92.17±0.72 90.24±1.10 92.14±0.19 74.61±8.61 74.39±8.39
GIC 90.88±1.85 62.01±1.25 73.65±1.36 88.78±0.63 91.42±1.24 92.99±1.14 91.04±0.61 65.16±7.87 75.24±8.45
SEAL 98.63±0.67 85.28±0.91 95.07±0.35 97.56±0.32 90.29±1.89 88.12±0.85 97.82±0.28 71.68±6.85 77.96±10.37
WESLP 98.68±0.12 85.31±0.35 94.68±0.41 97.41±0.18 89.91±1.33 89.01±1.25 96.69±0.53 71.15±4.41 77.98±8.73
Scaled 98.88±0.50 83.99±0.84 94.53±0.57 97.68±0.17 90.55±0.18 87.69±1.67 97.94±0.43 70.12±7.44 76.89±9.98
WalkPool 98.92±0.52 90.25±0.64 95.50±0.26 98.16±0.20 92.24±0.65 89.97±1.01 98.36±0.11 78.44±9.83 79.57±11.02
AFD3S 98.98±0.28 90.38±0.80 95.84±0.29 98.42±0.26 98.68±0.13 99.29±0.28 99.12±0.11 88.67±5.18 94.14±3.95

Table 3. Average AP for attributed and non-attributed datasets (over 10 runs). The best value is marked
in bold.

Model NS Power PB Yeast Cora CiteSeer PubMed Texas Wisconsin
GCN 92.64±1.78 71.26±1.81 93.14±0.29 93.02±1.31 91.21±1.22 89.99±1.19 94.21±0.31 69.71±8.63 75.03±7.48
GIN 83.46±2.91 59.77±3.11 89.93±2.31 86.12±1.89 70.64±2.34 71.88±2.48 83.87±2.17 65.62±9.05 73.12±8.75
GAE 93.60±1.53 70.09±1.72 93.03±0.27 95.21±0.48 92.28±0.48 90.92±1.08 96.16±0.71 71.02±7.31 77.31±8.15
VGAE 92.51±1.09 67.97±0.84 92.71±0.33 92.15±1.19 93.48±0.64 92.31±1.60 93.93±0.22 76.77±9.31 76.27±7.25
GIC 91.42±1.37 64.12±1.18 72.98±1.06 90.07±0.48 93.01±1.02 94.13±1.24 92.74±0.46 66.33±8.27 77.87±7.98
SEAL 98.61±0.32 86.96±1.15 95.13±0.26 98.64±0.28 92.44±2.01 90.41±1.15 98.12±0.41 73.02±5.99 79.34±11.03
WESLP 98.62±0.09 87.01±0.95 94.32±0.37 97.73±0.22 92.41±2.03 91.02±1.14 97.87±0.23 72.94±3.81 79.62±9.73
Scaled 98.68±0.33 85.01±0.71 94.18±0.37 98.43±0.21 92.35±0.21 89.72±1.38 98.08±0.33 73.01±6.54 78.97±9.15
WalkPool 98.72±0.73 91.03±0.42 95.22±0.41 98.71±0.15 94.12±1.05 91.85±1.42 98.14±0.53 81.04±9.52 79.98±11.42
AFD3S 98.75±0.27 91.17±0.68 95.34±0.37 98.76±0.21 98.84±0.18 99.37±0.31 99.05±0.12 91.14±2.92 94.08±3.80

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

11 of 19

Figure 4. The average AUC of all models on attributed and non-attributed datasets (over 10 runs).

Figure 5. The average AP of all models on attributed and non-attributed datasets (over 10 runs).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

12 of 19

The significant advantage is the importance of node features in node classification and graph
classification tasks. The node features of attributed datasets provide direct, rich, and semantically
clear information whose expressive power is often superior to node features generated based on
random walks. This direct utilization of original node features helps improve the interpretability
and stability of the model while reducing additional computational costs. Furthermore, the AFD3S
incorporates the neighboring node features of the central node during the local feature augmentation
process, enabling it to capture complex relationships between nodes. This approach fully utilizes
the multi-source information of graph data, providing superior performance for downstream tasks
of GNNs. Therefore, the superior performance of the AFD3S on various datasets demonstrates its
effectiveness and practicability in link prediction tasks.

