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Abstract: Here, we present a general framework for computing the infrared anharmonic vibrational spectra of

polyatomic molecules using the Born-Oppenheimer molecular dynamics (BOMD) with the software PyRAMD. To

account for the nuclear quantum effects, we suggest using the simplified Wigner sampling (SWS) approach [Phys.
Chem. Chem. Phys., 2023, 25, 18406-18423] simultaneously coupled with the Andersen and Berendsen thermostats.

We propose a new criterion for selecting the parameter of the SWS based on the molecules’ harmonic vibrational

frequencies and usage of the large-time-step blue shift correction, allowing for a decrease in computational

expenses. For the Fourier transform of the dipole moment autocorrelation function, we propose to use the

regularized least-squares analysis, which allows us to obtain higher frequency resolution than the direct application

of fast Fourier transform. Finally, we suggest the usage of the pre-parameterized scaling factors for the IR spectra

from BOMD, also providing the scaling factors for the spectra at the BLYP-D3(BJ)/6-31G, PBE-D3(BJ)/6-31G, and

PBEh-3c levels of theory.

Keywords: molecular dynamics; infrared spectroscopy; methodology

1. Introduction

Molecular dynamics (MD) is the method of describing nuclear motions using classical mechanics
[1–4]. If the potential energy surface (PES) for the simulation is taken from the quantum-chemical
calculations, such simulations are called ab initio MD (AIMD) [4]. AIMD is a powerful tool for
simulating various physical observables of medium to large systems (from tens to a few hundreds
of atoms) with non-trivial dynamical behavior [3–6]. Examples of modeled observables can be radial
distribution functions in diffraction experiments [7–10], dynamical properties of solutions [6,11],
and various types of spectra [5,12,13]. Calculating of the spectral response in the case of electronic
excitations, such as ultraviolet or X-ray spectroscopy, usually relies on sampling the conformational
space of molecular systems [12,14]. In contrast, in the case of the vibrational spectra, i.e., infrared (IR)
[4,5,10], Raman [13], vibrational circular dichroism [15], etc., the fluctuation-dissipation theorem (FDT)
[16,17] has to be applied.

The bare AIMD simulations, by definition, model the motion of classical particles, thus producing
a classical microcanonical (NVE) ensemble [18]. To emulate the canonical ensemble (NVT or NPT),
an artificial external system (thermostat and/or barostat) is added to the MD simulations [18]. As the
real nuclei are quantum objects, the absent nuclear quantum effects (NQEs) can also be accounted for
in the MD by various approaches [19], such as path-integral MD [20,21], quantum thermostats [22],
Wigner sampling [14,23,24], etc. [19]

In this work, we provide a protocol for simulating the IR spectra of molecules with BOMoND
software. This MD interface software can take energies and gradients from the quantum-chemical
package ORCA 5 [25] or the semi-empirical package xTB [26]. The BOMoND is part of the PyRAMD
packet for AIMD-based simulations, which is also capable of metadynamics [27] and MD-based
mass-spectra calculations [28]. We will demonstrate examples of applications of BOMoND software,
illustrating the various aspects of the MD procedure and subsequent analysis.
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2. Methods

The results presented here were obtained using the BOMoND software from the PyRAMD
package [29]. This software can be obtained from the corresponding repository (Ref. [29]). The density
functional theory (DFT) calculations[30] at the BLYP-D3(BJ)/6-31G,[31–34] PBE-D3(BJ)/6-31G,[33–35]
and PBEh-3c[36] and semi-empirical calculations at the GFN2-xTB levels of theory [37], including
structure optimization and harmonic frequencies computation, were done using ORCA 5 [25] and xTB
software [26], respectively. The BOMoND used the same program suits to get the gradients for the
AIMD simulations. The dipole moment autocorrelation functions calculations and the subsequent
Fourier transform (FT) [38] and regularized least-squares spectral analysis (rLSSA) [39] were done
using the script from the PyRAMD package.

3. Simulation Protocol for the Vibrational Spectra Using the Molecular Dynamics

3.1. General Idea of Calculation of the IR Spectra from MD Trajectories

The MD simulation produces an MD trajectory, Nsteps simulations points, which span the dynam-
ics in time t from t = 0 to Nsteps · ∆t, where ∆t is the time step of the simulation. Therefore, for various
computed physical observables (O, e.g., coordinates, velocities, energy, dipole moment, polarizability,
etc.), we can tell their values (O(n · ∆t) = On) at a n-th given point of simulation (0 ≤ n < Nsteps),
corresponding to the time t = n · ∆t [18].

