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Abstract: This study investigates the effect of oil viscosity on pollutant emissions and fuel consumption of an
internal combustion engine (ICE) in high altitudes using Response Surface Methodology (RSM). A Chevrolet
Corsa Evolution 1.5 SOHC gasoline engine was used in Cuenca, Ecuador (2560 meters above sea level), testing
three lubricating oils with kinematic viscosities of 9.66, 14.08, and 18.5 cSt under various engine speeds and
loads. Key findings include: hydrocarbon (HC) emissions were minimized to 7.25 ppm with low viscosity and
load; carbon dioxide (CO2) emissions peaked at 15.2% vol with high viscosity and load; carbon monoxide (CO)
ranged from 0.04% to 3.74% depending on viscosity and load; nitrogen oxides (NOx) were significantly
influenced by viscosity, RPM, and load, indicating a need for model refinement; and fuel consumption was
significantly affected by load and viscosity. RSM-based optimization identified optimal operational conditions
with a viscosity of 13 sCt, 1473 rpm, and a load of 78%, resulting in 52.35 ppm of HC, 13.97% vol of CO, 1.2%
vol of CO, 0 ppm of NOx, and a fuel consumption of 6.66 1/h. These conditions demonstrate the ability to adjust
operational variables to maximize fuel efficiency and minimize emissions. This study underscores the critical
role of optimizing lubricant viscosity and operational conditions to mitigate environmental impact and
enhance engine performance in high-altitude environments.

Keywords: Oil Viscosity; Pollutant Emissions; Fuel Consumption; High-Altitude Cities; Response Surface
Methodology (RSM); Internal Combustion Engine (ICE); Environmental Impact; Operational conditions
optimization

1. Introduction

The exponential growth of the vehicle fleet in recent decades has generated a significant increase
in polluting emissions, becoming one of the leading environmental challenges at a global level [1].
Road vehicle growth in developed and developing countries is projected to increase by 45% by 2025,
affecting traffic, traffic density, and emissions [2]. In 2023, the EU approved a series of Commission
suggestions to align the EU's climate, energy, transport, and taxation policies to reduce net
greenhouse gas emissions by at least 55% by 2030, compared to 1990 levels. This initiative aims to
make the EU the first climate-neutral continent by 2050 [3]. Therefore, reducing environmental
pollutant emissions from internal combustion engines (ICEs) requires the development of more
efficient engines in terms of fuel consumption, emission generation, and power density [4]. Harmful
components of engine exhaust gases include nitrous oxides (NOx), carbon dioxide (CO:), carbon
monoxide (CO), hydrocarbons (HC), and particulate matter (PM) [5] which have a direct impact on
air quality and are a significant risk factor for human health, contributing to global warming and acid
rains [6].

ICEs are complex systems involving various components: lubrication, friction, charge cycles,
supercharging, mixture formation, ignition, combustion systems, electronics and mechanics for
engine management, transmission shift control, powertrain, sensors, actuators, cooling, exhaust
emissions, operating fluids, filtration, etc., providing alternatives to optimize its performance [7]. One
of these alternatives to reduce fuel consumption and, therefore, minimize the emission of polluting
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gases into the environment is based on lowering mechanical losses and increasing engine efficiency
[8]. In this regard, strategies have been developed to reduce these losses in the ICEs [9-13].

Hybrid surface modification techniques, such as coatings, textures, and nanoparticles, can
improve the tribological performance of engine components [14]. Improving surface coatings
through micro-reliefs on the inner surface of cylinder liners can reduce mechanical losses in internal
combustion engines by an average of 10.8% and increase mechanical efficiency by 4.0% [10,15]. Hazar
et al. propose coating engine components with MgO-ZrO: and ZrO: which provides a thermal barrier,
increasing engine power and reducing fuel consumption while improving pollutant emissions [16].

On the other hand, downsizing internal combustion engines can improve fuel utilization, reduce
emissions, and increase efficiency by reducing the weight of moving parts such as pistons and
crankshafts [17,18] which can reduce CO: emissions by about 18% in warm engine conditions for
mid-class vehicles [19]. Podrigalo et al. conclude that a rational reduction in effective engine capacity
can lead to a 9.5% reduction in fuel consumption while maintaining the specified maximum speed
and dynamic properties of cars [20]. Likewise, reducing the gap between compression rings and
increasing the twist angle can help reduce leakage flows by 37% and contribute to minimizing global
emissions [21].

