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Abstract: This article serves as a extensive research into proposing a few significant inequalities involving
polynomial functions in 7z(x), the prime counting function, with an intention of exploring the behaviour of 7t(x) for
increasing x. The general case for such polynomials has also been discussed in detail towards the later section of
the article, where the primary focus was to study the order of polynomials of the form, P(7t(x)) — ; (fg =Q(m(x/e)) +
R(x), P, Q and R being arbitrary polynomials, and establish for a particular case that, the polynomial yields

negative values for sufficiently large values of x. Furthermore, the error term in such estimations is of order

@] ((logx%)’ d depends heavily upon deg(P) and deg(Q).
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1. Introduction and Motivation

The motivation for investigating the distribution of prime numbers over the real line R first
reflected in the writings of famous mathematician Ramanujan, as evident from his letters [16, pp.
xxiii-xxx , 349-353] to one of the most prominent mathematician of 20" century, G. H. Hardy during
the months of Jan/Feb of 1913, which are testaments to several strong assertions about prime numbers,
especaially the Prime Counting Function, t(x) [ref. (2.0.1)].

In the following years, Hardy himself analyzed some of thoose results [17] [18, pp. 234-238], and
even wholeheartedly acknowledged about them in many of his publications, one such notable result is
the Prime Number Theorem [ref. (3.4.1)].

Ramanujan provided several inequalities regarding the behaviour and the asymptotic nature of
7t(x). One of such relation can be found in the notebooks written by Ramanujan himself has the
following claim.

Theorem 1.0.1. (Ramanujan’s Inequality [2]) For x sufficiently large, we shall have,

2 ex x
(m(x))? < 1ogx”(;) (1)

Worth mentioning that, Ramanujan indeed provided a simple, yet unique solution in support of
his claim.

One immediate question which may pop up inside the head of any Number Theorist is that,
what is meant by the term "large"? Apparently, over many years and even recently, a huge amount of
effort has been put up by eminent researchers from all over the world in order to study Ramanujan’s
Inequality, and focusing on understanding the behaviour of 77(x) and any other Arithmetic Function
associated to it. For example, it can be found in the work of Wheeler, Keiper, and Galway, Hassani [15,
Theorem 1.2]. Later on thanks to Dudek and Platt [3, Theorem 1.2] and Axler [19], it has been well
established that, a large proportion of posiive reals x falls under the category for which the inequality
in fact is true.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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This article serves as a humble tribute to arguably the most famous mathematician that there
ever was, Srinivasa Ramanujan, and his stellar work on 7t(x), where we shall derive a few important
inequalities involving polynomial functions in 77(x), namely,

Cubic Polynomial Inequality

Higher-Degree Polynomial Inequality

Quadratic Form involving sums of Prime Counting Function, and,
Logarithmic Weighted Sum Inequality

We shall further discuss estimations for polynomials under a much more general setting in later
section, although, one of the most important prospect of this article is justifying the equivalence of
the statements of the Cubic Polynomial Inequality and Ramanujan’s Inequality. Important to highlight
that, proper numerical verifications in support of justifying each and every inequality as proposed in
section 3 have been thouroughly provided throughout the paper.

2. Important Derivations Regarding 7t (x)

We recall the definition of the Prime Counting Function [13,17], 7t(x) to be the number of primes
less than or equal to x € R+. In addition to above, we further define the Second Chebyshev Function
P(x) as follows.

Definition 2.0.1. For everyx > 0,

Where, A(n) is the "Mangoldt Function" .

It can further be commented that [5, Lemma 3.2.1],
P(x) = x+O<x1/2 log? x) ()

A priori a genius application of the Prime Number Theorem [13, Theorem 2.2.1, pp. 4] allows us to obtain
an estimate for 77(x) in terms of ¢(x).

Theorem 2.0.1.

n(x)—‘/’(x)+o< x ) 3

o IOg X logz X
Readers can refer to [5, Theorem (3.2.2)] in for a detailed solution of this result.

