
Review Not peer-reviewed version

Uncertainties in Plant Species Niche

Modelling Under Climate Change

Scenarios

Isabel Passos * , Albano Figueiredo , Alice Maria Almeida , Maria Margarida Ribeiro

Posted Date: 15 July 2024

doi: 10.20944/preprints202407.1186.v1

Keywords: climate change; plant species; range shift; species distribution models

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3678594
https://sciprofiles.com/profile/1196631
https://sciprofiles.com/profile/2810035
https://sciprofiles.com/profile/349097


 

Review 

Uncertainties in Plant Species Niche Modelling 

under Climate Change Scenarios 

Isabel Passos 1,2,*, Albano Figueiredo 1, Alice Maria Almeida 3 and Maria Margarida Ribeiro 2,3,4  

1 CEGOT-UC - Centre of Studies in Geography and Spatial Planning, Department of Geography and 

Tourism – University of Coimbra, Colégio de São Jerónimo, 3004-530 Coimbra, Portugal 
2 CERNAS-IPCB – Research Centre for Natural Resources, Environment and Society, Polytechic Institute of 

Castelo Branco, Polytechic University, Quinta Sra. de Mércules 6001-909 Castelo Branco, Portugal 
3 IPCB-ESA – Polytechnic Institute of Castelo Branco, Polytechic University, School of Agriculture, Quinta 

Sra. de Mércules 6001-909 Castelo Branco, Portugal 
4 CEF – Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da 

Ajuda, 1349-017 Lisboa, Portugal 

* Correspondence: ipassos.ucl@gmail.com 

Abstract: Species distribution models (SDMs) are usually used to predict current species’ 

geographic distributions and to forecast the impact of climate change, with different aims, such as 

conservation, and biodiversity management. SDMs use has been increasing in the last decades, 

however, they are vulnerable to parametrization and data quality input. Thus, inappropriate input 

can lead to potential unreliability in results. In this context, the most used data and methodologies 

in SDM, and putative deviations from the consensual best practices, were identified, by analysing 

recent literature (2018 to 2022). Results show that the parameters presented more consistently are 

the chosen algorithm (MaxEnt was used in 98% of the studies), the accuracy measures, and the time 

windows. Many papers fail to specify other parameters, limiting the reproducibility of the studies. 

Some papers also fail to provide information about the target species: only a fraction of the species' 

range is considered, or no justification for including specific variables in the model is provided. 

These options can decrease reliability in predictions under future scenarios since data provided to 

the model is inaccurate from the start or there is insufficient information for outputs discussion. 
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1. Introduction 

The need for spatial explicit results when assessing climate change impacts on species 

distribution promoted the search for a deep understanding about abiotic factors influence on species 

distribution patterns. A task facilitated by the increasing availability of environmental and species 

occurrence data with high resolution, namely for climatic scenarios, and dedicated tools, such as 

species distribution modelling techniques based on a wide array of algorithms based on correlation 

[1,2]. 

Species distribution models (SDMs) are widely used to predict species ranges and 

environmental niches, and their use has been increasing over the last two decades [1].  Models of 

correlative nature are more common, since they relate species occurrence data and environmental 

variables, generating maps predicting past, present or future species distributions [2–4].  

The SDMs have been used for species conservation purposes and biodiversity management, like 

selecting locations for protected areas, habitat restoration actions, and/or species translocation, 

especially in the context of global climate change [5–12]. Under climate change scenarios, such an 

approach was used to assess possible impacts on biodiversity [12,13], aiming to assess potential 

changes in species suitable areas, from expansion [14,15] to contraction [16–19], and sometimes even 

extinction [20,21].  
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The choices made during the modelling process can significantly affect model predictive 

performance, and predictive results may vary greatly due to those choices [1,22,23], so models must 

be fitted for the purpose, and options should be carefully considered [12]. Possible inaccuracies or 

uncertainties sources can arise in different steps [24–27]. These sources may include data source - 

occurrences, environmental data – including future climate change scenarios; spatial niche truncation 

- use of a fraction of geographical and ecological range; campling effect - new conditions outside the 

range used to calibrate models; parametrization in the modelling process - variable selection and 

variable correlation; using only climatic variables; evaluation strategies; limited models discussion. 

Several authors have already looked into these issues, addressing different errors that can lead to 

inaccurate results [2,28–39]. 

