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Abstract: The main objective of this paper is to present a repository of image databases whose features are

augmented with embedded vector field (VF) features. The repository is designed to provide the user with image

databases which enhance machine learning (ML) classification. Also, six VFs are provided and the user may

embed them into her/his own image database with the help of software named ELPAC. Three of the VFs generate

real shaped singular points (SPs): springing, sinking and saddle. The other three VFs generate seven kinds

of SPs which include the real shaped SPs and four complex shaped SPs: repealing and attracting (out and in)

spirals; clockwise and counterclockwise orbits (centers). Further, the present work defines the locations of the

SPs according to the image objects and the mappings between the SPs’ shapes if separate VFs are embedded into

the same image. Thus, the paper produces recommendations for the most appropriate VF selection to embed

into an image database so that the augmented SPs shapes enhance the ML classification. Examples of images

with embedded VFs are shown in the text for illustration and to support and validate the theoretical conclusions.

Thus, the contributions of the paper are the derivation of the following findings: SPs location in an image; the

mappings between the SPs of different VFs; the definition of an imprint of an image an of an image database in a

VF. The advantage of classifying an image database with embedded VFs is that the new database enhances ML

and improves the classification statistics if compared to the classification of the original image database with the

same ML classifier.

Keywords: image; vector field; features; augmentation; machine learning; classification

1. Introduction

The number, the sizes, and the variety of image databases has flourished in the recent decade.
These databases are generated to solve problems in medicine, science, security, and industry. The
demand for increasing accuracy is high and important. For example, face image databases usually
contain hundreds of thousands of images. Hence, a single percentage of error will lead to thousands of
incorrectly processed samples. Therefore, embedding additional features into an image carries the
potential of enhancing the capabilities of the classifier [1] to correctly identify unknown input samples.
This holds because in medical images, like skin lesions, the features are cluttered and chaotic. Hence,
embedding image related, additional, features make the classifier more focused, which improves the
accuracy [2,3].

VFs are classical tools in hydro-, air- and electrodynamics but in the recent decades they attracted
the attention of Computer Vision and Image Analysis scientists. In [4] the authors developed an
Ambrosio-Tortorelli scalar field for the purpose of objects partitioning. The authors of [5] developed a
method that applies the gradient vector field (GVF) of the solution of the Poisson partial differential
equation to extract geometric features and objects. Another application of VFs is in facilitating the
iterative matching of features through "consensus" between VFs [6]. The advantage provided by this
approach is the reduced number of false matches. It holds because the VF is generated by a bank
of directional morphological openings which considers multiple directions of contour and defines
ellipses as special structuring elements [7], defining new adaptive filters for image segmentation.

This paper describes a repository of image databases where the geometric image features are
augmented with VF features like SPs shapes, trajectories of vectors, and separatrices. In paper [3] we
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proved that the SPs shapes are invariant according to scaling, translation, and weak rotations. This
property shows that the SP shapes are useful features to augment the image features and enhance
the statistics of ML classifiers. We validated this advantage with a sparse representation wavelet
classification (SRWC) and a sparse representation classification quaternion wavelet (SRCQW) method
presented in paper [1] and with five convolutional neural networks (CNNs) in the papers [2,3].

For the purpose of validation we applied the above listed ML classifiers on the public image
databases ISIC2018 [19], ISIC2020 [20], COIL100 [16], and YaleB [18]. These databases contain 2D
images of different types and sizes. The first two image databases consist of skin lesion images, the
third one consists of 100 objects recorded from 72 different angles, and the last database contains the
images of 38 faces recorded under 64 different illumination conditions. Note that the ISIC2020 is the
largest among the above listed databases and has 32,542 benign and 584 malignant images. In addition,
10,982 non-labeled benign and malignant images are available for testing.

To facilitate the embedding, learning and classification processes the original images were resized
to 420 × 420 for the COIL100 database and to 192 × 168 for the Yale database. Further, from ISIC2018
were generated two image databases resized to 250 × 250 and 500 × 500 pixels, respectively. Addi-
tionally, two datasets were generated from ISIC2020 by resizing the original images to 256 × 192 and
332 × 590 pixels, respectively.

To augment the image features with SPs shapes we have developed six VFs. In [1,11] we designed
three VFs ∇û, ∇ϕ̂ and ∇ψ̂ whose SPs have real Eigenvalues and shapes formed by vectors whose
main directions are determined by the Eigenvectors of the SPs. Further, in [3] we developed two VFs
vû and vϕ̂ which contain SPs with real and complex Eigenvalues, Eigenvectors, and shapes. In the
present study we formulate the sixth VF vψ̂ which also possess SPs with real and complex shapes.