Similarly, the use of low-viscosity oils (LVO) is adopted to reduce mechanical losses in ICEs due
to the ease of implementation costs versus the advantages of reducing pollutant emissions and fuel
consumption [12,22-24]. These oils reduce frictional power loss and wear load on compression ring
surfaces, leading to maximum fuel economy in internal combustion engines [25]. LVO can reduce
fuel consumption by around 2% in light-duty diesel engines [22], and 5% in urban transport buses
[26] depending on the test conditions, offering a cost-effective way to increase engine efficiency and
reduce CO2 emissions. Hawley et al. determine up to 3.5% fuel economy improvement in engines
using lower-viscosity lubricants, compared to current production lubricants [27]. In the same way,
Ishizaki et al. conclude that ultra-low viscosity engine oils can reduce CO2 emissions by 0.6% in 1.5-
1.8 L gasoline engines in New European Driving Cycles (NEDC) mode and improve fuel efficiency
in passenger vehicles, but their cost-effectiveness depends on both viscosity reduction and oil drain
interval extension [28]. However, the use of low-viscosity oils in ICE results in magnified wear due
to thinner oil films and requires additional wear protection additives for effective performance
[29,30].

Another factor that significantly affects fuel consumption and pollutant emissions is altitude.
These altitude changes have a direct impact on the performance, fuel consumption, and emissions of
ICEs [31]. Diesel vehicles, in particular, have higher COz, CO, and NOx emission factors than gasoline
vehicles. These emissions increase with altitude because there is lower atmospheric pressure,
temperature, and oxygen concentration, resulting in reduced combustion efficiency in automotive
engines with atmospheric pressure being the primary environmental factor affecting emissions [32]
by lengthening the ignition delay, increasing energy release, and prolonging the late combustion
period, leading to reduced thermal and combustion efficiency [33]. Wan et al. declare that as altitude
increases from 0 to 2000 meters, engine torque drops by 2.9%, BSFC increases by 2.6%, NOx emissions
reduce by 11.8%, and opacity smoke increases by 26.2% [34], while He et al. state that high altitude
increases diesel engine emissions of HC, CO, and smoke, with average increases of 30%, 34%, and
35% at 1000 meters [35]. NOx emissions vary with engine types and working conditions [36].

2. Materials and Methods
2.1. Description of the Experimental Setup

For the present study, a data acquisition protocol is established through an experimental design
using Response Surface Methodology (RSM), which will allow visual analysis of the average result
for a particular area of the levels of the input factors or variables such as lubricant viscosity, engine
speed, and applied load, thus evaluating the sensitivity of the output variables (emissions and fuel
consumption) to such changes in operating conditions.
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In this study, the experiments were performed on a Chevrolet Corsa Evolution 1.5 SOHC, four
cylinders, four-stroke, and SI (spark ignition) gasoline engine in the city of Cuenca, Ecuador, which
is located 2,560 meters above sea level. The engine specification is given in Table 1.

Table 1. Main characteristics of the test engine.

Technical specifications

Engine 1.5 L SOHC
Valves 8
Number of cylinders 4
Power (hp @ rpm) 83 @ 5600
Torque (Nm @ rpm) 128 @ 3000
Fuel supply MPFI
Compression ratio 9.5
Final Ratio 3.944
Gross vehicle weight 1,365 Kg
Load Capacity 325 Kg

This vehicle is mounted on a dynamometer MAHA LPS 3000, which is composed of eddy
current dynamometer brakes, which, in addition to measuring traction and power at the same time,
can also generate loads with revolutions within a range of 0 — 10,000 rpm, speed from 0 to 260 km/h
and constant tractive force from 0 - 6 KN, as shown in Figure 1. The dynamometer is also equipped
with an AIC 5008 fuel flow meter capable of measuring volumetric flow rate from 0 to 120 I/h with a
sensitivity of 0.01.

Figure 1. Experimental unit.

Exhaust gases were measured using a Brain Bee AGS5-688 analyzer, which can determine the
different concentrations of HC, CO, CO2, Oz and NOx emitted in the experimental unit vehicle, as
shown in Table 2.

Table 2. Technical specifications of the gas analyzer.

Measuring fields Range Unit Resolution
CcO 0-999 % vol 0.01
CO: 0-199 % vol 0.1
HC hexane 0-9,999 ppm vol 1
()} 0-25 % vol 0.01
NOx 0-5,000 ppm vol 1
Lambda 05-5 0.001
Revolutions Inductance/capacitance 300 -9,990 rpm 10
Oil temperature 20-150 °C 1

The levels of the input variable, oil viscosity, are characterized by the kinematic viscosity
measured in cSt @ 100 °C of three lubricating oils with similar compounds, whose technical
specifications are shown in Table 3.
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Table 3. Technical specifications of the oils used in the study.