Unreliable species' occurrence data can lead to models that underestimate suitable areas [34], 

affecting the quality of performed models [5]. Data sources for SDM can be collected from various 

sources, such as museums or other natural history collections, bibliographies, field surveys and 

databases. Data coming exclusively from museums or other natural history collections can be 

incomplete or biased, concerning the actual range of the species, since they were probably collected 

in more accessible locations [24]. Otherwise, collecting data from systematic field surveys can lead to 

some areas oversampling, compared to others [31]. Ideally, systematic surveys should be performed 

in the species total range area [5]. These surveys can be feasible for species with small range sizes, 

but highly demanding for species with wide ranges [36,40]. Online platforms (e.g. GBIF) currently 

provide occurrence data commonly used to estimate climate change impacts on species distributions. 

However, differences in funding between nations and data sharing lead to differences in 

contribution, creating spatial bias due to uneven effort [28,34]. Also, data collected by the general 

public may have several errors, such as misidentification and georeferencing errors or sampling bias 

across more accessible areas, near cities and roads [41], data storage and mobilization [28,34].     

Future climate scenarios are based on emissions and development scenarios, established by the 

Intergovernmental Panel on Climate Change (IPCC). The more recent were released in their 

Assessment Report (AR6) [42]. These scenarios are projected based on possible development 

scenarios which consider different levels of greenhouse gas emissions, population growth, economic 

and technological development, and land use [43–47]. Although these scenarios are now robust 

projections and essential in climate change research and assessment [45], they are still scenarios and 

may be prone to errors and uncertainties, as well as the models based on them [29,48,49]. 

Study area limits are critical when modelling species suitability. When data from a restricted 

area of the species is used not all the abiotic conditions endured by the species may be considered, 

compromising the models' ability to capture the full range of suitable areas [2,50]. Leaving out 

marginal areas and marginal populations may also compromise results, since those populations may 

be adapted to more extreme conditions [51,52]. In these situations, called spatial niche truncation, 

only a subset of species ecological niche is considered so it can lead to incorrect forecasts when 

projecting future suitability [53,54]. Species occurrence data should be as comprehensive as possible 

to improve SDM results and represent environments and geographical areas where the species can 

live and disperse [5]. In fact, in studies that assess climate change effects, it might be critical to 

consider areas beyond the species' present range, accounting for locations that may reflect potential 

future environmental conditions [55]. Models cannot account for unknown conditions and assess 

their suitability in the future, thus, it is essential to include areas with conditions that do not yet exist 

in our study area which might be present in the future [32,33,39,52,55]. 

Climate variables greatly influence plant species' spatial (and temporal) distribution. However, 

these are not the only variables that explain their distribution, especially when dealing with restricted 

areas and high-resolution data. Other environmental and abiotic variables (e.g., soil, topography, fire) 

are also important when modelling distributions and range shifts [35,38,56,57], and the rejection of 

non-climatic environmental variables must be based on variable selection methods. The inclusion of 

such variables might also support the identification of other restrictive factors, namely associated 

with land use, since areas with greater slopes present lower human pressure [38] and register a higher 

number of occurrences, or might act as limiting factor themselves, like soil conditions, once it is 
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unlikely that the species will be able to establish itself on unsuitable soil conditions even under 

appropriate climatic conditions [56–59]. So, the exclusive use of climate data can erroneously estimate 

a species' range, often producing overpredictions [57]. However, not all available variables should be 

blindly included in the model since these variables may be highly correlated [60,61], sharing high 

amounts of information [30]. In this case, variables with indirect effects (e.g. altitude) should be 

discarded, and correlated variables with direct influence (temperature or precipitation) [62,63]should 

remain, namely those with high biological significance for the species under analysis, contributing to 

i) simplify the interpretation of the model [64], ii) avoid over-fitted results, and iii) eliminate crossed 

effects on the response curves of each variable, once inaccuracies caused by interactions with other 

variables will remain when correlated variables are in use [2,65], becoming difficult to disentangle 

the influence of each variable [60]. This might be a severe drawback when a model is fitted on data 

from one area or time and projected to another area or period with a different or unknown structure 

of collinearity since collinearity between environmental variables is not constant in space and time 

[30]. It is impossible to eliminate collinearity, but it can be reduced [30]. There are several methods to 

quantify collinearity. One of the most effective is to select variables using a threshold under a specific 

value of correlation coefficients (e.g., |r| <0.7) [30,60]. Ignoring environmental variables that are 

determinant to tackle the species' ecology can lead to unlikely predictions of species responses to 

climate change (Guevara et al., 2018). Therefore, it is crucial to know the species' ecological 

preferences, to select the most meaningful variables to include in the model and to perform a model 

as reliably as possible [24,30,60,66,67].  

