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Abstract: This study investigates the effect of oil viscosity on pollutant emissions and fuel consumption of an 

internal combustion engine (ICE) in high altitudes using Response Surface Methodology (RSM). A Chevrolet 

Corsa Evolution 1.5 SOHC gasoline engine was used in Cuenca, Ecuador (2560 meters above sea level), testing 

three lubricating oils with kinematic viscosities of 9.66, 14.08, and 18.5 cSt under various engine speeds and 

loads. Key findings include: hydrocarbon (HC) emissions were minimized to 7.25 ppm with low viscosity and 

load; carbon dioxide (CO2) emissions peaked at 15.2% vol with high viscosity and load; carbon monoxide (CO) 

ranged from 0.04% to 3.74% depending on viscosity and load; nitrogen oxides (NOx) were significantly 

influenced by viscosity, RPM, and load, indicating a need for model refinement; and fuel consumption was 

significantly affected by load and viscosity. RSM-based optimization identified optimal operational conditions 

with a viscosity of 13 sCt, 1473 rpm, and a load of 78%, resulting in 52.35 ppm of HC, 13.97% vol of CO2, 1.2% 

vol of CO, 0 ppm of NOx, and a fuel consumption of 6.66 l/h. These conditions demonstrate the ability to adjust 

operational variables to maximize fuel efficiency and minimize emissions. This study underscores the critical 

role of optimizing lubricant viscosity and operational conditions to mitigate environmental impact and 

enhance engine performance in high-altitude environments.  

Keywords: Oil Viscosity; Pollutant Emissions; Fuel Consumption; High-Altitude Cities; Response Surface 

Methodology (RSM); Internal Combustion Engine (ICE); Environmental Impact; Operational conditions 

optimization 

 

1. Introduction 

The exponential growth of the vehicle fleet in recent decades has generated a significant increase 

in polluting emissions, becoming one of the leading environmental challenges at a global level [1]. 

Road vehicle growth in developed and developing countries is projected to increase by 45% by 2025, 

affecting traffic, traffic density, and emissions [2]. In 2023, the EU approved a series of Commission 

suggestions to align the EU's climate, energy, transport, and taxation policies to reduce net 

greenhouse gas emissions by at least 55% by 2030, compared to 1990 levels. This initiative aims to 

make the EU the first climate-neutral continent by 2050 [3]. Therefore, reducing environmental 

pollutant emissions from internal combustion engines (ICEs) requires the development of more 

efficient engines in terms of fuel consumption, emission generation, and power density [4]. Harmful 

components of engine exhaust gases include nitrous oxides (NOx), carbon dioxide (CO2), carbon 

monoxide (CO), hydrocarbons (HC), and particulate matter (PM) [5] which have a direct impact on 

air quality and are a significant risk factor for human health, contributing to global warming and acid 

rains [6]. 

ICEs are complex systems involving various components: lubrication, friction, charge cycles, 

supercharging, mixture formation, ignition, combustion systems, electronics and mechanics for 

engine management, transmission shift control, powertrain, sensors, actuators, cooling, exhaust 

emissions, operating fluids, filtration, etc., providing alternatives to optimize its performance [7]. One 

of these alternatives to reduce fuel consumption and, therefore, minimize the emission of polluting 
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gases into the environment is based on lowering mechanical losses and increasing engine efficiency 

[8]. In this regard, strategies have been developed to reduce these losses in the ICEs [9–13]. 

Hybrid surface modification techniques, such as coatings, textures, and nanoparticles, can 

improve the tribological performance of engine components [14]. Improving surface coatings 

through micro-reliefs on the inner surface of cylinder liners can reduce mechanical losses in internal 

combustion engines by an average of 10.8% and increase mechanical efficiency by 4.0% [10,15]. Hazar 

et al. propose coating engine components with MgO-ZrO2 and ZrO2 which provides a thermal barrier, 

increasing engine power and reducing fuel consumption while improving pollutant emissions [16].  

On the other hand, downsizing internal combustion engines can improve fuel utilization, reduce 

emissions, and increase efficiency by reducing the weight of moving parts such as pistons and 

crankshafts [17,18] which can reduce CO2 emissions by about 18% in warm engine conditions for 

mid-class vehicles [19]. Podrigalo et al. conclude that a rational reduction in effective engine capacity 

can lead to a 9.5% reduction in fuel consumption while maintaining the specified maximum speed 

and dynamic properties of cars [20]. Likewise, reducing the gap between compression rings and 

increasing the twist angle can help reduce leakage flows by 37% and contribute to minimizing global 

emissions [21]. 