We proved in [1,11] that the gradient VF (GVF) ∇û generates two kinds of SPs’ shapes, namely
saddle and sinking. The two GVFs ∇ϕ̂ and ∇ψ̂ generate three real shaped SPs’: saddle, sinking and
springing. Next, we proved in [3] that the VFs vû and vϕ̂ may create seven SPs shapes which include
the three real shaped SPs as well as attracting and repealing (in and out) spirals along with clockwise
and counterclockwise orbits.

We embed the six VFs ∇û,∇ϕ̂,∇ψ̂, vû, vϕ̂ and vψ̂ with the help of Matlab tools, incorporated into
the ELPAC software [12], which was initially developed for automatic image segmentation with an
active contour guided by the VF ∇û. By embedding a VF into every image of a database we built up a
new image database, where the image features are augmented with SPs shapes. Thus, by applying
ELPAC on the four image databases ISIC2018 [19], ISIC2020 [20], COIL100 [16] and YaleB [18] we
generated a set of new image databases where the above six VFs are embedded. These image databases
are ready to use and have the advantage of enhancing the classification statistics compared to the
classification statistics of the original database [1–3]. The first repository of image databases with
embedded VFs is available with downloads at the URL given below. The web page also contains data
to support the claim that embedding VF increases accuracy of classification:
https://www.tamuc.edu/projects/augmented-image-repository/?redirect=none.

On the same web page, we link to the EPLAC software [12] which could be implemented for
embedding into any image any of the six VFs described in this paper. An additional advantage of
images with embedded VF is for image databases augmentation when there is a shortage of samples
or imbalanced classes. However, implementation of this idea requires a deep and rigorous study and
support by experimental results. Hence, it will be a subject of study in our future works. Further,
the above web page provides the SRWC [1] code which can be used, to classify original and image
databases with embedded VFs, for the purpose of comparison with the users’ own classifiers.

The contributions of this study are: 1) Definition of the SPs locations according to the image objects;
2) Generalization of the mappings between the SPs shapes if the six VFs are separately embedded into
the same image: 3) Definition of the new type of image and image database named "imprint of an
image and imprint of an image database in a VF". These contributions provide the opportunity for the
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user to choose the VF to be embedded into an image database in accordance to the particular database
in order to increase classification statistics.

The rest of this paper is organized as follows: Sections 2 is composed of two subsections. The first
one describes the six VFs used to augment the image features with SPs shapes, while the second one
describes the SPs shapes, the mappings between them, and the SPs locations in an image; Section 3
consists of two main subsections which describe the original, the newly generated image database with
embedded VFs, and the software tools available for image features augmentation and image databases
classification. The paper ends with a discussion on the contributions and the advantages obtainable by
classifying image databases with embedded VFs and/or imprints of image databases in VFs.

2. Vector Fields That Augment the Image Features

2.1. Definition of Vector Fields

The set of VFs for augmenting image features with SPs shapes can be characterized with the
help of weighted Laurent polynomials [13], which distinguish 16 kinds (shapes) of SPs. Another way
to describe the VFs is through the Eigenvalues of their Jacobian [1,14,15]. This approach defines 7
different kinds (shapes) of SPs. In our studies we adopted the latter classification and distinguish 7
different SPs shapes which we embed into images. Three of the SPs shapes are: springing, sinking
and saddle. They correspond to the real Eigenvalues of the Jacobian of the gradient VFs (GVFs). The
shapes of the three kinds of SPs are described in [1,11], and are illustrated in Figure 1.

Figure 1. The SPs shapes are cropped from synthetic image where is embedded the VF: (a) vû - sinking
shaped SP; (b) vû - springing shaped SP; (C) ∇ϕ̂ - saddle shaped SP.

The remaining four SPs shapes are those corresponding to the complex Eigenvalues of the Jacobian
of the VFs vû, vϕ̂ and vψ̂. The SPs shapes are formed according to the directions of the vectors oriented
toward the directions of the Eigenvectors and resemble attracting (in) and repealing (out) spirals, as
well as clockwise and counterclockwise orbits [3]. The SPs with complex shapes are usually located
in homogeneous regions. Examples of SPs with spiral out (repealing) and clockwise orbit shapes are
presented in Figure 2.

Figure 2. The SPs shapes are cropped from COIL100 image where is embedded the VF vϕ̂: (a) shows
spiral out (repealing) shaped SP; (b) presents clockwise orbit SP.

