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Abstract: Idiopathic pulmonary fibrosis [IPF] is a chronic progressive disease characterised by the
accumulation of scar tissue in the lung parenchyma. It primarily occurs in middle-aged and elderly adults and
results in significant morbidity and mortality worldwide. The disease occurs due to repetitive lung epithelial
injury, subsequent fibroblast activation and myofibroblast differentiation, resulting in excessive extracellular
matrix deposition. This leads to scar formation and subsequent loss of lung function. Current treatment options
for patients with IPF include the two anti-fibrotic drugs, pirfenidone and nintedanib, which can slow disease
progression; however, there are currently no known cures for the disease. As such, novel methods and drug
targets are warranted. In this review, we provide an up-to-date account of the importance of specific cytokines
and the potential role of regulatory immune cells. We discuss their role in the pathogenesis of IPF and address
some of the key gaps in knowledge.
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1. Introduction

Idiopathic pulmonary fibrosis (IPF) is the most common of the interstitial lung diseases [1].
Progressive scarring or fibrosis of the lungs is a characteristic of IPF, however, its etiology currently
remains unknown [2]. In comparison to healthy lungs, IPF results in the expansion of bronchioles
and alveoli, along with fibrosis in parenchyma lung tissue, resulting in defective gas exchange [3], as
depicted in Figure 1.

Patients present with clinical symptoms including shortness of breath, an unrelenting dry cough,
loss of appetite and fatigue. Due to symptomatic similarities to multiple other lung diseases, IPF is
often challenging to diagnose and may be misdiagnosed [4]. Morbidity and mortality rates are
extremely high, patients face a poor prognosis, with the average survival following diagnosis
reported to be 2.5 - 5 years [5]. IPF incidence and prevalence have been steadily increasing since 2000
and are particularly high in Northern Ireland [6], occurrence increases with age, with those aged 65
or over being at the greatest risk, and the disease is more common in males than females [7]. The
histopathological pattern defining IPF is defined as usual interstitial pneumonia (UIP) [8]. Several
antifibrotic - drugs exist to slow disease progression, with pirfenidone and nintedanib currently
approved for use in IPF [9]. Whilst these therapies slow progression, there is no cure for IPF.
Currently, the only possible mechanism to increase life expectancy and alleviate the symptomatic
burden is unilateral or bilateral lung transplantation. Very few patients are, however, eligible for lung
transplantation, but the 5 years post-operative survival is reported at only 50% [10]. Hence, IPF poses
a serious and increasing threat to human health and research aimed at uncovering novel treatments
is crucial if we are to improve the devastating prognosis and decrease mortality among patients.
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Figure 1. Alveolar Differences between healthy and IPF Lungs. A) Healthy lungs with functioning
alveoli, bronchioles and capillary network allowing for normal gas exchange. B) Damaged lungs from
a patient with IPF, showing damaged and expanded bronchioles and alveoli, fibrosis formation
between parenchyma lung tissue and a consequent decrease in gas exchange. Adapted from
Glassberg (2019) [3], using Biorender [www.biorender.com].

2. Pathogenesis

Although the exact cause of IPF is unknown, it is predicted that repeated micro-injuries to ageing
alveoli lead to aberrant and unregulated repair mechanisms in the lungs [11]. These alveolar micro-
injuries can be due to environmental factors such as cigarette smoke and repetitive dust inhalation,
co-morbidities such as viral infections and gastroesophageal reflux disease, as well as genetic
susceptibility [12]. The most prevalent known genetic component contributing to the development of
IPF, is a gain-of-function mutation in the promoter region of the MUCS5B gene, which is involved in
the production of mucus in the lungs [13]. The two main risk factors for IPF are age and sex. Ageing
alveoli tend to lose their shape, becoming dilated, and a decrease in gas exchange occurs; this in turn,
can enhance fibrosis formation [14]. IPF prevails more in males than in females, with male patients
also demonstrating higher mortality rates [15].

