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Article

A Closest Resemblance Classifier with Feature Interval
Learning and Outranking Measures for Improved
Performance

Nabil Belacel

National Research Council Canada; nabil.belacel@nrc-cnre.ge.ca

Abstract: Classifiers face a myriad of challenges in today’s data-driven world, ranging from
overfitting and high computational costs to low accuracy, imbalanced training datasets, and the
notorious black box effect. Furthermore, many traditional classifiers struggle with the robust
handling of noisy and missing feature values. In response to these hurdles, we present classification
methods that leverage the power of feature partitioning learning and outranking measures. Our
classification algorithms offer an innovative approach, eliminating the need for prior domain
knowledge by automatically discerning feature intervals directly from the data. These intervals
capture essential patterns and characteristics within the dataset, empowering our classifiers with
newfound adaptability and insight. In addition, we employ outranking measures to mitigate the
influence of noise and uncertainty in the data. Through pairwise comparisons of alternatives on each
feature, we enhance the robustness and reliability of our classification outcomes. The developed
classifiers are empirically evaluated on several data sets from UCI repository and are compared
with well-known classifiers including k Nearest Neighbors (K-NN), Support Vector Machine (SVM),
Random Forest (RF), Neural Network (NN), Naive Bayesian (NB) and Nearest Centroid (NC). The
experiments result demonstrate that the classifiers based on feature interval learning and outranking
approaches are robust to imbalanced data and to irrelevant features and achieve comparably and
even better performances than the well-known classifiers in some cases. Moreover, our proposed
classifiers produce more explainable models whilst preserving high predictive performance levels.

Keywords: Machine learning; classification; supervised learning; feature interval learning; outranking
measures

1. Introduction

Classification stands as a cornerstone in machine learning, tasked with assigning new data
points to predefined classes. Commonly employed concept models such as decision trees (DTs),
support vector machines (SVMs), and k-nearest neighbors (k-NNs) have long served this purpose [1].
Despite their prevalence, many existing classifiers encounter challenges, including overfitting, high
computational costs, and a lack of interpretability—the infamous "black box" effect. Furthermore, these
models often struggle to robustly handle noisy or missing feature values. Additionally, many existing
classifiers rely on complex learning mechanisms by combining or transforming the data features, which
can exacerbate issues such as overfitting, high computational costs, and a lack of interpretability—the
so-called "black box" effect. Moreover, these models often grapple with effectively handling noisy
or missing feature values. In response to these challenges, this paper devoted to classifiers based
on feature interval learning (FIL), offering a distinct approach to traditional classification methods.
FIL algorithms segment the feature space into distinct intervals for each feature, with each interval
linked to a specific class. Feature intervals represent features as intervals rather than individual
values, providing robustness to noise and variability in the input data, particularly for continuous
data types [2]. A set of feature intervals embodies a concept on each feature dimension separately.
Subsequently, each feature contributes to the classification process by distributing votes among classes,
with the predicted class being the one receiving the highest vote [3]. This method’s reliance on clear
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feature ranges offers interpretability, rendering decision rules easy to understand [2]. Furthermore,
FIL can be effective with smaller datasets compared to data-hungry deep learning models [4]. In
response to these challenges, we introduce an approach to supervised classification that harnesses
the synergies of feature interval learning and outranking measures, called Closest Resemblance
(CR). Outranking, entrenched in preference learning [5,6], transcends simple distance measures by
autonomously learning feature intervals from data, thereby capturing nuanced patterns and enhancing
adaptation to specific datasets. Moreover, outranking adeptly navigates noise and uncertainties in
real-world data through pairwise comparisons on each feature. The proposed CR method amalgamates
FIL's interpretability and efficiency with outranking’s data-driven pattern recognition and robustness
to noise. This integrated approach aims to surmount the limitations of existing methods, particularly
in scenarios with imbalanced data and irrelevant features. Empirical evaluations conducted on diverse
datasets from the UCI repository compare the proposed classifier CR against established classifiers such
as k-Nearest Neighbors (k-NN), Support Vector Machines (SVM), Random Forests (RF), Multi-Layer
Perceptron Neural Networks (MLP), Naive Bayes (NB), and Nearest Centroid (NC). The results
underscore the efficacy of FIL with outranking, showcasing comparable or superior performance while
delivering more interpretable models. This enhanced interpretability fosters trust and understanding
in the decision-making process, bridging the gap between predictive power and internal workings.