3. Inequalities Involving Polynomials in 77(x)

3.1. Cubic Polynomial Inequality

The statement is as follows.

Theorem 3.1.1. Let us consider the cubic polynomial of rt(x):

3ex 3e%x
— 3_ 2 2
H(x) := (7(x)) logx(n(x/e)) + (log 1)2 mt(x/e”) 4)
Given that 7t(x) is approximated by 1 O’g( ~ with a known error term, we can hypothesize that,
o
#12) =0 ) ®

Furthermore, H(x) < 0 for sufficiently large values of x.
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Proof. A priori from the order estimate between 7(x) and (x) as defined in (3) (cf. [5]), we compute
the indivudual terms of H(x) as follows,

_ px/e) x/e _plx/e) x/e
/o) = ot O ogterent) = gy 1+ og =17) ©
and,
_ y(x/e) x/e? _p(x/e?) x/ e
n(x/e) = log(x/e?) + O((log(x/ez))2> ~ logx—2 + O((logx — 2)2> @
Furthermore,
3 (P(x) X )P . ) x
= (s O (ioge) ) = togar * ogr© (g
 P(x) x 2 x 3
3 g (O(aognz)) * (O(gr)) ®
Further simplification yields,
e @R P
0 = o255+ Gogr) ©)
Finally,
3ex _ Bex [ y(x/e) x/e 2
logx(ﬂ(x/e))2 ~ logx <logx 17 O((logx - 1)2)>
_ 3ex (1/;(35/(2))2 P(x/e) x/e x/e 2
~ logx ((logx —1)2 +2: (logx — 1)20((logx — 1)2> + <O<(logx - 1)2)> )
_ Bex(y(x/e))? x>
= tognogs 217+ oga) 00
And,

3e2x

_3e2x [y(x/e?) x/e?
(log x)? m(x/e) = (log x)? <logx " O((logx — 2)2))

_ 3etayp(x/e?) x3
~ Togmriogs 0+ OTo)

Combining all the terms (6), (9), (10) and (11), we obtain,
_((p()? x° Bex(ip(x/e)) X
1) = ((Goga +(og7)) ~ (mpattogs 217t O (i)

* ( (10265;%(5; = 2 +O ( <1o§x>4>)
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Considering the dominant terms and the contributions of each term separately as compared to the
error term, we get,

CW@)P Bex(p(x/e)? 32y (x/ ) o
1) = (1og 27 ~ (logx)(logx ~ 12 " (logx)2(logx - 2) +O(<10gx)4) a2

Given the statement of the Prime Number Theorem [11][13], ¢»(x) ~ x as x approaches oo, thus we
consider the dominant terms for sufficiently large x. Hence, substituting (2) in (12),

H(x) = x3 3x3 2 n 3x2 —l—O(( x3 )

(logx)®  e(logx —1 (logx —2)3 log x)*
3x° x3
=— @) 13
e(logx —1)3 * ((log x)4> (13)
Since, e(log3+3—l)3 > 0 for sufficiently large x ( observe that higher-order terms diminish as x grows ),

the dominant term is thus negative.
In coclusion, for sufficiently large values of x, one shall have (5) to satisfy and, #(x) < 0. O

Remark 3.1.2. In other words, the Cubic polynomial Inequality can be reformulated as,

3e2x
(log x)?

m(x/e?) < ?jc%x(rf(x/e))z (14)

(7(x))° + op s

for sufficiently large values of x.

