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Abstract: Object detection algorithms for open water aerial images present challenges such as small 
object size, unsatisfactory detection accuracy, numerous network parameters, and enormous 
computational demands. Current detection algorithms struggle to meet the accuracy and speed 
requirements while being deployable on small mobile devices. This paper proposes GFLM-YOLO, 
a lightweight small-object detection network based on the YOLOv8 algorithm with multiscale 
feature fusion. Firstly, to solve the class imbalance problem of the SeaDroneSee dataset, we propose 
a data augmentation algorithm called Small Object Multiplication (SOM). SOM enhance dataset 
balance by increasing the number of objects in specific categories, thereby improving model 
accuracy and generalization capabilities. Secondly, we optimize the backbone network structure by 
implementing Depthwise Separable Convolution (DSConv) and the newly designed FC-C2f, which 
reduces the model's parameters and inference time. Finally, we design the Lightweight Multiscale 
Feature Fusion Network (LMFN) to address the challenges of multiscale variations by gradually 
fusing the four feature layers extracted from the backbone network in three stages. In addition, 
LMFN incorporates the Dilated Re-param Block structure to increase the effective receptive field 
and improve the model's classification ability and detection accuracy. Experimental results on the 
SeaDroneSea dataset indicate that GFLM-YOLO improves mAP by 12.4% compared to the original 
YOLOv8s, while reducing parameters by 67.2%. This achievement provides a new solution for 
UAVs to conduct object detection missions in open water efficiently. 

Keywords: lightweight; multiscale feature fusion; data augmentation; UAV; object detection 
 

1. Introduction 

Object detection in open waters is a significant branch of the field, with crucial implications for 
maritime navigation, marine search and rescue, marine environment monitoring, and national 
defense. The primary challenge in open water search and rescue is quickly identifying individuals in 
distress[1]. Traditional methods primarily rely on surface vessels and helicopters, which require 
significant manpower and resources. These methods also have low search and rescue efficiency and 
limited scope, resulting in delayed rescue and loss of life in maritime accidents. With the 
advancement of UAV technology, UAVs are extensively utilized in various fields such as agricultural 
production, wildfire prevention, disaster relief, and other fields due to their strong mobility, low cost, 
and wide angle of view[2–4]. By integrating object detection algorithms based on deep learning with 
UAVs, UAVs can achieve autonomous object detection, reducing the need for manpower and time 
in search and rescue operations and significantly improving rescue efficiency[5]. 

The COCO dataset distinguishes whether an object is small or not based on the absolute scale of 
the goal, where a goal with a resolution of less than 32 pixels by 32 pixels is considered to be small[6]. 
To expand the scope of search and rescue and enhance efficiency, UAVs are generally farther away 
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from the sea surface when performing search and rescue missions, resulting in aerial images 
predominantly containing small objects. In addition, the complexity environment of open water, the 
variation of object scales, and the limited computational resources of the airborne computation device 
also impose higher demands on the object detection algorithms. 

In recent years, deep learning-based object detection algorithms have rapidly developed and 
achieved significant results, successfully applied across various fields. For instance, the Transformer-
based RT-DETR algorithm[7] and the YOLOv9[8] and YOLOv10[9] algorithms from the YOLO series 
proposed in 2024 have demonstrated strong performance in typical scenarios. However, these state-
of-the-art general-purpose object detection algorithms struggle to maintain high detection 
performance in open water search and rescue missions. The primary reason is that the limited pixel 
information of the object and easily interfered with by the background, resulting in the model not 
being able to effectively extract features such as edges, texture, and color of small objects. For 
instance, YOLOv10s achieved an mAP50 score of only 63.9% on the SeaDroneSee validation set. 

These general-purpose object detection algorithms have large parameters and complex model 
structure, demanding higher computational capabilities from the airborne computation device. 
However, during open water search and rescue missions, drones' endurance, detection speed, and 
cost constraints mean they cannot carry high-computation chips. Furthermore, object detection 
algorithms for open water must balance detection speed with accuracy. Therefore, it is necessary to 
further improve and optimize the existing object detection algorithms to enhance their applicability 
and performance. 

To address the challenges encountered in open water search and rescue missions, this paper 
proposes a new lightweight multiscale feature fusion network, GFLM-YOLO. This network reduces 
model parameters and increases detection speed while enhancing the detection accuracy for small 
objects. Compared to the YOLOv8s, the improved model’s mAP50 increased by 12.4%, model 
parameters decreased from 11.17 million to 3.65 million (a 67.3% reduction), Floating Point of 
Operations (FLOPs) decreased from 28.7 to 23.3 (an 18.8% reduction), and detection time decreased 
from 2.6ms to 2.3ms (an 11.5% reduction). This model outperforms other advanced small object 
detection algorithms in both speed and accuracy. The main contributions of this paper are as follows: 
1. The paper introduces a new data augmentation algorithm called SOM, which aims to expand 

the number of objects in specific categories without adding actual objects. This algorithm ensures 
that the characteristics of the added objects remain consistent with the original ones. 
Experiments demonstrate that this method enhances dataset balance and improves the model's 
accuracy and generalization capabilities. 