2. Related Works

In the domain of supervised classification, various methodologies have been proposed to tackle
the challenges posed by batch data and to enhance the interpretability and adaptability of classifiers.
Among these, feature interval learning (FIL) techniques have emerged as prominent approaches. FIL
approaches offer a distinct paradigm for classification, wherein the feature space is partitioned into
intervals for each feature. Each interval is associated with a specific class, enabling a more nuanced
representation of feature patterns and enhancing robustness to noise and variability in the data [2].
FIL methods encompass a range of techniques, including hypercuboid or hyperrectangle learning
and prototype-based classification, which learn decision boundaries or representative prototypes to
distinguish between classes. The concept of hypercuboid has been exploited for many years [7]

Hyper-cuboid approaches represent one category of FIL methods, where the feature space is
partitioned into hyper-cuboid regions based on the distribution of training data [7]. These regions
serve as decision boundaries, facilitating efficient classification of new instances. Hyper-cuboid
approaches are particularly effective in handling high-dimensional data and are known for their
computational efficiency and simplicity. Prototype-based FIL methods, on the other hand, generate
prototypes for each class based on the distribution of feature intervals in the training data [3,8,9]. These
prototypes encapsulate the characteristic features of each class and are used to classify new instances
by measuring their resemblance to the prototypes. Prototype-based FIL methods offer interpretability
and transparency in decision-making, as the classification process is based on clear feature ranges.
In [2] describes a family of FIL algorithms. Some of FIL algorithms are voting feature intervals [3],
k-nearest neighbor on feature projections [10] and Naive Bayes classifier (NBC) [1]. The common idea
of the FIL algorithms, learn the concept description in the form of a set of disjoint intervals separately
for each feature. At the testing phase the FIL algorithms predict the class of new data point as the
label of with the highest total weighted votes of the individual features. For example in Figure 1, the
horizontal axis is feature f; and the vertical axis is the feature f,. The two rectangles represent the two
prototypes of classes C! and C2. The prototype of class C! is represented by the interval I; ; and I
(intervals determined using the training sets of class C! “the blue x sign’. And the prototype of class C?
is represented by the intervals I1 , and L (intervals calculated using the training sets of class C? 'the
green o sign’. The objective is to assign the unlabeled data (the red star * in Figure 1) to the closest
rectangular.
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Figure 1. Two dimension prototypes of two classes in CR algorithm.

Overall, while hypercuboid or hyperrectangle learning algorithms offer computational efficiency
and simplicity, FIL methods provide greater flexibility, robustness, and interpretability in classifying
new data points, especially in scenarios with complex data distributions and high-dimensional feature
spaces. However, predicting class labels based on the highest total weighted votes of individual
features is a straightforward approach in FIL algorithms, it may have limitations in handling feature
importance, noise, feature relationships, imbalanced datasets, and the trade-off between interpretability
and accuracy. Addressing these inconveniences requires careful consideration of feature selection,
noise reduction techniques, feature engineering, and robust mechanisms for handling imbalanced
data. Beyond traditional majority voting approaches, another advancements in FIL is the integration
of outranking measures into the classification process. Outranking measures, rooted in preference
learning principles, extend the classification paradigm by capturing subtle preferences and trade-offs
among alternative solutions [8,11]. By conducting pairwise comparisons on each feature, outranking
measures facilitate more nuanced decision-making and enhance adaptability to specific datasets
[5]. Several FIL classifiers based on outranking measures were developed since decades, among
them we have PROAFTN [9], PROCFTN [12] and K Closest Resemblance (K-CR) or PROCTN [13].
These classifiers offer several advantages in the context of classification tasks. By evaluating the data
points based on their pairwise performance on each feature, outranking techniques can capture subtle
differences in feature importance and contribution to class membership. Instead of blindly aggregating
votes from all features, outranking considers the relative performance of alternatives on each feature,
effectively filtering out noise and focusing on discriminative features that contribute most to the
classification decision. This robustness to noise enhances the reliability and accuracy of classification
outcomes. Outranking techniques can capture complex relationships between features by conducting
pairwise comparisons on each feature individually. Unlike majority voting, which treats features
independently, outranking takes into account the interactions and dependencies between features,
allowing for more accurate and nuanced classification decisions. Outranking techniques provide clear
and interpretable decision rules by quantifying the resemblance relationship between data points.


https://doi.org/10.20944/preprints202407.1257.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2024 d0i:10.20944/preprints202407.1257.v1