Important to note that, one can utilize Mathematica in order to observe the plot of H(x) as
compared to x. The following Figure 1 shows the graph for 2 x 10* < x < 10°. Furthermore, rigorous
computation yields the following values of H(x) as mentioned in Table 1 in the range, 10* < x < 10'8.
The data clearly suggests that, the function (x) is indeed decreasing in this interval, hence, our claim
(14) can also be justified numerically.

lell Graph of H(x)
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Table 1. Values of H(x) for 10* < x < 10'8,
IS T
10* —4.822952515086 x 108
10° —1.9535582364473376 x 1011
10° —9.742665854621681 x 1013
107 —5.373324095991878 x 1016
108 —3.2776888213143585 x 101
10° —2.142500053569382 x 10?2
1010 —1.4738226482632569 x 10%
1011 —1.0555737602257731 x 10%8
1012 —7.810947114144009 x 1030
1013 —5.937547995444999 x 1033
1014 —4.6163278697477706 x 1030
101° —3.65847701300371 x 10%
1016 —2.947501336471066 x 1042
10Y7 —2.4089115035201524 x 10%
1018 —1.9935903086211532 x 1048
3.2. Higher-Degree Polynomial Inequality
Theorem 3.2.1. For higher powers, let’s consider,
K(x) = () — 25 (/o) 4 O (e - 2 ) )
log x (log x)? (log x)3
Then, the following holds true,
x4
K(x) =~ O((IOgX)S> (16)
and for sufficiently large x we have, K(x) > 0.
Proof. A priori using the relation (3) (cf. [5]) from Theorem (2.0.1), along with (6) and (7),
n(x/e) = llf)fgxx/is; +0 ( (10;956—3 3)2> (17)

Now, we compute,

= (gt 40 (i) = (ot +©ger) ®
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Moreover,

dex _ dex [ y(x/e) x/e > dex(y(x/e))? x*
logx(ﬂ(x/e))3 ~ logx (logx 1 O((logx - 1)2>) ~ (logx)(logx —1)3 + O((logx)5>

(19)

Subsequently, we approximate the rest of the terms of IC(x) as follows.

6e%x _6e’x [y(x/e?) x/e? 2
(log x)? (re(x/%))* = (log x)? (logx -2 +0 ( (logx — 2)2>)

_6ex(yp(x/e?))? x*
~ {logx)2(logx — 27 O((logx>5> 20

And,

4e3x 5 4elx [ y(x/ed) x/e
g ™) = gy g3+ Omme 7))

 4eayp(x/ed) x*
~ {logx)(logx—3) O((logx>5> -

Combining (17), (18), (19), (20) and (21), and sorting out the dominant terms and their contributions
towards the error term,

) = (DT tex(p(/0) (/) APxp(x/E) wof o )

(logx)* (logx)(logx —1)3 = (logx)%(logx —2)2 (logx)3(logx — 3) (log x)°
(22)
A simple application of (2) yields,
K(x) = x* B dexx® n 6e2xx? B 4e3xx ( x* )
~ {logx)*  (logx)* " (logx)*  (logx)*  \{log)?
x 4e 6e2 4¢3 x
~ fiogt (1 Togx g~ Tog 7))+ g )

: _ _4e 62 4¢
Since (1 logx + (logx)2  (logx)3

as x grows), hence the dominant term is positive. Accordingly, the error term in the approximation is,

(o7 )

In conclusion, we assert that, (16) indeed holds true, and /C(x) > 0 for sufficiently large enough x. O

) is positive for sufficiently large x (higher-order terms diminish

Remark 3.2.2. We can also rephrase the result obtained from Theorem (3.2.1) in the form,

(r(x/e))® + (Ii‘i;c)?)ﬂ(x/ﬁ) < (m(x)* + (Iff;j:)z(ﬂ(x/ez))z (24)

dex
log x

for sufficiently large values of x.
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Important to observe that, one can apply Mathematica in order to observe the plot of K(x) as
compared to x. The following Figure 2 shows the plot for 2 x 10* < x < 10%.Moreover, the following
values of H(x) can in fact be calculated as evident from Table 2 in the range, 10* < x < 10Y7. Using the
data one can clearly infer that, /C(x) is indeed increasing in this interval, hence, our claim (24) can be
established numerically.