To generate the seven kinds of SPs shapes described above, we have developed three GVFs with
real Eigenvalues [1,11] and three non GVFs with real and complex Eigenvalues [3]. The six VFs are
defined with the help of the solution û(x, y) of the Poisson Image equation [1,3,11], where ∂Ω denotes
the image frame and I(x, y) the image function:

∆u(x, y) = −|∇I(x, y)|2

1 + I(x, y)
, u = I(x, y), (x, y) ∈ ∂Ω. (1)
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The developed GVFs are defined with the following equations [1,11]:

∇û = uxi + uy j, ∇ϕ̂ = ϕ̂xi + ϕ̂y j, ∇ψ̂ = ψ̂xi + ψ̂y j, (2)

and they generate the sinking, springing and saddle shaped SPs. In Eqs. 2 the function

ϕ̂ = ∥∇û∥2, ψ̂ =
−∆û + 1
∥∇û∥ =

−∆û + 1√
ϕ̂

. (3)

The next three VFs are non-GVF and are developed by replacing the summations in Eqs. 2 with
subtractions [3]:

vû = uxi − uy j, vϕ̂ = ϕ̂xi − ϕ̂y j, vψ̂ = ψ̂xi − ψ̂y j. (4)

The VFs defined with Eq. 4 generate the above three real shaped SPs and the following four
complex shaped SPs, named attracting (in) and repealing (out) spirals, as well as clockwise and
counterclockwise orbits (known also as centers) [14,15].

The ELPAC software was initially introduced in [12] with the capability of embedding ∇û to
evolve an active contour. The tools to embed ∇ϕ̂, and ∇ψ̂ were incorporated to conduct the study
in [1], while [3] extended ELPAC with tools to embed vû, vϕ̂ and most recently we added a tool to
embed vψ̂. Hence ELPAC embeds in an image any of the six VFs , as shown in Figures 4, 6, 7. Further,
if we remove the objects from the image with embedded VF, we receive an image of the VF generated
from the original image (Figure 4 parts (b), (d), (f), (h), (j), (l)). Thus, an image containing only the VF,
generated on the original image, we call "imprint of the image in the VF". The imprints of the image
from Figure 3, in the six VFs, are shown in Figure 4. Further, we define the notion "imprint of an image
database in a VF" as the set of imprints of the images from the original database in the VF.

Figure 3. A malignant skin lesion image from [17].

Figure 4. Parts (a), (c), (e), (g), (i), and (k) show the six VFs ∇û,∇ϕ̂,∇ψ̂, vû, vϕ̂, vψ̂ embedded into the
skin lesion image shown in Figure 3; The remaining parts (b), (d), (f), (h), (j), and (l) show the imprints
of the skin lesion in the six VFs respectively.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2024                   doi:10.20944/preprints202407.0874.v1

https://doi.org/10.20944/preprints202407.0874.v1


5 of 16

2.2. Vector Fields SPs for Image Features Augmentation

In the present section we describe the SPs shapes created by each of the six VFs and list approxi-
mately where, according to the image objects, the SPs are located. Also, we determine the mappings
between the SPs shapes if different VFs are separately embedded into an image. It helps define
the similarities and differences between VFs components like SPs, separatrices [1] and architectures
(skeletons [21] if embeded into the same image. This comparison facilitates the choice of the VF most
appropriate for embedding into an image database to enhance ML and improve classification.

Recall that each of the VFs introduced, in subsection 2.1, is defined with the solution û(x, y) of Eq.
1, which we solve on every image I(x, y) of an image database. This implies that, in every image, we
can embed VF features like SPs shapes, edges of SPs shapes, trajectories of vectors, and separatrices [1].
The last entity is created by SPs shapes and trajectories that connect them. A SP edge is a shape
composed by a string of SPs shapes generated in very close vicinity of an object’s edge, as shown in
Figure 5 (c) and (d). Here one may observe a string of sinking vectors, and in (d) a string of shrinking
vectors. Note, the listed VF features are generated from the image geometric features, and the former
set is a natural augmentation to the second set.

In [1,11] we proved that ∇û generates sinking and saddle SPs, while ∇ϕ̂ and ∇ψ̂ generate sinking,
saddle, and springing SPs. It follows that ∇û possess less variety and smaller number of SPs if
compared with the other two VFs. Further, we showed in [1] that ∇ϕ̂ and ∇ψ̂ have same number of
SPs such that the springing SPs of ∇ϕ̂ are mapped into the sinking SPs of the ∇ϕ̂ VF and vice versa.
At the same time the saddle SPs do not change shape, but their vectors have opposite directions in the
two VFs. Furthermore, the saddle SPs may appear only in homogeneous regions, while the springing
and sinking SPs are located on the boundary. Also, the trajectories and the separatrices of the two VFs
have similar architectures, but their vectors have opposite directions [1]. The above-described SPs
properties and mappings of the VFs ∇û, ∇ϕ̂ and ∇ψ̂ can be observed in Figure 5.