40f17

Instead of relying on a simple count of votes, outranking assigns a degree of resemblance between
alternatives based on their pairwise comparisons, making the classification process more transparent
and understandable. This enhanced interpretability fosters trust and understanding in the classification
model’s decision-making process. Outranking techniques can effectively handle imbalanced datasets
by considering the relative performance of alternatives on each feature [14]. Instead of biasing
the classification decision towards the majority class, outranking evaluates alternatives based on
their overall resemblance relationship, ensuring that all classes are appropriately considered in the
classification process. This helps mitigate the impact of class imbalance and ensures more balanced
and accurate predictions. Outranking techniques offer flexibility and adaptability to different types of
data and classification tasks. By capturing subtle differences in feature importance and performance,
outranking can accommodate various data distributions and class structures, making it suitable for a
wide range of classification scenarios. The FIL classifiers based on outranking measures have been
applied to the resolution on many real world practical problems such as medical diagnosis [11,15-17],
image processing and classification [14,18], engineering design [19], recommendation system [20] and
cybersecurity [21]. Even though, these classifiers have several advantages, they are suffering from the
computation complexity in their learning phase specifically when the number of features is very large.
The PROAFTN and the K-CR build a set of prototypes in each class and then the inductive is based
on the recursive approach, which is very complex. In this paper, we will introduce the FIL approach
based on outranking measures for classification problems called Closest Resemblance CR. The CR
algorithm is simple, effective, efficient and robust to irrelevant features. In the remaining paper, we
will present the CR classifier, where each class is represented by one prototype and the classification
rule is expressed as: "the data point is assigned to the class if the data point is resembled or roughly
equivalent to the prototype of this class". Therefore, our proposed CR classifier is a prototype-based
classification method that incorporates the FIL techniques to build the prototype of each class during
the learning phase. The intervals in CR are inspired from the reference intervals used in the era of
evidence-based medicine [22]. Unlike confidence intervals, which quantify uncertainty around a
parameter estimate, prediction intervals capture the range within which a data point is likely to fall —
they estimate the uncertainty associated with individual predictions.

3. The Closest Resemblance Algorithm

The CR is a supervised learning algorithm and it allows to calculate the resemblance measures
by determining the preference relations. The rule of CR method in assigning a data points to a class
is: “the data point s is assigned to a class if and only if s resemble or is (roughly) equivalent to the
prototype of this class”. Therefore, in order to assign point s to an appropriate class, CR will calculate
the resemblance relation in order to measure the closeness of the sample s to the prototype of the class.
To calculate the resemblance relation between the data point to assign and the prototype of the classes,
CR is based on the preference relational system [5,6]. It employs a partial comparison between the
sample and the prototypes of the classes, for each feature. Then, it applies a global aggregation using
the concordance principle on the partial resemblance measure [5,8]. The CR classification method
is considered as a weighted voting classifier in which each feature or attribute "votes" for the class
membership of an unknown sample according to which class’ prototype is the closest [8,9,13]. The
partial comparison used by CR to calculate the resemblance between the sample and prototypes avoids
resorting to conventional metric and non-metric distances that aggregate the score of all features in the
same value unit. Hence, it helps to overcome some difficulties encountered when data is expressed in
different units and to find the correct pre-processing and normalization data techniques. The algorithm
CR proceeds into two phases:

3.1. Phase 1: Learning Phase

Suppose that a set of L labeled examples X = {x1,xp,..,x.} with a set of n features F =
{f1, f2..., fu} are given. This set of examples known as training set. Each example x; is represented by
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avector f(x;) =< f1(x;), fa(xi), ..., fu(x;) >,i =1, ..., L, where f(x;) is a n dimensional vector where
each component f;(x;) represents the value of the feature f; for the training example x;. The training
examples have exactly one of K distinct class labels. In the learning phase, a prototype of each class
is determined using the training sets X. For each class C", i € {1, ...,K}, CR determines a prototype
P(C") from training set X. The prototypes are considered as good representative of their class and are
described by the score of each of the n features. More precisely, for each feature f; and for each class
C", an interval I ]h is determined. The interval [ ]h is the value range of feature f; with respect to class ch.

A n-dimension prototype of each class C", i = 1, ..., k is built as presented in Equation (1).

p(C") = {10A, €, 102, C), D (£, C), e 1(fur O } M

The value domain of each dimension f; is the value range or interval I]h = I(f; ch =
{Il (fir ch, I? (fir Ch)] where I! (fir C") is the lower bound and I? (fir C") is the upper bound interval

of feature f; for the class ch.

In learning phase we have used two approaches to build the prototype of classes. The both
approaches utilize prototypes defined by reference intervals for each feature in a class. In this work we
have chosen the simple approaches to determine the interval of each feature for each class. The first
one is based on the mean y and the standard deviation ¢ and the second one is based on the percentiles.
The reference intervals based on percentiles and the mean and standard deviation are non-parametric
methods as they don’t require any assumptions about the underlying distribution of the data.
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Figite 2l Reference intervals based on percentile and Mean and standard deviation.