Similarly, the use of low-viscosity oils (LVO) is adopted to reduce mechanical losses in ICEs due 

to the ease of implementation costs versus the advantages of reducing pollutant emissions and fuel 

consumption [12,22–24]. These oils reduce frictional power loss and wear load on compression ring 

surfaces, leading to maximum fuel economy in internal combustion engines [25]. LVO can reduce 

fuel consumption by around 2% in light-duty diesel engines [22], and 5% in urban transport buses 

[26] depending on the test conditions, offering a cost-effective way to increase engine efficiency and 

reduce CO2 emissions. Hawley et al. determine up to 3.5% fuel economy improvement in engines 

using lower-viscosity lubricants, compared to current production lubricants [27]. In the same way, 

Ishizaki et al. conclude that ultra-low viscosity engine oils can reduce CO2 emissions by 0.6% in 1.5-

1.8 L gasoline engines in New European Driving Cycles (NEDC) mode and improve fuel efficiency 

in passenger vehicles, but their cost-effectiveness depends on both viscosity reduction and oil drain 

interval extension [28]. However, the use of low-viscosity oils in ICE results in magnified wear due 

to thinner oil films and requires additional wear protection additives for effective performance 

[29,30]. 

Another factor that significantly affects fuel consumption and pollutant emissions is altitude. 

These altitude changes have a direct impact on the performance, fuel consumption, and emissions of 

ICEs [31]. Diesel vehicles, in particular, have higher CO2, CO, and NOx emission factors than gasoline 

vehicles. These emissions increase with altitude because there is lower atmospheric pressure, 

temperature, and oxygen concentration, resulting in reduced combustion efficiency in automotive 

engines with atmospheric pressure being the primary environmental factor affecting emissions [32] 

by lengthening the ignition delay, increasing energy release, and prolonging the late combustion 

period, leading to reduced thermal and combustion efficiency [33]. Wan et al. declare that as altitude 

increases from 0 to 2000 meters, engine torque drops by 2.9%, BSFC increases by 2.6%, NOx emissions 

reduce by 11.8%, and opacity smoke increases by 26.2% [34], while He et al. state that high altitude 

increases diesel engine emissions of HC, CO, and smoke, with average increases of 30%, 34%, and 

35% at 1000 meters [35]. NOx emissions vary with engine types and working conditions [36].  

2. Materials and Methods 

2.1. Description of the Experimental Setup 

For the present study, a data acquisition protocol is established through an experimental design 

using Response Surface Methodology (RSM), which will allow visual analysis of the average result 

for a particular area of the levels of the input factors or variables such as lubricant viscosity, engine 

speed, and applied load, thus evaluating the sensitivity of the output variables (emissions and fuel 

consumption) to such changes in operating conditions.  
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In this study, the experiments were performed on a Chevrolet Corsa Evolution 1.5 SOHC, four 

cylinders, four-stroke, and SI (spark ignition) gasoline engine in the city of Cuenca, Ecuador, which 

is located 2,560 meters above sea level. The engine specification is given in Table 1.  

Table 1. Main characteristics of the test engine. 

Technical specifications  

Engine 1.5 L SOHC 

Valves 8 

Number of cylinders 4 

Power (hp @ rpm) 83 @ 5600 

Torque (Nm @ rpm) 128 @ 3000 

Fuel supply MPFI 

Compression ratio 9.5 

Final Ratio 3.944 

Gross vehicle weight 1,365 Kg 

Load Capacity 325 Kg 

This vehicle is mounted on a dynamometer MAHA LPS 3000, which is composed of eddy 

current dynamometer brakes, which, in addition to measuring traction and power at the same time, 

can also generate loads with revolutions within a range of 0 – 10,000 rpm, speed from 0 to 260 km/h 

and constant tractive force from 0 - 6 KN, as shown in Figure 1. The dynamometer is also equipped 

with an AIC 5008 fuel flow meter capable of measuring volumetric flow rate from 0 to 120 l/h with a 

sensitivity of 0.01. 

 

Figure 1. Experimental unit. 

Exhaust gases were measured using a Brain Bee AGS-688 analyzer, which can determine the 

different concentrations of HC, CO, CO2, O2, and NOx emitted in the experimental unit vehicle, as 

shown in Table 2. 

Table 2. Technical specifications of the gas analyzer. 

Measuring fields Range Unit Resolution 

CO 0 – 9,99 % vol 0.01 

CO2 0 – 19,9 % vol 0.1 

HC hexane  0 – 9,999 ppm vol 1 

O2 0 – 25 % vol 0.01 

NOx 0 – 5,000 ppm vol 1 

Lambda 0.5 – 5  0.001 

Revolutions Inductance/capacitance 300 – 9,990 rpm 10 

Oil temperature 20 – 150 °C 1 

The levels of the input variable, oil viscosity, are characterized by the kinematic viscosity 

measured in cSt @ 100 °C of three lubricating oils with similar compounds, whose technical 

specifications are shown in Table 3. 
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Table 3. Technical specifications of the oils used in the study. 