As said in the introduction, the vibrational spectra from MD are computed with the help of the
FDT [16,17]. We first need to compute the autocorrelation function (⟨O(0) · O(t)⟩) of the variable O
that is responsible for the response to the external excitation. For the IR spectra, observable is the
total dipole moment of the molecule; for the Raman spectra, it is the molecular polarizability tensor;
for the power spectrum, these are simply the mass-weighted coordinates, etc. [13]. For a real-valued
observable, the autocorrelation function is defined as [4,5,13,40]

⟨O(0) · O(t)⟩ =
∫ ∞

0
O(t′)O(t′ + t)dt′ , (1)

and it shows the repeatable periods in the time evolution of the given observable. The numerical
calculation of the autocorrelation function for finite time series is available in various packages. For
instance, in Python, one could use either the “correlate” method from the NumPy module [41] or the
“signal.correlate” method from the SciPy module [42]. By performing the FT of the ⟨O(0) · O(t)⟩
as [4,5,13,40]

S(ν) = ν2
∫ ∞

0
⟨O(0) · O(t)⟩ · exp(−i2πν)dt (2)

we can transfer the response characteristic from the time domain (t) to the frequency domain (ν), thus
obtaining the spectrum of a given process. For numerical reasons, a more advantageous computational
strategy is to use the velocity of the observable (Ȯ) to obtain the spectrum [5]. In this case, the
expression to be used is[5]

S(ν) =
∫ ∞

0
⟨Ȯ(0) · Ȯ(t)⟩ · exp(−i2πν)dt . (3)

The resulting spectra from Equations 2 or 3 can be multiplied with the correction factors that account
for the statistical properties at the different spectral ranges [5,43].

The FT procedure on the MD results (Equation 2 or 3) is usually done using a fast-FT (FFT)
approach [38,44], which provides certain limitations on the frequency discretization of the resulting
spectra. The frequency grid increment (∆ν) is determined by the total trajectory duration τtot through
the Nyquist–Shannon–Kotelnikov (NSK) theorem [45–47] as ∆ν = 1/τtot, while the time step ∆t
determines the upper boundary of the spectrum as νmax = 1/∆t. To increase the formal resolution,
extending the trajectory for a given observable by an arbitrary number of steps with zeros is possible,
which is called zero-padding [48]. However, such direct extension will cause artifacts in the resulting
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spectrum; thus, the zero-padding should be combined with either frequency filters or smoothing
techniques [39,48].

An alternative procedure to the FFT could be the regularized least-squares spectral analysis
(rLSSA). The idea is to transform the time-dependent dataset

{(t1, y1), (t2, y2), . . . , (tN , yN)} (4)

composed of N time values tk (1 ≤ k ≤ N) with corresponding observable values yk into a frequency
domain with M points

{(ν1, f1), (ν2, f2), . . . , (νM, fM)} , (5)

where νl (1 ≤ l ≤ M) is the frequency and the fl is the corresponding spectral amplitude value.
The rLSSA procedure is derived from the regularized weighted least-squares analysis (rwLSSA)
procedure by choosing a unit weights matrix (see Refs. [39,49]). As a result, the rLSSA is just a matrix
transformation[39,49]

f =
∣∣∣ΣαS†y

∣∣∣ , (6)

where y = (y1, . . . , yN) is the N-dimensional vector of the time-domain values, f = ( f1, . . . , fM) is the
M-dimensional vector of the frequency-domain spectrum amplitude values, S is the N × M matrix of
elements Skl = exp(−i2πνltk) with i being imaginary unit, and S† is the conjugate transpose of matrix
S . The matrix Σα of size M × M is defined as Σα = αE + S†S with E being a unit matrix of the size
M × M and the regularization parameter α provided by the regularization criterion[39,49]

α = tr(S†S) ·
(

M +
tr(S†S) · (y†y)

M

)−1

. (7)

To smooth the data even further, the parameter α can be increased compared to that from Equation 7.
To illustrate that, we can take the vibrational spectrum of the carbon dioxide (CO2) shown in