There are many techniques and modelling algorithms available to perform SDMs, which belong 

to different categories of models, such as regression methods – generalized linear models (GLM), 

generalized additive model (GAM) and multivariate adaptive regression spline (MARS); 

classification methods – classification tree analysis (CTA) and Flexible Discriminant Analysis (FDA); 

machine learning algorithms – random forest (RF), Boosted Regression Tree (BRT) and Maximum 

Entropy (MaxEnt); [37,68,69], and others – Support Vector Machine (SVM) [70]. No single model is 

superior in all situations [70,71], so the algorithm's choice depends on the data specificities and the 

study objective [72]. 

Evaluation strategies or performance metrics are important to assess the discriminatory capacity 

of a model, or its ability to distinguish suitable from unsuitable conditions. There are several ways to 

assess model performance, such as sensitivity (the proportion of presences correctly predicted); 

specificity (the proportion of absences correctly identified); Cohen's Kappa Statistic (kappa); true skill 

statistic (TSS); percentage of correct classification rate (CCR); Area Under the ROC Curve (AUC); and 

error rate (ER) [22,73]. The most widely used evaluation metrics are AUC and TSS [2,74], but even 

the most widely used performance metrics have important limitations for ecological studies [74–76]. 

They are designed to reflect the trade-off between sensitivity and specificity and generally weigh 

sensitivity and specificity equally [77]. The single-use of AUC can identify well-fitting and strongly 

predictive over-fitted models [48]. The AUC value depends on the size of the study area: if the area 

is large enough to comprehend different habitats from those occupied by the species, the AUC will 

be higher, even if the model is not that good, since more points with correct predictions of low 

suitability are considered [75,77]. The same occurs with the TSS, which tends to be correlated with 

the AUC. Also, TSS depends on species prevalence and may lead to misleading results [78]. 

These common and recurrent mistakes during SDM application have led to the publication of 

several works that intend to standardize SDM procedures, improving their quality and 

reproducibility [5,6,12,64,79].  

In this context, the main objective of this study is to analyze the available literature dedicated to 

assessing climate change effects on plant distribution, based on niche modelling, to understand: 

• what are the most used data and methodologies in recent papers, namely those related to model 

calibration;  

• what are the most common deviations from consensual best practices and what information is 

most omitted from methodological descriptions; 

• identify how far the faults referred to above are identified and discussed; 
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• identify new recommendations to improve SDM results, making them clearer and more 

comprehensive. 

The analysis considers the methodologies used in recent papers, from species occurrence data 

to abiotic variables data sources, and its implications in models' accuracy and potential reproduction 

by pairs. Key aspects of the SDM elements were registered for each paper and assembled into a 

database, i) the source of species occurrence data, ii) the area analyzed, iii) the type of data (presence 

only, pseudo-absence, absence data), iv) the abiotic variables, v) the variables' selection, vi) the used 

algorithm (s) for modelling, vii) the model performance metrics, viii) the use of an ensemble model, 

ix) the climate scenario studied, x) the source of climatic models (databases and GMCs), and, 

ultimately, xi) the missing description of the used methodology. 

2. Materials and Methods 

This study aims to identify if best practices are followed when assessing changes in plant species 

distribution under climate change scenarios based on niche modelling in recent papers. The search 

was conducted in November 2022 in two databases: Web of Science (WOS) and Scopus. The following 

search equation was included, using Boolean search strategies: ("climate change" OR "global change") 

AND ("model*" OR "ecological niche model*" OR "species distribution model*" OR "habitat suitability 

model*" OR "range shift") AND ("R software" OR "maxent" OR "Biomod*" OR "GLM" OR "average 

model*" OR "ensemble*") AND ("flora" OR "plant*"). The search was carried out for the item "Topic" 

in the WOS Core Collection and the "Article title, Abstract, Keywords" topics in Scopus. Since 

modelling methodologies are constantly changing, a time limit was imposed on the research, 

considering only scientific papers published from 2018 to 2022. Only original articles were considered 

and other document types, such as review articles, books or book chapters, were removed. The search 

was based on PRISMA guidelines [80,81], and the flow chart (Figure 1) resumes the different steps 

undertaken in the current study.  

The duplicate records and articles in other languages besides English were initially removed. 