2. Lightweight design of the backbone network: 
a: Utilized depthwise separable convolutions as the feature extraction module in the backbone 

network, reducing model parameters, computation required for convolution operations, and 
network inference latency. 

b: A new plug-and-play module, FC-C2f, was designed to optimize the backbone network 
structure, reduce computational redundancy, and lower the model's parameters and FLOPs. 
3. Designed a new multiscale fusion network, LMFN, to address the accuracy issues in multiscale 

object recognition. 
a: By gradually integrating features from different levels, the connections between layers are 

effectively increased, and the model’s feature fusion process is optimized. This enhances the model's 
capability to fuse multiscale features, improving detection accuracy for objects of various scales. 

b: Combined dilated convolutions with small kernels and cascaded convolutions into a re-
parameterized large kernel convolution. This approach retains the benefits of small kernels, such as 
reduced computational load and fewer parameters, while achieving the large effective receptive field 
of large kernels. Experimental results demonstrate that this structure reduces model parameters and 
increases the receptive field. 
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2. Related Work 

2.1. Data Augmentation 

Depending on the application scenarios and the characteristics of different datasets, using 
appropriate data augmentation algorithms can enhance the model's detection accuracy and 
robustness. In some datasets, the number of samples in certain classes may be significantly higher 
than in others, a phenomenon known as class imbalance. Class imbalance adversely affects the 
model's convergence speed and detection accuracy, impacting both training convergence and 
generalization on the test set. To address class imbalance in the training set, the most common 
methods can be divided into two categories: data-level methods that directly manipulate the dataset 
to change class distribution and classifier-level methods. The most common data-level methods are 
oversampling and undersampling. Oversampling works by duplicating samples from minority 
classes, while undersampling involves removing samples from majority classes. Since the YOLO 
algorithm requires a large amount of training data to fit the network, this paper employs the 
oversampling method for data augmentation. 

Chen et al. proposed a multi-sample data augmentation method for remote sensing images 
called SSMup[10], which integrates three data augmentation techniques: Mosaic, Mixup, and 
SSMOTE. This algorithm ensures uniform distribution of objects in the enhanced samples and 
provides rich background information. Zhang et al. proposed a novel grid-oversampling 
strategy[11]. This strategy first uses the OSTU algorithm for feature extraction before cropping, then 
crops the image using a sliding window, and finally retains only objects that occupy more than 80% 
of the sliding window's foreground. This approach accelerates the detection speed of sparse object 
images. In the SeaDroneSea dataset, the features of the objects may be very different, even for the 
same labeled categories. This strategy can speed up sparse object detection in sparse object images. 
In the SeaDroneSea dataset, even objects with the same label category can have vastly different 
characteristics. As shown in Figure 1, both images have objects labeled as "life_saving_appliances," 
but in Figure 1(a), the objects are a lifebuoy and a float board, while in Figure 1(b), the object is a life 
jacket. Therefore, simply using the Simple Copy-Paste[12] data augmentation algorithm to increase 
the number of objects is unlikely to yield satisfactory results. Additionally, the marine environment 
is complex and variable, with significant background differences between images. Copy-paste 
operations across multiple images can easily lead to image distortion due to large discrepancies 
between the pasted region and the original image background. Therefore, this paper proposes a data 
augmentation algorithm called Small Object Multiplication (SOM), which balances the dataset by 
increasing the number of small objects in specific categories, addressing the issue of class imbalance. 

  
(a) (b) 

Figure 1. Sample images for "life_saving_appliances": (a) a lifebuoy and a float board, (b) a life jacket. 

2.2. Lightweight Methods for Object Detection Networks Based on Deep Learning 

In open water search and rescue missions, it is crucial to make lightweight improvements to 
existing object detection models due to the limited power consumption and computational resources 
available of UAVs. Lightweight network architectures originated from SqueezeNet[13] in 2016 and 
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MobileNet[14] in 2017. These networks have since seen multiple improved versions, such as 
SqueezeNext[15] and MobileNetV2-4[16–18]. SqueezeNet introduces the Fire module, which uses 
multiple 1×1 convolution kernels connected instead of 3×3 convolution kernels. By adjusting the 
number of 1×1 convolutions, the number of channels in each layer can be flexibly controlled, reducing 
both model parameters and computational load. The MobileNet series algorithms proposed 
depthwise separable convolution, dividing standard convolution operations into two processes: 
depthwise convolutions followed by pointwise convolutions. This approach significantly reduces 
parameters and computational load, accelerating both model training and inference speed. 

In addition to designing lightweight networks, many researchers have focused on creating 
lightweight designs for specific parts of existing object detection networks. Zhang et al. introduced a 
lightweight improvement to the detection head, proposing a Lightweight Asymmetric Detection 
Head (LADH-Head)[19]. LADH-Head utilizes depthwise separable convolution to optimize the 
Asymmetric Decouple Head (ADH), significantly reducing model parameters while improving 
detection accuracy. Wenkai Gong has proposed a lightweight feature extraction module called 
Dynamic Group Convolution Shuffle Transformer (DGST) to further enhance computational 
efficiency and performance[20]. DGST incorporates group convolution to reduce model parameters 
and computational load while preventing overfitting. It also integrates the channel shuffle technique 
from ShuffleNetV2 to promote effective inter-group feature information exchange. Additionally, 
DGST incorporates Vision Transformer, further improving computational efficiency and 
performance. Wang et al. introduced a plug-and-play feature upsampling module Content-Aware 
ReAssembly of FEatures (CARAFE)[21]. Instead of using a fixed kernel, CARAFE can dynamically 
generate adaptive kernels by performing content-aware processing on specific instances. In addition, 
CARAFE has a low computational overhead and can be easily integrated into other network 
architectures. 

2.3. MultiScale Feature Fusion 

In object detection algorithms, the neck network is commonly utilized to combine different 
layers of feature maps extracted from the backbone network. This fusion generates feature maps with 
multiscale information, which enable to enhances the accuracy of object detection. The introduction 
of Feature Pyramid Networks (FPN) in 2016 was a milestone, addressing the shortcomings of 
detection networks in handling multiscale variations[22]. Building on FPN, Liu et al. proposed the 
Path Aggregation Network (PANet)[23]. PANet enhances the feature hierarchy with a bottom-up 
path, leveraging precise positional information from lower-level feature layers to strengthen higher-
level feature layers. 