Computational Efficiency: To further validate the computational efficiency and scalability of
the AFD3S, this paper selects three currently popular and performance-advanced SGRLs—SEAL,
GCN+DE (distance encoding) [60], and WalkPool, and conducts comparative experiments on all
datasets. The comparative experiments mainly focus on four key indicators: preprocessing time,
average training time (50 epochs), average inference time, and total runtime (50 epochs), aiming to
comprehensively demonstrate the computational efficiency of the AFD3S in practical applications.
Tables 4 and 5 present the experimental results on non-attributed and attributed datasets. In these
tables, “Train” represents the average training time for 50 epochs, “Inference” represents the average
inference time, “Preproc.” represents the preprocessing time, and “Runtime” represents the average
runtime for 50 epochs. The fastest values are bolded, and the maximum (minimum) speedup ratio in
“Speed up” refers to the ratio of the time required by the slowest (fastest) SGRL methods to the AFD3S
model.

Through experimental results, we can observe that the AFD3S proposed in this paper has achieved
significant acceleration in training, inference, and running time compared with other SGRLs on all
datasets. Specifically, the training speed is improved by 3.34 to 17.95 times, the inference speed is accel-
erated by 3 to 61.05 times, and the overall running time is shortened by 2.27 to 14.53 times. Although
the preprocessing time of the AFD3S model is relatively high, due to the significant improvement in
training and inference speeds, this difference is effectively offset, making the maximum acceleration
reach 14.53 times on the Yeast dataset. It is worth noting that as the scale of the dataset increases,
the computational time acceleration effect of the AFD3S becomes particularly evident. The highest
acceleration multiples are achieved on the three large PubMed, PB, and Yeast datasets, demonstrating
the excellent performance of the AFD3S in computational efficiency and scalability.

This gain is primarily attributed to the innovative strategies employed by the AFD3S. Adopting a
random walk-based strategy to sample sparse subgraphs instead of enclosing subgraphs significantly
reduces subgraphs’ storage and computational overhead. As the graph size increases, the scale
of extracted subgraphs decreases from exponential to linear, reducing computational complexity
and improving model efficiency. Additionally, the randomness in random walks brings additional
regularization benefits to the model, further enhancing its performance. Meanwhile, the AFD3S
utilizes easily pre-computed subgraph-level diffusion operators to replace expensive message-passing
schemes through feature diffusion, significantly improving training and inference speeds. These
optimization measures collectively enable the AFD3S to demonstrate excellent computational efficiency
and scalability in link prediction tasks.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

13 of 19

Table 4. Comparison of the computation time between SGRLs and AFD3S models on the non-attributed
datasets. The optimal time is marked in bold.

Datasets SEAL GCN+DE WalkPool AFD3S Speed up
NS Train 4.91±0.23 3.58±0.12 7.66±0.09 2.21±0.01 3.47(1.62)

Inference 0.14±0.01 0.10±0.01 0.41±0.02 0.06±0.01 6.83(1.67)
Preproc. 17.86 11.73 12.18 30.21 0.59(0.39)
Runtime 275.28 198.98 427.03 187.84 2.27(1.06)

Power Train 11.73±0.02 8.62±0.27 18.46±0.76 5.23±0.31 3.53(1.65)
Inference 0.33±0.01 0.25±0.01 0.87±0.06 0.13±0.01 6.69(1.92)
Preproc. 44.48 28.59 33.51 65.12 0.68(0.44)
Runtime 658.14 479.4 1024.55 403.55 2.54(1.19)