Figure 5. (a) Synthetic object. In the upper row are shown zooms of the lower branch, of the object in
(a), with embedded VF; (b) ∇û; (c) ∇ϕ̂; (d)∇ψ̂. In the lower row are shown zooms of the core part, of
the object in (a), with embedded VF: (e) ∇û; (f) ∇ϕ̂; (g)∇ψ̂.
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Figure 6. Overal view of the object in Figure 5 (a) with embedded VF: (a) ∇û; (b) ∇ϕ̂; (c) ∇ψ̂.

Figures 5 (b) and 6 (a) show that the GVF ∇û generates no SPs at convexity vertices, edges and
external concavities but has sinking SPs at concavity corners Figures 5 (e). Further, ∇ϕ̂ generates
sinking SPs on the boundary convexity vertices and edges as shown in Figures 5 (c) and 6 (b) and
no SP at the boundary concavities’ corners (see Figures 5 (f)). Next, ∇ψ̂ generates sprinking SPs
on the boundary convexity vertices and edges as shown in Figures 5 (d) and 6 (c) and no SP at the
boundary concavities’ corners (Figures 5 (g)). Further, ∇û creates only saddle SP in the object’s core
homogeneous regions (see 5 (e)), while ∇ϕ̂ generates springing SPs at the saddle SPs locations of ∇û,
and a saddle SP between the springing (Figure 5 (f)). Also, the VF ∇ϕ̂ generates saddle SPs at external
concavities (Figure 6 (b)). The VF ∇ψ̂ preserves the saddle SPs of ∇ϕ̂ , swithing the vectors’ directions,
while replaces the springing with sinking SP (Figure 5 (f) and (g), Figure 6 (b) and (c)).

Note, Figure 6 provides an overall view of the 4-ray star from Figure 5 (a), where the three GVFs,
with real shaped SPs, are embedded. One may observe that the objects’ external concavity regions
in Figure 6 (b) and (c) contain saddle SPs, but the vectors that create their transversal and hyperbolic
trajectories have opposite directions. Once again one may observe that the objects with embedded
VF ∇ϕ̂ create edges of sinking SP, while ∇ψ̂ generates edges of springing SPs. The latter kind of SPs
edges are better visually exhibited than the former edges of SPs.

We continue here after with the description of the properties and the locations of the SPs generated
by the VFs with real and complex Eigenvalues. Recall that these VFs contain seven kinds of SPs:
sinking, springing, saddle, spiral in (attracting), spiral out (repealing), and orbits with clockwise and
counterclockwise directions. Examples of their shapes are shown in Figures 1, 2, 5, 7.

In [3] we proved that the CPs of the function û(x, y), which are the solution of Eq. 1, may map to
any of the 7 kinds of SP shapes of vû. Further, in the same paper we proved that the CP of û and ϕ̂ map
to the saddle SPs vϕ̂. Recently, we validated that the same holds for the CPs of ψ̂ and the SPs of vψ̂.
Also, we validated that the SPs of vϕ̂ map to the SPs of vψ̂ such that: springing SP maps to a sinking
one and vice versa; saddle SPs do not change shape; spiral in map to spiral out and vice versa; and the
clockwise orbits map to counterclockwise orbits and vice versa. These mappings imply that the VFs
vϕ̂ and vψ̂ possess same number of SPs and trajectory architectures, but the vectors that compose the
two kinds of VFs architectures have opposite directions. Moreover, the positions of the SPs generated
by the two VFs are in a close vicinity to each other, if projected on one and the same plane. Further,
we note that the SPs edges of the VFs vϕ̂ and vψ̂ are like each other as structures, but the vectors of
these structures are opposite to each other. One may observe in Figure 7 parts (b), (c) that vϕ̂ possesses
sinking SPs edges while vψ̂ has springing SPs edges. Further vϕ̂ has saddle SPs points with coming
in vertical transversals, while the horizontal are coming out as shown in part (e). On the other hand,
the transversal of the saddle SPs of vϕ̂ at the same positions are build up by vectors with opposite
directions as Figure 7 (f) shows.
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Figure 7. The object in Figure 5 (a) with embedded VF: vû in the left column, parts (a), (d) and (g); vϕ̂ in
the middle column, parts (b), (e) and (h); vψ̂ in the right column, parts (c), (f) and (i) .

Next, one may observe that the images with embedded VF vû show no SPs located on the object
exterior nor on its boundary. Hence, vû does not create SPs edges, nor are SPs present at: objects
boundary; on external concavities; inner convexities; nor at convexity vertices. However, any of the
seven SPs may show up in the core part of the object. The above statements are validated in Figure 7
(a), (d), where we present a zoomed in portion of the lower ray and the core part of the four rays star
from Figure 5 (a) with embedded VF vû. Note, that part (d) exhibits spiral out (the upper left SP), spiral
in (the upper right SP), and an springing SP (the lower one). An overall view of the same object and
VF is shown in (g) where the SPs are present only in the object core.