Unavailable documents were also excluded. Firstly, the title and abstract of the remaining documents 

were thoroughly screened and evaluated for inclusion in the study (Figure 1). Secondly, those articles 

were further assessed according to pre-established exclusion criteria: a) not exclusively focused on 

terrestrial vascular plant species; b) dedicated to agricultural species and their production, such as 

vines, rice, and corn; c) on invasive flora; d) on aquatic environments or islands; e) on the evaluation 

of modelling methods rather than assessing climate change effects on species distributions; and f) 

lack of modelling for the future. 
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Figure 1. Flow diagram of the selection process, based on PRISMA [80,81]. 

The screening of the databases found 240 documents complying the selection criteria, and 

afterwards, a representative sample was randomly selected (20%), a more handable number of 

articles. Finally, the 48 randomly selected articles were analyzed (Appendix A). 

The key aspects of the SDM elements were noted in each selected publication and assembled 

into a database, i) the source of species occurrence data, ii) the area analyzed, iii) the type of data 

(presence only, pseudo-absence, absence data), iv) the abiotic variables, v) the variables' selection, vi) 

the used algorithm (s) for modelling, vii) the model performance metrics, viii) the use of an ensemble 

model, ix) the climate scenario studied, x) the source of climatic models (databases and GMCs), and, 

ultimately, xi) the missing description of the used methodology). 

3. Results 

3.1. Species Occurrence Data 

The studies use different data sources for the species occurrence data, and only in one case was 

this information was missing. The use of one or two combined sources is the most common situation 

(35.4%), but the combination of three (18.8%) or four (8.3%) data sources was also identified. The most 

used data source was field survey (62.5%), followed by the use of online databases, such as the Global 

Biodiversity Information Facility (GBIF) (58.3%) (Figure 2). 
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Figure 2. Percentage of analyzed papers considering occurrence data sources. 

For the analyzed studies, 34% considered the total geographic range of the target species, while 

66% considered only a fraction, usually delimited by political borders. In almost 44% of the articles, 

the species' natural geographical range was not presented, and it was unclear if the work considered 

the species' total range and all the conditions it can endure. 

Presence-only data was used in 27% of the papers, while only 4% referred to absence data and 

12.5% to pseudo-absence points. In the remaining 56% of the documents, the data type needed to be 

clarified. 

3.2.  Abiotic Variables 

3.2.1. Climate Variables 

Most of the papers (98%) mentioned the source of environmental variables used on models' 

calibration, and only in one case was the data source not identified. The WorldClim (WorldClim) 

[82,83] was the most commonly used database for climate data, namely bioclimatic variables, 

included in 83% of the documents. Usually, the bioclimatic variables were downloaded in two 

different spatial resolutions: 2.5 minutes (approximately 5 km2) (28%) or 30 seconds (approximately 

1 km2) (69.6%). Some studies (15%) used other climatic variables sources, such as Climate Change, 

Agriculture and Food Security (CCAFS, Data - CCAFS Climate (ccafs-climate.org)) in 8% of the cases, 

the Africlim [84] (4%), or the ClimateAP (ClimateAP_Map), (2%). 

3.2.2. Other Environmental Variables 

Up to half of the papers (56%) included other variables besides climatic variables. The 

altitude/elevation was the most common (74%), followed by the slope (63%) and aspect (59%) (Figure 

3). In some cases, authors used more specific variables, such as distance to different features, such as 

rivers and dwellings [85] or fresh and salty water bodies [86]. 
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Figure 3. Percentage of papers using other Environmental variables: soil (So), altitude/elevation 

(Alt/Elev), slope (Sl), hillshade (HS), aspect (Asp), land cover (Lco), populations (Pop), wetland (Wet), 

distance to (…) (Dist). 

3.2.3. Variable Selection 

The correlation analysis between abiotic variables was performed in 79% of the papers. In 

comparison, in the remaining papers (21%), no reference was made to the correlation between 

variables or the methodology used to perform correlation analysis and the variable selection. 

In the correlation analysis papers, 54% used Pearson's correlation test. The Variance Inflation 

Factor (VIF) was also used in 10,5% of the cases. The ArcGIS/ArcMap was used in 8%: in one paper 

(2%), the band collection statistics analysis was performed in ArcMap, and in two articles the 

SDMtoolbox was used in different ways - one (2%) used the function 'remove highly correlated 

variables, and the other the Principal Component Analysis tool. In another case the method used was 

omitted. 

3.3.  Modelling Algorithm 

In the analyzed papers, eleven different modelling algorithms were used. The MaxEnt was the 

most popular one, being used in 98% of the cases, and, frequently, was the only one (83% of the cases). 

Besides MaxEnt, none of the other algorithms was used as the sole algorithm, with 16% of the papers 

using several different methods. In these cases, the researchers chose to use between four (2%) and 

ten (4%) algorithms. 