3.1.1. Reference Intervals Based on Mean and Standard Deviation

To classify unlabeled data, the CR classifier determines the prototype of the classes by determining
the reference interval of each feature based on the mean and standard deviation from the training set.
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Mean (i) represents the "center" of the data distribution for a specific feature within a class. Standard
deviation () captures the spread of the data around the mean. They provide basic summaries of the
data’s central tendency (y) and spread (standard deviation o) without assuming a specific underlying
distribution. This technique accounts for the spread of feature values within each class, creating
intervals that extend ¢ > 0 standard deviations from the mean. It adapts to the variability within each
class.

For each class C" and for each feature fj, the mean p and the standard deviation ¢ are calculated
from the training data x; € Xandx; € Chas presented in Equation (2).

Li(fi, €)= [n(f;, C") = tx o (f;,C"), u(f;, C") + £ 0 (f;, CM)] )

By defining the interval as in Equation (2), we capture a range that encompasses a certain portion
determined by t of the data points x; in the class C" for the feature fj- Varying t allows control over the
strictness of the interval. A higher ¢ captures a wider range, a lower ¢ captures a tighter range. This
approach utilizes the mean and standard deviation to build the prototype of classes from the training
set by leveraging Chebyshev’s Theorem, we establish boundaries around the mean based on a chosen
number ¢ of standard deviations. Data points falling within these boundaries are considered typical,
while those exceeding the boundaries are classified as outliers of the corresponding class. This method
is particularly advantageous when the underlying data distribution is unknown, as Chebyshev’s
Theorem makes minimal assumptions about the data:

Chebyshev’s Theorem: For any data distribution, at least 1 — (%)2 proportion of the data points
will fall within ¢ standard deviations of the mean, where t is any positive constant.

Chebyshev’s Theorem provides a lower bound to the proportion of measurements that are within
a certain number of standard deviations from the mean.
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Algorithm 1 Prototype-Based Classification with reference Intervals: Training phase

1: Input: Training set; t > 0: Number of standard deviations to consider for interval width; L: Lower
percentile and U: Upper percentile;

2. Output: a set of prototype p(C"),h =1,..., k

3: Divide training set into classes and calculate intervals for each feature of each class:

4 for each class C" do

5. for each feature f] do

6: if Reference Interval==mean&Standard Deviation then
7: Calculate the mean y and standard deviation ¢ of f; for training points in class ch.
8: Calculate the low boundary of the interval as I].1 (fir ch = u(f, Ch —tx o(fi ch
9: Calculate the high boundary of the interval as I].Z(fj, C") = u(f;, C) + tx o (f;,C")

10: else if Reference Interval==Percentile then

11: Calculate the Lth and Uth percentiles of f; for the training points in class ch.

12: Calculate the low boundary of the interval as I jl (fj,C") = percentileL(f;,C")

13: Calculate the high boundary of the interval as 1]2( fir C") = percentilell( fir ch

14: end if

15: Define the reference interval for feature f; in class C" as:

16: L(f;, C") = [} (f;,C"), I} (f;, €M)
17: P(C") = P(Ch) U Ii(f;, Ch)

18:  end for
19:  Create prototype profile p(Cy,) = [I(f1,Cr), I(f2,Cp), -, I(fun, C)]
20: end for

21: return Set of prototypes {P(Cl), P(C?), ...,P(Ch)}

3.1.2. Prototype-Based Classifiers with Percentile-Based Reference Intervals

This approach modifies the previous method by using percentiles to define reference intervals for
each feature within a class.
For each class C" and for each feature fj, calculate the lower quartile L;‘ (ex. 25th percentile) and

upper quartile U]h (ex. 75th percentile) using the training data (see Equation (3)).

Li(f;, C") = [L}(f;, C), U (£, C")] 3)

Percentiles capture the distribution of data points within a class for each feature. The L" and U]’-1
percentiles define an interval that encompasses a specific proportion L% to U% of the data points in
that class for that feature. This method is robust to outliers as extreme values have less influence on
percentiles compared to mean and the standard deviation.

