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Article

A New Perspective to the Relation between Accretion
Luminosity and Mass Accretion Rate

Stefania Pezzuto

INAF-IAPS, via Fosso del Cavaliere, I-00133 Roma, Italy; stefania.pezzuto@inaf.it

Abstract: In this paper I show that, opposite to what is generally assumed, when a source accretes matter at the

so-called Eddington mass accretion rate Ṁed, the generated accretion luminosity Lacc is smaller than Led, the

Eddington accretion luminosity that can stop accretion. I demonstrate my thesis using pieces of informations that,

one by one, are well known in the accretion theory but that, for some reason, they are not considered altogether.

Namely, I use the following facts: i) Lacc, in the ideal case, is equal to the rate at which kinetic energy is deposited

into the accreting source; ii) radiation pressure decreases the velocity of the infalling matter; iii) the generally

accepted formula Lacc = GMṀ/R is valid only if the matter is in free fall. To give a quantitative demonstration of

my thesis I use two accretion models: the first is the very simple spherical accretion of zero-temperature, fully

ionized hydrogen; then I use a model developed some years ago where the energy transfer between matter and

radiation is taken into account. The fact that Ṁed generates a Lacc < Led can have consequences in all the cases in

which one would need to model accretion with Ṁ > Ṁed to reproduce the observations.

Keywords: accretion; star formation; supermassive black holes

1. Introduction

Accretion is an important phenomenon in astrophysics and can be the only source of luminosity
for those objects that do not have an internal energy production, like neutron stars or black holes. It is
also important during the formation of a star because in this case too the accreting source can irradiate
only the energy, or a fraction of it, due to the infalling matter that releases its kinetic energy when its
fall stops.

The amount of kinetic energy that can be radiated away depends strongly on how the motion is
stopped and on the efficiency of converting this energy in luminosity. In any case, energy conservations
requires that if all the kinetic energy is converted in accretion luminosity, Lacc in the following, we
have

L(k)
acc =

1
2

v2
f Ṁ (1)

Ṁ being the mass accretion rate and vf the final velocity of the infalling matter at R, the radial position
where the energy conversion happens; (k) stands for kinetic because this definition of Lacc is based
on the velocity of the particles. Note that, throughout this paper, L(k)

acc or Lacc alone, is the accretion
luminosity at R.

Equation (1) is seldom, if ever, found in papers on accretion because Lacc is, essentially always,
written in this way

Lacc =
GMṀ

R
(2)

with M mass and R radius, in the sense described above, of the central source. When matter is in
free fall, then v2

f = v2
ff = 2GM/R, with vff final free-fall velocity, and the two above equations are

equivalent: the potential energy per unit mass, GM/R, is entirely converted in kinetic energy.
The accretion luminosity exerts a force [1] that alters the motion of the matter reducing its velocity.

The question arises whether the radiation pressure can ultimately halt accretion, and for which Ṁ this
happens. In analogy with what derived by Eddington [2] who found that the radiation pressure due to
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thermonuclear reactions in the interior of a star can make the stellar atmosphere evaporate1, the Lacc

that stops accretion is named Led. For spherical accretion of ionized hydrogen, it is easy to derive [4]

Led =
4πcm

σ
· GM = 3.3 × 104

(
M

M⊙

)
L⊙ (3)

where c is the velocity of light, m is the proton mass and σ is the Thomson cross section for electrons. If
we assume that Equation (2) holds for any Ṁ, we can define the Eddington mass accretion rate, Ṁed,
as

Ṁed =
4πcm

σ
· R = 1.1 × 10−3

(
R

R⊙

)
M⊙ yrs−1. (4)

The fact that Led can be reached with a finite value of Ṁ has important implications in astrophysics,
for instance in topics like high-mass star formation [e.g., 5], accretion onto compact objects or growth
of super massive black holes [e.g., 6]. In these cases, the observational results sometimes require to
model the accretion with high rates, such that Ṁ > Ṁed. Indeed, many works have been developed to
overcome the limitation on Ṁ, see, e.g., Donnan et al. [7] and references therein.

Now, the aim of this paper is to show that Equation (2) is not valid when radiation pressure is
present. Clearly, GM/R measures the depth of the gravitational potential well but the effect of the
radiation pressure is to reduce the velocity of the matter. It would make no sense, otherwise, to look
for the value of Ṁ that stops accretion. Thus, vf < vff, or ∥vf∥ <

√
2GM/R, while, as said, Equation (2)

holds only if vf = vff. In turn, this means that L(k)
acc < Lacc. The inequality might make the reader

think that energy is not conserved; on the contrary, in the next sections I will show that assuming
Equation (2) violates the energy conservation because it does not take into account that by decelerating
the matter, radiation makes a work. The force acting on each particle is not only the accelerating
gravitational force, but also the decelerating radiative force. The latter term is also due to gravitation
so, in some sense, gravity is responsible of both forces.

The idea that gravitational force seems generated by a mass smaller than M, because of the
radiation pressure, is not new: for instance, it can be found in Taam et al. [8] who introduced an effective
mass, smaller than M, to take into account the radiative deceleration; however, they overlooked the
consequence of this force reduction. If Ṁ, and then the number of falling particles, increases more
work is necessary to slow down the matter. In turn, this means that more gravitational energy, in the
form of radiation, is used to decelerate the matter, and the fraction of this energy that is deposited at R
is reduced. It is then clear that the radiation pressure acts as a negative feedback, it eats kinetic energy
which can be seen as a reduction of gravitational potential energy. As a consequence, a complete
accretion stop can happen, if ever, only for Ṁ > Ṁed.