VF vϕ̂ generates spiral in SPs on the exterior concavities of the object (Figure 7 (h)). Also, saddle
SPs are located at the convex vertices of the boundary as shown in part (b). Moreover, vϕ̂ generates
edges of sinking SPs (Figure 7 (b)) and springing SPs (see the horizontal rays in part (h)). Further, the
core interior of the object may contain several SP shapes from the entire set of seven kinds of SPs. As
one may observe from Figure 7 (e), the core of the 4-ray star contains three saddle SPs, and a springing
and sinking SPs between them. The upper two saddle SPs have outgoing transversal trajectories which
go to the sinking SPs, while the incoming transversal of the lower saddle SP comes from the springing
SP.

The last VF to consider is vψ̂. Recall that, if embedded into an object, it has same number of
SPs shapes and similar architecture, of its trajectories, as vϕ̂ does. Note, the vectors that build up the
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vψ̂ trajectories and SPs have opposite directions to the vectors of vϕ̂. This could be observed in part
Figure 7 (c) where at the convex vertex is located a saddle SP whose vectors are opposite to those of the
saddle SP in part (b). Also, the four spiral out SPs in the external concavities of the star in part (i) are
created with vectors whose directions are opposite to the directions of the vectors which created the
spiral out SPs in the external concavities Figure 7 (h). Further, part (f) shows that the VF vψ̂ generates
five SPs in the core of the 4-rays star, as vϕ̂ does it in part (e). In (f) there are again three saddle SPs, but
they have opposite vectors if compared with the saddle SPs in (e). The remaining two SP, in between
the three saddles, are springing and sinking, but they switched positions, such that the sinking is
below the springing as shown in part (f), while the former is above the latter in part (e) of Figure 7.

Following the above reasoning and observations we develop the diagram in Figure 8 to describe
the mappings between the CPs of the functions û, ϕ̂, ψ̂ and the SPs of the six VFs if they are separately
embedded in one and the same image. Note, the VFs having one to one correspondence have the same
trajectory architectures, but vectors with opposite directions, as we described in the above paragraphs.
Also, with the notion "partial" we denote that only part of the SPs of ∇û map to the SPs of ∇ϕ̂, because
∇û has sinking SPs (û has maxima as proven in [1]) at concavity vertices (see Figure 5 (e)) while ∇ϕ̂

does not have SPs at concavity vertices (see part (f)). Also, ∇ϕ̂ has sinking SPs (ϕ̂ has maxima as
proven in [1])) at convexity vertices (see Figure 5 (c)), while û does not (see part (b)).

Figure 8. The mappings between the CPs of û, ϕ̂, ψ̂ and the SPs of the six VFs derived from the three
functions, as well as the mappings between the SPs of the VFs.

Table 1 shows the distribution of the SPs of a VF across an image if the VF is embedded into the
image. It is a guide designed to help the user select the VF to be embedded into an image database in
order to provide the highest classification statistics. Also, sink denotes sinking SP(s), spring denotes
springing SP(s), core denotes "core of an object", branches denote branches of objects, and edges denote
"boundary edges".

Table 1. SPs location on image objects according to the embedded VF.

VF SP/Location SP/Location SP/Location

∇û saddle / core sinking/concavity corners
∇ϕ̂, saddle/core, branches, con-

cavities
sink/convex vertices, edges spring/core

∇ψ̂ saddle/core, branches, con-
cavities

sink/core spring/edges, convex ver-
tices

vû saddle/core sink/ core spring/core;
vû spiral (in and out)/core orbits/homogenous regions
vϕ̂, vϕ̂ saddle/core, convex vertices sink/core, edges, branches spring/core, edges, branches
vϕ̂, vϕ̂ spiral (in and out)/core, con-

cavities, branches
orbits/homogenous regions
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3. Repository of Image Databases with Embedded VFs

3.1. Original Datasets

In this section we detail the technical characteristics of four original datasets, into which we
embedded the VFs defined above and used to obtain the results in [1–3]. Recently, we added to the
repository the image database digit-MNIST [23] with embedded VF vψ̂.

The ISIC 2018 [19] and 2020 [20] image databases contain skin lesion images along with malignant
and benign labels for each skin lesion. For the original ISIC 2018 database, there are 3694 skin lesion
images with dimensions ranging from 640x480 to 6670x4440 in JPG format. For the original ISIC
2020 database, there are 33126 skin lesion training images and 10982 skin lesion testing images with
dimensions ranging from 640x480 to 6000x4000 in DCM format.