The body’s immune system mediates a tightly regulated lung tissue repair in healthy
individuals. Clotting and inflammation are initiated in response to alveolar tissue damage by injury
or infection. The infiltration of cells including erythrocytes and platelets, leads to clotting, followed
by inflammation initiation by neutrophils, monocytes, dendritic cells and macrophages [16].
Inflammation is typically resolved by the recruitment of fibrocytes and the production of anti-
inflammatory cytokines. Upon migration into the tissue, fibrocytes differentiate into fibroblasts,
which then differentiate into myofibroblasts. Myofibroblasts are extracellular matrix (ECM)-
producing cells, and subsequent ECM deposition leads to scar formation and tissue repair [16], as
illustrated in Figure 2. The repair phase is concluded upon ECM degradation by fibroblasts and
macrophages, completing the wound-healing process and restoring homeostasis in the lungs [17].
Regulatory T cells (Tregs) have demonstrated an essential role in healing, contributing to the repair
phase by enhancing the proliferation of alveolar epithelial cells and impeding the pro-inflammatory
activity of interferon-y (IFN-y) [18]. When this repair process is dysregulated, lung structure and
function resolution does not occur, and fibrosis can form. Repeated micro-injuries can lead to the
over-activation of fibroblasts and hence myofibroblasts. A consequent increase in ECM production
and collagen deposition in the lungs leads to permanent scar tissue formation, known as fibrosis, as
the accumulated ECM and collagen cannot be degraded quickly enough [19].
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Figure 2. Alveolar immune mechanisms leading to lung fibrosis. (1) Lung injury or infection leads to
damaged alveolar epithelial cells (AECs), in turn resulting in initiation of clotting by erythrocytes and
platelets. (2) Following injury, inflammatory responses are triggered by pro-inflammatory cytokines
and other stimuli. Neutrophils and monocytes are recruited from the bloodstream to the site of
inflammation, and activation of macrophages and dendritic cells occurs to fight infection (3).
Fibrocytes migrate from the bloodstream and differentiate into fibroblasts in response to
inflammation. Fibroblasts become activated and differentiate into the extracellular matrix (ECM)-
producing cells, known as myofibroblasts (8). Myofibroblasts deposit ECM and collagen, forming a
scar. In healthy lung tissue, ECM is degraded following repair, and homoeostasis is restored.
Repeated micro-injuries and subsequent dysregulation, however, of these immune responses has the
potential to lead to accumulation of ECM and collagen deposition, resulting in alveolar damage and
fibrosis. Image adapted from Florez-Sampedro et al, (2017) [16], using Biorender
[www.biorender.com].

3. Cytokines and IPF

One area that warrants consideration for developing novel IPF treatments is the influence of
cytokines on fibrosis formation. TGEf3 is a well-known pro-fibrotic cytokine, shown to be significantly
increased in the plasma of IPF patients in comparison to that of healthy controls [20]. Tregs produce
TGEp as well as the cytokines IL-10 and IL-35 [21]. The production of TGE is believed to account for
much of the pro-fibrotic properties of Tregs [22]. In a study by Bergeron et al., an increase in IL-10 in
IPF lungs compared with controls was highlighted, which makes IL-10 another cytokine of interest
and a potential target for IPF [23]. Multiple other interleukins have been described as profibrotic,
including IL-1§3, IL-4, IL-6, IL-13 and IL-17 [24]. Clinical trials targeting IL-4 and IL-13 did not yield
promising results, and hence, we require further understanding of the complex interaction of the
cytokine milieu which drives the fibrotic process [25]. The chemokine CCL2, known as monocyte
chemoattractant protein-1 (MCP-1), has been found to be increased in IPF patient bronchoalveolar
lavage (BAL) fluid samples compared to healthy controls and is thought to increase fibrosis by
enhancing fibrocyte migration into the lung [26]. The pro-inflammatory chemokine CXCL1, has also
been significantly increased in IPF patients with acute exacerbation [27]. CXCL1 is a chemokine
known to attract neutrophils during inflammation and is also thought to play a part in enhancing
fibrosis formation in the lungs [28]. On the contrary, the pro-inflammatory cytokine IFN-y shows
anti-fibrotic properties. Cytokines exhibiting anti-fibrotic properties have the potential to be
enhanced as novel IPF treatments. IFN-y has been tested in combination with pirfenidone, and shown
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to reduce fibrosis, opening a new avenue of potential cytokine treatments [29]. Therefore, further
research into the effect of cytokines, both individually and in combination, on fibrotic progression
could be beneficial in identifying promising therapeutic agents that either halt or reverse the
pathogensis of IPF. Table 1 summarises some of the key cytokines of importance in IPF.

Table 1. Key cytokines and their involvement in IPF.