Xu et al. proposed an efficient Reparameterized Generalized-FPN (RepGFPN)[24]. The 
RepGFPN enhances feature interaction through queen-fusion and reduces the extra upsampling in 
post-fusion to decrease model complexity. It also introduces a reparameterization mechanism and 
efficient layer aggregation networks (ELAN) to upgrade the feature fusion module, achieving higher 
accuracy without additional computational burden. Tan et al. designed a Bi-Directional Feature 
Pyramid Network (BiFPN)[25] that achieves efficient bidirectional cross-scale connections and 
weighted feature fusion. Li et al. introduced a lightweight Context and Spatial Feature Calibration 
Network (CSFCN)[26]. CSFCN consists of two main parts: the Context Feature Calibration (CFC) 
module and the Spatial Feature Calibration (SFC) module. The CFC module calculates the similarity 
between pixels and their context, aggregating the context of each pixel's related semantics to achieve 
context feature calibration, thereby alleviating context mismatch issues. The SFC module groups 
channels into multiple sub-features along the spatial dimension and calibrates them separately to 
address feature misalignment problems. 

3. Materials and Methods 

The combination of object detection algorithms and UAV technology is significant for improving 
detection efficiency, ensuring regional safety, and reducing resource consumption. The YOLOv8 
model comes in five versions, with parameters increasing in size from n, s, m, l, to x; larger models 
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offer higher detection accuracy. Considering detection accuracy, model size, and practical application 
needs, this paper selects the YOLOv8s algorithm as the baseline model. Although the original 
YOLOv8s algorithm outperforms YOLOv8n in detection performance, its parameter count is 3.5 
times greater, reaching 11.2M. Therefore, this paper proposes a lightweight improvement to the 
YOLOv8s algorithm, designing a lightweight object detection algorithm for aerial images in open 
waters, named GFCA-YOLO. Section 3.1 details the SOM data augmentation algorithm for 
optimizing and enhancing the dataset. Sections 3.2 and 3.3 focus on lightweight improvements to the 
backbone network. Section 3.4 discusses the redesign of the neck network. The network structure of 
the GFLM-YOLO model is shown in Figure 2. 

 
Figure 2. The structure of GFCA-YOLO. 

3.1. Data Augmentation 

In deep learning, the balance of the dataset is crucial for model training. If the number of samples 
in one class is significantly lower than in other classes, the model may become biased towards the 
more numerous classes during training, reducing its ability to classify the less represented classes. 
When drones perform object detection tasks in open waters, they are often far from the objects, 
resulting in generally smaller object sizes in the images and fewer features for the model to utilize. 
We conducted a statistical analysis of the training set of the SeaDroneSea dataset, with the results 
shown in Figure 3(a). In the clustered bar chart, the blue portion represents the number of objects in 
each category, while the orange portion indicates the number of small objects within each category. 
The percentages at the top of the bars show the proportion of small objects within each category. The 
pie chart on the right in Figure 3(a) displays the proportion of objects in each category. From the pie 
chart, we can see that in the SeaDroneSea dataset, objects with an absolute size smaller than 32×32 
pixels account for as much as 95.63% of all objects. Small objects labeled as "life_saving_appliances" 
make up 100% of that category, which itself represents only 1.6% of the total objects. Due to their 
small size and low number, the recall rate for "life_saving_appliances" objects in the YOLOv8s 
algorithm's detection results is only 14.5%, as shown in Table 1. 
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(a) (b) 

Figure 3. The statistical tables of SeaDroneSee dataset. (a) original; (b) after data augmentation. 

Inspired by SSMup, Simple Copy-Paste, and Augmentation for small object detection[27], this paper 
proposes a data augmentation algorithm called Small Object Multiplication (SOM). This algorithm 
balances the dataset by increasing the number of small objects in specific categories, addressing the low 
recall and precision rates caused by the lack of small object samples and inconsistent shape features. 
Unlike the Simple Copy-Paste method, the SOM algorithm uniformly performs Copy-Paste operations on 
small objects of specified categories with pixel sizes smaller than 32×32 in the original images. The object 
category index and the number of Copy-Paste operations are set as hyperparameters, allowing users to 
apply different numbers of Copy-Paste operations for different categories. 

In this paper, the small objects labeled as "boat," "jetski," "life_saving_appliances," and "buoy" 
were subject to Copy-Paste operations 2, 7, 39, and 15 times, respectively. Figure 4 displays an 
example image before and after applying the SOM data augmentation algorithm, with some areas of 
the figure are enlarged. From the figure, it's evident that two different "life-saving appliances" were 
duplicated 39 times and evenly pasted onto the original image. Additionally, Figure 3(b) presents the 
statistics of the number of objects in each category of the dataset after data augmentation. It can be 
seen from the figure that the dataset is nearly balanced across categories after data augmentation. 

The experimental results for the SeaDroneSee dataset are shown in Table 1. Combining the 
results from Figure 4 and Table 1, it can be seen that the more Copy-Paste operations performed for 
a category, the greater the mAP increase. The "life_saving_appliances" category shows the most 
significant improvement, with the accuracy rate increasing from 78.2% to 81%, the recall rate 
increasing from 14.5% to 25.5%, and the mAP increasing from 28.2% to 35.4%. Therefore, the SOM 
data augmentation algorithm can effectively address the low recall and accuracy rates caused by the 
lack of object samples, resolving the class imbalance problem in the dataset. 
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(a) 

 
(b) 

Figure 4. Sample images before and after data augmentation. (a) original; (b)after data augmentation. 

Table 1. The influence of the SOM data augmentation algorithm on SeaDroneSee-val. 