One primary use case for the ISIC2020 databases is to improve ML diagnosis of skin lesions either
as malignant or benign. Thus, the database is broken down into two classes of images which are
labeled by three dermatologists. ML is tasked with correctly labeling each skin lesion image into one
of the two classes. Note that the training images are labeled by dermatologists, but the testing have no
labels and classification is shown when results are uploaded to the database website [20]. Examples
with embedded VFs from the ISIC skin lesion datasets are found in Figure 9.

(a) ISIC 2018 with ∇ψ̂ (b) ISIC 2018 with ∇ϕ̂ (c) ISIC 2020 with ∇ϕ̂

(d) ISIC 2020 with ∇ψ̂ (e) ISIC 2020 with vû (f) ISIC 2020 with vϕ̂

Figure 9. Examples of ISIC 2018 and ISIC2020 images with embedded VFs.

The original COIL100 [16] database contains 7200 images. These images were produced by taking
100 common household objects and rotating each object 5◦ for a total of 72 rotations. This produced
72 × 100 = 7200 images in total, stored in PNG format. The images are sized with dimensions of
128x128 pixels.

One purpose of this database is to help train ML to recognize a variety of objects, and to recognize
these objects regardless of the viewing angle. The different classes in this case are the 100 objects
presented to the ML algorithm in 72 different rotations.

For embedding VFs to augment the image features of COIL100 database, we resized its images to
420x420. Examples from this database with embedded VFs are found in Figure 10.

The original Yale face database [18] contains 2414 face images taken under different lighting
conditions. The original images are stored in the PNG format with dimensions 341x385. Note that to
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conduct the experiments in [1] we have resized the original images to 192x168 and embedded the VFs
again. Examples from this database are found in Figure 11.

The Yale face database allows ML to be trained on a set of face images under different lighting
conditions in order to produce facial recognition. The classes in this case are each of 39 faces, with a
picture of each taken with a different angle of lighting.

Figure 10. Examples of COIL100 Images with embedded, from left to right: ∇ϕ̂, ∇ψ̂, vû, vϕ̂

(a) ∇ϕ̂ (b) ∇ψ̂ (c) ∇ϕ̂ (d) ∇ψ̂

Figure 11. Examples of YALE Face Database Images with embedded VFs.

3.2. Image Datasets with Augmented Image Features

Our new repository of image databases with embedded VFs, which augment the image features
with SPs shapes, currently hosts several sets of image databases with embedded VFs. They are
generated from the ISIC2018, ISIC2020, COIL100, and digit-MNIST databases with the help of the
software ELPAC [12], which is included in the repository as well.

In particular, from the original ISIC2018 image database we have generated two ISIC2018
databases in PNG format with sizes 500x500 and 250x250. Then in each of them we embedded
the VFs ∇ϕ̂ and ∇ψ̂. Further, we resized the ISIC2020 to 256x192, in PNG format, and embedded in
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every training image of the resized database the VF ∇ϕ̂ or ∇ϕ̂. Respectively, we named the new image
databases as follows:

• ISIC2018−500x500 −∇ϕ̂ and ISIC2018−500x500 −∇ψ̂
• ISIC2018−250x250 −∇ϕ̂ and ISIC2018−250x250 −∇ψ̂
• ISIC2020−train −∇ϕ̂ and ISIC2020−test −∇ϕ̂
• ISIC2020−train −∇ψ̂ and ISIC2020−test −∇ψ̂ .

In addition we made imprints of the ISIC2020 into the VFs ∇ϕ̂, ∇ψ̂ and denoted them with
ISIC2020 − imprint −∇ϕ̂ and ISIC2020 − imprint −∇ψ̂. Note, in the repository we used the names
"VF only" to facilitate the users who did not read the paper.

Also, we generated four image databases using the training and testing sets of ISIC2020 and
embedding into them the VFs vϕ̂ and vψ̂. Analogously, we named the datasets:

• ISIC2020−train − v̂̂u and ISIC2020−test − vû
• ISIC2020−train − vϕ̂ and ISIC2020−test − vϕ̂

As well, in the resized COIL100 we embedded the VFs ∇ϕ̂, ∇ψ̂, vû, vϕ̂, and vψ̂ generating five
new image databases whose image features are augmented with SPs shapes. According to the adopted
titles convention we named the generated image databases with: COIL100 −∇ϕ̂, COIL100 −∇ψ̂,
COIL100 − vû, COIL100 − vϕ̂, and COIL100 − vψ̂.

To further validate the robustness of the idea that ML classification is boosted by embedding a VF
into image database (which augments the image features with VF features), we added Gaussian noise
to the original datasets COIL100 and ISIC2020. This Gaussian noise was generated using the built in
MatLab function with a 0 mean and variance set to 0.001. The noisy images were embedded with VFs
vû and vϕ̂ respectively. Thus, we created the six new image datasets listed below:

• COIL100−noise − vû and COIL100−noise − vϕ̂
• ISIC2020−train − noise − vû and ISIC2020−test − noise − vû
• ISIC2020−train − noise − vϕ̂ and ISIC2020−test − noise − vϕ̂.