Figure 1. A single NVT-MD trajectory at the GFN2-xTB level of theory was obtained for a temperature
of 300 K using the Berendsen thermostat and Maxwell-Boltzmann sampling of initial conditions. The
trajectory was 1 ps in length with a time step of 0.5 fs, and half of the trajectory was taken as the
equilibration phase. The NSK theorem provides the frequency resolution from the dataset of total
length τtot = 0.5 ps to be ∆ν = (c · τtot)−1 = 66.8 cm−1, where c = 0.02998 cm/ps is the speed of
light, therefore upon applying the FFT procedure without zero-padding with frequency filtering we
obtain quite coarse spectra. By applying the rLSSA approach to the same dataset with the requested
frequency increment of ∆ν = 1 cm−1, from the Equation 7 we get α = 1000 and the more detailed
spectrum (see Figure 1). Note that the rLSSA procedure cannot provide new spectroscopic details; it
just provides a smoother representation of the same dataset.
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Figure 1. Comparison of the FFT and rLSSA approaches for obtaining spectra from short trajectories.
The spectra represent the vibrational spectra of the carbon dioxide obtained from the MD simulations
at 300 K with the Berendsen thermostat. The details of MD simulations are given in the text.

3.2. Cheapening Simulations by Using Large Integration Steps with Frequency Correction

The usual recommendation for computing the molecules’ vibrational spectra is to use as small
time step ∆t as possible. The reason for that is the artificial blue shift from the numerical integration
error, which is especially prominent for the high-frequency vibrational bands [50,51]. However, it is
possible to correct this behavior by using an analytical formula that compensates for such a shift. In
the case of the Verlet algorithm and its equivalent methods (velocity Verlet and leapfrog) [18], one
needs to replace the observed frequencies from the FT (ν) with the corrected ones (νcorr) using the
equation [40,52]

νcorr =

√
2 · (1 − cos(2π · ∆t · ν))

2π · ∆t
= ν · sinc(π · ∆t · ν) , (8)

where sinc(x) = sin(x)/x. This correction is applicable if the NSK-like limit ∆t ≤ (πνmax)−1 is
satisfied, where νmax is the maximal vibrational frequency in the system. In the case of the higher-order
methods, similar correction schemes can be derived; see an example in the Appendix A.

To illustrate this artificial blue shift of vibrational bands and the effectiveness of the correction in
Equation 8, we ran four sets of ten NVE-MD trajectories of methane (CH4) at GFN2-xTB level of theory
with initial conditions sampled from the Maxwell-Boltzmann distribution at 300 K, each trajectory
was 0.5 ps in length. The sets were differing by the time step ∆t, namely with ∆t = 0.1, 0.5, 1.0, 1.5 fs.
The mean vibrational spectra for each set of trajectories and their frequency-corrected counterparts
are shown in Figure 2. As one can see, the larger time steps lead to a noticeable shift of the C–H
stretching band. In the reference spectrum with ∆t = 0.1 fs such peak is located at approximately
3015 cm−1, whilst at simulations with ∆t = 1.5 fs this peak appears at approximately 3150 cm−1.
However, rescaling the frequency axis using Equation 8 restores the positions of the vibrational bands
to their correct origin.
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Figure 2. Effect of the time step (∆t) choice on the vibrational spectra of the methane (CH4) obtained
from the NVE-MD simulations and the action of the frequency correction from the Equation 8. Details
of the simulations are given in the text.

3.3. Simplified Wigner Sampling for Generating Initial Conditions

To include the NQEs in the MD simulations, we can use the approach of simplified Wigner sam-
pling (SWS) introduced in Ref. [14]. The sampling relies on generating simultaneously a displacement
along the coordinate and momentum axis in a given direction. The displacements are generated using
a Gaussian distribution with standard deviations[14]

σ2
x =

h̄τSWS

2m
(9)

for coordinate and
σ2

T = mkBTeff (10)
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for momentum. Here, h̄ = 1.05 × 10−34 J·s is the Planck constant, m is the mass of the nucleus,
kB = 1.38 × 10−23 J/K is the Boltzmann constant, τSWS is a free parameter with the dimension of time,
and Teff is the effective temperature defined as

Teff(T, τSWS) = T +
h̄

2kBτSWS
, (11)

where T ≥ 0 is the temperature of the system.
The main problem of the SWS is the choice of the free parameter τSWS. In work [14], it was

proposed to perform several MD simulations with different values of τSWS and then take the parameter
value that minimizes the total energy or the mean temperature of the simulation. In some sense, this
approach relates to the variational principle, adjusting the underlying Wigner distribution to fit the
PES as well as possible. However, such an approach is quite slow and inefficient. Thus, a cheaper
criterion for the choice of τSWS is required.