Supporting
Cytokine Main Functions Relevance to Study
Literature
Possesses pro-fibrotic properties
Pro-inflammatory cytokine
Previously significantly increased in
Involved in the transition from .
IL-6 IPF patients [24,30,31]
acute to chronic inflammatory
Suggested to drive fibrosis in
responses
unresolved inflammation
Pro-inflammatory chemokine
i i Previously significantly increased in
CXCIL1 Involved in chemoattraction of y sign y (27,28]
neutrophils to the site of IPF patients with acute exacerbation
inflammation
Previously significantly increased in
Pro-inflammatory chemokine
IPF patients
MCP-1 Role in recruitment and activation [26,32,33]
Monocytes suggested as a possible
of monocytes
marker of IPF severity
Both pro- and anti-inflammatory Pro-fibrotic cytokine and key
properties mediator in fibrotic progression
TGEF-b o ) ) [20-22]
Essential in wound healing and Significantly increased in IPF
tissue repair Produced and secreted by Tregs
Typically anti-fibrotic
Pro-inflammatory cytokine
Potential to be combined with anti-
IEN-+ Involved in the activation and fibrotic drug pirfenidone [29,34,35]
regulation of numerous immune
Suggested pro-fibrotic nature in
cells
certain contexts
Both pro- and anti-fibrotic effects
Anti-inflammatory cytokine
Previously significantly increased in
IL-10 Maintains homeostasis by . [21,23,26]
IPF patients
suppressing immune activity
Produced and secreted by Tregs
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5
Both pro- and anti-inflammatory Has demonstrated pro-fibrotic
IL-17 properties properties
[24,36-38]
(IL-17A) Has implications in autoimmunity Previously significantly increased in
and chronic inflammation IPF patients

4. Regulatory Cells

Regulatory immune cells act to maintain homeostasis, controlling the immune response to injury
and modulating the function and cytokine production of the immune cells involved. However, the
exact function of regulatory immune cells in the context of IPF remains ambiguous, highlighting a
current research gap in the literature [39]. Myeloid-derived suppressor cells (MDSCs) comprise a
heterogeneous population of cells originating from the myeloid lineage; they significantly increase in
number during inflammation and are involved in suppressing T-cell responses, preventing
overactivation [40]. A protective, anti-fibrotic role for MDSCs has been suggested in IPF due to their
anti-inflammatory functions [39]. Opposing roles have also, however, been suggested, with a
reported MDSC increase in the peripheral blood of IPF patients, and they have been proposed to
contribute to the decreased lung function during the course of IPF disease [41]. There are
contradictory reports on the role of regulatory immune cell populations in IPF been reported in the
literature, such as the role of macrophages and regulatory B cells (Bregs). Whilst macrophages are
often considered as pro-fibrotic due to their production of transforming growth factor-3 (TGF-B) [42],
anti-inflammatory and anti-fibrotic properties have also been identified. They have been reported to
suppress fibroblast differentiation into myofibroblasts [43] via the production of prostaglandin E2
[44,45]. Similarly, Breg’s produce TGF-{3 driving fibrosis formation [39]; but beyond this, it has been
reported the number of Bregs was reduced in IPF patients compared with healthy controls,
suggesting that they are not key drivers of IPF [46]. Therefore, it is evident that the role of regulatory
immune cells in IPF remains undefined and further research is essential to decipher what is
happening at a cellular level. The regulatory immune cell group of interest in IPF, are the regulatory
T cells (Tregs). Tregs act to maintain homeostasis, suppressing undesirable immune responses and
preventing autoimmunity by ensuring tolerance to self-antigens [47]. Tregs are characterised by the
transcription factor FoxP3 and develop either in the thymus (known as natural or nTregs) or in the
periphery (known as induced or iTregs) [48]. Tissue-resident Tregs have been described as both
“Sentinels” and “Saboteurs” as they have made differing and contradictory contributions to various
disease states [49]. The exact function of Tregs in IPF remains elusive, as multiple different behaviours
have been reported in the literature. Artsen et al. showed that Treg concentration was inversely
correlated with fibrosis formation. This alluded to the protective role of Tregs against fibrosis, as
Tregs were able to suppress immune responses, preventing fibrosis development [50]. On the
contrary, an increase in the number of activated Tregs was shown to drive fibrosis due to the secretion
of the pro-fibrotic cytokines TGF- 3 and platelet-derived growth factor (PDGF)-B [51]. The reason for
these contradictory functions is unknown. However, it has been suggested that factors including the
specific subtype studied, the phase of fibrotic formation studied, the various antigens present on
Tregs and the multi-functional nature of secreted factors, amongst other reasons, may have
contributed to the variation between reported outcomes [52].

5. Conclusion

IPF is a devastating lung disease with high morbidity, causing a large economic and healthcare
burden worldwide. Both genetic and epigenetic factors contribute to IPF pathogenesis; however,
while our understanding of the disease has improved in recent years, the precise cause remains
unknown. Unfortunately, limited treatment options exist, and there is currently no known cure for
the disease. The antifibrotic drugs pirfenidone and nintedanib can slow functional decline in IPF, but
adverse reactions limit their usefulness. Regulatory cells control and mediate immune responses.
Therefore, the modulation of their activity to drive repair and limit fibrosis is an enticing prospect.
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However, we need a more thorough understanding of the pathogenesis of IPF, including the
interplay between inflammation, immune mechanisms and dysregulated repair mechanisms, and
how regulatory cells mediate this. This will facilitate the development of novel, more effective
treatment options for patients suffering from IPF.
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