1e15 Graph of K(x)
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20000 30000 40000 50000 60000 70000 80000 90000 100000
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Figure 2

Table 2. Values of £(x) for 10% < x < 10V,

10* 6.785501979995337 x 10!
10° 2.858713229490609 x 10'°
10° 1.3657430631495643 x 101
107 7.37684110441765 x 10?2

108 4.2993020901898284 x 10%°
10° 2.6664968326322003 x 1030
1010 1.7394264262779463 x 1034
101! 1.1821189632007215 x 1038
1012 8.310509439561298 x 104

1013 6.010924984361412 x 10%
104 4.454174125769207 x 104
101 3.3701437003780375 x 103
1016 2.59663004179433 x 10%7

10" 2.0327843159078997 x 10°!
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3.3. Quadratic Form Involving Sums of Prime Counting Function

Theorem 3.3.1. Consider a quadratic form involving the sum of the prime counting function over smaller

intervals,
2
~(y @ (y k 1 25
L(x) = k;n(x/k) ~fogx k;noc/(e )|, n> (25)
For some fixed n, then we have the following approximation,
c e
%0 ogey) &

With L(x) > 0 for sufficiently large values of x.

Proof. For the proof, we evaluate terms inside the summand of £(x), a priori using the result (3) (cf.
[5]) in Theorem (2.0.1).

P(x/k) x/k
m(x/k) = log x — logk +O<(logx—logk)2> @7)
p(x/ (ek)) x/(ek)
(x/(ek)) = log x — log(ek) +0 < (log x — log(ek))2> (28)
Hence,
L L P(x/k) x/k
k; m(x/k) = k;(logx—logk+O<(logx—logk)2)>
o p(x/k) i x/k
Z 1ogx — logk (X_: logx —logk)? ) @)
Similarly,
Y _ oy pl/lek) x/ (ek)
k; m(x/ (ek)) = kéll (logx — log(ek) +0 ( (log x — log(ek))2)>
v (x/(ek)) é x/ (ek)
N k; log x — log(ek (kz‘i (log x — log(ek))? ) (30)
Squaring (29) gives,

2 2
L P(x/k) n x/k P(x/k)
(;;1 m(x/k) > (Zlogxlogk—'_o<k_Z:1 (logx—logk)2>> (Zlogxlogk>

Ignoring the higher-order terms for the time being. Further computation yields,

(Zlogxx/k ) S aan pla/k)p(x/j) -

—logk P logx—logk)(logx—log])
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Combining (30) and (31),

2
(5 _p/h) ex g P/ (ek))
0~ (£ s igr) e By s ot ~

An important observation is that, the leading term of ¢(x) is x, so for large x,

P(x/k) = % —i—O<\/§log2 x)
P(x/(ek)) = % —l—()<\/§log2 x>

Therefore, using the leading term approximation, we can deduce,

2
~ n x/k ex ! x/ (ek)
L(x) =~ (kzi logx—logk> log x k; log x — log(ek)

and,

Where,

2 2
n x/k x &1 x 2
Y ———— | & |+—)Y ;| =|——Hx
= logx —logk logx = k log x
H,, denoting the n-th Harmonic Number, H, ~ logn + <y, v being the Euler Constant.
As for the second term in the expression of £(x),

ex i x/ (ek) e X ilw x 2H
logx /= log x —log(ek) ~ logx elogxkzlkw log x "

Therefore,
L(x) ~ xHy, \? _ x*H, _ x*(logn)®>  x*logn _ x*logn(logn—1)
~ \logx (logx)2 ~ (logx)?2  (logx)2 " (log x)?
On the other hand, analyzing the error terms from previously derived estimates, it can be deduced
that,
c a
= gr) >

x?logn(logn—1)
(log x)
implies that £(x) is positive for large x, and the proof is complete. [

Hence, (26) follows. Moreover, since the leading term is positive for n > 1, thus it

Remark 3.3.2. We can rephrase Theorem (3.3.1) by claiming that, for every n > 1,

n

2
(k; n(x/k)) > log x (E n(x/(ek))) (34)

k=1

for sufficiently large x.