To provide an alternative criterion, we may use the harmonic approximation as the guiding
principle, as single harmonic frequency calculation with analytical Hessian generally takes less compu-
tational time than running multiple MD trajectories. The total kinetic energy of the system is defined
as [18]

KE =
Nat

∑
k=1

p2
k

2mk
, (12)

where pk is the momentum vector of k-th atom, mk is the mass of the k-th atom, and Nat is the
total number of atoms in the system. In the case of the distribution sampled at T = 0 with SWS,
the mean value of p2

k is given as ⟨p2
k⟩ = 3σ2

0 = 3h̄mk/(2τ) (see Equation 10). This gives the total
mean kinetic energy of ⟨KE⟩ = 3Nath̄mk/(4τ), while for a given degree of freedom, the mean kinetic
energy is ⟨KE1⟩ = ⟨KE⟩/(3Nat) = h̄/(4τ). In the harmonic approximation, for a given l-th mode
(l = 1, 2, . . . , Nf, where Nf is the number of vibrational degrees of freedom) with vibrational frequency
νl , the kinetic energy is KEl = hνl/4 [53], and the mean kinetic energy over all of vibrational modes is

KEh =
Nf

∑
l=1

hνl
4

=
Nfh⟨ν⟩

4
, (13)

where ⟨ν⟩ = (∑Nf
l=1 νl)/Nf is the mean vibrational frequency of the system. By taking ⟨KE1⟩ = KEh/Nf,

we arrive at the following expression

τSWS,h =
1

2π⟨ν⟩ =

(
2π

⟨ν⟩︷ ︸︸ ︷
1
Nf

Nf

∑
l=1

νl

)−1

. (14)

Equation 14 provides a criterion for the choice of τ from the harmonic vibrational frequencies
of the system. To show its applicability, we ran a set of NVE-MD calculations for molecules XH
(X = F, Cl, Br, I), XH2 (X = O, S, Se, Te), XH3 (X = N, P, As, Sb), and XH4 (X = C, Si, Ge, Sn) at the GFN2-
xTB level of theory. The MD trajectories were obtained with 1 fs time step for 0.5 ps in total. The τSWS
for SWS initial conditions was scanned from 1 to 10 fs with 1 fs step, and the MD simulation for a
given τSWS contained ten individual trajectories. The optimal τSWS was chosen as the one minimizing
the mean total temperature of the MD simulation. The results are given in Figure 3. As one can see,
both criteria correlate with each other (Pearson correlation coefficient is 0.71). Therefore, we can apply
the Equation 3 for other molecular systems.
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Figure 3. Comparison of the optimal τSWS parameters for the SWS sampling obtained from the scan of
τSWS (τscan) and from the Equation 14 (τharmonic).

3.4. Thermostats Incorporating Simplified Wigner Sampling

SWS approach, despite being quite crude, has its merits. Unlike the standard Wigner sampling,
which can be used only at the beginning of the MD simulation, as the displacements are connected to
the equilibrium reference structure, the SWS allows a re-sampling of the displacements during the
simulation. This property makes the SWS compatible with canonical ensemble simulations, particularly
with Andersen [54] and Berendsen [55] thermostats. Here, we will describe how to do it for both of
these thermostats.

The canonical Andersen thermostat works by reassigning the velocity (or of one of the three
components) of a randomly chosen atom according to the Maxwell-Boltzmann distributions at random
points of MD simulation. The probability of reassignment is given as pA = ∆t/τA, where τA is the
time of the reassignment. At each point of time, a random number 0 ≤ ptrial < 1 is generated from the
uniform distribution, and if condition ptrial < pA is fulfilled, then the velocity reassignment procedure
is initiated. Typically, τA should be greater than the characteristic periods of motions in the system, so
the Andersen thermostat does not significantly disrupt the dynamics of the molecule. To combine the
Andersen thermostat with the SWS, one has to replace the Maxwell-Boltzmann distribution resampling
stage with the SWS routine, sampling both the momentum along given degrees of freedom and the
displacement of the coordinate.