SAE grade 5w30 10w30 20w50
Specific Gravity @ 60°F 0.861 0.866 0.881
Density, Ibs/gal @ 60°F 7.17 7.21 7.33
Color, ASTM D1500 3.0 3.0 3.0
Flash Point (COC), °C (°F) 216 (421) 229 (444) 230 (446)
Pour Point, °C (°F) -39 (-38) -39 (-38) -30 (-22)
Kinematic Viscosity @ cSt @ 40°C 66.2 65.7 176
Kinematic Viscosity @ cSt @ 100°C 9.66 14.08 18.5
Viscosity Index 158 148 128
Cold Cranking Viscosity, cP @ (°C) 6,150 (-30) 4,550 (-25) 7,200 (-15)
High-Temp/High-Shear Viscosity, cP @ 150°C 3.1 3.0 4.9

2.2. Response Surface Methodology

The Response Surface Methodology (RSM) is based on several mathematical and statistical
methodologies that are used to develop a suitable functional relationship between a factor of interest
(¥), and certain control (input) variables denoted by x;, x5, ...., x;. This relationship is not commonly
known, but can be approximated by a polynomial model of lower degree as expressed in Equation

(D):
y=[f()p+e o)

where x = (x3,x,,....,x;)’, f(x) represents a p-element vector function consisting of powers
and cross products of powers of x;, x5, ...., X, until reaching a certain degree denoted by d (> 1).
is a vector of p coefficients which are constant, and unknown being denoted as parameters, and ¢ is
the random experimental error, assumed to have zero mean. This is conditional on the idea that the
model in Equation (1) provides an adequate representation of the response. In this case, the quantity
f'(x)B represents the mean response, i.e., the expected value of y, and is denoted by u (x). Typically,
the response surface methodology uses two important models. These are special cases of the model
presented in Equation (1). Equation (2) presents the first-degree polynomial model (d = 1):

k
y=ﬁo+ZﬁiXi+€ )
=1

Equation (3), states the second-degree model (d = 2):

k kK k
y=p0+ Zﬁixi + Z Zﬁijxixj + Zﬁiixiz +e 3)
i=1 =

i=1 j=1

where k is the number of variables, for this study (k = 3); x;, x; y x;* represent these variables.
Po are the constant terms, f; the coefficients of the linear terms x;, f;; the coefficients of quadratic
terms x;* and B;; the coefficients of the interaction of the terms x;;.Finally ¢ is the residual
associated with the experiment. Table 4 shows the input variables and levels.

Table 4. Input variables and levels of the experiment.

Lower Middle Upper

Factor Unit level level level

Viscosity sCt 9.66 14.08 18.5

Engine speed rpm 800 1650 2500
Load %o 0 50 10

Figure 2 shows a schematic illustration of the experimental setup. The test vehicle is mounted
on the dynamometer (a), on which the speed and load are monitored (b). Inference variables such as
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coolant temperature, wheels, and lubricant are monitored through the dynamometer's sensor console
(c). During data acquisition, fuel flow (d) and pollutant emissions (e) are recorded to finally analyze
the data obtained in the experiment through specific software (f).

Figure 2. Schematic of the experimental setup.

3. Results
3.1. Model for HC.

The ANOVA results and fit statistics for HC are presented in Table 5. The ANOVA analysis of
the quadratic model indicates that the model is significant, with an F-value of 6.36 and a p-value of
0.0117, suggesting a statistically significant impact of the studied factors on the HC response. Among
the individual terms, load (C) emerges as the most influential factor, with an F-value of 27.61 and a
p-value of 0.0012, highlighting its critical importance in the model. The quadratic term of load (C?) is
also significant, with an F-value of 16.38 and a p-value of 0.0049, indicating a robust nonlinear
relationship between load and the response. In contrast, viscosity (A) and the interactions between
factors (AB, AC) were not significant (p > 0.78). While the interaction BC and the quadratic term of
RPM (B?) showed trends towards significance (p = 0.06 and p = 0.12, respectively), they did not meet
the critical threshold. The model’s R? value is 0.8910 (refer to Table 6), indicating that it explains
89.10% of the variability in the data, while the adjusted R? is 0.7509, reflecting a decrease in
explanatory power when accounting for the number of terms in the model. However, the predicted
R? is -0.7362, implying poor predictive performance, suggesting that the overall mean might be a
better predictor than the current model. The significant lack of fit, with an F-value of 278.41 and an
extremely low p-value (p < 0.0001), indicates that the model does not fully capture the observed
variations, underscoring the need to explore more complex models or consider additional factors.
The actual regression equation for HC is given in Equation (4).