Classes P(%) R(%) mAP(%) P SOM (%) RSOM(%) mAPSOM(%) 
swimmer 78.7 66.5 69.6 80.1(+1.4) 64.8(-1.7) 70.3(+0.7) 

boat 89.8 86 91.6 89.9(+0.1) 87.4(+1.4) 91.2(+0.4) 
jetski 76.8 82.2 83.7 86.3(+9.5) 82.5(+0.3) 84.6(+0.9) 

life_saving_appliances 78.2 14.5 28.2 81(+2.8) 25.5(+11) 35.4(+6.9) 
buoy 77 .7 50.5 57.2 88.5(+10.8) 51.6(+1.1) 61.4(+4.2) 
All 80.2 59.9 66.1 85.2(+5) 62.4(+2.5) 68.6(+2.5) 

3.2. Depthwise Separable Convolution 

The backbone network of the YOLOv8s algorithm accounts for approximately 45% of the overall 
parameters, with its complex convolutional structures leading to an excessive number of model 
parameters. This increases the demand for hardware computational power and memory, posing 
challenges for resource-limited mobile computing terminals to perform object detection tasks. To 
address this problem, inspired by the classic MobileNet lightweight network family, this paper uses 
DSConv[28] to make lightweight improvements to the YOLOv8s backbone network. The detailed 
structure of DSConv is shown in Figure 5. 

We will now analyze and compare the computational requirements for performing a 
convolution operation using standard convolution and DSConv. Let's assume that the input feature 
map size is h w c× × , the size of the convolution kernel is k k c× × , and the total number of kernels is 
N. The spatial dimension of the feature map contains a total of h w×  points. The computation 
required to perform the convolution operation for each point is equivalent to the size of the 
convolution kernel. If we perform one convolution operation for each point at every spatial location 
in the feature map, then a single convolution would require a total 2h w c k× × ×  of computations. 
Analogous analysis, the number of calculations required in the DWConv stage is also 2h w c k× × × . 
The number of calculations required in the PWConv process is h w c N× × ×  of DSConv is: 

2h w c k h w c N× × × + × × × . From this, the total number of calculations for the N standard 
convolutions is 2h w c k N× × × × . We can derive the ratio of the total number of calculations for the 
DSConv and the standard convolutions as follows: 

2
1 1
N k

+ . In summary, the computational 

efficiency of DSConv is far superior to that of standard convolutions, which can reduce the model 
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parameters and reduce the network inference delay, which is conducive to the lightweight design of 
the model. computational efficiency is much better than standard convolution, which can reduce the 
model parameters, reduce the network inference delay, and is conducive to the lightweight design of 
the model. 

 
Figure 5. The structure of DSConv. 

The experimental results for the SeaDroneSee dataset before and after lightening the backbone 
network using DSConv are presented in Table 2. The improved backbone network with the DSConv 
module reduces the model's parameters by 13.9%, FLOPs by 10.5%, and decreases the inference time 
from 2.6ms to 1.2ms, resulting in a 53.85% improvement. Additionally, there is a slight improvement 
in detection accuracy. These results indicate that DSConv can enhance the computational efficiency 
of the model, decrease the model's inference time, and improve detection accuracy. 

Table 2. The influence of DSConv on SeaDroneSee-val. 

Algorithms P 
(%) 

R 
(%) 

mAP50val 
(%) 

Params 
(M) 

FLOPs 
(G) 

Speed 

RTX4090 b16 
(ms) 

YOLOv8s 80.2 59.9 66.1 11.14 28.7 2.6 
YOLOv8s+DSConv 79.8(-0.4) 60.5(+0.6) 66.6(+0.5) 9.59(-1.55) 25.7(-3) 1.2(-1.4) 

3.3. Improved C2f Module Based on Convolutional Gated Linear Unit and Faster Block 

In the original YOLOv8s' backbone network, the convolution module only accounts for 30% of 
the total parameters, while the C2f module accounts for 56%. Therefore, this paper draws inspiration 
from the FasterBlock module in FasterNet[29] to make lightweight improvements to the C2f module 
in the backbone network. FasterNet is a fast neural network proposed by Jierun Chen et al. in 2023. 
The model delay is calculated as FLOPsLatency

FLOPS
= . Chen et al. discovered that many researchers focus 

on accelerating models by reducing FLOPs, such as ShuffleNets[30] and GhostNet[31]. However, this 
reduction in FLOPs can lead to increased memory access, resulting in higher network latency and 
affecting computational speed. This explains why some models have low FLOPs but still exhibit slow 
inference and run times. We encountered a similar situation in our experiments when replacing the 
original YOLOv8s backbone with HGNetV2[7]. Although FLOPs decreased by 19%, there was almost 
no change in inference speed, as shown in Table 3. 
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Table 3. The influence of replacing YOLOv8s backbone with HGNetV2 on SeaDroneSee-val. 

Algorithms FLOPs 
(G) 

Pre-Process 
(ms) 

Inference 
(ms) NMS (ms) 

YOLOv8s 28.8 0.2 1.6 0.8 
YOLOv8s +HGNetV2 23.3 0.2 1.6 0.7 

To reduce memory access and computational redundancy, Chen et al. proposed a new 
convolutional structure called Partial Convolution (PConv) and designed FasterNet block based on 
PConv. The working principle of PConv and the model structure of FasterNet block are illustrated in 
Figure 6. As depicted in Figure 6, PConv utilizes standard convolution to extract spatial features from 
a portion of the input channel while leaving the rest of the channel unchanged. This process 
significantly reduces computational redundancy and enhances the inference speed. We use the same 
method as in the previous subsection to calculate the computation of PConv, assuming that the size 
of the input feature map is h w c× × , pc  is the number of feature map channels participating in the 

convolution operation, and the size of the convolution kernel is k k c× × , and it is the number of pc
. We can derive the total computation amount of PConv as 2 2

ph w c k× × × . In summary, the ratio of 

the total computational load of PConv to that of standard convolution is 
2
pc

c N×
 

 
Figure 6. The structure of FasterNet Block. 