This paper is so organized: In Section 2 the two models I used are presented and discussed. In
Section 3 the results of the second model, more realistic than the first one, in terms of velocity of the
particles and accretion luminosity, are presented. Finally, in Section 4, the results are discussed and
conclusions are given.

2. Methods

To demonstrate my thesis, I will exploit two accretion models: the first is very simple and for this
reason analytical formulae can be derived, but at the price of being a bit unphysical. It is, however,
often used to give a quick demonstration that Lacc = Led when Ṁ = Ṁed [4,9]. I will use it to show
easily the consequences of adopting Equation (1) instead of Equation (2). The second model is more
accurate because it takes into account the energy transfer between matter and radiation.

1 On the validity of this attribution, see Abramowicz [3].
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2.1. A Simple Spherical Accretion Model

This model is unphysical because it considers the interaction between matter and radiation but
only in dynamical terms, ignoring that the radiation is absorbed by the infalling matter. As written, its
utility comes from the fact that the equation of motion can be solved analytically.

A particle of mass m falling from a radius r∞ experiences two forces: i) the gravitational force
−GMm/r2 down to the surface radius R that we suppose much smaller than r∞; and 2) the radiation
pressure due to Thomson scattering. In the classical treatment of radiation [1], the radiation momentum
is completely absorbed by matter at a rate Wσ where W is the energy density of the electromagnetic
field and σ is the Thomson cross section. Since σ depends on the inverse of the square of the particle
mass, this force acts mainly on the electrons. On the contrary, the gravitational force is larger for
protons: as a consequence the flow should be treated as a two fluids plasma but assuming that we
have only fully ionized hydrogen, we can treat the problem as one single fluid. In fact, the electric field
arising from the interactions between protons and electrons keeps the two components coupled [10].
The force acting on each particle is then σI/c where I = cW is the intensity field and c is the light
speed.

Depending on how we define the accretion luminosity, the equation of motion can be written in
two different ways:

Ftot =
σI
c

− GMm
r2 =


σLacc

4πcr2 − GMm
r2 =

σGMṀ
4πcr2R

− GMm
r2 (5)

σL(k)
acc

4πcr2 − GMm
r2 =

σv2
f Ṁ

8πcr2 − GMm
r2 (6)

where m is the proton mass and, when ignoring absorption, we can set I(r) = Lacc/4πr2.
Equation (4) follows immediately from Equation (5) if the condition Ftot = 0 is imposed. However,

it should be noted that Ftot = 0 means that the velocity is constant, not necessarily that v = 0
everywhere, so that we have to verify that v = 0 is indeed an allowed solution.

The problem is that if v = 0, clearly Lacc = 0 as well: the condition Ṁ = Ṁed, through Equation (2),
implies Lacc = Led and, at same time, implies that Lacc = 0. Thus, the combination of Equation (5) and
Equation (2) does not admit the solution v = 0. The inconsistency comes from what has been already
said: Equation (2) is valid only for matter in free fall and this is not the case. The only conclusion we
can draw from setting Ftot = 0 in Equation (5) is that v = const ̸= 0.

If we adopt Equation (1) and solve Equation (6), it is immediate to derive

1
2

mv2 = −1
r

[
1
2

σṀ
4πc

− GMm
]

(7)

from which

v(r) = −

√
2GM

r
−

Rv2
f µ

r
(8)

with µ = Ṁ/Ṁed. Thus

v2
f =

2GM
R

1
1 + µ

= v2
ff

(
1

1 + µ

)
(9)

where vff is the final velocity for matter in free-fall: as expected, vf = vff when µ = 0. The solution
v = 0 is acceptable asymptotically, it is approached as µ → ∞.

By combining Equation (1) with Equation (9), after some algebra one derives

L(k)
acc = Led

(
µ

1 + µ

)
(10)

showing that Led, like v = 0, is asymptotically reached for µ → ∞.
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In this way we can see that increasing Ṁ increases L(k)
acc as well. But taking into account the

negative feedback of the radiation pressure, that is feeded by the gravitational potential well, the
increase in luminosity does not scale linearly with Ṁ.

2.1.1. The Case L⋆ ̸= 0

In Equation (6), the luminosity produced internally by the accreting source, named in the following
L⋆, has been assumed to be zero. In case L⋆ ̸= 0, the equations change but the final result is,
qualitatively, not different from the previous case, provided that L⋆ < Led.

Equation (6) becomes

dv2

dr
=

σ

4πcmr2 v2
f Ṁ +

2σL⋆

4πcmr2 − 2GM
r2 =

Rµv2
f

r2 +
2GM

r2 Λ⋆ −
2GM

r2 (11)

with Λ⋆ = L⋆/Led; Equation (8) is now

v(r) = −

√
2GM

r
−

Rv2
f µ

r
− 2GM

r
Λ⋆ (12)

and

v2
f = v2

ff

(
1 − Λ⋆

1 + µ

)
, (13)

so that

v(r) = −
√

2GM
r

√
1 − Λ⋆

1 + µ
. (14)

Thus, accretion is still possible with any Ṁ provided that Λ⋆ < 1. When Λ⋆ = 1, the radiation pressure
due to L⋆ that clearly does not depend on Ṁ, stops accretion.