HC [ppm] = 240.451001208 — 39.284156753547 * Viscosity + 0.067123768964599*RPM —

2.3811266968326 * Load + 0.00079850944902852 * Viscosity * RPM — 0.020361990950226 *

Viscosity * Load + 0.00082352941176471 * RPM * Load + 1.3743576093856 * Viscosity? —

2.9273356401384e-05 * RPM2 + 0.02474 * Load?

(4)

Table 5. ANOVA results for HC.

Source  Sum of Squares  Df Mean Square F-value p-value
Model 56264.32 9 6251.59 6.36 0.0117 significant
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A-Viscosity 12.50 1 12.50 0.0127 0.9134
B-RPM 3042.00 1 3042.00 3.09 0.1220
C-Load 27144.50 1 27144.50 27.61 0.0012
AB 36.00 1 36.00 0.0366 0.8537
AC 81.00 1 81.00 0.0824 0.7824
BC 4900.00 1 4900.00 4.98 0.0607
A? 3035.46 1 3035.46 3.09 0.1223
B2 1883.46 1 1883.46 1.92 0.2088
C2 16107.04 1 16107.04 16.38 0.0049
Residual 6881.80 7 983.11
Lack of Fit 6849.00 3 2283.00 278.41 <0.0001 significant
Pure Error 32.80 4 8.20
Cor Total 63146.12 16
Table 6. Coefficient of determination for HC.
Coefficient of determination Value
R2? 0.8910
Adjusted R? 0.7509
Predicted R2 -0.7362

The contour plot (see Figure 3a) shows the interrelation of variables, with viscosity ranging from
9.66 to 18.5 sCt and load spanning from 0% to 100%. Notable predictions include an HC emission of
150.223 ppm at maximum load (100%) and viscosity (18.5 sCt), represented in reddish tones,
suggesting a significant increase in emissions under these conditions. Conversely, at a minimal load
of 5% and viscosity of 9.66 sCt, HC emissions decrease to 7.25303 ppm, indicated in bluish tones,
showing a marked reduction. The surface plot of Figure 3b corroborates these findings, illustrating a
pronounced curvature indicative of a non-linear relationship between the independent variables and
HC emissions. The 3D plot reveals that a low viscosity of 9.66 sCt combined with a low load of 5%
results in HC emissions of 7.25303 ppm, while a viscosity of 18.5 sCt and a load of 100% produce
150.223 ppm of HC. This analysis underscores the critical need to optimize lubrication parameters to
mitigate environmental impact, emphasizing the influence of lubricant viscosity and operational load
on emissions.

285765

HC (ppm)

C: Load (%)

I
14.08 16.29
A: Viscosity (sCt)

11.87  A: Viscosity (sCt)

(a) (b)
Figure 3. (a) Contour plot and (b) Response surface for HC.
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3.2. Model for CO:

Presented in Table 7 are the ANOVA results and fit statistics for COz. The model is significant,
as evidenced by the F-value of 4.59 and a p-value of 0.0285. Additionally, terms C and C? (C-Load)
are individually significant, suggesting their influence on the response variable. However, a
considerable lack of fit is observed, as indicated by the high lack of fit F-value of 397.92 and an
extremely low p-value. Regarding the fit statistics (refer to Table 8), the coefficient of determination
R? indicates that the model explains approximately 85.5% of the total variability in the data. At the
same time, the adjusted R?, at 0.6687, reflects a corrected measure considering the number of terms
in the model. Despite the model's high capability to explain variability, the lack of fit underscores the
need for improved predictive accuracy. The regression equation for CO: is provided in Equation (5).

CO:2[% vol] = 8.79847 + 0.818029 * Viscosity — 0.000233 * RPM + 0.036257 * Load — 0.000053 *
Viscosity * RPM — 0.000113 * Viscosity * Load — 0.000015 * RPM * Load — 0.024825 * Viscosity?+ (5)
4.35986E-07 * RPM? — 0.000304 * Load?

Table 7. ANOVA results for COa.

Source  Sum of Squares  Df Mean Square F-value p-value
Model 14.13 9 1.57 4.59 0.0285 significant
A-Viscosity 0.1013 1 0.1013 0.2959 0.6034
B-RPM 0.4513 1 0.4513 1.32 0.2886
C-Load 8.00 1 8.00 23.38 0.0019
AB 0.1600 1 0.1600 0.4675 0.5161
AC 0.0025 1 0.0025 0.0073 0.9343
BC 1.56 1 1.56 4.57 0.0700
A? 0.9904 1 0.9904 2.89 0.1327
B2 0.4178 1 0.4178 1.22 0.3057
C? 243 1 243 7.11 0.0322
Residual 2.40 7 0.3422
Lack of Fit 2.39 3 0.7958 397.92 <0.0001 significant
Pure Error 0.0080 4 0.0020
Cor Total 16.52 16

Table 8. Coefficient of determination for COx.