Yeast Train 24.03±0.40 18.41±0.71 174.80±1.06 9.33±0.01 18.74(1.97)
Inference 0.54±0.05 0.46±0.06 8.05±0.11 0.15±0.01 53.67(3.07)
Preproc. 115.02 82.19 90.75 166.30 0.69(0.49)
Runtime 1362.85 1040.72 9443.17 649.90 14.53(1.60)

PB Train 64.62±5.59 55.82±1.59 133.30±0.52 15.23±0.21 8.75(3.67)
Inference 2.43±0.10 2.01±0.09 6.48±0.15 0.27±0.01 24(7.44)
Preproc. 531.79 398.81 136.29 310.53 1.71(0.44)
Runtime 3947.45 3346.80 7291.50 1001.73 7.28(3.34)

Table 5. Comparison of the computation time between SGRLs and AFD3S models on the attributed
datasets. The optimal time is marked in bold.

Datasets SEAL GCN+DE WalkPool AFD3S Speed up
Cora Train 18.37±1.49 14.85±0.53 18.53±0.91 5.36±0.16 3.46(2.77)

Inference 0.73±0.12 0.62±0.08 1.00±0.15 0.15±0.02 6.67(4.13)
Preproc. 113.32 80.48 27.43 36.36 3.17(0.75)
Runtime 1090.94 872.68 1034.33 303.15 3.60(2.88)

CiteSeer Train 12.54±0.69 11.43±0.71 15.32±0.34 4.59±0.12 3.34(2.49)
Inference 0.58±0.10 0.52±0.07 0.87±0.05 0.17±0.02 5.12(3.06)
Preproc. 93.52 71.97 22.82 73.01 1.28(0.31)
Runtime 768.72 685.98 859.27 331.26 2.59(2.07)

PubMed Train 533.19±4.64 423.73±2.67 150.27±6.22 29.71±3.61 17.95(5.06)
Inference 38.46±1.08 34.44±1.21 8.10±1.06 0.63±0.15 61.05(12.86)
Preproc. 141.76 106.00 341.12 543.27 0.63(0.20)
Runtime 30150.31 24311.00 8474.72 2591.31 11.64(3.27)

Texas Train 0.32±0.01 0.31±0.01 0.55±0.01 0.14±0.01 3.93(2.21)
Inference 0.01±0.00 0.01±0.00 0.03±0.01 0.01±0.00 3.00(1.00)
Preproc. 2.55 1.87 0.92 1.24 2.06(0.74)
Runtime 20.46 18.55 32.54 8.91 3.65(2.08)

Wisconsin Train 0.47±0.01 0.43±0.01 0.85±0.04 0.21±0.02 4.05(2.05)
Inference 0.02±0.00 0.02±0.00 0.06±0.00 0.01±0.00 6.00(2.00)
Preproc. 3.29 2.63 1.08 1.56 2.11(0.69)
Runtime 29.27 25.19 49.38 12.89 3.83(1.95)

Ablation Study: We conducted an ablation study to further explore the key factors contribut-
ing to the performance gains of the AFD3S, specifically verifying the effectiveness of local feature
augmentation and graph diffusion operations on the predictive performance of the AFD3S. Three
variants of the AFD3S were designed and compared with the original AFD3S in terms of AUC and AP
metrics for link prediction across all datasets. The three variants are: 1) Variant AFD3S−−, which does
not perform local feature augmentation and graph diffusion operations; 2) Variant AFD3S+−, which
performs local feature augmentation but does not perform graph diffusion operations; 3) Variant
AFD3S−+, which performs graph diffusion operations but does not perform local feature augmentation.
The experimental results are presented in Figures 6 and 7.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

14 of 19

Figure 6. Experimental results of link prediction AUC using AFD3S and its three variants

Figure 7. Experimental results of link prediction AP using AFD3S and its three variants