The accretion luminosity is easily derived:

L(k)
acc =

1
2

v2
f Ṁ = Led

[
µ(1 − Λ⋆)

1 + µ

]
(15)

with Lacc = 0 for Λ⋆ = 1.

2.2. A More Realistic Accretion Model

In the previous section we have seen the consequences of defining the accretion luminosity
following Equation (1) or Equation (2), by using a simple model. This model is based on three
assumptions: i) zero-temperature flow, so that no interaction between particles is taken into account;
ii) no energy exchange between matter and radiation; iii) L(r) decreases with radius only by the
geometrical factor 4πr2, which implies a constant otpical depth τ = 0 at all radii.

Now, assumption i) makes the model not too much realistic even if not unphysical. But assump-
tions ii) and iii) are not consistent with the fact that the interaction between radiation and matter must
happen in order to justify the equation of motion given either by Equation (5) or by Equation (6).

In this section, thus, I will employ a more realistic accretion model. In literature one can find
accurate accretion models that describe the physics of the accretion process, e.g., Fukue [11] or
Murakami et al. [12], just to make a few of examples. Adapting these models to my needs, however,
is not simple because in many cases the use of Equation (2) is not written explicitly, so that it is not
immediate to find out how to modify a given model to adopt Equation (1). And, as I am going to show,
it can happen that Equation (2) and Equation (1) are unintentionally adopted at the same time.

For these reasons, I use a model developed fifty years ago by Maraschi et al. [13, MTR in the
following], that while considering the exchange between matter and radiation, so assumption ii) above
is no longer present, it is still quite simple.

The set of equations used by MRT is:
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∂E
∂r

= −1
ρ

∂

∂r

(
U
3

)
(Euler’s equation), (16)

−4πr2ρv = Ṁ (continuity equation), (17)
∂

∂r
(4πr2F) = Ṁ

∂E
∂r

(energy balance between radiation and gas), (18)

F = − cm
σ

1
ρ

∂

∂r

(
U
3

)
+

4
3

Uv (transfer equation for photons). (19)

where the multiplying 4/3 factor in front of Uv was added by Kafka and Mészáros [14]; note also that
I have assumed a negative velocity, so the sign in the continuity equation and in the term 4/3Uv is
opposite to MRT’s set.

Equation (18) gives

F =
Ṁ

4πr2 (E + ψ) =
Ṁ

4πr2

(
E +

GM
R

)
(20)

where the constant ψ is found assuming that particles’ energy goes to zero as r → ∞. Now, if we
analyze carefully Equation (20), we will see that it implies Equation (1) even if MTR assumed explicitly
that Equation (2) holds. In fact, Energy E is given by

E =
1
2

v2 − GM
r

(21)

while the accretion luminosity is L = 4πr2F; for r = R we have

Lacc = Ṁ
[

E(R) +
GM

R

]
= Ṁ

(
1
2

v2
f −

GM
R

+
GM

R

)
=

1
2

Ṁv2
f = L(k)

acc (22)

so that, in MTR’s model there is the hidden adoption of Equation (1). Of course, if one assumes that
vf = vff, that is, that the final velocity is equal to the free-fall final velocity, the two formulations of Lacc

give the same result. But MRT derived for their model the velocity profile v(r), finding that for any
µ ̸= 0, it is always vf < vff, which is expected. Then we have

L(k)
acc =

1
2

Ṁv2
f <

1
2

Ṁv2
ff =

GMṀ
R

(23)

which shows that MTR’s model was not internally consistent. Of course, my aim is not to show the
inconsistency of MTR’s work, I make these considerations only to explain why I adopt a simple model
instead of a complex and much more realistic, accretion model. Only in this way I can go deep in the
physics of the solution to read behind the lines what are all the assumptions, intentionally or not, of
the model.

Now, for r → ∞ we have

L∞ → Ṁ
(

1
2

v2 +
GM

R

)
≥ GMṀ

R
(24)

where the equal sign holds when v → 0 for r → ∞. By comparing Equation (23) with Equation (24), we
have to conclude either that two equations are not consistent, or that L(r) increase with r, which looks
unphysical. The reason of the inconsistency comes from neglecting the absorption of the radiation, but
this problem becomes evident only if Equation (1) is assumed, because with Equation (2) it is clear that
L∞ → GMṀ

R .
The set of Equations (17) — (19) cannot be solved under the assumption iii) (i.e., τ(r) = 0 ∀r, see

the beginning of this section). We have to take into account the absorption of the radiation by writing

F =
Ṁ

4πr2

(
E +

GM
R

)
e−τ (25)
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with

τ =
σ

m

∫ r

R
ρdr′ = − σ

m
Ṁ
4π

∫ r

R

1
vr′2

dr′,
∂τ

∂r
= − σ

m
Ṁ
4π

1
vr2 (26)

(∂τ/∂r will be used later on in this section).
By combining the different equations, it is possible to arrive to a second order differential equation

in v: all the steps are detailed in Appendix A where the general case L⋆ ̸= 0 is treated. Here I present
the final equation for the case L⋆ = 0:

∂2V
∂z2 +

1
z2

[
µ

(
4 − 1

2
e−τ

)
− 1

2V2 − µe−τ

2V2

(
1
z
− 1

)]
∂V
∂z

+

1
z3V

(
2µ

z
− 1

)
+

µ

z3 e−τ

(
cµ

2vffz
+ V − 3

2zV

)
+

− µ

2z3V
e−τ

(
− cµ

vffz2V
− cµ

vffzV
− 2

)
= 0 (27)

with z = r/R, V = v
√

R
2GM and, for typical neutron stars,

− c
vff

∼ 1.840
(

R
10km

) 1
2
(

M
M⊙

)− 1
2

(28)

so that Equation (26) becomes

τ =
c

vff
µ
∫ z

1

1
Vz′2

dz′ ∼ −1.840µ

(
R

10km

) 1
2
(

M
M⊙

)− 1
2 ∫ z

1

1
Vz′2

dz′ (29)

with τ > 0 because V < 0.
When µ = 0 Equation (27) turns into

∂2V
∂z2 − 1

2z2V2
∂V
∂z

− 1
z3V

= 0 (30)

and it is easy to verify that the free-fall velocity V = −1/
√

z is a solution.
Let’s now see if a solution V = cost, say Vnf (no force), is possible. Equation (27) becomes

2µ

z
− 1 + Vnfµe−τ

(
cµ

2vffz
+ Vnf −

3
2zVnf

)
− µ

2
e−τ

(
− cµ

vffz2Vnf
− cµ

vffzVnf
− 2

)
= 0 (31)

A constant solution, by definition, must be valid for any z, in particular also for z = 1 where the
previous equation simplifies in

2µ − 1 + Vnfµ

(
cµ

2vff
+ Vnf −

3
2Vnf

)
− µ

(
− cµ

vffVnf
− 1

)
= 0 (32)

from which
V3

nf +
cµ

2vff
V2

nf +
3µ − 2

2µ
Vnf +

cµ

vff
= 0. (33)

It is convenient to plot this cubic equation to look for the solutions: this is done in Figure 1 for
a set of values of µ. The case µ = 0 is not shown because it corresponds to matter in free fall and
V cannot be constant; for µ = 0.01, a curve not shown in the figure, a solution for Vnf is not found
because the curve, in the range shown, never intersects the line y = 0. A value of Vnf that is solution of
the cubic equation starts appearing somewhere in the range 0.01 < µ ≤ 0.05. But for µ ≤ 2, the range
of values explored in the next section, Equation (27) admits only V(z) < 0 ∀z, so that Vnf > 0 is not
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acceptable: as a consequence, Equation (27) does not admit a solution V = const and, in turn, this
means that the total force acting on each particle can never be zero.

3 2 1 0 1 2 3
Vnf

40

30

20

10

0

10

20

mu = 0.05
mu = 0.1
mu = 0.3
mu = 0.5
mu = 1.0
mu = 1.5
mu = 2.0

Figure 1. The intersections of the straight y = 0 (black line) with the set of curves, drawn with different
µ, give the value Vnf that solve Equation (33). As explained in the text, an acceptable solution for our
problem requires that Vnf intersects the line y = 0 for negative values. For µ ≥ 2.0 this does not happen:
Equation (27) does not admit a solution V = const.

3. Results

Equation (27) has been solved using the solver Radau of the routine solve_ivp, part of the Python
package scipy [15], using an iterative approach2: first, Equation (8), that in adimensional variables
becomes

V = −
√

1
z(1 + µ)

, (34)

is used in Equation (29) to derive a first estimate of the optical depth, namely

τ = 2
c

vff
µ
√

1 + µ

[√
1
z
− 1

]
. (35)

With the above τ(z), Equation (27) is solved with boundary conditions
V∞ = −

√
1

z∞(1+µ)(
∂V
∂z

)
∞

= 1
2

√
1

1+µ
1

z1.5
∞

(36)

where z∞ = 100
Once V(z) and ∂V/∂z are derived, τ(z) is computed again but now directly from Equation (29).

The new curve τ(z) is used in Equation (27) and the procedure is iterated. Given two iterations, i and
i + 1, the iterations is stopped once δi+1 = |(τ(z∞)i+1 − τ(z∞)i)|/τ(z∞)i+1 < 10−3.

This approach works for µ < 1. When µ ≥ 1, δi decreases until reaches a minimum, then it
oscillates between two values, one small and one large. In these cases, I stop the procedure once
δi+1 > δi, and the solution corresponding to iteration i is used as solution.

I have also tried another approach in which, given the new solution of V(z), Equation (27) is
solved starting from z = 1 and going to larger z. The optical depth is computed at runtime through

2 The routine code is available for download, see paragraph Data Availability Statement toward the end of the paper.
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 τ0 = 0

τi = τi−1 +
c

vff
µ

(
1

z2
i−1Vi−1

+ 1
z2

i Vi

)
(zi − zi−1)/2

(37)

This approach failed because sometime the routine solve_ivp calls the integrating function twice with
the same3 z, but the second time the first derivative of V jumps to high values and V(z) diverges.