Although the improved C2f module reduces the model parameters by 13%, inference is still slow 
because Conv extracts features through serial operations. The Gated Linear Unit (GLU)[32] was 
proposed in 2016 by Yann N. Dauphin et al. The GLU consists of two linear projections, one of which 
is controlled by a gating function, and the two projections are multiplied elementwise. The GLU can 
accelerate computation speed and reduce model’s complexity through parallel processing structure. 
Subsequently, Dai Shi proposed an improved GLU call Convolutional GLU (CGLU)[33]. This new 
model innovatively combines depthwise convolution using parallel processing structures to enhance 
computation speed and reduce model complexity. Additionally, the depthwise convolution structure 
provides positional information and efficient feature extraction capabilities. Inspired by FasterBlock 
and CGLU, this paper improves the C2f structure in the YOLOv8s backbone and proposes the 
FasterBlock-CGLU-C2f (FC-C2f) module. The structure of the FC-C2f module is shown in Figure 7. 

The experimental results on the SeaDroneSee dataset are shown in Table 4, where FB-C2f is the 
improved C2f module using only FasterBlock. From Table 4, we can conclude that the FC-C2f module 
improved with CGLU can further optimize the network structure compared to the FB-C2f module. It 
not only enhances detection accuracy but also makes the network lighter, increasing the model's 
detection speed and proving the effectiveness of the CGLU improvement. The improved FC-C2f 
module reduces the model's parameters by 17.5%, FLOPs by 17.1%, and inference time from 2.6ms to 
1.4ms, a reduction of 46.2%, with a slight improvement in detection accuracy. The proposed FC-C2f 
module can increase detection accuracy while reducing model parameters, lowering model 
complexity, and significantly improving the model's running speed. 
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Table 4. The influence of FasterBlock and FasterBlock-CGLU-C2f on SeaDroneSee-val. 

Algorithms P 
(%) 

R 
(%) 

mAP50val 
(%) 

Params 
(M) 

FLOPs 
(G) 

Speed 

RTX4090 

b16 
(ms) 

YOLOv8s 80.2 59.9 66.1 11.14 28.7 2.6 
YOLOv8s+FB-C2f 80.4(+0.2) 61.2(+1.3) 66.1(+0) 9.69(-1.45) 24.4(-4.3) 2.2(-0.4) 
YOLOv8s +FC-C2f 82.8(+2.6) 59.5(-0.4) 66.5(+0.4) 9.48(-1.66) 23.8(-4.9) 1.4(-1.2) 

 
Figure 7. The structure of FasterBlock-CGLU-C2f. 

3.4. Lightweight Multiscale Feature Fusion Network 

The uncertainty of the object size in aerial images can lead to the loss of information during 
feature extraction, which affects the model's detection performance. The YOLOv8 algorithm utilizes 
FPN and PAN structures for downsampling and upsampling, respectively. These structures have 
large parameter counts, high computational redundancy, significant conflicts between different 
feature levels, and relatively limited effectiveness in detecting small objects. The neck network of the 
YOLOv8s algorithm has approximately 6.06M parameters, making it challenging to deploy on 
airborne computation device. Therefore, this paper designs a lightweight multiscale fusion network 
(LMFN). The architecture of LMFN is shown in Figure 8. 

LMFN adopts the progressive fusion strategy of the Asymptotic Feature Pyramid Network 
(AFPN)[34], which integrates shallow and deep features extracted by the backbone network in three 
stages. This fusion method weights the semantic and positional information of deep and shallow 
features according to different feature levels, avoiding significant semantic gaps between different 
feature layers and preventing information loss and degradation caused by multi-level transmission. 

The receptive field can be expanded by connecting multiple small-kernel convolutions or by 
using a single large-kernel convolution. Researchers typically prefer the first method because using 
multiple small-kernel convolutions has three advantages over a single large-kernel convolution. 
Firstly, multiple small-kernel convolution structures include more non-linear activation layers, 
thereby enhancing the discriminative ability of the model. Secondly, it reduces network parameters. 
For example, using three 3×3 cascade convolutions instead of a single 7×7 large kernel convolution 
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can reduce 7 7 3 3 3 22× − × × =  parameters, cutting the network parameters by 45%. Lastly, it also 
decreases the computational load. Similarly, using three 3×3 cascade convolutions instead of a single 
7×7 large kernel convolution can reduce the number of computations by 
7 7 3 3 3 22C C C× × − × × × = × , reducing the computational load by 45%. 

 
Figure 8. The structure of LMFN. 

Ding et al. found that although connecting multiple small-kernel convolutions can theoretically 
expand the model's maximum receptive field, the actual effective depth is not significant, resulting 
in a small Effective Receptive Field (ERF)[35]. The ERF is proportional to ( )O K L , where K 
represents the kernel size and L is the model depth[36]. This indicates that the ERF is more sensitive 
to changes in K. Although the optimization problems brought by increasing model depth have been 
addressed by ResNet, increasing the depth of the model is not as effective as increasing the kernel 
size. 

To achieve a large ERF and fully utilize deep features while avoiding the increase in network 
parameters and computational load caused by large-kernel convolutions, this paper designs a new 
C2f module named DRB-C2f. The Dilated Re-param Block (DRB)[37] module utilizes parallel dilated 
convolution in addition to the large kernel convolution. Using the concept of reparameterization, the 
entire module can be considered a non-dilated large kernel convolution. The operational diagram is 
depicted in Figure 9. The ignored pixels in dilated convolution can be considered as adding extra 
zero terms to the convolution kernel. Therefore, a dilated convolution layer with a small convolution 
kernel can be seen as a non-dilated convolution layer with a larger but sparser kernel. The process of 
adding zeros can be carried out using transposed convolution with a step size r and a unit kernel 

1 1I ×∈¡ . If the original convolution kernel is 1 1I ×∈¡ , the convolution kernel after the interpolation 
operation is (( 1) 1) (( 1) 1)k r k rW − + × − +′∈ ¡ . The Re-parameterize module consists of a non-diluted small 
convolution kernel and multiple diluted small convolution kernels to complement the non-diluted 
large convolution kernel. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2024                   doi:10.20944/preprints202407.1302.v1

https://doi.org/10.20944/preprints202407.1302.v1


 12 

 

 
Figure 9. The computational process of the DRB module. 