3.4.  Model Performance 

The model's predictive performance was evaluated using four different accuracy measures: the 

Area Under the Curve of the Receiver Operating Characteristic/ (AUC of ROC), the Akaike's 

Information Criterion (AICc), the True Skill Statistic (TSS) test and the Cohen's Kappa coefficient. The 

most used method was the AUC of ROC, mentioned in 93.8% of the articles, the TSS was used in 

31.3%, the AICc in 10.4%, and the Cohen's kappa coefficient in 4.2% (Figure 4). 

All articles mentioned at least one method to measure model performance. In 62.5% of the cases, 

only one method was used; in 35.4% the authors opted to use two methods; and in only 2% of the 

cases, three different methods were used. 
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Figure 4. Accuracy measures used to assess models' performance. 

3.5.  Ensemble Models 

In 42% of the papers, only one algorithm and a GCM were used; thus, no ensemble model was 

produced. In the remaining 58%, where more than one modelling algorithm and/or GCM was used, 

only 32% created an ensemble model (18.8% of total analyzed papers). The Biomod2 was the package 

used to perform the ensemble model in 67% of these cases (12.5% of total analyzed papers), with 

some works using a threshold to choose which models should be considered for the ensemble model. 

3.6.  Future Climate Projections 

3.6.1. Climate Scenarios 

The analyzed papers used mainly two (59.6%) or four different development scenarios (19.1%). 

The use of one or three different scenarios was less common, and occurred in 8.5% and 12.8% of the 

cases, respectively. The most popular scenarios were the Representative Concentration Pathways 

(RCPs): the RCP8.5 (70.8% of the documents), the RCP4.5 (56.3%), and RCP2.6 (45.8%) (Figure 5). 
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Figure 5. Emissions/development scenarios used in analyzed papers: A1b, A2a and B2a from CMIP3 

[87]; RCP2.6, RCP4.5, RCP6.0 and RCP8.5 from CMIP5 [88]; SSP126, SSP245, SSP370 and SSP585 from 

CMIP6 [42]. 

Some future time windows are more popular among flora SDMs papers, namely 2050 (average 

for 2041–2060) and 2070 (average for 2061–2080), which appear in 91.7% and 81.2% of the documents, 

respectively (Figure 6). Papers used from one to five different time intervals, with 75% using two 

different time intervals, and 12.5% using only one. 

Summing up, thirty two Global Circulation Models (GCMs) were used in the analyzed 

documents, considering all versions of several models. In 6% of the cases, the used GCM was not 

described. In those papers where the used GCM was mentioned, their number ranged from one to 

eight GCMs, with most papers (64%) using only one GCM to perform the model. 

 

Figure 6. Time windows used in analyzed papers. 

The CCSM4, developed by the National Science Foundation (NSF) and National Centre for 

Atmospheric Research (NCAR), and the HadGEM2-ES, developed by the UK Meteorological Office, 

was used in more than 29.8% and 25.5% of the papers, respectively (Table 1). The GCMs developed 

by the UK Meteorological Office seem to be the most popular (40.4%), followed by the National 

Science Foundation (NSF), and National Centre for Atmospheric Research (NCAR) (29.8%) and the 

Beijing Climate Centre Climate System Model (25.5%) (Table 1). 

Table 1. Global Circulation Model (GCM) used in the analyzed studies, and the independent Climate 

Research Centers (CRC)that developed them. Largest percentages in bold. 

Global Circulation 

Model (GCM) 
Climate Research Centres (CRC) Country 

Number of 

documents by GCM, 

%  

Number of 

documents by CRC, 

%  

ACCESS1-0 
Australian Community Climate and Earth 

System Simulator Coupled Model 
Australia 2.1 2.1 

AFRICLIM 
York Institute for Tropical Ecosystems (KITE) 

and Kenya Meteorological Service 
Kenya 4.3 4.3 

BCC-CSM1.1 
Beijing Climate Centre Climate System Model China 

12.8 
25.5 

BCC-CSM2-MR 12.8 

CanESM5 Canadian Earth System Model Canada 2.1 2.1 

CCAFS 
CCAFS-Climate Statistically Downscaled Delta 

Method 
Colombia 6.4 6.4 

CCCMA 
Canadian Centre for Climate Modelling and 

Analysis 
Canada 2.1 2.1 
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Global Circulation 

Model (GCM) 
Climate Research Centres (CRC) Country 

Number of 

documents by GCM, 

%  

Number of 

documents by CRC, 

%  

CCSM4 National Science Foundation (NSF) and 

National Centre for Atmospheric Research 

(NCAR) 