Five values of µ are chosen for this work: 0.1, i.e., one tenth of Ṁed, 0.5, 1.0, 1.5 and 2.0. In
Table 1, for each µ < 1, column Iteration gives how many iterations are necessary to reach convergence
(δi+1 < 10−3); for the other values of µ, the two last iterations are reported, once δ starts oscillating
between two values. In these case, the iterations are stopped when δi+1 > δi and the adopted τ(z)
is the one corresponding at the smallest δ: for instance, when µ = 1 the last decreasing value is for
iteration 9, and the adopted τ∞ is 4.0739.

Table 1. Here I report, for each value of µ, the number of iterations; τ∞i+1 and τ∞i , the optical depth
at the largest distance from the accreting object, where i corresponds to the number of iterations; the
relative difference δi+1 of the optical deptth at infinity, between two successive iterations.

µ Iteration τ∞i+1 τ∞i δi+1

0.1 2 0.3518 0.3518 8.741 · 10−5

0.5 4 1.9420 1.9419 9.982 · 10−6

1.0 9 4.0648 4.0739 2.240 · 10−3

10 4.0748 4.0648 2.446 · 10−3

1.5 2 7.1799 6.1722 1.403 · 10−1

3 5.7619 7.1799 2.461 · 10−1

2.0 1 16.175 11.471 2.908 · 10−1

2 7.6956 16.175 1.102

In Figure 2, the curves τ(z) are shown. Because of the lack of convergence of τ∞, it is possible that
τ is a bit overestimated for µ ≥ 1.

0 20 40 60 80 100
z (in units of r/R)

0

2

4

6

8

10

12

14

16

(z
)

Optical depth

mu = 0.1
mu = 0.5
mu = 1.0
mu = 1.5
mu = 2.0

Figure 2. Optical depth τ vs. normalized radial distance for different values of Ṁ in units of Ṁed.

The solutions V(z) are shown in the left panel of Figure 3: at large distances they are similar,
approaching the asymptotic law given by Equation (34). At short radii, z < 2, when µ ∼ 1 a maximum
in |V| starts appearing, clearly visible in the right panel of Figure 3 where a zoom-in of the left panel
for small z is shown.

3 It can also happen that zi < zi−1, but this case is handled easily.
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Figure 3. Left panel: velocity V, in units of free-fall velocity
√

2GM/R vs. normalized radial distance
for different values of Ṁ in units of Ṁed. Right panel: zoom-in of the left figure to emphasize the
maximum in |V| at short radii.

This means that infalling particles are accelerated up to very close to the surface of the accreting
object, and then, at z ∼ 2, they are strongly decelerated. In a complete thermodynamical treatment, this
behaviour would be modelled with a schock, causing a strong increase in temperature. The presence of
a shock was already foreseen by Shapiro and Salpeter [16], and even at similar distances; it is, however,
surprising that the possibility of a shock is suggested even with a simple, zero-temperature approach
as in this case. Clearly, lacking a proper thermodynamical set of equations, we can only note that the
strong deceleration looks like a shock, but nothing more can be said.

Finally, in Figure 4 the luminosity Λ is shown, where

Λ(z) = µ

(
V2 − 1

z
+ 1

)
e−τ (38)
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Figure 4. Left panel: luminosity Λ, in units of Led, vs. normalized radial distance for different values
of Ṁ in units of Ṁed. Right panel: zoom-in of the left figure at short radii.

As expected, Λ(z) follows the trend of V(z) modulated by the exponential of τ. As said before,
however, it is likely that the optical depth is overestimated at large z, so that, especially for µ > 1, the
luminosity might be underestimated.

Figure 4 gives a quantitative representation of what has been said at the end of the Introduction:
for high Ṁ, the work done by the radiation pressure to decelerate the infall matter makes the emerging
luminosity be more and more faint. This is because even if the number of particles increases with Ṁ,
the kinetic energy per particle is more and more reduced.

4. Discussion

We have seen that Equation (20) implies Equation (1), so it could seem that the aim of this paper, to
promote the use of L(k)

acc instead of the more common Lacc, is not new: even if not explicitly written, we
can find that equation already in a fifty-years-old model. Moreover, Equation (2) is often not explicitly
written in modern accretion models, as if it were not used.
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However, Equation (2) is at the base of the following equivalence, used in pratically all the papers
on accretion:

µ ≡ Ṁ
Ṁed

=
Lacc

Led
≡ Λ. (39)

No matter how Lacc is written, the above equivalence clearly states that when µ = 1 then Λ = 1, and
once Lacc = Led accretion is stopped.

On the contrary, if one follows Equation (1), then

µ ≡ Ṁ
Ṁed

>
L(k)

acc

Led
≡ Λ(k); (40)

as a consequence, not only µ = 1 does not imply that the accretion luminosity is equal to Led, also, it is
to be demonstrated that Led can ever be reached with a finite Ṁ.

I have derived Equation (40) first using a basic accretion model that has the only advantage to
give an analytical expression for the velocity law v(r).

Once v(r) is known, L(k)
acc can be computed and one can see that Led is an asymptotic value reached

only for Ṁ → ∞. In this model, when µ = 1 we have Λ(k) = 0.5.
I have then adopted a second accretion model developed by MTR. This model is more realistic

than the first one, but with a strong assumption: the falling particles do not interact each other during
the motion. This is equivalent to say that the flow is at zero-temperature. Such an assumption is, of
course, less than optimal and the results obtained are, with no doubt, of limited value. However, it
is important to stress that this model is not unphysical, no physical law is violated, it is only not too
much realistic. It can be seen as an ideal experiment of thermodynamics that cannot be executed in real
world but that can give indications on how a system evolves. The model used here can give insights
on what happens in the accretion flow when Equation (1) is used.