We utilized the visualization tool Zetane to display the feature maps in the dashed section of 
Figure 8. Figure 10 illustrates the changes in the four feature layers before and after implementing 
DRB. The left side displays the size of the feature maps without DRB enhancement, while the right 
side shows the size of the feature maps after incorporating DRB enhancement. The figure indicates 
that using DRB significantly increases the size of the model's receptive field. The mean receptive field 
size increased from 0.305, 1.63, 1.77, and 6.28 to 0.879, 3.15, 2.7, and 12.7 for P2, P3, P4, and P5, 
respectively. 

The experimental results on the SeaDroneSee dataset are shown in Table 5. AFPN_C2f is the 
neck network that is not improved with DRB. From the table, we can see that AFPN_C2f achieves 
lightness at the expense of accuracy. The DRB module introduction improves the multiscale feature 
fusion network, increasing the model's effective receptive field and detection accuracy, while 
reducing the model’s parameters and FLOPs. Compared to YOLOv8s, mAP50 is improved by 10.6%, 
and the number of parameters is reduced by 38.4%. However, due to the extensive multi-scale fusion 
operations, FLOPs increased by 7.7%. Compared to AFPN, the detection accuracy of LMFN did not 
decrease but improved by 0.4%, and the number of parameters and FLOPs decreased by 21.7% and 
20%, respectively. Overall, the enhanced LMFN network exhibits significant superiority. 

Table 5. The influence of AFPN, AFPN_C2f and LMFN on SeaDroneSee-val. 

Algorithms P 
(%) 

R 
(%) 

mAP50val 
(%) 

Params 
(M) 

FLOPs 
(G) 

Speed 

RTX4090 

b16 
(ms) 

YOLOv8s 80.2 59.9 66.1 11.14 28.7 2.6 
AFPN 83.2(+3.0) 71.4(+11.5) 76.3(+10.2) 8.76(-2.38) 38.9(+10.2) 3.1(+0.5) 

AFPN_C2f 84.5(+4.3) 69.6(+9.7) 76.0(+9.9) 7.09(-4.05) 34.2(+5.5) 2.8(+0.2) 
LMFN 86.8(+6.6) 70.5(+10.6) 76.7(+10.6) 6.86(-4.28) 31.1(+2.4) 2.3(-0.3) 
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Figure 10. The feature map dimensions for P2-P5. 

4. Experimental and Analysis 

4.1. Dataset and Experimental Environment and Parameter Settings 

The experimental data for this paper comes from the SeaDroneSee public dataset. SeaDroneSee 
was collected by the University of Tuebingen team to assist in the development of search and rescue 
systems using UAVs in maritime scenarios. The dataset comprises 8,930 training images, 1,547 
validation images, and 3,750 test images. These images include various lighting conditions, different 
shooting distances, and angles, meeting factors such as small object size and complex environments. 
There are five categories in the dataset: Swimmer, Boat, Buoy, Jetski, and life_saving_appliances. This 
dataset provides a valuable data resource for maritime search and rescue in open waters. 

The hardware configurations and software versions involved in this experiment are shown in 
Table 6. The hyperparameter settings of the model are shown in Table 7. 

Table 6. Hardware model and software version used for the experiment. 

Experimental Environment Parameter/Version 

Operating System Ubuntu20.04 
GPU NVIDIA Geforce RTX 4090 
CPU Intel(R) Xeon(R) Gold 6430 
Cudn 11.3 

Pytorch 1.10.0 
Python 3.8 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2024                   doi:10.20944/preprints202407.1302.v1

https://doi.org/10.20944/preprints202407.1302.v1


 14 

 

Table 7. Network model hyperparameter settings. 

Parameter Setup 
Image size 640×640 

Momentum 0.937 
BatchSize 16 

Epoch 200 
initial learning rate 0.01 
final learning rate 0.0001 

Weight decay 0.0005 
Warmup epochs 3 

IoU 0.7 
Close Mosaic 10 

Optimizer SGD 

4.2. Experimental Metrics 

To objectively evaluate the model's performance, this paper measures and analyzes it from two 
aspects: detection performance and detection speed. The quantitative metrics for detection 
performance include Precision, Recall, mAP50, Parameters, and FLOPs. The quantitative metric for 
detection speed is the total inference time for a single image with a batch size set to 16. 

The Precision measures the ratio of correctly predicted objects to the total number of predicted 
objects using the following formula (1): 

TPP
TP FP

=
+

, (1)

Recall measures the ratio of correctly predicted objects to the number of actual objects. The 
calculation formula is as follows (2): 

TPR
TP FN

=
+

, (2)

In the formulas, TP (True Positives) is the number of objects correctly identified by the model, 
FP (False Positives) is the number of other class objects incorrectly identified as this class, and FN 
(False Negatives) is the number of this class objects incorrectly identified as other classes. Thus, 
TP FP+  represents the number of objects predicted by the model, while TP FN+  represents the 
actual number of such objects. 

The mean average precision (mAP) is the average of the average precision (AP) values for 
multiple categories and is used to measure the overall performance of the model. mAP50 is the mAP 
at an IoU threshold of 50%. The calculation formula (3) for mAP is as follows: 

1

N

n
n
AP

mAP
N

==


, 
(3)

Where nAP  refers to the average precision of the nth class of objects, used to evaluate the 
model's detection performance for that specific class. The calculation formula (4) is as follows: 

1

0
AP PRdR=  , (4)

The parameter count represents the total number of parameters in the model, which is a key 
indicator of the model's size and spatial complexity. It directly impacts the size of the weight file and 
indirectly affects the storage space required for model deployment. FLOPs measure the 
computational load required during model training and inference, reflecting the model's 
computational efficiency. 
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4.3. Ablation Experiments 

In this study, we propose four improvement methods for YOLOv8s aimed at reducing model 
parameters, increasing detection speed, and enhancing the detection accuracy for small object. The 
four improvement methods include: (a) utilizing the SOM data enhancement algorithm to improve 
dataset balance, (b) using DSConv instead of standard convolutions in the backbone network for 
lightweight design, (c) improving the C2f module in the backbone network using FasterBlock and 
GSLU to reduce parameters and latency, and (d) redesigning the neck network with the LMFN 
network to increase the effective receptive field and multiscale feature fusion capability. To study 
and analyze the effectiveness of each improvement method in depth, we conducted ablation 
experiments on the SeaDroneSee dataset. The results are shown in Table 8. Figure 11 compares the 
mAP curves of eight sets of experimental results, and Figure 12 shows the scatter plot of model 
parameters and inference time for the eight sets of experiments. Since Chapter 3 already provides 
detailed analyses of the experimental results for each individual improvement, this chapter focuses 
on discussing and analyzing the combined effects of multiple improvements on the baseline model. 