SAE grade 5w30 10w30 20w50 

Specific Gravity @ 60°F 0.861 0.866 0.881 

Density, lbs/gal @ 60°F 7.17 7.21 7.33 

Color, ASTM D1500 3.0 3.0 3.0 

Flash Point (COC), °C (°F) 216 (421) 229 (444) 230 (446) 

Pour Point, °C (°F) -39 (-38) -39 (-38) -30 (-22) 

Kinematic Viscosity @ cSt @ 40°C 66.2 65.7 176 

Kinematic Viscosity @ cSt @ 100°C 9.66 14.08 18.5 

Viscosity Index 158 148 128 

Cold Cranking Viscosity, cP @ (°C) 6,150 (-30) 4,550 (-25) 7,200 (-15) 

High-Temp/High-Shear Viscosity, cP @ 150°C 3.1 3.0 4.9 

2.2. Response Surface Methodology 

The Response Surface Methodology (RSM) is based on several mathematical and statistical 

methodologies that are used to develop a suitable functional relationship between a factor of interest 

(𝑦), and certain control (input) variables denoted by 𝑥1, 𝑥2, … . , 𝑥𝑘. This relationship is not commonly 

known, but can be approximated by a polynomial model of lower degree as expressed in Equation 

(1): 

𝑦 = 𝑓′(𝑥)𝛽 + 𝜀 (1) 

where 𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑘)′ , 𝑓(𝑥)  represents a p-element vector function consisting of powers 

and cross products of powers of 𝑥1, 𝑥2, … . , 𝑥𝑘 until reaching a certain degree denoted by 𝑑 (>  1). 𝛽 

is a vector of p coefficients which are constant, and unknown being denoted as parameters, and 𝜀 is 

the random experimental error, assumed to have zero mean. This is conditional on the idea that the 

model in Equation (1) provides an adequate representation of the response. In this case, the quantity 

𝑓′(𝑥)𝛽 represents the mean response, i.e., the expected value of y, and is denoted by 𝜇 (𝑥). Typically, 

the response surface methodology uses two important models. These are special cases of the model 

presented in Equation (1). Equation (2) presents the first-degree polynomial model (𝑑 = 1): 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖

𝑘

𝑖=1

+ 𝜀 (2) 

Equation (3), states the second-degree model (𝑑 = 2): 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+ ∑  ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + ∑ 𝛽𝑖𝑖𝑥𝑖
2 + 𝜀

𝑘

𝑗=1

𝑘

𝑗≥1

𝑘

𝑖=1

 (3) 

where 𝑘 is the number of variables, for this study (𝑘 = 3); 𝑥𝑖, 𝑥𝑗 y 𝑥𝑖
2 represent these variables. 

𝛽0 are the constant terms, 𝛽𝑖 the coefficients of the linear terms 𝑥𝑖, 𝛽𝑖𝑖 the coefficients of quadratic 

terms 𝑥𝑖
2  and 𝛽𝑖𝑗  the coefficients of the interaction of the terms  𝑥𝑖𝑗 .Finally 𝜀  is the residual 

associated with the experiment. Table 4 shows the input variables and levels. 

Table 4. Input variables and levels of the experiment. 

Factor Unit 
Lower 

level 

Middle  

level 

Upper 

level 

Viscosity sCt 9.66 14.08 18.5 

Engine speed rpm 800 1650 2500 

Load % 0 50 10 

Figure 2 shows a schematic illustration of the experimental setup. The test vehicle is mounted 

on the dynamometer (a), on which the speed and load are monitored (b). Inference variables such as 
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coolant temperature, wheels, and lubricant are monitored through the dynamometer's sensor console 

(c). During data acquisition, fuel flow (d) and pollutant emissions (e) are recorded to finally analyze 

the data obtained in the experiment through specific software (f). 

 

Figure 2. Schematic of the experimental setup. 