I understand that the reader can feel uncomfortable if someone claims that what has been assumed
in the last sixty years, Equation (2) or Equation (39), is not correct. But my conclusion is based on
Equation (1): first, it is based on energy conservation; second, it was already used in the past, as
shown before. Equation (2) violates the energy conservation because it does not take into account that
the radiation pressure makes work on the infalling matter, changing the equation of motion. As a
consequnce, also the energy balance must be adapted. It is clear that the depth of the gravitational
potential well remains GM/R, independent on Ṁ. On the other hand, the radiation pressure acts as a
counter-reaction whose amplitude is a fraction of GM/R, and one has to demostrate that this fraction
can indeed be 1.

All the accretion models show that the matter is not in free fall, being decelerated by the radiation
pressure, thus Equation (2) can no longer be valid and Equation (40) holds. For any developed
accretion model, it has to be demonstrated that radiation pressure can halt accretion with a finite Ṁ,
this assumption must be proved and, in general, for µ = 1 Led is not reached.
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Appendix A

In this section, the system of Equations (16)–(19) will be used to derive the second order differential
equation in V, Equation (27), in the more general case of L⋆, the internal luminosity of the accreting
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source, different from zero. By setting in the following L⋆ = 0, all the equations given in Section 2.2
can be recovered.

First, Equation (25) becomes

F =
Ṁ

4πr2

(
E +

GM
R

)
e−τ +

L⋆

4πr2 e−τ (A1)

with τ given by Equation (26).
Then, I follow MTR’s procedure: first, combining Equation (A1) with Equation (19) we have

Ṁ
4πr2

(
E +

GM
R

)
e−τ +

L⋆

4πr2 e−τ = − cm
σ

1
ρ

∂

∂r

(
U
3

)
+

4
3

Uv, (A2)

and using Equation (16)

Ṁ
4πr2

(
E +

GM
R

)
e−τ +

L⋆

4πr2 e−τ =
cm
σ

∂E
∂r

+
4
3

Uv (A3)

from which

U =
3
4

Ṁ
4πr2v

(
E +

GM
R

)
e−τ +

3
4

L⋆

4πr2v
e−τ − 3

4
cm
σv

∂E
∂r

. (A4)

To eliminate U, Equation (A4) is derived with respect to r and Equation (16) is used again. But
before that, I write E as a function of v, differently from MTR who wrote v as a function of E,

E =
1
2

v2 − GM
r

,
∂E
∂r

= v
∂v
∂r

+
GM
r2 (A5)

so that
∂U
∂r

= −3ρ
∂E
∂r

= 3
Ṁ

4πr2v
∂E
∂r

= 3
Ṁ

4πr2
∂v
∂r

+ 3
Ṁ

4πr2v
GM
r2 , (A6)

3
4

Ṁ
4π

∂

∂r

(
Ee−τ

r2v

)
=

3
4

Ṁ
4πr2 e−τ

[
1
2

∂v
∂r

+
1
2

σṀ
4πmr2 − v

r
+

GM
rv2

∂v
∂r

+

−GM
rv

σṀ
4πmr2v

+ 3
GM
r2v

]
(A7)

3
4

GMṀ
4πR

∂

∂r

(
e−τ

r2v

)
=

3
4

Ṁ
4π

GM
R

e−τ

r2v

[
σṀ

4πmr2v
− 1

v
∂v
∂r

− 2
r

]
(A8)

3
4

L⋆

4π

∂

∂r

(
e−τ

r2v

)
=

3
4

L⋆

4π

e−τ

r2v

[
σṀ

4πmr2v
− 1

v
∂v
∂r

− 2
r

]
(A9)

and

−3
4

cm
σ

∂

∂r

(
1
v

∂E
∂r

)
= −3

4
cm
σ

[
∂2v
∂r2 − GM

r2v2
∂v
∂r

− 2GM
r3v

]
. (A10)

Thus

3
Ṁ

4πr2
∂v
∂r

+ 3
Ṁ

4πr2v
GM
r2 =

=
3
4

Ṁ
4πr2 e−τ

[
1
2

∂v
∂r

+
1
2

σṀ
4πmr2 − v

r
+

GM
rv2

∂v
∂r

− GM
rv

σṀ
4πmr2v

+ 3
GM
r2v

]
+

+
3
4

Ṁ
4π

GM
R

e−τ

r2v

[
σṀ

4πmr2v
− 1

v
∂v
∂r

− 2
r

]
+

3
4

L⋆

4π

e−τ

r2v

[
σṀ

4πmr2v
− 1

v
∂v
∂r

− 2
r

]
− 3

4
cm
σ

[
∂2v
∂r2 − GM

r2v2
∂v
∂r

− 2GM
r3v

]
, (A11)
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and after expanding all the multiplications