Observing the experimental results, it can be seen that on most datasets, among the three variants
of AFD3S, the link prediction performance of Variant AFD3S+− using local augmentation alone and
Variant AFD3S−+ using graph diffusion alone both show some degree of improvement compared to
Variant AFD3S−− without any augmentation. This proves the effectiveness of the two augmentation
strategies proposed in this paper for AFD3S in link prediction tasks. Furthermore, when local feature
augmentation and graph diffusion operations are used simultaneously (i.e., the original AFD3S), the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

15 of 19

performance is improved on all datasets, with significant improvements on most datasets. The main
reason is that after local feature augmentation, the subsequent graph diffusion operation amplifies this
augmentation effect, significantly improving subsequent prediction performance.

Specifically, since the AFD3S extracts sparsely sampled subgraphs of target node pairs to reduce
subgraphs’ storage and computational efficiency, it cannot, in most cases, include all h-hop neighbor
nodes of the target node pairs as enclosing subgraphs can. However, the local feature augmentation
operation is based on the original input graph, fusing features from other neighbor nodes of the central
node through feature augmentation, thus compensating for the shortcomings of sparse subgraphs.
This augmentation is further amplified by the graph diffusion operation, and it can capture the
structural relationships and similarities between nodes. At the same time, it simulates the information
diffusion process between nodes through feature diffusion to simplify the information transmission
and aggregation operations in subgraph representation learning, accelerating the training and inference
speed of downstream tasks.

In summary, AFD3S improves the link prediction performance and reduces subgraphs’ storage
and computational overhead, enhancing the model’s computational efficiency and scalability. It
provides an efficient and practical solution for graph analysis tasks.

Parameter Sensitivity: We also conducted a sensitivity analysis on the two hyperparameters of
the extracted sparsely sampled subgraph, namely the walk length h and the number of walks k, to
investigate the impact of the size of the sampled subgraph on the link prediction performance of the
AFD3S. Due to certain similarities across different datasets, experiments were performed on the Power
non-attribute and Cora attribute datasets as examples. All other parameters remained unchanged in
the experiments except for the test variable to maintain fairness. The experimental results are shown
in Figures 8 and 9.

The experimental results show that the AFD3S performs excellent prediction even when using
smaller h and k values. Notably, when the extracted subgraph is too large, the prediction performance
decreases compared to a smaller subgraph. This is likely because a larger subgraph may contain nodes
and edges irrelevant to the target link prediction task. Such noise and irrelevant information may
interfere with the model’s learning process, leading the model to capture incorrect patterns and thus
reducing prediction accuracy. This finding further proves that the AFD3S can extract key information
from sparse and small sampled subgraphs, significantly improving computational efficiency while
ensuring prediction performance. Additionally, it demonstrates the superiority and scalability of
AFD3S in handling large-scale graph data. The AFD3S can more effectively cope with large-scale
graph data by reducing computational and storage overhead, providing strong support for practical
applications.

Figure 8. AUC and AP results of AFD3S on Power under different sampled subgraph sizes.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

16 of 19

Figure 9. AUC and AP results of AFD3S on Cora under different sampled subgraph sizes.

5. Conclusions

In this paper, we propose a novel SubGraph Representation Learning (SGRL) framework called
Augmented Feature Diffusion on Sparsely Sampled Subgraph (AFD3S). AFD3S integrates neigh-
borhood features for central nodes through local feature augmentation and utilizes a random walk
strategy to sample sparse subgraphs, effectively reducing the storage and computational requirements
of the subgraphs. Additionally, by introducing subgraph-level diffusion operators that can be eas-
ily precomputed, AFD3S employs feature diffusion operations to replace the traditional expensive
message-passing schemes, simplifying the subgraph representation learning process and further ac-
celerating the training and inference processes. Finally, experimental results on multiple real-world
datasets show that compared to existing SGRLs, the proposed AFD3S significantly improves compu-
tational speed and exhibits higher link prediction performance. These results fully demonstrate the
excellent performance, computational efficiency, and scalability of the AFD3S for link prediction tasks.