This technique captures the central tendency and spread of feature values within each class,
offering a robust representation of the distribution by focusing on the lower and upper quartiles. Using
percentile intervals for each feature of each class to represent a profile of the class in a classification
problem can offer several benefits: By calculating percentile intervals for each feature within each
class, create distinct profiles that characterize each class. This can help in understanding the unique
characteristics and behaviors associated with each class in classification problem. Percentile intervals
highlight the range of values that are most representative of each class. Features with wider intervals
or larger differences between classes may indicate greater importance in distinguishing between
classes. Class profiles based on percentile intervals are intuitive and easy to interpret. They provide
clear boundaries that define the typical range of feature values associated with each class, making
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it easier to understand the characteristics of each class. Class profiles based on percentile intervals
can aid in feature selection by identifying features that are most discriminative between classes.
Features with significant differences in percentile intervals across classes may be more informative for
classification tasks. When presenting classification results to stakeholders or end-users, class profiles
based on percentile intervals provide a transparent explanation of how features contribute to class
prediction. This enhances the interpretability and trustworthiness of the classification model. Similar
to using percentile intervals for the entire training set, calculating class profiles based on percentile
intervals can make the classification model more robust to outliers within each class. Outliers have
less influence on percentile intervals compared to other summary statistics like mean and standard
deviation. Class profiles based on percentile intervals can be visually represented using box plots
or similar visualization techniques. These visual representations can offer a concise summary of the
distribution of feature values within each class, facilitating comparison and interpretation. Overall,
using percentile intervals to represent class profiles in a classification problem can enhance model
interpretability, aid in feature selection, and provide valuable insights into the characteristics of each
class, thereby improving the overall performance and understanding of the classification model. These
techniques serve as crucial steps in learning the CR classification, offering different perspectives on
how to define feature intervals. The Mean and Standard Deviation technique presented in Equation
(2) adapts to class-specific variations, and the Percentile-based approach presented in Equation (3)
provides a robust summary of the feature distributions within each class. Each technique contributes
to the overall goal of capturing essential patterns and characteristics for the subsequent phases of the
classification process. To learn the CR classifier we follow the different steps of the algorithm 1.

3.2. Phase 2: Classification Phase

The classification phase of CR classifier is outlined in Algorithm 2.
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Algorithm 2 Prototype-based classification with reference intervals: classification phase

1: Input: Test set S = {s1, 2, ...,5m }: where each data point s; is presented by the profile f(s;) =
{f1(si), f2(si), - fj(5i), s fu(si) } where fi(s;) is the value of the feature f; for the sample s;; w; :

j=1,..,nalist of features’ weights; A set of prototype:P = {P(Cl), P(C?),..,P(Ch),.., P(CK)}
obtained from algorithm 1

2: Output: Predicted class label for each test data point s; € S
3: for each sample s; do

4 for each class C" do

5: for each feature f] do
6: Calculate the partial distance: Equation (4)
7: end for
8: end for
9:  for each feature f] do
10: for each class C"" do
11: for all Classes Cf,t # h do
12: Calculate partial resemblance: Rfi (p(Ch), p(C")): Equation 5
13: end for
14: end for

15  end for
16:  for Each class C" do

17: for all Classes C!,t # h do

18: Calculate weighted resemblance matrix R (p(C"), p(C!)): Equation 6
19: end for

20:  end for

21:  for Each class C" do

22: Calculate global score: Equation 9

23:  end for

24:  Predict class label for the sample s;: Equation 10
25: end for

26: return Class labels for x;,i = {1,2,...}

First for each testing data point s, CR determines a performance matrix of prototypes as presented
in Table 1, where each component of the matrix corresponds to the absolute distance between the
data point s to be classified and the prototype of the class according to the feature f;. Each class
C",h = 1,.., k is represented by one prototype p(C"). The absolute distance between the prototype
p(C") of the class C"" and the data point s according to the feature fj is calculated by the Equation (4).
This function essentially measures the maximum deviation of the data point from the interval bounds.
A value of 0 indicates perfect alignment, while higher values indicate greater deviation.

d (s, p(C")) = max {o, 1y = £(), fi(s) - Ij%h} 4)

where f;(s) is the feature f; value of the testing data point s. p( C") is the prototype of the class C".

The interval [I Y(f, Ch), %j(f;, Ch)} presents the score of the prototype p(C") according to feature f; as
presented in the learning phase in section 3.1
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Table 1. Performance matrix of prototypes for data point s

i e fi e fn
p(CH  d(p(CH)) ... d;(p(Cl) ...... a5 (p(Ch)
p(C?)  d5(p(C?)) ... d;(p(Cz) ...... a3 (p(C?)
p(Ch  d(p(Ch)) ... d?(p(Ch) ...... s, (p(Ch)
p(CH & (p(Ch)) .. d;?(p(Ck) ...... s (p(C)

Based on this performance matrix, the prototype nearest to the sample s is selected by calculating

the weighted average mean of partial preference relationship between the sample s and the prototypes
of different classes [8,13]. The preference relation between the different prototypes called also the
outranking relation, can be defined as follows:
Definition. The prototype p(C") outranks the prototype p(c') “p(C")R*p(C) if and only if the
resemblance between the sample s and the prototype p(C") is stronger than the resemblance between
s and the prototype p(C') on the whole set of features. The outranking relation is based on the
introduction of the partial outranking indices R]S. [5,9]. Each index indicates weather the following
statement is true or false: "The distance between the data point s and a given prototype is at least as
good as the distance between data point s and the another prototype according to feature f;". The R?
outranking index according to feature f; is given by Equation (5).