3
4

cm
σ

∂2v
∂r2 + 3

Ṁ
4πr2

∂v
∂r

+ 3
Ṁ

4πr2v
GM
r2 − 3

4
cm
σ

GM
r2v2

∂v
∂r

− 3
4

cm
σ

2GM
r3v

− 3
4

Ṁ
4πr2 e−τ 1

2
∂v
∂r

+

− 3
4

Ṁ
4πr2 e−τ 1

2
σṀ

4πmr2 +
3
4

Ṁ
4πr2 e−τ v

r
− 3

4
Ṁ

4πr2 e−τ GM
rv2

∂v
∂r

+
3
4

Ṁ
4πr2 e−τ GM

rv
σṀ

4πmr2v
+

− 3
4

Ṁ
4πr2 e−τ3

GM
r2v

− 3
4

Ṁ
4π

GM
R

e−τ

r2v
σṀ

4πmr2v
+

3
4

Ṁ
4π

GM
R

e−τ

r2v
1
v

∂v
∂r

+
3
4

Ṁ
4π

GM
R

e−τ

r2v
2
r
+

− 3
4

L⋆

4π

e−τ

r2v
σṀ

4πmr2v
+

3
4

L⋆

4π

e−τ

r2v
1
v

∂v
∂r

+
3
4

L⋆

4π

e−τ

r2v
2
r
= 0. (A12)

After simplifying the term 4σ/3cm we get

∂2v
∂r2 +

4σ

cm
Ṁ

4πr2
∂v
∂r

− GM
r2v2

∂v
∂r

− σ

cm
Ṁ

4πr2 e−τ 1
2

∂v
∂r

− σ

cm
Ṁ

4πr2 e−τ GM
rv2

∂v
∂r

+
σ

cm
Ṁ
4π

GM
R

e−τ

r2v
1
v

∂v
∂r

+

+
σ

cm
L⋆

4π

e−τ

r2v
1
v

∂v
∂r

+
4σ

cm
Ṁ

4πr2v
GM
r2 − 2GM

r3v
− σ

cm
Ṁ

4πr2 e−τ 1
2

σṀ
4πmr2 +

σ

cm
Ṁ

4πr2 e−τ v
r
+

+
σ

cm
Ṁ

4πr2 e−τ GM
rv

σṀ
4πmr2v

− σ

cm
Ṁ

4πr2 e−τ3
GM
r2v

− σ

cm
Ṁ
4π

GM
R

e−τ

r2v
σṀ

4πmr2v
+

+
σ

cm
Ṁ
4π

GM
R

e−τ

r2v
2
r
− σ

cm
L⋆

4π

e−τ

r2v
σṀ

4πmr2v
+

σ

cm
L⋆

4π

e−τ

r2v
1
v

∂v
∂r

+
σ

cm
L⋆

4π

e−τ

r2v
2
r
= 0 (A13)

that can be cast in this form

∂2v
∂r2 +

[
4σṀ

4πcmr2 − GM
r2v2 − σṀ

4πcmr2 e−τ 1
2
− σṀ

4πcmr2 e−τ GM
rv2 +

σṀ
4πcm

GM
R

e−τ

r2v
1
v
+

+
σ

cm
L⋆

4π

e−τ

r2v
1
v

]
∂v
∂r

+
4σṀ

4πcmr2v
GM
r2 − 2GM

vr3 − σṀ
4πcmr2 e−τ 1

2
σṀ

4πmr2 +

+
σṀ

4πcmr2 e−τ v
r
+

σṀ
4πcmr2 e−τ GM

rv
σṀ

4πmr2v
− σṀ

4πcmr2 e−τ3
GM
r2v

+

− σṀ
4πcm

GM
R

e−τ

r2v
σṀ

4πmr2v
+

σṀ
4πcm

GM
R

e−τ

r2v
2
r
− σ

cm
L⋆

4π

e−τ

r2v
σṀ

4πmr2v
+

σ

cm
L⋆

4π

e−τ

r2v
2
r
= 0. (A14)

Now we use the relation
σṀ

4πcm
= Rµ (A15)

so that

∂2v
∂r2 +

[
4Rµ

r2 − GM
r2v2 − Rµ

r2 e−τ 1
2
− Rµ

r2 e−τ GM
rv2 + µ

GMe−τ

r2v
1
v
+

σ

cm
L⋆

4π

e−τ

r2v
1
v

]
∂v
∂r

+

+
4Rµ

r2v
GM
r2 − 2GM

vr3 − Rµ

r2 e−τ 1
2

Rcµ

r2 +
Rµ

r2 e−τ v
r
− Rµ

r2 e−τ GM
rv

Rcµ

r2v
+

− Rµ

r2 e−τ3
GM
r2v

− µ
GMe−τ

r2v
Rcµ

r2v
+ µ

GMe−τ

r2v
2
r
− σ

cm
L⋆

4π

e−τ

r2v
Rcµ

r2v
+

σ

cm
L⋆

4π

e−τ

r2v
2
r
= 0, (A16)

and finally

∂2v
∂r2 +

1
r

[
Rµ

r

(
4 − 1

2
e−τ

)
− GM

rv2 − µ
GM

r
e−τ

v2

(
R
r
− 1

)
+

σ

cm
L⋆

4π

e−τ

rv2

]
∂v
∂r

+

+
2

r2v
GM

r

(
2Rµ

r
− 1

)
+

Rµ

r3 e−τ

(
−1

2
Rcµ

r
+ v − 3

GM
rv

)
+

− Rµ

r2v
e−τ GM

r

(
Rcµ

r2v
+

µc
rv

− 2
R

)
− σ

cm
L⋆

4π

e−τ

r3v

(
Rcµ

rv
− 2

)
= 0. (A17)
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It might be of some interest to note that the equation for E derived by MTR contains the term (∂E/∂r)2,
while in the above equation a quadratic term in ∂v/∂r is not present.