For a specific scenario when n = 5, plotting £(x) as compared to x using Mathematica gives us
the following graph as in Figure 3 for 2 x 10* < x < 10°. Moreover, it can be asserted using the data
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shown in Table 3 in the range, 10* < x < 10'° that, L(x) is indeed increasing. As a result, the statement
(34) can be properly accepted.

les Graph of £(x)
— £(x)
3.0
2.5
2.0
=
:‘:’i
1.5 A
1.0 A
0.5
20000 30000 40000 50000 60000 70000 80000 90000 100000
X
Figure 3

Table 3. Values of £(x) for 10 < x < 10%°.

10* 5.442878634267854 x 10°

10° 3.182941989056241 x 108

10° 2.0720876553125698 x 1010
107 1.453173495473891 x 1012
108 1.0748621057424523 x 1014
10° 8.271311872938837 x 101°
1010 6.562072688654034 x 107
1011 5.3333332449648206 x 10
1012 4.4203146604764075 x 102!
1013 3.723359062321086 x 1023
1014 3.1792547132494815 x 10%
101° 2.7463355733587377 x 10%7
1016 2.3962303815115464 x 10%°

3.4. Logarithmic Weighted Sum Inequality

It is very much possible to improve (26) even further, where one can also consider the case which
involves logarithmic weights.


https://doi.org/10.20944/preprints202407.1276.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2024 d0i:10.20944/preprints202407.1276.v1

11 0f21
Theorem 3.4.1. The following can in fact be conjectured for the logarithmic weights,
2
" m(x/k) ex (& m(x/(ek))
= 1
F(x) (lgl log(x/k)) log x (Z log(x/(ek))) e (35)
Then,
2
F(x) =0 ( (logx)3) (36)
And, F(x) < 0 for large values of x.
Proof. A priori for large x, utilizing (2) (cf. [5]),
)
and,
x x
P(x/(ek) = = +0 <\/:10g (ek))
Rigorously computation each and every term of F(x) yields,
Lon(x/k) & P(x/k) ( x/k >) -
X tter ~ & (gt O (gtermm) ) &
and similarly,
- (x/(ek) _y < P (x/(ek)) ( x/ (k) >>
L og(v/ (@)~ =\ Tog(er/ (et O\ Tiogtr/ @03 ) ) %

Subsequently squaring the left-hand side of (37),

(Xn:logxx//kk)> :<Xn:((k:g(()+z (logxx/j(k))>>2

Using the Cauchy-Schwarz Inequality, and considering the main term and error terms separately,

n X 2 2 n 1 2 2
<kzi k(log(x/k))2> ~ (logx)* <k21 k) (logx)4( Hy)? (39)

Where, H;, denotes the Harmonic Number. Using the harmonic series approximation,

n
1
Hn:EEzlogn—i—'y. (40)
k=1

Hence, from (39),

" m(x/k) x2 log2 n
(Z log(x/k) ) (logx)*” 1)
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As for the error term,
L x/k Z x/k ( xlogn )
O —F = | =0 ——F= | =0
(El <10g<x/k>)s> (,;1 (log(x/R))? ) (log 1)
Thus, combining all our deductions,
2

i mt(x/k) _ x%log’n L0 x?2log® n

/= log(x/k) (log x)* (log x)®
Furthermore, for the second term in (35), we have the following calculations,

Lom(x/(ek))  ex & P(x/(ek)) x/ (ek)
fog ¢ = log(x/(eF)) ~ Iog k_zl(aog<x/<ek>>>2 * O(aog<x/<ek>>>3>)' 42

Approximating the main term,

n

ex Z( x/ (ek) _ex

2 i 1
logx /= (log(x/(ek)))? ~ logx = ek(log(x/ (ek)))?