In [2] we applied our CNN and classified the image database COIL100−noise − vû with added
noise and embedded VF vû with an accuracy of 92.97%. It is 2.9% higher than the accuracy 90.07% of
classifying the original database COIL100 with the same CNN. The same held with ISIC2020−test −
noise − vû which was classified with an accuracy of 92.09% while the original image database ISIC2020
was classified with 86.67%.

On the other hand, ISIC2020−test − noise − vϕ̂ was classified with an accuracy of 85.26% which
is 1.41% lower than the classification of the original ISIC2020. It holds because the skin lesion images
contain many different structures and details. Hence adding noise and embedding VF features simply
clutters the image and decreases the classification.

Recently we extended the repository adding the new image database digid-MNIST [23] with
embedded VFs ∇ψ̂ and vψ̂. The new image databases are named digit-MNIST-∇ψ̂ and digit-MNIST-vψ̂.
The original digit-MNIST contains about 60, 000 images of size 28x28, while the digit-MNIST-∇ψ̂ and
digit-MNIST-vψ̂ conain images of sizes 400x400.

To access the repository that contains the listed above image databases, ELPAC and SRWC
software please use the URL:
https://www.tamuc.edu/projects/augmented-image-repository

Files are hosted as single ZIP files for each respective image database and software. Files stored
in each respective image database ZIP are saved in the PNG format. New image databases with
embedded VFs will be added in the future.
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3.3. Software

The image database repository contains links to the software tool ELPAC whose GUI is shown in
Figure 12. This software provides sophisticated and mature capabilities for image segmentation based
on the work in [12] and VFs embedding based on the works in [1–3]. Hence ELPAC incorporates the
following features:

• Segmentation via an evolving contour directed by VF flow. To guide the active contour, with
parameters customizeable under "Contour Size and Shape", a VF should be selected from the
drop-down menu under "Vector Field Generation". The recommended choice is "Norm of Grad
in Poisson Eq" ;

• Splitting and tracing contours around multiple objects for full image segmentation. Such options
are available under "Splitting Options";

• Selecting any of the VFs from the "Vector Field Generation" drop-down menu. The six VFs
described in section 2 are at the top of the list. The first 3 of them have real shaped SPs [1], while
the next 3 have real and complex shaped SPs [3]. The selected VF will be embedded into the
image file chosen using the Browse option.

Figure 12. The GUI of ELPAC software [12]. The drop-down list below "Vector Field Generation" shows
the list of VFs that could be embedded in an image.

In addition to the GUI for ELPAC, the repository provides code for batch VF embedding into
an image database. Instructions for how to use the code and software are included in the repository.
Furthermore, the code for ML classifier SRWC [1] is given as well.

4. Conclusions

The present paper describes our repository containing a total of twenty nine image databases
built from embedding the VFs ∇ϕ̂,∇ψ̂, vû, vϕ̂ and vψ̂ into four public image databases. Recall that six
of the image databases are "injected" with a Gaussian noise and VF are embedded afterward. Also,
four of the image databases are imprints of ISIC2020 into ∇ϕ̂ and ∇ψ̂. These image databases bring
the advantage of enhancing classification statistics if compared with the classifications statistics of
the original image databases, as shown in [1–3]. The advantage was validated by applying three ML
methods, namely the sparse representation wavelet classification (SRWC) [1], the sparse representation
classification with quaternions in wavelet domain (SRCQW) [1] and five CNNs [2].

Recall that the contributions of this paper, as formulated in the Introduction and validated through
the text, are as follow:

1. Definition of the SPs locations according to the image objects, shown in Table 1
2. Generalization of the mappings between the SPs shapes, as shown in Figure 8, if the six VFs are

separately embedded into the same image
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3. Definition of the new type of image and image database named "imprint of an image and imprint
of an image database in a VF".

The contributions provide the user with the opportunities to choose the VF to be embedded into a
particular image database to provide the advantage of increasing classification statistics if compared
with the classification statistics of the original image database.

To understand the nature of the VFs and how they correlate to each other we determined in [1] the
mappings between the CPs of u, ϕ̂ and ψ̂ and the SPs of the GVFs ∇û,∇ϕ̂,∇ψ̂. In [3] we investigated
the mappings between the CPs of u and the SPs of vû, vϕ̂ as well as between the shapes of the SPs
of the latter two VFs. The present paper contributes to the study of SP shapes mapping through the
addition of the VF vψ̂ into the diagram of SPs mappings.