The Berendsen thermostat relies on the soft resampling of the velocities at each step of the MD
simulation by multiplying them with a scale factor [18,55]

s = 1 +
∆t
τB

·
(

Td
T(t)

− 1
)

, (15)

where τB is the relaxation time, a free parameter of the Berendsen thermostat, Td is the desired temper-
ature of the MD simulation and T(t) is the instant temperature of the nuclei in the MD simulations,
defined as T(t) = 2 · KE(t)/Nf with KE being the total kinetic energy of the molecule at time t, and Nf
is the number of degrees of freedom (i.e., Nf = 3 × Nat − Nconstr, where Nat is the number of atoms
in the system and Nconstr is number of constraints). By replacing the Td with the effective desired
temperature according to Equation 11, we also make the Berendsen thermostat compatible with the
SWS sampling.
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3.5. Scaling of the vibrational spectra from the molecular dynamics

Scaling the harmonic vibrational frequencies and zero-point vibrational energies is a simple yet
powerful tool for increasing the accuracy of IR spectra and thermodynamic properties calculations
[56]. In the case of vibrational frequencies, the multiplication by a precomputed scale factor for a given
method accounts for the systematic errors due to the quantum-chemical approximation quality and
the absence of the anharmonic effects [56,57]. Therefore, it seems like a reasonable suggestion to also
allow for scaling of the anharmonic spectra from the MD simulations.

Here, we propose the procedure for obtaining the scale factors (γ) for IR spectra from the MD and
also provide a set of precomputed values for three quantum-chemical approximations: BLYP-D3(BJ)/6-
31G, PBE-D3(BJ)/6-31G, and PBEh-3c. For this, we have taken six molecules: water (H2O), ammonia
(NH3), methane (CH4), ethane (C2H6), methylamine (CH3NH2), and methanol (CH3OH). For each of
these molecules at each of the quantum-chemical methods, three trajectories were computed using the
combination of Andersen and Berendsen thermostats with τA = 100 fs and τB = 50 fs and the SWS
sampling with the τSWS taken according to criterion from Equation 14. Each trajectory was at T = 0 K
with the time step of ∆t = 1 fs and the total duration of 1 ps. The spectra were computed using the
FFT procedure without ignoring the equilibration phase and with the application of the frequency
correction from Equation 8. The experimental gas-phase IR spectra of the same molecular species were
taken from the NIST Chemistry WebBook [58].

It is not straightforward to compare theoretical spectra with a given frequency increment with
their experimental counterparts since they have different frequency increments. Moreover, when the
frequency axis is scaled for the spectra from the MD, the frequency increment will also change. There-
fore, the following procedure was applied to determine the scale factor of the MD spectra for a given
molecule. Let us assume that the MD spectrum is given as a set of M points {(ν(MD)

1 , I(MD)
1 ), (ν(MD)

2 ,

I(MD)
2 ), . . . (ν(MD)

M , I(MD)
M )} and the experimental spectrum is a set of N points {(ν(exp)

1 , I(exp)
1 ), (ν(exp)

2 ,

I(exp)
2 ), . . . (ν(exp)

N , I(exp)
N )}, where ν

(X)
i and I(X)

i are the i-th frequency and intensity obtained with
method “X”. To remove the rotational substructure of the bands for small molecules, such as water or
methane, the experimental data were also smoothed by a convolution with the Gaussian function. The
frequency scale factor γ is obtained by maximizing the following expression

C(γ) = (I(MD))†D(γ)I(exp) → max , (16)

where I(MD) and I(exp) are the vectors composed of intensity values of N and M dimensions each, and
the D(γ) is the M × N matrix composed of elements

Dij(γ) = exp

−

(
γ · ν

(MD)
i − ν

(exp)
j

)2

2σ2

 (17)

with 1 ≤ i ≤ M, 1 ≤ j ≤ N, and σ = min(γ · ∆ν(MD), ∆ν(exp)) with ∆ν being the frequency increments
in the respective datasets. The scale factor γ was searched for in the interval 0.8 ≤ γ ≤ 1.2.