3. Results 

3.1. Model for HC. 

The ANOVA results and fit statistics for HC are presented in Table 5. The ANOVA analysis of 

the quadratic model indicates that the model is significant, with an F-value of 6.36 and a p-value of 

0.0117, suggesting a statistically significant impact of the studied factors on the HC response. Among 

the individual terms, load (C) emerges as the most influential factor, with an F-value of 27.61 and a 

p-value of 0.0012, highlighting its critical importance in the model. The quadratic term of load (C²) is 

also significant, with an F-value of 16.38 and a p-value of 0.0049, indicating a robust nonlinear 

relationship between load and the response. In contrast, viscosity (A) and the interactions between 

factors (AB, AC) were not significant (p > 0.78). While the interaction BC and the quadratic term of 

RPM (B²) showed trends towards significance (p ≈ 0.06 and p ≈ 0.12, respectively), they did not meet 

the critical threshold. The model’s R² value is 0.8910 (refer to Table 6), indicating that it explains 

89.10% of the variability in the data, while the adjusted R² is 0.7509, reflecting a decrease in 

explanatory power when accounting for the number of terms in the model. However, the predicted 

R² is -0.7362, implying poor predictive performance, suggesting that the overall mean might be a 

better predictor than the current model. The significant lack of fit, with an F-value of 278.41 and an 

extremely low p-value (p < 0.0001), indicates that the model does not fully capture the observed 

variations, underscoring the need to explore more complex models or consider additional factors. 

The actual regression equation for HC is given in Equation (4). 

HC [ppm] = 240.451001208 − 39.284156753547 * Viscosity + 0.067123768964599*RPM − 

2.3811266968326 * Load + 0.00079850944902852 * Viscosity * RPM − 0.020361990950226 * 

Viscosity * Load + 0.00082352941176471 * RPM * Load + 1.3743576093856 * Viscosity² − 

2.9273356401384e-05 * RPM² + 0.02474 * Load² 

(4) 

Table 5. ANOVA results for HC. 

Source Sum of Squares Df Mean Square F-value p-value  

Model 56264.32 9 6251.59 6.36 0.0117 significant 
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A-Viscosity 12.50 1 12.50 0.0127 0.9134  

B-RPM 3042.00 1 3042.00 3.09 0.1220  

C-Load 27144.50 1 27144.50 27.61 0.0012  

AB 36.00 1 36.00 0.0366 0.8537  

AC 81.00 1 81.00 0.0824 0.7824  

BC 4900.00 1 4900.00 4.98 0.0607  

A² 3035.46 1 3035.46 3.09 0.1223  

B² 1883.46 1 1883.46 1.92 0.2088  

C² 16107.04 1 16107.04 16.38 0.0049  

Residual 6881.80 7 983.11    

Lack of Fit 6849.00 3 2283.00 278.41 < 0.0001 significant 

Pure Error 32.80 4 8.20    

Cor Total 63146.12 16     

Table 6. Coefficient of determination for HC. 

Coefficient of determination Value 

R2 0.8910 

Adjusted R2 0.7509 

Predicted R2 -0.7362 

The contour plot (see Figure 3a) shows the interrelation of variables, with viscosity ranging from 

9.66 to 18.5 sCt and load spanning from 0% to 100%. Notable predictions include an HC emission of 

150.223 ppm at maximum load (100%) and viscosity (18.5 sCt), represented in reddish tones, 

suggesting a significant increase in emissions under these conditions. Conversely, at a minimal load 

of 5% and viscosity of 9.66 sCt, HC emissions decrease to 7.25303 ppm, indicated in bluish tones, 

showing a marked reduction. The surface plot of Figure 3b corroborates these findings, illustrating a 

pronounced curvature indicative of a non-linear relationship between the independent variables and 

HC emissions. The 3D plot reveals that a low viscosity of 9.66 sCt combined with a low load of 5% 

results in HC emissions of 7.25303 ppm, while a viscosity of 18.5 sCt and a load of 100% produce 

150.223 ppm of HC. This analysis underscores the critical need to optimize lubrication parameters to 

mitigate environmental impact, emphasizing the influence of lubricant viscosity and operational load 

on emissions. 

 

 

(a) (b) 

Figure 3. (a) Contour plot and (b) Response surface for HC. 
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3.2. Model for CO2 

Presented in Table 7 are the ANOVA results and fit statistics for CO2. The model is significant, 

as evidenced by the F-value of 4.59 and a p-value of 0.0285. Additionally, terms C and C² (C-Load) 

are individually significant, suggesting their influence on the response variable. However, a 

considerable lack of fit is observed, as indicated by the high lack of fit F-value of 397.92 and an 

extremely low p-value. Regarding the fit statistics (refer to Table 8), the coefficient of determination 

R² indicates that the model explains approximately 85.5% of the total variability in the data. At the 

same time, the adjusted R², at 0.6687, reflects a corrected measure considering the number of terms 

in the model. Despite the model's high capability to explain variability, the lack of fit underscores the 

need for improved predictive accuracy. The regression equation for CO2 is provided in Equation (5). 