Author Contributions: Conceptualization, methodology, formal analysis, investigation, data curation, visualiza-
tion, writing—original draft preparation, X.W. and H.C.; supervision, resources, project administration, funding
acquisition, writing—review and editing, X.W. and H.C.. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: There is no data associated with this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Nie, M.; Chen, D.; Wang, D. Reinforcement learning on graphs: A survey. IEEE Transactions on Emerging
Topics in Computational Intelligence 2023.

2. Adamic, L.A.; Adar, E. Friends and neighbors on the web. Social networks 2003, 25, 211–230.
3. Chen, L.; Xie, Y.; Zheng, Z.; Zheng, H.; Xie, J. Friend recommendation based on multi-social graph

convolutional network. IEEE Access 2020, 8, 43618–43629.
4. Huang, X.; Chen, D.; Ren, T.; Wang, D. A survey of community detection methods in multilayer networks.

Data Mining and Knowledge Discovery 2021, 35, 1–45.
5. Oyetunde, T.; Zhang, M.; Chen, Y.; Tang, Y.; Lo, C. BoostGAPFILL: improving the fidelity of metabolic

network reconstructions through integrated constraint and pattern-based methods. Bioinformatics 2017,
33, 608–611.

6. Zitnik, M.; Agrawal, M.; Leskovec, J. Modeling polypharmacy side effects with graph convolutional
networks. Bioinformatics 2018, 34, i457–i466.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

17 of 19

7. Zhang, W.; Xu, D.; others. Evolving model for the complex traffic and transportation network considering
self-growth situation. Discrete Dynamics in Nature and Society 2012, 2012.

8. Wang, L. Analysis and Evaluation of Kinect-based Action Recognition Algorithms. Master’s thesis, School
of the Computer Science and Software Engineering, The University of Western Australia, 2017.

9. Wang, L.; Huynh, D.Q.; Mansour, M.R. Loss switching fusion with similarity search for video classification.
2019 IEEE international conference on image processing (ICIP). IEEE, 2019, pp. 974–978.

10. Wang, L.; Huynh, D.Q.; Koniusz, P. A comparative review of recent kinect-based action recognition
algorithms. IEEE Transactions on Image Processing 2019, 29, 15–28.

11. Wang, L.; Koniusz, P.; Huynh, D.Q. Hallucinating idt descriptors and i3d optical flow features for action
recognition with cnns. Proceedings of the IEEE/CVF international conference on computer vision, 2019,
pp. 8698–8708.

12. Wang, L.; Koniusz, P. Self-supervising action recognition by statistical moment and subspace descriptors.
Proceedings of the 29th ACM international conference on multimedia, 2021, pp. 4324–4333.

13. Koniusz, P.; Wang, L.; Cherian, A. Tensor representations for action recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence 2021, 44, 648–665.

14. Qin, Z.; Liu, Y.; Ji, P.; Kim, D.; Wang, L.; Anwar, S.; Gedeon, T. Fusing higher-order features in graph neural
networks for skeleton-based action recognition. IEEE Transactions on Neural Networks and Learning Systems
2022, 35, 4783–4797.

15. Wang, L.; Koniusz, P. Uncertainty-dtw for time series and sequences. European Conference on Computer
Vision. Springer, 2022, pp. 176–195.

16. Wang, L.; Koniusz, P. 3mformer: Multi-order multi-mode transformer for skeletal action recognition.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5620–
5631.

17. Wang, L.; Koniusz, P. Temporal-viewpoint transportation plan for skeletal few-shot action recognition.
Proceedings of the Asian Conference on Computer Vision, 2022, pp. 4176–4193.

18. Wang, L.; Liu, J.; Koniusz, P. 3D Skeleton-based Few-shot Action Recognition with JEANIE is not so Naïve.
arXiv preprint arXiv:2112.12668 2021.