United States 

29.8 

31.9 
CCSM5 2.1 

CGCM3.1-T63 
Canadian Centre for Climate Modelling and 

Analysis 
Canada 2.1 2.1 

CNRM-CM5–1 CNRM (Centre National de Recherches 

Météorologiques—Groupe d'études de 

l'Atmosphère Météorologique) and Cerfacs 

(Centre Européen de Recherche et de Formation 

Avancée 

France 

2.1 

12.8 
CNRM-CM6–1 4.3 

CNRM-ESM2–1 6.4 

CSIRO Commonwealth Scientific and Industrial 

Research Organisation 
Australia 

2.1 
6.4 

CSIRO-MK3.6 4.3 

GFDL-CM3 
Geophysical Fluid Dynamics Laboratory 

(GFDL) 
United States 4.3 4.3 

GISS‐E2‐R 
Goddard Institute for Space Studies (GISS - 

NASA) 
United States 2.1 2.1 

HadCM3 

UK Meteorological Office 
United 

Kingdom 

2.1 

40.4 

HadGEM2-AO 4.3 

HadGEM2-ES 26.1 

HadGEM-CC 4.3 

HadGEM-IS 2.1 

IPSL-CM5A-LR 
Institut Pierre-Simon Laplace (IPSL) France 

2.1 
4.3 

IPSL-CM6A-LR 2.1 

MIROC5 Center for Climate System Research (CCSR), 

National Institute for Environmental Studies 

(NIES); and Japan Agency for Marine-Earth 

Science and Technology 

Japan 

6.4 

14.9 
MIROC6 2.1 

MIROC-ES2L 4.3 

MIROC-ESM 2.1 

MPI-ESM-LR Max Planck Institute for Meteorology Germany 2.1 2.1 

MRI-CGCM3 
Meteorological Research Institute (MRI) Japan 

8.5 
12.8 

MRI-ESM2-0 4.3 

NorESM1-M Norwegian Earth System Model (NorESM) Norway 2.1 2.1 

4. Discussion 

The information about the methodology used in each work is not always clear and complete. 

Some parameters are described more consistently, such as the origin of the data. However, many 

articles fail to specify other parameters, such as the use of absence or pseudo-absence points, 

ensemble modelling techniques, or even the GCM used. The same tendency, which limits the 

reproducibility of the studies, was noticed by other authors [1,6,71]. This is a problem that has been 

addressed in recent literature by several authors, aiming to provide guidelines/checklists for future 

publications [2,5,6,12]. In addition to the gaps in the description of adopted methodologies, common 

and recurrent mistakes during SDM application have also been pointed out by recent studies [36,37]. 

These poor modelling practices can lead to inaccurate conclusions and poor planning of conservation 

actions [64]. The examined studies had many similarities concerning the different elements analyzed. 

target species distribution area could have been more clearly stated, either total or partial. Over a 

third of the papers used the total range of the species, while the rest only considered a fraction. This 

is an important point, since models that rely on partial distributions may not be able to capture the 

full range of abiotic conditions in which a species can survive [2], and marginal populations can have 

adaptations to more extreme situations [51]. It is also essential to include location conditions that do 

not yet exist, in the study area (e.g. using buffer zones), but will probably exist, so that the model can 

assess the suitability of these conditions in the future. Ignoring this can lead to errors since the model 

cannot make accurate projections for unknown climatic conditions [32,33]. However, this seems 

common in ecological modelling exercises [53–55]. For this reason, niche truncation and clamping 

can lead to incorrect predictions when projecting to future climatic conditions, since future conditions 
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may be unavailable in the calibration area, but may be suitable for the species [39,53,55]. This can 

result in predicting false local extinctions or extirpations and, hence, inaccurate predictions of future 

species suitability, especially at range margins [50]. However, excluding areas under a climate that 

will no longer exist in the future, e.g. the northern range limit of a European species, may not be 

problematic, since those conditions will no longer be present [50]. The explanation of the species' 

range and the study area should be well specified, together with the reasons for those choices [25], 

which was not always the case. Nevertheless, only one work addressed superficially niche truncation. 