Figure 4 shows an example of the result of the procedure described above. In this Figure, the
unscaled and scaled spectra of methane obtained from MD simulations at the PBEh-3c level of theory
are shown, as well as the corresponding raw and smoothed experimental data from the NIST Chemistry
Webbook. As one can see, the scaling indeed improves the positions of the vibrational bands in the
spectra. The scale factors obtained from all the training set molecules were averaged to produce the
estimated scale factor for a given level of theory. The results are given in Table 1. In the cases of the
BLYP and PBE-based spectra, the ammonia had to be removed from the dataset as the most intense
low-frequency vibrational band, corresponding to the valence band vibrations, was too far off from
the experimental position.
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Table 1. Tabulated scale factors γ for the MD-based vibrational spectra at various levels of theory.

Method Scale factor γ

BLYP-D3(BJ)/6-31G 1.046 ± 0.040
PBE-D3(BJ)/6-31G 1.041 ± 0.046

PBEh-3c 0.968 ± 0.006
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Figure 4. Vibrational spectrum of methane (CH4), computed at the PBEh-3c level of theory, its scaled
version with respect to the smoothed experimental data, according to Equation 16, and the raw and
smoothed experimental data from the NIST Chemistry Webbook.

4. Discussion

In the previous section (Section 3), the protocol for the IR spectra simulations from the AIMD
using the PyRAMD was introduced. In an orderly fashion, it looks as follows.

• First, we need to optimize the structure of the molecule at the given level of theory and compute
harmonic vibrational frequencies. Then, using Equation 14, we can calculate the τSWS parameter
to define the SWS sampling routine.

• Then, we can set the Berendsen and Andersen thermostats for simultaneous usage in the NVT-
MD simulation. The combination of the two acts as a friction and random force in more sophisti-
cated thermostats, such as the Langevin-based models [59] (including the color-noise generalized
Langevin equation [60]) and the Bussi-Donadio-Parrinello thermostat [61]. This requires setting
the two free parameters: relaxation time τB for the Berendsen thermostat and the resampling
time τA for the Andersen thermostat. The SWS compatibility is assured by using the effective
temperature (Equation 11) for the Berendsen thermostat. In the case of the Andersen thermostat,
the Maxwell-Bolztmann resampling is replaced with the SWS procedure.

• Then, a single or a few MD trajectories are collected with reasonably large time steps. The choice
criterion is dictated by the integration method and corresponding frequency correction (Equation
8, see also Appendix A). In the cases of Verlet, velocity Verlet, and leapfrog integration schemes,
the limit is given as ∆t ≤ (πνmax)−1, where νmax is the maximal vibrational frequency of the
system. If we take the H-F stretching frequency in hydrofluoric acid (νHF = 4138 cm−1 [62]), we
get the maximal allowed time step of ∆t = 2.6 fs. Therefore, the time steps of around 1 fs are
possible for most chemical systems. The total dipole moment of the molecular system is stored at
every time step of the MD simulation.

• After the collection of the trajectory, the vibrational spectrum is computed as the FT of the dipole
moment (Equation 2) or its velocity (Equation 3) autocorrelation function (Equation 1). The initial
part of the trajectory is usually disregarded as the equilibration phase. The frequency resolution
of the FT is given as ∆ν = 1/τtot, where τtot is the total duration of the trajectory (without the
equilibration phase). An alternative way to transfer the autocorrelation function from the time
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domain into the frequency domain with arbitrary frequency increment is the rLSSA routine
(Equation 6), albeit this procedure is much more computationally expensive than FFT, thus it
makes sense to use it only for short (∼ 103 steps) trajectories.

• Finally, the frequency correction (Equation 8) is applied, by transforming the frequency axis.
Afterward, a tabulated scale factor for the corrected spectrum can be applied to account for the
systematic errors in the quantum-chemical approximation.