Coefficient of determination Value
R?2 0.8550

Adjusted R? 0.6687
Predicted R? -1.3124

The contour plot of Figure 4a illustrates the response surface predictions with various levels
ranging from 14.2 to 15.2 % vol. The critical design points marked in red indicate significant regions
where the response variable peaks or valleys are observed. For instance, the contour lines show that
the response value is approximately 14.4 near the design points, increasing to around 15.2 at the lower
edge of the plot. This gradient highlights a clear response trend as one moves through the design
space, indicating regions of high and low responses.

The surface plot of Figure 4b reveals the response surface's three-dimensional aspects, visually
representing how the response variable changes across the design space. The surface's curvature
suggests a non-linear relationship between the independent variables and the response. Specific
predictions at notable points, such as 14.4312, 14.1647, and 15.1471, are highlighted, indicating areas
where the response variable exhibits significant changes. The upper surface portion shows a
prediction value of 14.7036, demonstrating a peak in the response.

d0i:10.20944/preprints202407.1034.v1
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B: RPM (rpm)
CO2 (% Vol)

14.08

9.66 11.87 14.08 16.29 185 B: RPM (rpm) 1140 11.87 A: Viscosity (sCt)

A: Viscosity (sCt) 800 9.66

(a) (b)

Figure 4. (a) Contour plot and (b) Response surface for CO2.

3.3. Model for CO

Table 9 outlines the ANOVA results and fit statistics for CO. The analysis of the evaluated
quadratic model reveals significant results and provides a detailed view of the influence of various
variables on the studied response. The primary factors evaluated include viscosity (A), RPM (B), and
load (C). The model, as a whole, is significant (p = 0.0107), indicating that, in general, the variables
included in the model have a relevant impact on the response. Among the individual factors, the
variable load (C) shows considerable significance (p = 0.0009), suggesting that the load has a notable
effect on the response. On the other hand, the variables viscosity (A) and RPM (B) do not exhibit
individual statistical significance (p = 0.9569 and p = 0.1232, respectively). Interactions between
variables, such as AB and AC, also do not show significance, indicating that there are no relevant
synergistic effects between these factors within the model. The coefficient of determination (R?) of
0.8941 suggests that the model explains 89.41% of the observed variability in the data, which is
relatively high, as shown in Table 10. However, the adjusted R? is significantly lower (0.7579),
suggesting that some variables may not be contributing efficiently to explaining the variability. The
model's adequate precision is 8.2728, indicating a good signal-to-noise ratio, essential for the
reliability of predictions. The regression equation for CO is detailed in Equation (6).

CO[% vol] =4.73817 — 0.834030 * Viscosity + 0.002036 * RPM — 0.073847 * Load + 1.13095E-18 * Viscosity *
RPM + 0.000192 *Viscosity * Load + 0.000024 * RPM * Load + 0.029407 * Viscosity? — 7.96540E-07 * RPM? + (6)
0.000637 * Load?

Table 9. ANOVA results for CO.

Source  Sum of Squares  Df Mean Square F-value p-value
Model 39.85 9 4.43 6.57 0.0107 significant

A-Viscosity 0.0021 1 0.0021 0.0031 0.9569

B-RPM 2.07 1 2.07 3.07 0.1232

C-Load 20.29 1 20.29 30.09 0.0009

AB 0 1 0 0 10.000

AC 0.0072 1 0.0072 0.0107 0.9205

BC 41 1 41 6.08 0.0431

A? 1.39 1 1.39 2.06 0.1942

B2 1.39 1 1.39 2.07 0.1936
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C2 10.67 1 10.67 15.83 0.0053
Residual 4.72 7 0.6742
Lack of Fit 4.72 3 1.57 12100.58 <0.0001 significant
Pure Error 0.0005 4 0.0001
Cor Total 44.57 16
Table 10. Coefficient of determination for CO.
Coefficient of determination Value
R2 0.8941
Adjusted R? 0.7579
Predicted R? -0.6943

The contour graph for CO (see Figure 5a) displays a significant variation in CO concentration
depending on the levels of viscosity and load, with values ranging from a minimum of 0.0418921 in
areas of low viscosity and load to a maximum of 3.74443 under conditions of high viscosity and
increased load. In this graph, a color gradient transitions from blue (low CO concentration) to yellow
(high CO concentration), highlighting the impact of the interactions between viscosity and load on
CO production. For instance, the CO value is 0.0716529 at a point with intermediate viscosity and
load, escalating dramatically to 3.10733 and 3.74443 in regions where both variables reach higher
levels. This pattern suggests that an increase in viscosity, possibly in conjunction with higher load,
elevates CO concentration, indicating a strong correlation between these variables.