Table 8. The influence of different enhancements evaluated on SeaDroneSee-val. 

Class Algorithms P 
(%) 

R 
(%) 

mAP50val 
(%) 

Params 
(M) 

FLOPs 
(G) 

Speed 

RTX4090 

b16 
(ms) 

1 YOLOv8s 80.2 59.9 66.1 11.14 28.7 2.6 
2 a 84.1 62.2 67.7 11.14 28.7 2.6 
3 b 79.8 60.5 66.6 9.59 25.7 1.2 
4 c 82.8 59.5 66.5 9.48 23.8 1.4 
5 d 86.8 70.5 76.7 6.86 31.1 2.4 
6 b+c 81 59.4 66.1 7.93 20.9 1.1 
7 b+c+d 82.6 71.3 76.6 3.65 23.3 2.1 
8 a+b+c+d(our) 85.5 71.6 78.3 3.64 22.9 2.1 

 
Figure 11. The mAP curves of different enhancements and GFLM-YOLO (blue). 
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Figure 12. The scatter plot of different enhancements and GFLM-YOLO (yellow star). 

1. Lightweight improvements to the backbone network: From the results of Group 6 experiments 
in Table 8, we can see that compared with the baseline model, using DSConv and FC-C2f for 
lightweight improvements to the baseline model's backbone network significantly reduces model 
parameters and FLOPs while substantially increasing detection speed. Specifically, the model 
parameters decreased from 11.14 to 7.93, FLOPs reduced from 28.7 to 20.9, and detection time per 
image dropped from 2.6ms to 1.1ms. In addition, the change in detection accuracy before and after 
the lightweight improvements was minimal. Figure 11 and Figure 12 visually confirm these findings, 
showing that the lightweight improved model has similar mAP curves to the YOLOv8s model but 
with fewer parameters and shorter inference time. The experiments demonstrate that DSConv and 
FC-C2f can improve the computational efficiency and reduce the complexity of the model without 
affecting detection accuracy. 

2. LMFN: Comparing the experiments from Group 6 and Group 7, we can see that the proposed 
LMFN network can enhance the model's Precision, Recall, and mAP, while reducing the model’s 
parameters. However, LMFN increases the model's FLOPs due to its gradually fusion of multiple 
feature maps from different layers. This extensive cross-layer fusion mitigates information 
discrepancy between different feature levels, enhancing the model's ability to recognize objects at 
various scales. However, this complex fusion process also leads to an increase in the model's FLOPs 
and network delay. Figure 11 and Figure 12 show that the mAP curve of the LMFN improved model 
is higher than that of the baseline model, although the inference time is increased. The experiments 
demonstrate that the LMFN proposed in this paper can effectively improve the detection accuracy of 
the model and reduce model parameters. Although the FLOPs increased from 20.9 to 23.3, this 
increase is negligible compared to the significant improvement in detection accuracy. 

3. GFLM-YOLO: Comparing the group 8 of experiments with the baseline model, we find that 
the proposed model improves precision by 6.4%, recall by 11.1%, and mAP50 by 12.4%. The model 
parameters are reduced from 11.17 to 3.65, a reduction of 67.2%, and FLOPs decrease from 28.7 to 
23.3, a reduction of 18.8%. Inference time is reduced from 2.6ms to 2.3ms, a reduction of 11.5%. Figure 
11 and Figure 12 demonstrate that GFLM-YOLO has the highest mAP curve compared to other 
models, showing excellent detection accuracy while meeting real-time requirements. This model 
achieves a balance between detection accuracy and speed. 

The experimental results show that the four proposed improvements to the baseline model not 
only improve detection accuracy but also achieve a lightweight design, simplifying the network 
structure, enhance computational efficiency, and reducing network latency. These improvements 
ensure the model meets the real-time and accuracy requirements for drone-based maritime object 
detection tasks. 
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Figure 13 shows the detection results of GFLM-YOLO and YOLOv8s models in various sea 
maritime environments (some smaller areas are enlarged). Group 1 shows detection in dense small 
object scenarios. YOLOv8s has instances of missed small objects, while GFLM-YOLO correctly 
identifies all small objects. From the Group 2's detection results, it is evident that GFLM-YOLO not 
only has higher accuracy than YOLOv8s but also detects more small objects. The third group of 
results shows that due to the similar pixel features of "swimmer" and "life_saving_appliances", 
YOLOv8s incorrectly identifies "life_saving_appliances" as "swimmer," whereas the improved model 
correctly identifies "life_saving_appliances". The detection results of the fourth group indicate that 
GFLM-YOLO has significantly higher detection accuracy for small objects than YOLOv8s, and also 
exhibits a higher recall rate. Therefore, the GFLM-YOLO algorithm proposed in this paper offers 
superior small object detection performance compared to the baseline model and provides a new 
solution for maritime object detection. 

 
Figure 13. Partial comparison object detection results of the SeaDroneSee dataset,YOLOv8(left) and 
GFLM-YOLO(right). 