CO2 [% vol] = 8.79847 + 0.818029 * Viscosity − 0.000233 * RPM + 0.036257 * Load − 0.000053 * 

Viscosity * RPM − 0.000113 * Viscosity * Load − 0.000015 * RPM * Load − 0.024825 * Viscosity² + 

4.35986E-07 * RPM² − 0.000304 * Load² 

(5) 

Table 7. ANOVA results for CO2. 

Source Sum of Squares Df Mean Square F-value p-value  

Model 14.13 9 1.57 4.59 0.0285 significant 

A-Viscosity 0.1013 1 0.1013 0.2959 0.6034  

B-RPM 0.4513 1 0.4513 1.32 0.2886  

C-Load 8.00 1 8.00 23.38 0.0019  

AB 0.1600 1 0.1600 0.4675 0.5161  

AC 0.0025 1 0.0025 0.0073 0.9343  

BC 1.56 1 1.56 4.57 0.0700  

A² 0.9904 1 0.9904 2.89 0.1327  

B² 0.4178 1 0.4178 1.22 0.3057  

C² 2.43 1 2.43 7.11 0.0322  

Residual 2.40 7 0.3422    

Lack of Fit 2.39 3 0.7958 397.92 < 0.0001 significant 

Pure Error 0.0080 4 0.0020    

Cor Total 16.52 16     

Table 8. Coefficient of determination for CO2. 

Coefficient of determination Value 

R2 0.8550 

Adjusted R2 0.6687 

Predicted R2 -1.3124 

The contour plot of Figure 4a illustrates the response surface predictions with various levels 

ranging from 14.2 to 15.2 % vol. The critical design points marked in red indicate significant regions 

where the response variable peaks or valleys are observed. For instance, the contour lines show that 

the response value is approximately 14.4 near the design points, increasing to around 15.2 at the lower 

edge of the plot. This gradient highlights a clear response trend as one moves through the design 

space, indicating regions of high and low responses. 

The surface plot of Figure 4b reveals the response surface's three-dimensional aspects, visually 

representing how the response variable changes across the design space. The surface's curvature 

suggests a non-linear relationship between the independent variables and the response. Specific 

predictions at notable points, such as 14.4312, 14.1647, and 15.1471, are highlighted, indicating areas 

where the response variable exhibits significant changes. The upper surface portion shows a 

prediction value of 14.7036, demonstrating a peak in the response. 
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(a) (b) 

Figure 4. (a) Contour plot and (b) Response surface for CO2. 

3.3. Model for CO 

Table 9 outlines the ANOVA results and fit statistics for CO. The analysis of the evaluated 

quadratic model reveals significant results and provides a detailed view of the influence of various 

variables on the studied response. The primary factors evaluated include viscosity (A), RPM (B), and 

load (C). The model, as a whole, is significant (p = 0.0107), indicating that, in general, the variables 

included in the model have a relevant impact on the response. Among the individual factors, the 

variable load (C) shows considerable significance (p = 0.0009), suggesting that the load has a notable 

effect on the response. On the other hand, the variables viscosity (A) and RPM (B) do not exhibit 

individual statistical significance (p = 0.9569 and p = 0.1232, respectively). Interactions between 

variables, such as AB and AC, also do not show significance, indicating that there are no relevant 

synergistic effects between these factors within the model. The coefficient of determination (R²) of 

0.8941 suggests that the model explains 89.41% of the observed variability in the data, which is 

relatively high, as shown in Table 10. However, the adjusted R² is significantly lower (0.7579), 

suggesting that some variables may not be contributing efficiently to explaining the variability. The 

model's adequate precision is 8.2728, indicating a good signal-to-noise ratio, essential for the 

reliability of predictions. The regression equation for CO is detailed in Equation (6). 

CO [% vol] = 4.73817 − 0.834030 * Viscosity + 0.002036 * RPM − 0.073847 * Load + 1.13095E-18 * Viscosity * 

RPM + 0.000192 *Viscosity * Load + 0.000024 * RPM * Load + 0.029407 * Viscosity² − 7.96540E-07 * RPM² + 

0.000637 * Load² 

(6) 

Table 9. ANOVA results for CO. 

Source Sum of Squares Df Mean Square F-value p-value  

Model 39.85 9 4.43 6.57 0.0107 significant 

A-Viscosity 0.0021 1 0.0021 0.0031 0.9569  

B-RPM 2.07 1 2.07 3.07 0.1232  

C-Load 20.29 1 20.29 30.09 0.0009  

AB 0 1 0 0 10.000  

AC 0.0072 1 0.0072 0.0107 0.9205  

BC 4.1 1 4.1 6.08 0.0431  

A² 1.39 1 1.39 2.06 0.1942  

B² 1.39 1 1.39 2.07 0.1936  
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C² 10.67 1 10.67 15.83 0.0053  

Residual 4.72 7 0.6742    

Lack of Fit 4.72 3 1.57 12100.58 < 0.0001 significant 

Pure Error 0.0005 4 0.0001    

Cor Total 44.57 16     

Table 10. Coefficient of determination for CO. 