CO (% Vol)

Prediction 0.0418921

C: Load (%)
CO (% Vol)

Prediction 0.0716529

9.66 1187 14.08 16.29 185

A: Viscosity (sCt)

A: Viscosity (sCt)

(a) (b)

Figure 5. (a) Contour plot and (b) Response surface for CO

The surface plot of Figure 5b provides a three-dimensional representation of these effects,
showing how the response surface rises with increases in viscosity and load. The curvature of this
surface clearly illustrates how specific adjustments in these input variables can lead to the
maximization or minimization of CO production.

3.4. Model for NOx

Table 11 provides the ANOVA results and fit statistics for NOx. The analysis shows the model is
significant, with a Model F-value of 12.96. This high F-value corresponds to a probability of only
0.14% that such a result could occur due to random noise, affirming the model's statistical
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significance. Significant model terms are identified by p-values less than 0.0500. In this case, the terms
B, C, BC, A% and B? are significant, indicating their substantial impact on the NOx response.
Conversely, terms with p-values greater than 0.1000 are considered insignificant and may warrant
removal for model simplification. However, a notable concern is the discrepancy between the
Predicted R? of 0.0941 and the Adjusted R? of 0.8706 (Table 12). This significant difference, exceeding
0.2, suggests potential issues with the model or data, such as a large block effect, the presence of
outliers, or other anomalies. Exploring model reduction, response transformation, and the
identification of outliers is recommended to address this discrepancy. Moreover, conducting
confirmation runs is essential to validate the empirical model. The Adequate Precision ratio of 10.719
exceeds the desirable threshold of 4, indicating a strong signal-to-noise ratio. This high ratio suggests
that the model is reliable and can effectively navigate the design space for the NOx response. Despite
the model's overall significance and adequate signal strength, the substantial gap between the
Predicted and Adjusted R? values necessitates further refinement and validation to ensure the model's
robustness and accuracy. In conclusion, while the NOx response model shows strong potential with
significant terms and an adequate signal, addressing the underlying issues indicated by the R?
discrepancy is crucial for enhancing model reliability and predictive performance. The regression
equation for NOx is provided in Equation (7).

NOx [ppm] = 1264.7614990479 — 124.39715095923 * Viscosity — 0.63473249933458 * RPM -
5.2812556561086 * Load — 0.0036598349747138 * Viscosity * RPM + 0.25565610859728 * @)
Viscosity * Load + 0.0022176470588235 * RPM * Load + 4.5044122765709 * Viscosity? +

0.00023148788927336 * RPM2 — 0.0012 * Load?

Table 11. ANOVA results for NOx.

Source  Sum of Squares  Df Mean Square F-value p-value
Model 4.95E+05 9 54953.48 12.96 0.0014 significant
A-Viscosity 13203.13 1 13203.13 3.11 0.121
B-RPM 2.05E+05 1 2.05E+05 48.45 0.0002
C-Load 69006.13 1 69006.13 16.27 0.005
AB 756.25 1 756.25 0.1783 0.6855
AC 12769 1 12769 3.01 0.1263
BC 35532.25 1 35532.25 8.38 0.0232
A? 32606.32 1 32606.32 7.69 0.0276
B2 1.18E+05 1 1.18E+05 27.77 0.0012
C2 37.89 1 37.89 0.0089 0.9273
Residual 29684.25 7 4240.61
Lack of Fit 29684.25 3 9894.75 significant
Pure Error 0 4 0
Cor Total 5.24E+05 16
Table 12. Coefficient of determination for NOx.
Coefficient of determination Value
R2 0.9434
Adjusted R? 0.8706
Predicted R2 0.0941

In the contour graph of Figure 6a, NOx concentration exhibits a broad range, with a notable
minimum of 0.250162 located near the center of the lower edge, indicative of moderate load and high
viscosity conditions. An intermediate value of 118.617 at the graph's center reflects a moderate NOx
response under median viscosity and load conditions. The observed maximum of 250.689 in the top
right corner reveals that a combination of high viscosity and high load leads to the highest production
of NOx, highlighting a strong interaction between these two variables. The surface plot offers a three-

d0i:10.20944/preprints202407.1034.v1
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dimensional perspective, demonstrating how NOx levels escalate in response to increments in both
variables. The surface of Figure 6b illustrates a gradual increase in NOx from the center towards the
top right corner, indicating that the highest concentrations are achieved under extreme conditions of
both variables.