1 if d(p(Ch) <& (p(C)

. )
0 Otherwise

R (p(C"), p(C)) = {

Let w; denotes the relative importance coefficient of feature f]-, for all f] € F (assume, without loss
of generality 2}1:1 w; = 1. This coefficient can be viewed as an intrinsic weight: it can be interpreted
as the voting power of each feature. The higher the intrinsic weight, the more important the feature
is. Note that the voting power in our classifier CR is independent on the value of the feature on
the data points. From these partial feature-based outranking indices and by taking into account the
relative importance of features w;, we determine for each pair of prototypes (p(C"), p(C')) the global
outranking index R*(p(C"), p(C")), which is determined by the Equation (6).

RS (p(CM), p(Ch) = i%(w]- x RS (p(CM), p(C)) 11 =1,..,K;j=1,..,n. (6)
=

The R*(p(C"), p(C!)) translates the degree with which the resemblance between the data point s
and prototype of class C", p(C") is stronger than the resemblance between the data point s and the
prototype of the class C'.

The CR classifier is based on a scoring function from an outranking relation R® to choose the best
prototype in terms of his resemblance with the data point s to be classified. Based on the outranking
relations R® between the prototypes of classes, CR selects the best prototype in terms of its resemblance
with the data point to be classified. The scoring function is used to select a prototype, that is more
closely to the data point s. The scoring function is inspired from the scoring function that used by the
multicriteria decision analysis method PROMETHEE [23]. It allows to calculate the degree with which
a prototype of class is preferred to all other prototypes and inversely how others are preferred to it.
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This is will be defined by calculating the globally positive outranking flow given by Equation (7) and
negative outranking flow given by Equation (8).

K

T (p(Ch) = Y R(p(Ch),p(C))) 7)

I=1,1#h

K
9 (p(C) = L R(p(C),p(C") ®)
1=1,1%h
The positive outranking flow ¢+ defines the strength of the prototype p(C") regarding its resemblance
with the data point s. The negative flow ¢~ defines the weakness of the prototype p(C") regrading its
resemblance with the data point s.From these two flows determined in Equation (7) and Equation (8),
the net flow ¢ can be calculated by Equation (9).

¢(p(C")) = 9™ (p(C") — ¢~ (p(C")) ©)

The net flow ¢ is the score of the prototype p(C") according to the outranking relation R®. The first
highest value of ¢ represents the best prototype regarding its resemblance with data point s, which
means that the class C" is the best candidate for the data point s. Hence, the CR classifies the unlabeled
data point s by the following decision rule given by the Equation (10).

secl e pp(ch) = max {p(p(c))} (10)

The classification procedure used by CR to classify data to the preferred classes is summarized in
the algorithm 2.

3.3. Complexity Analysis

This section is dedicated to the complexity analysis of our CR classifier in terms of space and time
complexities. The complexity analysis is done on training process and classification of new single test
point. we should denote by m, n and K the number of training set, number of features, and number of
classes.

3.3.1. Space Complexity Analysis

Space Complexity in the training process: we need to store the intervals for each feature and each
class. If we have n features and K classes, the space complexity is O(n x K) for storing these intervals.

Space complexity for the classification process for a single test example, we need to store the
performance matrix, partial resemblance matrix, and weighted resemblance matrix. These matrices
have dimensions n x K, where n is the number of features and k is the number of classes. Therefore,
the space complexity is O(n x K).

3.3.2. Time Complexity Analysis

Time complexity for the training process: Calculating the mean and standard deviation for each
feature and each class requires iterating over all samples in the training set. Therefore, the time
complexity is O(m x n x K), where m is the number of samples. Creating the prototype profile for
each class also requires iterating over all features for each class, resulting in a time complexity of
O(n x K). Overall, the time complexity of the training process is dominated by the calculation of mean
and standard deviation, resulting in O(m x n x K).