Field surveys were the most popular data source, but performing models only with field data 

can lead to problems related to some areas being over-sampled, especially when species have a broad 

range area [31]. Although systematically designed surveys covering major species ranges are 

recommended [5], systematic surveys along all species range areas in major environmental gradients 

occupied can be source-demanding, expensive and time-consuming [36,40]. On the other hand, 

opportunistic sampling (e.g. GBIF) can have other problems, such as the misidentification of species, 

and spatial bias records due to uneven effort of sampling [28,34], but larger sample size of these type 

of data seems to compensate and outperforms systematic sampling [89–91]. These biases and 

inaccuracies in distributional data can place heavy limitations on SDM studies and affect the quality 

of final results [5]. About two-thirds of the studies used more than one source for occurrence data 

gathering, from fieldwork and large databases to locations mentioned in specific studies or herbaria. 

This can be a good strategy since the more information is given to the model, the better it will perform 

[92] and data from different sources might complement each other [89]. Also, when sample data are 

collected from broad geographical areas, including different environmental gradients, a higher 

possibility exists that environmental conditions limiting species distribution will be well sampled 

[24]. 

The climate variables were used in all studies and the most common source was WorldClim, 

which was included in a large majority of the papers. The models were performed mainly at a 30 

seconds spatial resolution (approximately ~1 km2), the highest resolution used. Although, depending 

on the study goal or for small-range species, a finer special scale should be used [58]. The 30 seconds 

scale is often the finer available scale, which limits the possibility of performing finer scale models. 

Larger scale models may detect less variation in topography or soil conditions compared with finer-

scale data, resulting in a lower ability for the models to discern topographic and soil variation within 

the landscape [58]. 

However, non-climactic factors might also influence plant species distribution [35,56,57]. Circa 

half of the analyzed studies used climatic variables only. Other environmental variables were not 

included in the model, which can overestimate habitat suitability for many plant species, both in the 

present and under future scenarios, since climate-based projections might integrate areas with 

unsuitable soil conditions [57]. Some of these studies highlight this fact, pointing to this issue as a 

limitation [93,94], and others argue a lack of reliable data on a scale that would allow their inclusion 

in the model. Yet, including all climate and non-climate variables in the same models may not always 

be suitable [6], since these variables may be highly correlated [61], and their correlation can change 

through time [37] making future projections less reliable.  

Indeed, variable selection is a crucial step in SDM, but one-fifth of the analyzed articles lack to 

mention variable selection or do not describe the method used. Some simply use all the variables to 

perform models, without considering possible present and future correlations between them. Even 

though, most modelling algorithms are sensitive to high levels of correlation between variables. 

MaxEnt, the most used algorithm in the analyzed papers, seems to be capable of dealing with 

redundant variables and the independence between the degree of predictor collinearity and 

collinearity shift [60]. So, the strategy of removing highly correlated variables seems to have a small 

impact on MaxEnt model performance [60].  The articles that do not refer to variable selection used 

mainly MaxEnt. However, in those using other algorithms (BRT, RF, GLM, GAM, MARS and CTA) 

no justification is given for the absence of correlation analysis and variable selection. The variable 

selection based on correlation should be performed to simplify the interpretation of the model [64]. 
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Additionally, the species' ecological preferences should be considered, to select the most meaningful 

variables to be included in the model [24,30,66,67,95]. 

Several methods are available to perform SDMs, no single one is superior in all situations [70,71] 

and they seem to have similar performances [92]. Even though, BRT, MaxEnt, and RF were reported 

to be the best-performing modelling algorithms, while parametric and semi-parametric regression 

models (like GLM and GAM) can be good choices when the number of occurrences is very low [70]. 

In accordance with other similar ones [71,96], MaxEnt was by far the most used algorithm in the 

screened studies, as previously said. Though, the percentage of papers using this algorithm was 

larger in our review than in others [71,96], and the only used algorithm in most papers. The MaxEnt 

is a machine-learning method [97,98], and some of its features can contribute to its popularity 

compared to other algorithms: is user-friendly, even for a beginner user; outputs are easy to access 

and read; it is very accessible, it can be used in open-source software or on free software R 

programming packages; there is no need to provide absence points and it generates significant results 

with a small number and spatially biased presence points, it is shown to deliver good results 

[2,58,70,97–100]. Despite that, in climate change assessments and future projections, it seems 

advisable to use more than one algorithm to produce a final model, according to consensual best 

practices [5]. 