NOx (ppm)

Prediction 0250162
[0}

NOx (ppm)

C: Load (%)

'
9.66 11.87 14.08 1629 185

A: Viscosity (sCt) 1187 A: Viscosity (sCt)

(a) (b)

Figure 6. Contour plot and (b) Response surface for NOx

3.5. Model for Consumption

Table 13 displays the ANOVA results and fit statistics for consumption. The model is significant,
with an F-value of 11.05. This high F-value suggests that there is only a 0.01% chance that such a result
could occur due to random noise, confirming the model's statistical significance. Significant model
terms are identified by p-values less than 0.0500; in this case, the terms C, A? B2, and C? are significant,
demonstrating their considerable impact on the consumption response. Conversely, terms with p-
values more significant than 0.1000 are considered insignificant and may be candidates for model
reduction to improve efficiency. However, the Lack of Fit F-value of 5.60 indicates a significant lack
of fit. This is problematic, as we desire the model to fit well to the data, and there is only a 0.34%
chance that this high Lack of Fit F-value is due to noise. A significant lack of fit suggests that the
model does not adequately capture the observed variability in the data. Regarding the fit statistics,
the standard deviation is 0.8548, and the R? is 0.7397, indicating that the model explains 73.97% of the
variability in the data. However, the adjusted R? is 0.6728, and the predicted R? is negative (-0.6143),
suggesting that the overall mean might better predict the response than the current model (see Table
14). In such cases, a higher-order model may also predict better. The adequate precision, with a signal-
to-noise ratio of 16.958, exceeds the desirable threshold of 4, indicating a strong signal and confirming
that the model can navigate the design space effectively. The regression equation for consumption is
detailed in Equation (8).

Consumption [I/h] = 14.502664936873 — 2.141698743542 * Viscosity + 0.0075285799840298 *
RPM - 0.036325253667901 * Load — 0.00011977641735427 * Viscosity * RPM +
0.0011538461538462 * Viscosity * Load — 1.6294117647059%-05 * RPM * Load +

0.081245001560413 * Viscosity? — 1.6059033238964e-06 * RPM? + 0.00080389393939394 * Load?

(8)

Table 13. ANOVA results for Consumption.

Source  Sum of Squares  Df Mean Square F-value p-value
Model 72.69 9 8.08 11.05 <0.0001 significant
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A-Viscosity 0.0061 1 0.0061 0.0083 0.928
B-RPM 0.4278 1 0.4278 0.5855 0.4493
C-Load 22.34 1 22.34 30.58 <0.0001
AB 0.81 1 0.81 1.11 0.2996
AC 0.2601 1 0.2601 0.3559 0.5546
BC 1.92 1 1.92 2.63 0.1142
A? 12.91 1 12.91 17.67 0.0002
B? 6.9 1 6.9 9.44 0.0041
(e 20.7 1 20.7 28.33 <0.0001
Residual 25.58 35 0.7307
Lack of Fit 8.8 3 2.93 5.6 0.0034 significant
Pure Error 16.78 32 0.5242
Cor Total 98.27 44
Table 14. Coefficient of determination for Consumption.
Coefficient of determination Value
R2 0.7397
Adjusted R? 0.6728
Predicted R2 -0.6143

The contour and surface plots presented in Figure 7 provide an in-depth analysis of how input
variables, viscosity (x-axis) and load (y-axis), influence fuel consumption in a controlled experimental
setting. These graphs depict significant variations in fuel consumption based on these variables. In
the contour graph (Figure 7a), fuel consumption values range from 5.53313 to 10.3842, illustrating a
distinct trend where consumption increases with load and viscosity. The lower consumption values,
such as 5.53313 and 5.37454, are found in the central region, suggesting moderate conditions of load
and viscosity. Conversely, the highest consumption values, reaching up to 10.3842, are located in the
upper right corner of the graph, indicating high load and viscosity conditions.

Consumption (I/h)
5

80

60

g =
E g
= H
S B
£
40 2
o
o

20

0

9.66 1187 14.08 16.29 185
A: Viscosity (sCt)
(a) (b)

Figure 7. (a) Contour plot and (b) Response surface of Consumption

The surface plot of Figure 7b presents a three-dimensional representation of these effects,
showing how fuel consumption escalates with increases in viscosity and load. The surface's curvature
clearly demonstrates a direct relationship between increased load and viscosity and higher fuel
consumption.
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This analysis is essential for developing effective fuel management strategies. It enables the
identification of operational configurations that minimize consumption and enhance energy
efficiency in internal combustion engines. Understanding the interplay between viscosity and load in
relation to fuel consumption provides valuable opportunities for resource optimization and
operational sustainability.