Time Complexity for the classification process for a single test example, calculating the distance
between the test example and each class prototype requires iterating over all features for each class,
resulting in a time complexity of O(n x K). Calculating the partial resemblance matrix, weighted


https://doi.org/10.20944/preprints202407.1257.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2024 d0i:10.20944/preprints202407.1257.v1

12 of 17

resemblance matrix, and general scores also involves operations with time complexity O(n x K).
Overall, the time complexity of classifying a single test example is O(n x K). In summary, the training
process has a space complexity of O(n x K) and a time complexity of O(m x n x K), while the
classification of a single test example has a space complexity of O(n x K) and a time complexity of
O(n x K).

4. Experiments

The experiments were conducted on a PC with an Intel(R) processor running at 2.2 GHz and
equipped with 2 processors and 32 GB of RAM. All classifiers and experiments in this research were
implemented in Python, utilizing open-source libraries such as Scikit-learn [24] and Pandas [25]. The
source code is available on GitHub at [GitHub link].

The real-world datasets used for benchmarking and performance evaluations are sourced from
the UCI Machine Learning Repository, well-established in machine learning research [26]. Details
regarding the datasets” descriptions and their dimensionalities are summarized in Table 2.

Table 2. Description of the data sets used in our experiments

Data Set Attribute Class Instances
Dermatology 34 6 366
HeartDisease 13 5 303
Thyroid 20 2 720
Pageblocks 10 4 548
Breast Cancer 9 2 699
Dermatology 34 4 366
Newthyroid 5 3 215
Geobia 147 9 169
Glass 9 6 214
Leaf 14 30 340
Sonar 60 2 208
SPECTF 44 2 267

Our developed algorithms, termed CR, include CR1, which employs mean and standard deviation,
and CR2, utilizing percentile-based approaches during the learning phase (Section 3.1). These classifiers
are benchmarked against well-known algorithms: k Nearest Neighbors (k-NN) with k=3, Random
Forest (RF) with 300 trees, Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) neural
network, Naive Bayesian (NB), and Nearest Centroid (NC).

To evaluate classification models, various metrics such as accuracy, precision, recall, and AUC
(Area Under the Curve) are commonly used. Unlike accuracy, which solely measures correct
predictions without considering the model’s ability to rank positive instances higher than negatives,
AUC provides a more comprehensive assessment. AUC evaluates the model’s performance across
different thresholds, making it particularly effective for imbalanced datasets or scenarios where
prioritizing true positives is crucial [27].

To ensure robust evaluation, we employed 5-fold cross-validation. This technique divides the
dataset into five folds, using four for training and one for validation in each iteration. By averaging
performance metrics such as AUC across these folds, we obtain a more reliable estimate of each
classifier’s generalization ability and mitigate the risk of overfitting to specific training data.
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4.1. Results and Discussion

Table 3 presents the classification performance of the CRI1, CR2, K-NN, RF, SVM, MLP, NB,
and NC classifiers. The results are based on the average AUC obtained from five repetitions of
5-fold cross-validation. For the CR1 classifier, which utilizes mean and standard deviation-based
reference intervals, we applied ¢ = 1.1 standard deviations. For the CR2 classifier, which employs
percentile-based reference intervals, we used the 90th percentile (U = 0.9) as the upper bound and the
10th percentile (L = 0.1) as the lower bound. The best classification performance for each dataset is
highlighted in boldface.

Based on the experimental study presented in Table 3, CR1 (percentile-based) achieved the highest
average AUC, closely followed by RF and CR2 (mean and standard deviation-based). Tables 4 and 5
provide a robust analysis of the comparative performance of the developed classifiers CR1 and CR2
against other classifiers, based on mean AUC and average normalized AUC scores. As observed, both
CR1 and CR2 consistently outperform other classifiers.

The classifiers can be categorized into three groups based on their average normalized AUC
scores, as presented in Table 5:

e Best approaches: CR1, CR2, RF, and NB.
e  Middle approaches: SVM, K-NN, and MLP.
¢ Weakest approach: NC.

Table 3. The performance of all classifiers based on the AUC average using 5-cross validation

Dataset CR1(0.9-0.1) CR2(t=1.1) K-NN RF SVM MLP NB NC

Dermatology ~ 0.955 0.983 0934 0979 0977 0981 0923 0.731
HeartDisease  0.605 0.670 0505 0580 0605 0.600 0618 0.562
Thyroid 0.909 0.763 0551 0919 0501 0505 0475 0.598
Pageblocks 0.883 0.857 0750 0779 0802 0.849 0768 0.593
BreastCancer  0.969 0.973 0971 0967 0960 0960 0963 0.956
Shuttle 0.917 0.929 0885 0926 0917 0967 0872 0.720
Newthyroid 0946 0.942 0899 0943 0.987 0737 0951 0.865
Geobia 0.916 0.895 0692 0910 0752 0708 0.866 0.658
Glass 0.748 0.719 0789  0.855 0743 0.604 0686 0718
Leaf 0.868 0.862 0777 0876 0745 0753 0843 0.765
Sonar 0.840 0.751 0815 0.825 0759 0806 0.698 0.667
SPECTF 0.696 0.525 0616 0627 0654 0619 0761 0.772
Average AUC  0.854 0.823 0766 0.849 0784 07489 0786 0.717