At this point, the following dimensionless variables are introduced: z = r/R, V = v
√

R
2GM ,

obtaining

∂2v
∂r2 =

√
2GM

R
1

R2
∂2V
∂z2 ;

1
r

∂v
∂r

=

√
2GM

R
1

R2
1
z

∂V
∂z

(A18)

Rµ

r

(
4 − 1

2
e−τ

)
=

µ

z

(
4 − 1

2
e−τ

)
, (A19)

−GM
rv2 = − 1

2zV2 , (A20)

−µ
GM

r
e−τ

v2

(
R
r
− 1

)
= −µe−τ

2zV2

(
1
z
− 1

)
, (A21)

σ

cm
L⋆

4π

e−τ

rv2 =
L⋆

Led

e−τ

2zV2 = Λ⋆
e−τ

2zV2 (A22)

with Λ⋆ = L⋆/Led
2

r2v
GM

r

(
2Rµ

r
− 1

)
=

1
R2z3V

√
2GM

R

(
2µ

z
− 1

)
, (A23)

Rµ

r3 e−τ

(
−1

2
Rcµ

r
+ v − 3

GM
rv

)
=

µ

R2z3 e−τ

√
2GM

R

(
cµ

2vffz
+ V − 3

2zV

)
(A24)

where

vff = −
√

2GM
R

(A25)

is the final free-fall velocity;

−Rµ

r2v
e−τ GM

r

(
Rcµ

r2v
+

µc
rv

− 2
R

)
= − µ

2R2z3V

√
2GM

R
e−τ

(
− cµ

vffz2V
− cµ

vffzV
− 2

)
, (A26)

and, finally,

− σ

cm
L⋆

4π

e−τ

r3v

(
Rcµ

rv
− 2

)
= −

√
2GM

R
Λ⋆

e−τ

2R2z3V

(
− cµ

zVvff
− 2

)
. (A27)

All the terms can be collected and the common factor
√

2GM/R × 1/R2 can be cancelled out,
obtaining

∂2V
∂z2 +

1
z2

[
µ

(
4 − 1

2
e−τ

)
− 1

2V2 − µe−τ

2V2

(
1
z
− 1

)
+ Λ⋆

e−τ

2V2

]
∂V
∂z

+

1
z3V

(
2µ

z
− 1

)
+

µ

z3 e−τ

(
cµ

2vffz
+ V − 3

2zV

)
+

− µ

2z3V
e−τ

(
− cµ

vffz2V
− cµ

vffzV
− 2

)
− Λ⋆

e−τ

2z3V

(
− cµ

zVvff
− 2

)
= 0. (A28)

Equation (27) corresponds to Equation (A28) once Λ⋆ is set to zero. The procedure to compute the
solution V(z) is the same outlined in Section 3: the initial τ(z)is derived assuming the velocity law
given by Equation (14) that, in the new variables, becomes

V = −
√

1 − Λ⋆

z(1 + µ)
(A29)
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Thus, Equation (35) is now

τ = 2
c

vff
µ

√
1 + µ

1 + Λ

[√
1
z
− 1

]
. (A30)

Equation (A28) has been resolved for two values of µ, 0.1 and 1.0, and two values of Λ⋆, 0.1
and 0.5. If Λ⋆ ≥ 1, V changes sign so that Equation (17) and Equation (19) must be changed as well.
However, the case of reverted motion is out of the scope of this paper and will not discussed.

In Figure A1 the solutions of V(Z) are reported for the four cases studied. The two panels are
quite similar to those in Figure 3. The main difference is that Λ⋆ does not depend on µ, nor on V2

f , so
that, at the surface of the accreting object, the radiation pressure is higher than in the case of Λ⋆ = 0
causing a stronger deceleration.
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Figure A1. Left panel: velocity V, in units of free-fall velocity
√

2GM/R vs. normalized radial distance
for two values of Ṁ, in units of Ṁed, and two values of L⋆, in units of Led. Right panel: zoom-in of the
left figure to emphasize the maximum in |V| at short radii.

The luminosity profile, given by

Λ(z) =
[

µ

(
V2 − 1

z
+ 1

)
+ Λ⋆

]
e−τ , (A31)

is shown in the two panels of Figure A2. For µ = 1.0 and Λ⋆ = 0.5, the optical depth increases so fast
that the luminosity goes to very small values just above the surface of the accreting object. However, as
written in Section 2.2, the procedure used to solve Equation (A28) causes a likely overestimated of τ(r):
a more rigorous treatment of accretion, without the zero-temperature assumption, would probably
give a more gentle transition in V when z approaches 1, and, consequently, a less severe attenuation of
Λ at high µ. In any case, at least qualitatively, we can conclude that µ = 1 does not stop accretion.
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Figure A2. Left panel: luminosity Λ, in units of Led, vs. normalized radial distance for different values
of Ṁ in units of Ṁed. Right panel: zoom-in of the left figure at short radii.
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