4. RSM Based Optimization

An RSM-based optimization is a method to explore the shape and location of the maximum or
minimum of a surface that mathematically represents the relationship between one or more responses
and the influencing factors. In the current work, the emissions and fuel consumption of the engine
are optimized. In this setup, shown in Table 15, the goal of minimum criteria was selected. Moreover,
the default in the range criterion for study factors was selected.

The engine operating conditions identified by optimization were 13 sCt for viscosity, 1473 rpm,
and 78% engine load, rounded to the nearest whole number. The response variables, corresponding
to optimized operating conditions, were 52.35 ppm of HC, 13.97 % Vol of CO2, 1.2 % Vol of CO, 0
ppm for NOx, and 6.66 1/h for consumption. The optimum gained values of study factors and
response variables are shown by the red and blue dots in Figure 8.

Table 15. Optimization Setup.

Name Goal Lower Limit Upper Limit Lower Weight Upper Weight Importance
A: Viscosity (sCt) is in range 9.66 18.5 1 1 3
B: RPM (rpm) is in range 800 2500 1 1 3
C: Load (%) is in range 0 100 1 1 3
HC (ppm) minimize 1 181 1 1 3
CO2 (% Vol) minimize 12.1 14.9 1 1 3
CO (% Vol) minimize 0 443 1 1 3
NOx (ppm) minimize 0 498 1 1 3
Consumption (I/h) minimize 3.67 11.82 1 1 3
B L
9.66 185 800 2500 0 100
A:Viscosity = 12.8561 B:RPM = 1472.68 C:Load = 78.1384
1 181 121 149 0 4.43
HC =52.3516 CO,=139772 CO=1.19929
N N Desirability = 0.695
Solution 1 out of 8
0 498 3.67 11.82
NOx =-0.000138106 Consumption = 6.66486

Figure 8. Identified optimum point.
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The statistical analysis of optimization and its impact on overall responses was examined using
composite desirability (D). This metric, which ranges from 0 to 1, assigns a value of 1 to the best
outcomes and 0 to the worst. In this study, the composite desirability achieved a value of 0.695,
indicating that the optimization settings yielded positive results for all responses. Figure 9 displays
the contour plot of desirability.

Desirability
2500 :

2160 —

1820 —

B: RPM (rpm)

1480 —

1140 —

800

T
9.66 11.87 14.08 16.29 18.5

A: Viscosity (sCt)

Figure 9. Contour plot of desirability.

5. Discussion

The findings of this study underscore the significant influence of oil viscosity on pollutant
emissions and fuel consumption in internal combustion engines at high altitudes, as evidenced by
ANOVA analyses. Reducing HC emissions to 7.25 ppm with low-viscosity oils and reduced load
highlights that appropriate lubricant selection could be an effective strategy to meet stricter
environmental regulations without compromising engine performance. These results are consistent
with previous studies, which demonstrated that lower-viscosity lubricants can reduce internal engine
friction, thus decreasing pollutant emissions.

Moreover, the peak in CO: emissions observed with high-viscosity oils under heavy loads
underscores the direct relationship between engine operating conditions and the production of
greenhouse gases. This outcome, reinforced by significant ANOVA results, supports the hypothesis
that interventions in lubricant formulation and engine operating conditions can play a critical role in
mitigating climate change, aligning with global initiatives for carbon reduction.

RSM-based optimization revealed that adjusting the oil viscosity to 13 cSt, along with specific
speed and load settings, optimally reduces emissions while maintaining fuel efficiency. This
approach provides a robust framework for future research and encourages the exploration of
different types of oils and engine design modifications that could further improve performance and
environmental sustainability.

Future research could benefit from expanding the range of tested environmental and operational
conditions, including different types of fuels and engine configurations, as suggested by the ANOVA
models' interaction terms. Additionally, incorporating life cycle analysis to assess the environmental
impacts of lubricant production and disposal could provide a more comprehensive understanding of
the total ecological footprint.

Further investigation into developing new lubricant compounds that operate effectively across
a broader range of temperatures and pressures, mainly designed for high-altitude conditions, would
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be valuable. Exploring the interaction between these lubricants and hybrid or electric engine
technologies could also lead to integrated strategies that maximize energy efficiency and minimize
emissions across the entire vehicular system.
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