Coefficient of determination Value 

R2 0.8941 

Adjusted R2 0.7579 

Predicted R2 -0.6943 

The contour graph for CO (see Figure 5a) displays a significant variation in CO concentration 

depending on the levels of viscosity and load, with values ranging from a minimum of 0.0418921 in 

areas of low viscosity and load to a maximum of 3.74443 under conditions of high viscosity and 

increased load. In this graph, a color gradient transitions from blue (low CO concentration) to yellow 

(high CO concentration), highlighting the impact of the interactions between viscosity and load on 

CO production. For instance, the CO value is 0.0716529 at a point with intermediate viscosity and 

load, escalating dramatically to 3.10733 and 3.74443 in regions where both variables reach higher 

levels. This pattern suggests that an increase in viscosity, possibly in conjunction with higher load, 

elevates CO concentration, indicating a strong correlation between these variables. 

 
 

(a) (b) 

Figure 5. (a) Contour plot and (b) Response surface for CO 

The surface plot of Figure 5b provides a three-dimensional representation of these effects, 

showing how the response surface rises with increases in viscosity and load. The curvature of this 

surface clearly illustrates how specific adjustments in these input variables can lead to the 

maximization or minimization of CO production. 

3.4. Model for NOx 

Table 11 provides the ANOVA results and fit statistics for NOx. The analysis shows the model is 

significant, with a Model F-value of 12.96. This high F-value corresponds to a probability of only 

0.14% that such a result could occur due to random noise, affirming the model's statistical 
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significance. Significant model terms are identified by p-values less than 0.0500. In this case, the terms 

B, C, BC, A², and B² are significant, indicating their substantial impact on the NOx response. 

Conversely, terms with p-values greater than 0.1000 are considered insignificant and may warrant 

removal for model simplification. However, a notable concern is the discrepancy between the 

Predicted R² of 0.0941 and the Adjusted R² of 0.8706 (Table 12). This significant difference, exceeding 

0.2, suggests potential issues with the model or data, such as a large block effect, the presence of 

outliers, or other anomalies. Exploring model reduction, response transformation, and the 

identification of outliers is recommended to address this discrepancy. Moreover, conducting 

confirmation runs is essential to validate the empirical model. The Adequate Precision ratio of 10.719 

exceeds the desirable threshold of 4, indicating a strong signal-to-noise ratio. This high ratio suggests 

that the model is reliable and can effectively navigate the design space for the NOx response. Despite 

the model's overall significance and adequate signal strength, the substantial gap between the 

Predicted and Adjusted R² values necessitates further refinement and validation to ensure the model's 

robustness and accuracy. In conclusion, while the NOx response model shows strong potential with 

significant terms and an adequate signal, addressing the underlying issues indicated by the R² 

discrepancy is crucial for enhancing model reliability and predictive performance. The regression 

equation for NOx is provided in Equation (7). 

NOx [ppm] = 1264.7614990479 − 124.39715095923 * Viscosity − 0.63473249933458 * RPM - 

5.2812556561086 * Load − 0.0036598349747138 * Viscosity * RPM + 0.25565610859728 * 

Viscosity * Load + 0.0022176470588235 * RPM * Load + 4.5044122765709 * Viscosity² + 

0.00023148788927336 * RPM² − 0.0012 * Load² 

(7) 

Table 11. ANOVA results for NOx. 

Source Sum of Squares Df Mean Square F-value p-value  

Model 4.95E+05 9 54953.48 12.96 0.0014 significant 

A-Viscosity 13203.13 1 13203.13 3.11 0.121  

B-RPM 2.05E+05 1 2.05E+05 48.45 0.0002  

C-Load 69006.13 1 69006.13 16.27 0.005  

AB 756.25 1 756.25 0.1783 0.6855  

AC 12769 1 12769 3.01 0.1263  

BC 35532.25 1 35532.25 8.38 0.0232  

A² 32606.32 1 32606.32 7.69 0.0276  

B² 1.18E+05 1 1.18E+05 27.77 0.0012  

C² 37.89 1 37.89 0.0089 0.9273  

Residual 29684.25 7 4240.61    

Lack of Fit 29684.25 3 9894.75   significant 

Pure Error 0 4 0    

Cor Total 5.24E+05 16     

Table 12. Coefficient of determination for NOx. 