19. Wang, L.; Liu, J.; Zheng, L.; Gedeon, T.; Koniusz, P. Meet JEANIE: a Similarity Measure for 3D Skeleton
Sequences via Temporal-Viewpoint Alignment. International Journal of Computer Vision 2024, pp. 1–32.

20. Wang, L. Robust human action modelling. PhD thesis, The Australian National University (Australia),
2023.

21. Wang, L.; Koniusz, P. Flow dynamics correction for action recognition. ICASSP 2024-2024 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024, pp. 3795–3799.

22. Wang, L.; Sun, K.; Koniusz, P. High-order tensor pooling with attention for action recognition. ICASSP
2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024,
pp. 3885–3889.

23. Chen, W.; Xiao, H.; Zhang, E.; Hu, L.; Wang, L.; Liu, M.; Chen, C. SATO: Stable Text-to-Motion Framework.
ACM-MM 2024.

24. Fang, S.; Wang, L.; Zheng, C.; Tian, Y.; Chen, C. SignLLM: Sign Languages Production Large Language
Models. arXiv preprint arXiv:2405.10718 2024.

25. Chen, Q.; Wang, L.; Koniusz, P.; Gedeon, T. Motion meets Attention: Video Motion Prompts. arXiv preprint
arXiv:2407.03179 2024.

26. Wang, L.; Yuan, X.; Gedeon, T.; Zheng, L. Taylor videos for action recognition. ICML 2024.
27. Zhu, L.; Wang, L.; Raj, A.; Gedeon, T.; Chen, C. Advancing Video Anomaly Detection: A Concise Review

and a New Dataset. arXiv preprint arXiv:2402.04857 2024.
28. Lü, L.; Medo, M.; Yeung, C.H.; Zhang, Y.C.; Zhang, Z.K.; Zhou, T. Recommender systems. Physics reports

2012, 519, 1–49.
29. Newman, M.E. Clustering and preferential attachment in growing networks. Physical review E 2001,

64, 025102.
30. Katz, L. A new status index derived from sociometric analysis. Psychometrika 1953, 18, 39–43.
31. Chen, D.; Nie, M.; Xie, F.; Wang, D.; Chen, H. Link Prediction and Graph Structure Estimation for

Community Detection. Mathematics 2024, 12, 1269.
32. Hamilton, W.L. Graph representation learning; Morgan & Claypool Publishers, 2020.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

18 of 19

33. Nie, M.; Chen, D.; Wang, D. Graph embedding method based on biased walking for link prediction.
Mathematics 2022, 10, 3778.

34. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural
networks. IEEE transactions on neural networks and learning systems 2020, 32, 4–24.

35. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A
review of methods and applications. AI open 2020, 1, 57–81.

36. Dai, H.; Dai, B.; Song, L. Discriminative embeddings of latent variable models for structured data.
International conference on machine learning. PMLR, 2016, pp. 2702–2711.

37. Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R. Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493 2015.

38. Zhang, M.; Li, P.; Xia, Y.; Wang, K.; Jin, L. Labeling trick: A theory of using graph neural networks for
multi-node representation learning. Advances in Neural Information Processing Systems 2021, 34, 9061–9073.

39. Cai, L.; Li, J.; Wang, J.; Ji, S. Line graph neural networks for link prediction. IEEE Transactions on Pattern
Analysis and Machine Intelligence 2021, 44, 5103–5113.

40. Chen, H.; Chen, J.; Liu, D.; Zhang, S.; Hu, S.; Cheng, Y.; Wu, X. Link Prediction Based on the Sub-graphs
Learning with Fused Features. International Conference on Neural Information Processing. Springer, 2023,
pp. 253–264.

41. Li, W.; Gao, Y.; Li, A.; Zhang, X.; Gu, J.; Liu, J. Sparse Subgraph Prediction Based on Adaptive Attention.
Applied Sciences 2023, 13, 8166.

42. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model.
IEEE transactions on neural networks 2008, 20, 61–80.

43. Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. nature 1998, 393, 440–442.
44. Zhang, M.; Chen, Y. Link prediction based on graph neural networks. Advances in neural information

processing systems 2018, 31.
45. Louis, P.; Jacob, S.A.; Salehi-Abari, A. Sampling enclosing subgraphs for link prediction. Proceedings of

the 31st ACM International Conference on Information & Knowledge Management, 2022, pp. 4269–4273.
46. Hu, G. Weighted Sampling based Large-scale Enclosing Subgraphs Embedding for Link Prediction.

Authorea Preprints 2023.
47. Jaccard, P. Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines.

Bull Soc Vaudoise Sci Nat 1901, 37, 241–272.
48. Sohn, K.; Lee, H.; Yan, X. Learning structured output representation using deep conditional generative

models. Advances in neural information processing systems 2015, 28.
49. Hoffman, M.D.; Johnson, M.J. Elbo surgery: yet another way to carve up the variational evidence lower

bound. Workshop in Advances in Approximate Bayesian Inference, NIPS, 2016, Vol. 1.
50. Kullback, S.; Leibler, R.A. On information and sufficiency. The annals of mathematical statistics 1951,

22, 79–86.
51. Yuan, W.; Han, Y.; Guan, D.; Han, G.; Tian, Y.; Al-Dhelaan, A.; Al-Dhelaan, M. Weighted enclosing

subgraph-based link prediction for complex network. EURASIP Journal on Wireless Communications and
Networking 2022, 2022, 65.

52. Pan, L.; Shi, C.; Dokmanić, I. Neural link prediction with walk pooling. arXiv preprint arXiv:2110.04375
2021.

53. Granovetter, M. The strength of weak ties: A network theory revisited. Sociological theory 1983, pp. 201–233.
54. Gasteiger, J.; Weißenberger, S.; Günnemann, S. Diffusion improves graph learning. Advances in neural

information processing systems 2019, 32.
55. Newman, M.E. Finding community structure in networks using the eigenvectors of matrices. Physical

review E 2006, 74, 036104.
56. Von Mering, C.; Krause, R.; Snel, B.; Cornell, M.; Oliver, S.G.; Fields, S.; Bork, P. Comparative assessment

of large-scale data sets of protein–protein interactions. Nature 2002, 417, 399–403.
57. Ackland, R.; others. Mapping the US political blogosphere: Are conservative bloggers more prominent?

BlogTalk Downunder 2005 Conference, Sydney. BlogTalk Downunder 2005 Conference, Sydney, 2005.
58. Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective classification in network

data. AI magazine 2008, 29, 93–93.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

19 of 19

59. Pei, H.; Wei, B.; Chang, K.C.C.; Lei, Y.; Yang, B. Geom-gcn: Geometric graph convolutional networks.
arXiv preprint arXiv:2002.05287 2020.

60. Li, P.; Wang, Y.; Wang, H.; Leskovec, J. Distance encoding–design provably more powerful gnns for
structural representation learning. arXiv preprint arXiv:2009.00142 2020, p. 61.

61. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907 2016.

62. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826 2018.

63. Kipf, T.N.; Welling, M. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 2016.
64. Mavromatis, C.; Karypis, G. Graph infoclust: Maximizing coarse-grain mutual information in graphs.

Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 2021, pp. 541–553.
65. Frasca, F.; Rossi, E.; Eynard, D.; Chamberlain, B.; Bronstein, M.; Monti, F. Sign: Scalable inception graph

neural networks. arXiv preprint arXiv:2004.11198 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2024 doi:10.20944/preprints202407.1674.v1

https://doi.org/10.20944/preprints202407.1674.v1

	Introduction
	Preliminary
	Our Model
	Model Framework
	Local Feature Augmentation
	Subgraph Sampling and Graph Diffusion
	Feature Diffusion
	Training and Prediction

	Experiment
	Datasets and Baselines
	Experimental Setup
	Results and Analysis

	Conclusions
	References