Average rank  0.631 0.624 0515 0.622 0.553 0473 0.608 0.363
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Table 4. Algorithm Rankings based on Average AUC Normalized Scores

Algorithms Ranking Average Normalized Scores
CR1 (Percentile:0.9-0.1)  0.631729

CR2 (t=1.1) 0.62406

RF 0.622963

NB 0.608517

SVM 0.553853

k-NN 0.515612

MLP 0.473611

NC 0.363622

Table 5. Mean AUC rankings

Classifier Mean Rank
CR1(Percentile:0.9-0.1)  2.692308
CR2(t=1.1) 3.153846
RF 3.230769
SVM 4.615385
NB 4.846154
MLP 5.307692
K-NN 5.538462
NC 6.615385

Based on the average rank presented in Table 3, our prototype-based approaches outperform other
prototype-based classifiers, including K-NN, NB, and NC. Notably, CR1 (percentile-based) achieved
the highest average AUC among all classifiers.

Overall, using outranking techniques instead of majority voting provides several advantages,
including robustness to noise, consideration of feature relationships, enhanced interpretability,
handling of imbalanced datasets, and flexibility in adapting to different types of data. These advantages
make outranking techniques a powerful and versatile tool for classification tasks, particularly in
complex and challenging real-world scenarios.

Comparison between CR-Based Mean-5td and CR-Based Percentile Intervals

Mean and standard deviation are more sensitive to outliers, while percentiles are more robust.
Mean-based intervals might not accurately capture skewed distributions. Percentile intervals are easier
to interpret as they directly represent the proportion of data points within the interval. Choosing the
appropriate method depends on the data characteristics and the importance of outlier handling. For
datasets with outliers or skewed distributions, percentile-based reference intervals offer a more robust
alternative to mean and standard deviation in this prototype-based classification approach.

In this study, we assumed equal weights for all features, which may not fully capture the
varying degrees of importance each feature may have in classification tasks. In future research,
we intend to explore optimization methods to assign appropriate weights to features dynamically. This
approach aims to enhance classifier performance by giving more prominence to informative features
while reducing the impact of less relevant ones, thereby potentially improving overall accuracy and
robustness. Additionally, leveraging feature weight optimization for feature selection purposes could
further refine our classifiers, focusing on the most discriminative features for each dataset. This paper
utilizes inductive learning to establish the classification method CR and its parameters. The feature
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intervals are learned directly from the training data using inductive techniques. To mitigate the risk of
overfitting, a deductive learning approach could be utilized, leveraging expert knowledge to fine-tune
the intervals and set the feature weights appropriately [16]. To accelerate the CR learning process,
parallel computation techniques can be employed. Utilizing different GPUs to handle each class
independently during the prototype-building phase can significantly enhance processing speed and
efficiency.

5. Conclusions

This work represents a significant advancement in classification methodologies, aiming to enhance
both the practicality and interpretability of machine learning models in complex real-world scenarios.
By integrating Feature Interval Learning (FIL) and outranking measures, we propose a novel approach
in the form of Nested Generalized Exemplars classifiers. These classifiers leverage outranking
techniques and utilize feature projections of training samples to encapsulate induced classification
knowledge. New sample classification is achieved through weighted majority voting of attribute
predictions.

Our empirical evaluation on various datasets from the UCI repository compares our approach
with established classifiers such as k Nearest Neighbors, Support Vector Machine, Random Forest,
Neural Network, Naive Bayesian, and Nearest Centroid classifiers. The results demonstrate that our
FIL-based classifiers with outranking approaches exhibit robustness to imbalanced data and irrelevant
features, achieving comparable or superior performance across most experiments. Furthermore, these
classifiers yield more interpretable models while maintaining high predictive accuracy levels.
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Abbreviations

The following abbreviations are used in this manuscript:

FIL Feature Interval Learning

CR Closest Resemblance classifier

CR1  CR uses reference interval based on mean and standard deviation
CR2  CR uses reference intervals based on percentile

DT Decision Trees

SVM  Support Vector Machine

RF Random Forest

NB Naive Bayesian

NC Nearest Centroid
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