Using the harmonic series approximation,

i l logn
= ek e
As a consequence,

ex? logn  x?logn

logx e(logx)?2  (logx)3’

Combining all,

2
x/k ex & x/(Ek))
(Z log(x/k) ) log x (Z log(x/(Ek))>

21,2 212 2 2 2
:xlogn+oxlogn _xlogn:_xlogn+o x~logn
(log x)* (logx)® | (logx)3 (log x)? (log x)*
Considering the dominant term. As a result, we conclude,
x?logn x?
~0| —2_ | =0 ———
79~ (ot ) = (ogay)

2
for large x, and moreover, the dominant term, Z‘log’f)’; being always positive for n > 1, we can thus

assert that, 7 (x) < 0 for sufficiently large values of x. [

Remark 3.4.2. We can reaffirm Theorem (3.4.1) in the following manner. For any n > 1,

2
(E log(x/k)> < log x (Z log(x/(ek))> )

for sufficiently large values of x.
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Similarly as in other cases, Mathematica can in fact be applied in order to observe the plot of F(x)
as compared to x. The following Figure 4 shows the graph for 2 x 10* < x < 10° and considering
n =>.

In addition to above, it can be observed in Table 4 that, F(x) is in fact decreasing in the range,
10* < x < 10, As a result, the statement (43) can also be numerically verified for large values of x.

1e7 Graph of F(x)
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Table 4. Values of F(x) for 10* < x < 104

104 —377,275.13516957406
10° —1.830179494511997 x 107
10° —1.0203946684413686 x 10°
107 —6.256701329540303 x 10'0
108 —4.1109224248432134 x 1012
10° —2.8451189547136775 x 1014
1010 —2.0504855777527976 x 1010
10! —1.5264989872331325 x 10'8
1012 —1.1670093161419563 x 102
1013 —9.121682100604639 x 10%!
1014 —7.264828101112622 x 103

4. A More General Framework

Given the asymptotic nature of the prime counting function 77(x), the general form of such
inequalities can be formulated as follows.
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ex

N (x):= P(m(x)) — og x

Q(m(x/e)) + R(x) (44)

where P and Q are polynomials and R is a term that compensates for higher-order error terms.
Subsequently, one can claim that, the error term in (44) might behave similarly as in the previous cases.
In mathematical terms, it might very well be possible that,

xd
N(x) ~ O((lc>gx)d+l> (45)

for some degree d depending on the degrees of P and Q.

4.1. A Typical Example

In order to justify our claim (45) corresponding to (44), let’s delve into a specific example by
explicitly choosing polynomials P, Q, and R(x) and studying the function A (x) for different cases
explicitely.

Consider the polynomials,

P(re(x)) = Q(r(x)) = ( kz n(x/k))
=1

To maintain symmetry and include higher-order error terms, we choose R(x) = (¥L}_; 7(x/ (ezk)))r.
It can be observed that, degrees of each of the polynomials P, Q and R are the same = r. We study the
polynomial AV, (x) under two circumstances separately.

4.1.1. deg(P), deg(Q) and deg(R) Are Odd

We assume, r = 2m + 1, for any positive integer m. As a result, the polynomial takes the form,

" 2m+1 " 2m+1 " 2m+1
Nog1 (x) 1= (Z n(x/k>> = (Z n(x/(ek») + (z n(x/<e2k>>) (46)

k=1 IOg X k=1 k=1

A priori from the approximations derived in (2) and (3) (cf. [5]), we substitute (x/k), (x/ek) and
x/(e%k) in them to compute each and every term in the polynomial separately.

1 & x x/k g x x
k:Zlﬂ(x/k) o k;(klog(x/k) +O<log2(x/k)>> - k;(klogx +O<klog2x>>

X

x &1 X "1 X
—4+0|l ——) - | =—"1 +79)+0 1 + 47
logxk;k <log2ka:1k> logx(ogn 7) <log2x(ogn ’Y)) 47

Using the harmonic series approximation (40).
Thus,

n 2m+1 x 2m+1 x2m+1 ol
(k:zl n(x/k)) = <logx(logn+7)> —l—O((logx)ZmH(logn—l—'y) " ) (48)