Coefficient of determination Value 

R2 0.9434 

Adjusted R2 0.8706 

Predicted R2 0.0941 

In the contour graph of Figure 6a, NOx concentration exhibits a broad range, with a notable 

minimum of 0.250162 located near the center of the lower edge, indicative of moderate load and high 

viscosity conditions. An intermediate value of 118.617 at the graph's center reflects a moderate NOx 

response under median viscosity and load conditions. The observed maximum of 250.689 in the top 

right corner reveals that a combination of high viscosity and high load leads to the highest production 

of NOx, highlighting a strong interaction between these two variables. The surface plot offers a three-
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dimensional perspective, demonstrating how NOx levels escalate in response to increments in both 

variables. The surface of Figure 6b illustrates a gradual increase in NOx from the center towards the 

top right corner, indicating that the highest concentrations are achieved under extreme conditions of 

both variables. 

 
 

(a) (b) 

Figure 6. Contour plot and (b) Response surface for NOx 

3.5. Model for Consumption 

Table 13 displays the ANOVA results and fit statistics for consumption. The model is significant, 

with an F-value of 11.05. This high F-value suggests that there is only a 0.01% chance that such a result 

could occur due to random noise, confirming the model's statistical significance. Significant model 

terms are identified by p-values less than 0.0500; in this case, the terms C, A², B², and C² are significant, 

demonstrating their considerable impact on the consumption response. Conversely, terms with p-

values more significant than 0.1000 are considered insignificant and may be candidates for model 

reduction to improve efficiency. However, the Lack of Fit F-value of 5.60 indicates a significant lack 

of fit. This is problematic, as we desire the model to fit well to the data, and there is only a 0.34% 

chance that this high Lack of Fit F-value is due to noise. A significant lack of fit suggests that the 

model does not adequately capture the observed variability in the data. Regarding the fit statistics, 

the standard deviation is 0.8548, and the R² is 0.7397, indicating that the model explains 73.97% of the 

variability in the data. However, the adjusted R² is 0.6728, and the predicted R² is negative (-0.6143), 

suggesting that the overall mean might better predict the response than the current model (see Table 

14). In such cases, a higher-order model may also predict better. The adequate precision, with a signal-

to-noise ratio of 16.958, exceeds the desirable threshold of 4, indicating a strong signal and confirming 

that the model can navigate the design space effectively. The regression equation for consumption is 

detailed in Equation (8). 

Consumption [l/h] = 14.502664936873 − 2.141698743542 * Viscosity + 0.0075285799840298 * 

RPM − 0.036325253667901 * Load − 0.00011977641735427 * Viscosity * RPM + 

0.0011538461538462 * Viscosity * Load − 1.6294117647059e-05 * RPM * Load + 

0.081245001560413 * Viscosity² − 1.6059033238964e-06 * RPM² + 0.00080389393939394 * Load² 

(8) 

Table 13. ANOVA results for Consumption. 

Source Sum of Squares Df Mean Square F-value p-value  

Model 72.69 9 8.08 11.05 < 0.0001 significant 
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A-Viscosity 0.0061 1 0.0061 0.0083 0.928  

B-RPM 0.4278 1 0.4278 0.5855 0.4493  

C-Load 22.34 1 22.34 30.58 < 0.0001  

AB 0.81 1 0.81 1.11 0.2996  

AC 0.2601 1 0.2601 0.3559 0.5546  

BC 1.92 1 1.92 2.63 0.1142  

A² 12.91 1 12.91 17.67 0.0002  

B² 6.9 1 6.9 9.44 0.0041  

C² 20.7 1 20.7 28.33 < 0.0001  

Residual 25.58 35 0.7307    

Lack of Fit 8.8 3 2.93 5.6 0.0034 significant 

Pure Error 16.78 32 0.5242    

Cor Total 98.27 44     

Table 14. Coefficient of determination for Consumption. 

Coefficient of determination Value 

R2 0.7397 

Adjusted R2 0.6728 

Predicted R2 -0.6143 

The contour and surface plots presented in Figure 7 provide an in-depth analysis of how input 

variables, viscosity (x-axis) and load (y-axis), influence fuel consumption in a controlled experimental 

setting. These graphs depict significant variations in fuel consumption based on these variables. In 

the contour graph (Figure 7a), fuel consumption values range from 5.53313 to 10.3842, illustrating a 

distinct trend where consumption increases with load and viscosity. The lower consumption values, 

such as 5.53313 and 5.37454, are found in the central region, suggesting moderate conditions of load 

and viscosity. Conversely, the highest consumption values, reaching up to 10.3842, are located in the 

upper right corner of the graph, indicating high load and viscosity conditions. 