To illustrate this procedure in action, we will consider a case of protonated methane (CH+
5 ),

with the vibrational spectrum obtained in Ref. [63]. For that, three NVT-MD trajectories at PBEh-3c
level of theory with Andersen (τA = 150 fs) and Berendsen (τB = 50 fs) thermostats were computed.
Each trajectory was 3 ps in length with 1 fs time step, and the τSWS = 4.2 fs was taken from the
harmonic frequencies at the same level of theory. After the MD simulations ended, for each of
the trajectories, an rLSSA-computed spectrum was obtained with the first 1 ps of each trajectory
disregarded for the equilibration phase. The spectra were smoothed by a convolution with Gaussian
function with full width at half maximum (FWHM) of 50 cm−1. For this, before performing the
rLSSA procedure, the dipole velocity autocorrelation function was multiplied by a Fourier image of
the frequency smoothing Gaussian, i.e., with another Gaussian distribution in the time domain with
FWHM inversely proportional to the one in the frequency domain. Finally, the frequency correction
and scale factor were applied. However, in addition to that, the total intensity in the spectrum was
corrected by multiplying with the function of the form[14]

f (ν) =

{
0 , if ν < D ,

1 − D
ν , if ν ≥ D ,

(18)

where ν is the frequency in cm−1 and D = 383 cm−1 is the reaction energy needed for the signal to be
detected. This type of correction was introduced in Ref. [14] and is not specific to the MD spectra but
to the action spectroscopic methods in general. As we can see from Figure 5, the MD routine already
produces a decent-looking spectrum. However, the application of the frequency correction, scale factor,
and intensity correction (Equation 18) brings the theoretical spectrum quite close to the experimental
one.
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Figure 5. Experimental and theoretical IR action spectra of the protonated methane (CH+
5 ). Theoretical

spectra were obtained at the PBEh-3c level of theory. The uncorrected spectrum (red dashed line)
corresponds to the direct result of the MD simulations. The corrected spectrum (blue dashed and
dotted line) is the same data set but with the frequency correction (Equation 8), scaling factor 0.968
(Table 1), and intensity correction (Equation 18) applied.
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5. Conclusions

We have presented a general approach for computing the IR spectra of polyatomic systems using
the AIMD approach implemented in the PyRAMD software. The approach invokes the following
essential components: 1) inclusion of the NQEs by the usage of the SWS approach coupled to the
thermostats; 2) frequency correction, allowing for larger time steps in the MD simulations; 3) pre-
parametrized scaling factors, similar to those used for the harmonic frequency calculations. The
synergistic effect of these components was demonstrated using the test case of the protonated methane.
Despite this scheme being inferior to the more direct approaches, such as a combination of path integral
MD for inclusion of the NQEs and of the smaller time steps in combination with highly accurate
methods to obtain the PES, it was demonstrated that it could produce reasonable results on a fraction
of computational time. Therefore, the presented algorithm can be recommended to provide theoretical
counterparts to the experimental measurements.
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Abbreviations

The following abbreviations are used in this manuscript:

AIMD ab initio molecular dynamics
FFT fast Fourier transform
FT Fourier transform
IR infrared
MD molecular dynamics
NQE nuclear quantum effect
NSK Nyquist–Shannon–Kotelnikov (theorem)
PES potential energy surface
rLSSA regularized least-squares spectral analysis
rwLSSA regularized weighted least-squares spectral analysis
SWS simplified Wigner sampling

Appendix A. Derivation of high-order frequency correction

Let us consider the numerical evolution of the one-dimensional harmonic oscillator with Hooke’s
force given as F = −mω2x with m being the oscillator mass, ω – the real vibrational angular frequency
related to the normal one as ω = 2πν and x is the position of the oscillator [40]. By using the Taylor
expansion of the coordinate in time near time t, we get

x(t ± ∆t) = x(t)± ẋ(t)∆t +
1
2

ẍ(t)∆t2 ± 1
6

...
x (t)∆t3 +

1
24

....
x (t)∆t4 ,

where the number of dots above x denotes the time derivative order. Thus, by summing these
symmetrical displacements, we get rid of odd-power ∆tn terms and arrive at

x(t + ∆t) + x(t − ∆t) = 2x(t) + ẍ(t)∆t2 +
1

12
....
x (t)∆t4 . (A1)
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If we ignore the fourth-order time derivative
....
x (t), we arrive at the Verlet integration algorithm. To

find the viable expression for
....
x (t), let us also do a Taylor expansion of the acceleration ẍ near time t,

as
ẍ(t ± ∆t) = ẍ(t)± ...

x (t)∆t +
1
2

....
x (t)∆t2 ,

from where (similarly to Equation A1) we arrive at

ẍ(t + ∆t) + ẍ(t − ∆t) = 2ẍ(t) +
....
x (t)∆t2 ,

and thus
....
x (t)∆t2 = ẍ(t + ∆t)− 2ẍ(t) + ẍ(t − ∆t) .