For the second term in Ny, 1(x),

2m+1 2m+1 2m+1
ex 1 ex X x
log x (ZN(X/(ek))> B logx<elogx(logn+7)> +O<(108x)2m+2>

k=1
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x2m+2 2l x2m+1
= 2 (log x) 22 (logn +7) +0 ( (log x )27 +2 ) (49)
Finally, for R(x),
n , 2m+1 (21 - (2m+1
— m
L/ @) = o ogn + 0 10 m) 60
Combining (48), (49) and (50),
x2mtl 2m+1 otz 2m+1
Nomy1(x) = W(log”+7) - W(log”""ﬂ
x2m+1 2l x2m+1
+ e +2 (1og x)2m+1 (logn + ) +0 ( (log x)2m+2>
x2m+2 ol x2m+1
e R (=) I

Subsequently, the dominant error term in N5, 1(x) can be found as,

x2m+1
(o)
4.1.2. deg(P), deg(Q) and deg(R) Are Even

In this case, we assume, ¥ = 2m, for any positive integer m. Hence, the polynomial has the
following representation,

2m

2m n 2m "
Now (x) := (2 n(x/k)) - loegx (Z n(x/(ek))> + (; ﬂ(x/(ezk))> (52)
=1

k=1 k=1

Similarly, as in the first case, we utilize the approximations deduced in (2) and (3) (cf. [5]), we substitute
(x/k), (x/ek) and x/(e?k) in them to approximate each and every term in the polynomial individually.
From (47),

n 2m A2m ) A 2m
mt(x/k =————(logn+vy m—I—O() (53)
k; (x/k) (log x )2 (log ) (log x)2m+1
Moreover, for the second term in Ay, (x),

" 2m 2m 2m
ex ex X X
1ng<2n<x/<ek>>> - o (g togn+m ) +0( g )

k=1

y2m+1 om x2m
= T (logx)2m+1 (].Og n—+ ')’) +0 ((logx)zmH> (54)
Finally, for R(x),
2m
n 2k B x2m | )2m 40 x2m 55)
k:Zl mi(x/(e°k)) = ein(log x)2m (logn + (log x)2n+1 (
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Combining (53), (54) and (55),
2m o x2m+1 o
Now(x) = W(log” + 7)™ = 2T (log )2+ (logn +17)
x2m o me
T (log x)2" (logn +7)™ +0 ( (log x)2n+1 )

x2m+1 om me

=~ (log 2T (logn+v)™" 4+ 0 <(log MG ) (56)

Important to assess that, the dominant error term in Ny, (x) is,

x2m
of ——
(o)

In conclusion, in both the cases, we can properly justify in this example that, (45) is definitely
satisfied. Moreover, as for the sign of AV;(x), it can be duly noted that, the main term excluding the
error term is indeed negative for sufficiently large values of x. Thus, in this scenario, one can safely
conclude that, NV;(x) < 0 for large x.

A priori with the help of Mathematica we can indeed study the plot of AV3(x) (m = 1, = 3) and
Ny(x) (m = 2,r = 4) as compared to x for the odd and even cases respectively. (N.B. These two are
some special cases for chosen values of m, one can study the same if interested using any different
values of 1) Subsequently, Figures 5 and 6 represents the respective graphs for 2 x 10* < x < 10° and
considering n = 5.

1e16 Graph of N3(x)
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1e20 Graph of NMs(x)
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Furthermore, it can be inferred from Tables 5 and 6 that, AV3(x) and Ny(x) are strictly monotone
decreasing while x assumes values in the range, 10* < x < 10'5. As a result, it can surely be concluded

that, NV, (x) < 0 for sufficiently large x, and for this particular example, i.e. for this particular choice of
P, Qand R.