 
 

(a) (b) 

Figure 7. (a) Contour plot and (b) Response surface of Consumption 

The surface plot of Figure 7b presents a three-dimensional representation of these effects, 

showing how fuel consumption escalates with increases in viscosity and load. The surface's curvature 

clearly demonstrates a direct relationship between increased load and viscosity and higher fuel 

consumption.  
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This analysis is essential for developing effective fuel management strategies. It enables the 

identification of operational configurations that minimize consumption and enhance energy 

efficiency in internal combustion engines. Understanding the interplay between viscosity and load in 

relation to fuel consumption provides valuable opportunities for resource optimization and 

operational sustainability. 

4. RSM Based Optimization 

An RSM-based optimization is a method to explore the shape and location of the maximum or 

minimum of a surface that mathematically represents the relationship between one or more responses 

and the influencing factors. In the current work, the emissions and fuel consumption of the engine 

are optimized. In this setup, shown in Table 15, the goal of minimum criteria was selected. Moreover, 

the default in the range criterion for study factors was selected. 

The engine operating conditions identified by optimization were 13 sCt for viscosity, 1473 rpm, 

and 78% engine load, rounded to the nearest whole number. The response variables, corresponding 

to optimized operating conditions, were 52.35 ppm of HC, 13.97 % Vol of CO2, 1.2 % Vol of CO, 0 

ppm for NOx, and 6.66 l/h for consumption. The optimum gained values of study factors and 

response variables are shown by the red and blue dots in Figure 8.  

Table 15. Optimization Setup. 

Name Goal Lower Limit Upper Limit Lower Weight Upper Weight Importance 

A: Viscosity (sCt) is in range 9.66 18.5 1 1 3 

B: RPM (rpm) is in range 800 2500 1 1 3 

C: Load (%) is in range 0 100 1 1 3 

HC (ppm) minimize 1 181 1 1 3 

CO2 (% Vol) minimize 12.1 14.9 1 1 3 

CO (% Vol) minimize 0 4.43 1 1 3 

NOx (ppm) minimize 0 498 1 1 3 

Consumption (l/h) minimize 3.67 11.82 1 1 3 

 

Figure 8. Identified optimum point. 
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The statistical analysis of optimization and its impact on overall responses was examined using 

composite desirability (D). This metric, which ranges from 0 to 1, assigns a value of 1 to the best 

outcomes and 0 to the worst. In this study, the composite desirability achieved a value of 0.695, 

indicating that the optimization settings yielded positive results for all responses. Figure 9 displays 

the contour plot of desirability. 

 

Figure 9. Contour plot of desirability. 

5. Discussion 

The findings of this study underscore the significant influence of oil viscosity on pollutant 

emissions and fuel consumption in internal combustion engines at high altitudes, as evidenced by 

ANOVA analyses. Reducing HC emissions to 7.25 ppm with low-viscosity oils and reduced load 

highlights that appropriate lubricant selection could be an effective strategy to meet stricter 

environmental regulations without compromising engine performance. These results are consistent 

with previous studies, which demonstrated that lower-viscosity lubricants can reduce internal engine 

friction, thus decreasing pollutant emissions. 

Moreover, the peak in CO2 emissions observed with high-viscosity oils under heavy loads 

underscores the direct relationship between engine operating conditions and the production of 

greenhouse gases. This outcome, reinforced by significant ANOVA results, supports the hypothesis 

that interventions in lubricant formulation and engine operating conditions can play a critical role in 

mitigating climate change, aligning with global initiatives for carbon reduction. 

RSM-based optimization revealed that adjusting the oil viscosity to 13 cSt, along with specific 

speed and load settings, optimally reduces emissions while maintaining fuel efficiency. This 

approach provides a robust framework for future research and encourages the exploration of 

different types of oils and engine design modifications that could further improve performance and 

environmental sustainability. 

Future research could benefit from expanding the range of tested environmental and operational 

conditions, including different types of fuels and engine configurations, as suggested by the ANOVA 

models' interaction terms. Additionally, incorporating life cycle analysis to assess the environmental 

impacts of lubricant production and disposal could provide a more comprehensive understanding of 

the total ecological footprint. 

Further investigation into developing new lubricant compounds that operate effectively across 

a broader range of temperatures and pressures, mainly designed for high-altitude conditions, would 
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be valuable. Exploring the interaction between these lubricants and hybrid or electric engine 

technologies could also lead to integrated strategies that maximize energy efficiency and minimize 

emissions across the entire vehicular system. 
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