Substituting this approximation for
....
x (t)∆t2 into the Equation A1, we get

x(t + ∆t) + x(t − ∆t) = 2x(t) + ẍ(t)∆t2 +
1
12

(ẍ(t + ∆t)− 2ẍ(t) + ẍ(t − ∆t))∆t2 . (A2)

To evaluate the time behavior of the harmonic oscillator, we assume that the numerically integrated
behavior is x(t) = A cos(ω̃t) [40], where A is the amplitude of the motion, ω̃ is the effective frequency,
and the phase of initial conditions is chosen to be zero. In this case, the acceleration, according to the
second Newton’s law, is F = mẍ(t) = −mω2x(t), thus ẍ(t) = −ω2x(t). Substituting all of that into
the Equation A2, we get

A · (cos(ω̃t + ω̃∆t) + cos(ω̃t − ω̃∆t)) =

= 2A cos(ω̃t)− ω2∆t2 A cos(ω̃t)−

− Aω2∆t2

12
(cos(ω̃t + ω̃∆t)− 2 cos(ω̃t) + cos(ω̃t − ω̃∆t)) . (A3)

As cos(ω̃t ± ω̃∆t) = cos(ω̃t) cos(ω̃∆t)∓ sin(ω̃t) sin(ω̃∆t), we get that

cos(ω̃t + ω̃∆t) + cos(ω̃t − ω̃∆t) = 2 cos(ω̃t) cos(ω̃∆t) .

Substituting this equation into the Equation A3, and dividing it by 2x(t) = 2A cos(ω̃t), we get

cos(ω̃∆t) = 1 − ω2∆t2

2
− ω2∆t2

12
(cos(ω̃∆t)− 1) ,

which, upon considering 1 − cos(ω̃∆t) = 2 sin2(ω̃∆t/2), we can rearrange as

ω2∆t2

2
·
(

1 − 1
3

sin2
(

ω̃∆t
2

))
= 2 sin2

(
ω̃∆t

2

)
. (A4)

This expression provides a correction of the observed frequency ω̃ to the real one, as ω = ω(ω̃). If the
term sin2(ω̃∆t/2)/3 in the left side of the Equation A4 will be ignored, it will correspond to the Verlet
integration, and after rearrangement, we arrive at the Equation 8.

To illustrate the actual shift of the real frequency ω into the effective one (ω̃), we can rearrange
the Equation A4 as

ω̃∆t = 2 arcsin

 ω∆t

2
√

1 + ω2∆t2

12

 .
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We can introduce a new variable x = ω∆t, which shows how many parts of the true vibrational period
τ = 2π/ω the time step ∆t spans as ∆t = x/ω = τ · x/(2π). In this case, we can track the relative
shift of the vibrational frequency y = ω̃/ω as

y =
ω̃

ω
=

2
x
· arcsin

 x

2
√

1 + x2

12

 . (A5)

In the case of the Verlet algorithm, the equation is the same, but
√

1 + x2

12 needs to be replaced by 1, i.e.,

yVerlet =
ω̃

ω
=

2
x
· arcsin

( x
2

)
. (A6)

The comparison of these frequency shifts can be found in Figure A1. As one can see, the higher-order
integration schemes produce significantly smaller frequency shifts compared to the Verlet integration
algorithm. Secondly, they should allow for larger limiting frequencies. The applicability limits of the
Equations A5 and A6 are given by the domain of the arcsine function. Therefore, in the case of Verlet
correction (Equation A6), it is given as x/2 ≤ 1, i.e., x = ω∆t ≤ 2. For the higher order correction
(Equation A5), the limit is given by

x

2
√

1 + x2

12

≤ 1 , (A7)

which is equivalent to x = ω∆t ≤
√

6 ≈ 2.4.
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Figure A1. Comparison of the relative frequency shifts in the Verlet integration (Equation A6) and the
higher order method (Equation A5).
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