4.4. Comparative Experiment 

To further validate the performance advantages of the GFLM-YOLO algorithm for small object 
detection with UAVs, comparative experiments are conducted against seven popular detection 
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algorithms: YOLOv5s, YOLO-OW, YOLOv8n, YOLOv9t, YOLOv10s, YOLO-OW, and DETR. Among 
these, YOLO-OW is the top-ranking detection model on the official leaderboard[38]. The 
experimental results of each model are shown in Table 9. 

Table 9. The influence of different models evaluated on SeaDroneSee-val. 

Class Algorithms P 
(%) 

R 
(%) 

mAP50val 
(%) 

Params 
(M) 

FLOPs 
(G) 

Speed 

RTX4090 

b16 
(ms) 

1 YOLOv5s 82.7 57.9 65.4 9.11 23.8 2.1 
2 YOLOv6n 79.5 57.7 60.6 4.23 11.8 1.7 
3 YOLOv8n 79.0 58.8 63.6 3.0 8.1 1.6 
4 YOLOv9t 74.1 58.5 62.3 2.62 10.7 4.5 
5 YOLOv10s 82.3 59.3 63.8 8.04 24.5 1.0 
6 YOLO-OW 82.4 76.2 73.1 42.1 94.8 4.6 
7 RT-DETR-R18 88.4 82.6 83.6 20.0 57.0 3.8 
8 GFLM-YOLO (our) 85.5 71.6 78.3 3.64 22.9 2.1 

According to Table 9, the proposed GFLM-YOLO algorithm significantly outperforms other 
algorithms with similar parameter levels in terms of detection accuracy. The parameter counts of 
YOLOv6n, YOLOv8n, and YOLOv9t are similar to that of GFLM-YOLO algorithm, but the mAP 
scores of the GFLM-YOLO algorithm are higher by 17.7%, 14.7%, and 16%, respectively. The mAP 
curve in Figure 14 is indicates that the GFLM-YOLO algorithm outperforms the other three 
algorithms. Figure 15 illustrates that YOLOv6n and YOLOv8n have inference times 0.4ms and 0.5ms 
faster than GFLM-YOLO, respectively, while YOLOv9t has an inference time of 4.5ms, due to the 
auxiliary reversible branches used. 

YOLOv5s and YOLOv10s have FLOPs similar to GFLM-YOLO, but their parameter counts are 
2.5 times and 2.2 times higher, respectively, and their mAP scores are 12.9% and 14.5% lower than 
GFLM-YOLO. As shown in Figure 15, YOLOv5s has a similar inference time to GFLM-YOLO, while 
YOLOv10s has an inference time of only 1ms. This is because YOLOv10s uses a non-NMS training 
continuous dual assignment strategy, which significantly reduces inference time. 

The mAP of the YOLO-OW algorithm is 73.1%, which is 5.2% lower than GFLM-YOLO. Its 
parameter count is 11.5 times that of GFLM-YOLO, its FLOPs are 4.1 times higher, and its inference 
time is as high as 4.5ms. In repeated experiments under the same conditions, we observed that the 
mAP metric for YOLO-OW did not improve during the early stages of training. In repeated 
experiments under the same conditions, we observed that the mAP metric for YOLO-OW did not 
improve during the early stages of training. The mAP of RT-DETR-R18 is 5.3% higher than GFLM-
YOLO, but its parameter count is 5.5 times higher, its FLOPs are 2.5 times greater, and its inference 
time is approximately twice that of GFCL-YOLO. 

In summary, the GFLM-YOLO algorithm proposed in this paper demonstrates significant 
advantages in detection accuracy compared to current mainstream object detection algorithms with 
similar parameter levels and FLOPs. The GFLM-YOLO maintains low parameter count and FLOPs 
while meeting the requirements for high detection accuracy and real-time performance, providing a 
new solution for object detection in open water. 
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Figure 14. The mAP curves of other models and GFLM-YOLO (blue). 

 
Figure 15. The scatter plot of other models and GFLM-YOLO (grey star). 

5. Conclusions 

Object detection in open water is crucial for maritime rescue, resource management, and 
navigation. In this paper, we propose a lightweight object detection algorithm based on multiscale 
fusion, which improves the detection accuracy while satisfying the deployment conditions and real-
time requirements of airborne computation device. 

This paper proposes a new data augmentation algorithm called SOM to address the class 
imbalance problem in the SeaDroneSee dataset. The algorithm increases the number of specified class 
objects through Copy-Paste without adding actual objects, thereby resolving the class imbalance 
problem. To meet the requirements of deploying airborne computation device, while maintaining the 
detection accuracy. Firstly, we lightweight the backbone of the original YOLOv8s network, 
introducing the lightweight feature extraction module FC-C2f, which significantly reduces model 
parameters and FLOPs, thereby shortening inference time. Additionally, DSConv was used to replace 
standard convolutions in the original network, further reducing the parameters and FLOPs of the 
backbone network. Finally, a lightweight multi-scale feature fusion network, LMFN, was proposed 
as the neck network. The LMFN effectively reduces the contradiction between different feature layers 
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by gradually fusing multiple feature layers extracted from the backbone network and improves the 
model's ability to recognize multiscale objects. This paper introduces the DRB module into LMFN, 
which uses a Re-parameterize module to equate multiple small kernel dilated convolutions to a single 
large kernel non-dilated convolution. The Re-parameterize module consists of one non-dilated small 
convolution kernel and several dilated small convolution kernels. Research shows that the DRB 
module can significantly increase the effective receptive field of LMFN, enhancing the model's 
detection performance and improving the recall rate for small objects. However, while LMFN 
improves detection accuracy and reduces parameter count, the extensive fusion between different 
feature layers increases the model's complexity. 

In future research, we will collect and analyze image data under extreme weather conditions to 
enhance the model's adaptability and generalization in practical applications. Additionally, we will 
address the adverse effects of sea surface glare and waves on small object detection, and improve 
network structure and feature fusion strategies to further reduce the model's FLOPs and increase 
detection speed. 
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