Most papers used more than one climate scenario and more than one time interval. The Shared 

Socioeconomic Pathways (SSPs) [42] are notably less used than RCPs [88], probably because they are 

more recent and unavailable when some of these works were developed. On the other hand, the 

scenarios provided by [87] had shallow usage, which makes sense, as more robust scenarios were 

available when these papers were published. The RCP8.5 was the most used scenario, although it 

describes a situation with very high anthropogenic greenhouse gas emissions without additional 

efforts to constrain them [88]. Papers using this scenario also used at least other intermediate 

scenarios. Most screened papers displayed two different future time intervals, and a preference exists 

for more distant temporal periods. This makes sense and might be helpful when the goal is to plan 

management actions, especially for long-living species. Adaptive and management strategies require 

a longer-term perspective since areas managed nowadays must cope with the future climate 

conditions of at least several decades [101,102]. However, many species may not yet be able to be 

established in places that will only be suitable in a few decades. Therefore, not-so-distant periods 

might also provide meaningful information about transition areas. 

The verified studies used a wide range of GCMs, a total of 32 considering all versions of the 

models, with most articles using only one GCM to perform the analysis. Since GCMs are projections 

and prone to errors, using more than one GCM has been emphasized to reduce uncertainty when 

projecting species distribution in time [29,49]. Still, more than one-third of the papers used more than 

one GCM: from 2 to 8. Some GCMs are more used than others. Those developed by the UK 

Meteorological Office are the most popular, followed by the National Science Foundation (NSF) and 

National Centre for Atmospheric Research (NCAR) from the United States and the Beijing Climate 

Centre Climate System Model, from the People's Republic of China. 

When several algorithms or GCMs were used, ensemble models were often performed, in less 

than a fifth of the articles. Ensemble modelling is often considered to have better predictive results 

and to be more reliable than single models and is often used to reduce the degree of uncertainty in 

the model selection [1,70,71]. Still, performing an ensemble using models with good and bad 

predictive capacity may not result in a good final model [2]. Similarly, to other works [1] and likewise 

in other analyzed parameters, the methodology for performing the ensemble is sparsely described in 

the analyzed works. Only two-thirds of the articles performing ensembles clearly stated the use of 

Biomod2, and only one-third described the choice of the best models to include in the ensemble, using 

a threshold, based on AUC or TSS. 

A large majority of the papers used ROC/AUC to measure model performance. Although over 

a third of the studies used more than one method, often in a complementary way, the use of the AUC 

stands out. This holds true in another study [74] and is possibly related to non-threshold dependency 

of the ROC/AUC, which is a metric provided by MaxEnt and is used in a wide range of applications 
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related to producing predictions. Despite its wider use, the single use of AUC, or another single 

metric, can misidentify over-fitted models as well-fitting and strongly predictive [48], therefore 

models should be carefully evaluated by specialists, to check whether they make sense ecologically 

for the target species [103]. 

5. Conclusions 

The current review identified 240 papers modelling plant species niches and possible future 

range shifts due to climate change, 48 of which were randomly selected and analyzed. Despite 

published standards for the use of niche models, recent studies focused on climate change still exhibit 

uncertainty related to inconsistent methodological decisions. Although modelling strategies and data 

sources are pretty consistent, the methodology is sometimes missing, which hinders the 

reproducibility of SDM studies and increases uncertainty considering the discussion of results.  

Species occurrence data comprise mainly part of the species range and use more than just one 

source, with field surveys being the most popular choice. All papers used climate data, but other 

environmental variables were used in over half of the documents.   

The choice of modelling algorithm was quite homogeneous, almost all documents using 

MaxEnt, often the only used algorithm. Using only one GCM was a popular choice although a best 

practice to use more than one, but no clear preference was found for a particular GCM.  

The parameters analysis indicates that several articles base their models on several choices that 

may lead to inaccurate and possibly unreliable results. The definition of a study area not including 

the whole species' natural range, leaving out areas and environments in which the species can live 

and that have climatic conditions that might be more usual in the future, was common since over half 

of the studies only considered a part of the species range. Also, ignoring species' ecological 

preferences when choosing the variables to use in the model, both at the outset and after variables' 

selection, is another error that appears to be common, and which can lead to putative inaccuracies in 

the results. 

Overall, there is a need to make the information clearer and more comprehensive in the SDM 

studies. In this paper, we emphasize that the information regarding the species being studied and the 

modelling process is often missing. Therefore, besides best practices referred to in guidelines papers 

previously cited, it is considered pertinent in future modelling studies to include and state the 

following information: 

● Target species natural range; 

● Considering the total species range in the study area, including a buffer to ensure the inclusion 

of different environmental conditions;  

● Compare the study area and the natural range of the species, and justify the exclusion of certain 

areas from the model, if this is the case; 

● Species' ecological preferences according to the bibliography, to support the selection variables 

selection; 

Whatever the author's options, in the papers there should be a greater criticism of the obtained 

results, identifying putative constraints that may influence final results and which points can be 

improved in future studies. 
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