Table 5. Values of A3(x) for 10* < x < 105,

10* —6.204817261289663 x 10'2
10° —2.0538877597403304 x 1016
10° —8.54030555139954 x 101°

107 —4.1469160311751975 x 1023
108 —2.2502470326411468 x 10%
10° —1.3249101964920937 x 103!
1010 —8.304086276172884 x 1034
101 —5.4674077933205056 x 1038
1012 —3.746002497341975 x 1042
1013 —2.6523089311884873 x 104
10 —1.930438588096488 x 100
1015 —1.4384149341267808 x 10°*
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Table 6. Values of AV(x) for 10* < x < 105,

10* —7.911694463952808 x 101°
10° —1.9593096354084415 x 1020
10° —6.465704751724349 x 10?4
107 —2.597975844704281 x 10%
108 —1.2022000181431568 x 103
10° —6.170254706864245 x 1038
1010 —3.427910948552053 x 10%3
101 —2.026811001937711 x 108
1012 —1.260254434482889 x 1073
1013 —8.168086531604906 x 10%7
1014 —5.481394602239431 x 10%?
1015 —3.7889284123142535 x 10%7

4.2. Furture Scope for Research

As evident from the title of the section, the above is a particular example in support of our claim
(45) for the polynomial functions of the form N (x) as defined in (44), which heavily depends upon
polynomials P, Q and R, and their respective degrees.

We can try and verify the validity of (45) by choosing P and Q and also R differently. Moreover, in
this case, we have assumed the degrees of P, Q and R to be equal. Another example can be considered
by varying the degrees of P and Q, and accordingly choosing degree of R accordingly. Subsequently,
the order of the error term will vary.

In either case, it is very much possible that, the sign of A/ (x) shall always be negative for
sufficiently large values of x, irrespective of the choice of P, Q and R, although the lower threshold for
such values of x may differ.

5. Application: Equivalence with Ramanujan’s Inequality

The inequalities derived in Section 3 does have extensive applications in studying and verifying
several unproven results and conjectures involving the Prime Counting Function 7t(x). One such
application which we shall observe in this section is the equivalence of the statements of the Cubic
Polynomial Inequality (cf. Theorem (3.1.1)) and the Ramanujan’s Inequality (cf. Theorem (1.0.1)).

Assume that,

G(x) = (n(x)? = - (2) (57)

logx \e

Hence, the statement goes as follows.

Theorem 5.0.1. The Cubic Polynomial Inequality is equivalent to proving the Ramanujan’s Inequality [2][3].
In other words, if H(x) < 0 for large x, then, G(x) < 0 for sufficiently large x and vice versa.

Proof. A priori from (3) of Theorem (2.0.1), we attain the derivations (6) and (7).
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First, we approximate #(x),

e = (2 - (L ) 20 (el

Ignoring higher-order error terms. Estimating G (x) in similar manner, we obtain,

_ (@) ex y(x/e)
G(x) = (logx)2  logxlogx —1

First we assume , if possible that, #(x) < 0 for sufficiently large values of x. Given that % is the
dominant term, for large x, thus the second term in the expression of # (x) will dominate the first and
third terms due to the ex factor in the numerator. Hence, to maintain the inequality, we must have,

(p(x))° _ Bex (y(x/e))?
(logx)3  logx (logx —1)2

Implying,
(9(x))° = 3ex(p(x/e))* (log x) (log x — 1) (58)
Dividing both sides by (y(x))?,
¥(x) ~ 3ex(log x)(log x — 1)?

N.B. Since (x) is much larger than ¢(x/e) for large x, this approximation holds.
As for G(x), again, given the dominance of {(x),

(P(x)* _ ex (x/e)
(logx)? ~ logxlogx —1 (59)

Observe that, the leading term in G(x) is negative, implying G(x) < 0.
Conversely, consider that, G(x) < 0. This implies,

<£§Ca)c>2 < fog <1(1)Pg(fc/—€)1> (60)

Dividing both sides by <f£g‘x/ _e)l ) , we get,

p() _ ex(p(x/e)
logx = (logx —1)

Evaluate H(x),

i) (MO0 e (R y s 400/

Given the dominance of §(x), we can assert that,

(hev) < e () o
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Which simplifies to,
(i(gxa)c ) E 3(61);;#]3((3(/332 (©2)
Dividing both sides by ( {1)),
(P9~ sex(ya/0)) 0g ) log )

The dominant term in (63) indicates that the inequality 7{(x) < 0 holds true for large enough x. This
completes the proof.
O
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