Further the present paper introduced the notion "imprint of an image in a VF". The imprints
of the malignant skin lesion from Figure 3 in the six VFs are shown in Figure 4 parts (b), (d), (f), (h),
(j) and (l). One may observe that a single image creates different imprints in the different VFs. To
validate the usefulness and the efficiency of the new notion we created the imprint of the ISIC2020
image database [20] in the VF ∇ϕ̂ and named the new database ISIC2020 − imprint −∇ϕ̂. Then,
we validated in [1] that classifying ISIC2020 − imprint −∇ϕ̂ gives an accuracy of 88.89%, while the
accuracy of classifying the original image database is 84.21%.

From the above descriptions, derivations, observations, Figure 8 and Table 1 we derive information
regarding the VFs’ SPs shapes, the mappings between them, and the SPs locations in image objects.
Hence, we conclude that the VF with the smallest number of SPs is vû, which generates SPs only in the
core part of the interior (Figure 7 parts (a), (d) and (g)). The next is ∇û, which generates SPs in the core
part of the interior and at the concavity corners (Figure 5 parts (b), (e) and Figure 6 (a)). Note, vû may
generate the whole set of seven types of SP shapes, while ∇û generates only saddle and springing SPs
as proven in [1,11].

The pair of VFs ∇ϕ̂ and ∇ψ̂ generate the three kinds of real shaped SP (springing, singing and
saddle) in the objects’ exterior concavities, branches, boundary convexity vertices, and boundary edges.
Therefore, ∇ϕ̂ and ∇ψ̂ generate more SPs than vû and ∇û (Figures 5 (b) and (e), 6 (a), 7 (a), (d), and (g)).
Recall that ∇ϕ̂ and ∇ψ̂ have similar architectures created by the SPs and the trajectories connecting
them, but the vectors that build these architectures are inverse to each other, as stated in section 2.2
and can be observed in Figures 5 c), f) and d), g), as well us 6 b) and c).

The last pair of VFs in our study is vϕ̂ and vψ̂, and they generate almost the same number of SP as
∇ϕ̂ and ∇ψ̂ in the object core, the exterior concavities, convexity vertices, branches, and boundary
edges. Comparing Figures 5 and 6 with Figure 7 one may tell that the real Eigen valued VFs (∇ϕ̂ and
∇ψ̂) have springing and sinking SP at the convexities’ vertices, and saddle SP in the external concave
regions and the objects branches. On the other hand the complex Eigen valued VFs (vϕ̂ and vψ̂) have
saddle SPs on the convexities’ vertices, spiral out SPs in the external concave regions and shrinking,
sinking and spiral SPs at objects branches. Regarding the edges of SPs, those generated by ∇ϕ̂ and vϕ̂

are similar. The same holds for ∇ψ̂ and vψ̂. Finally, the VF architectures of vϕ̂ and vψ̂ are alike to each
other but have opposite vectors that create them.

The above analysis provides the knowledge to assist users in their choice of VF to be embedded
into given image database and/or to make an imprint of the database into a certain VF in order to
improve the classification statistics.

For the needs of paper [2] we embedded VFs vû and vϕ̂ into the image databases ISIC2020 [20]
and COIL100 [16]. Then, five contemporary CNN classifiers were applied to classify the original
image databases and the image database with embedded VFs. The results show that the maximum
accuracy of classifying the original databases ISIC2020 [20] and COIL100 [16] were 91.69% and 90.99 %
respectively [2]. Classifying the databases with embedded vû increased the maximum classification
accuracies to 93.25% and 91.85% respectively [2]. However, embedding vϕ̂ into the original databases
decreased the accuracies to 78.19% and 90.08% respectively.
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Please note that embedding vϕ̂ into the cluttered skin lesion images led to a drop of accuracy with
about 13%, while embedding the same VF into COIL100, which has not a few details, led to a drop of
0.91%, but increased the precision from 70.46% to 71.57%.

Please note in the paper [2] for the image databases COIL100 − vû, ISIC2020 − test − vû and
ISIC2020 − test − vϕ̂ we used slightly different notations, namely vû(C), vû(I) and vϕ̂(I) respectively.

The advantage for the ML classification of image database with embedded VF is further validated
in [1]. In this paper the VFs ∇ϕ̂ and ∇ψ̂ where embedded into the ISIC2018 [19], ISIC2020 [20],
COIL100 [16] and YaleB [18] creating ten new image databases, including the imprint of ISIC2020 in
∇ϕ̂ and ∇ψ̂. We classified the original image databases and their derivatives with embedded VFs by
applying the software tools SRWC and SRCQW described in [1]. The accuracy of classifications of
the VF embedded image databases increased except in the case of YaleB. For example, COIL100-∇ϕ̂

was classified by SRWC with an accuracy of 82.83%, while the original image database exhibited
81.29% [1]. Also, as mentioned above the accuracy of classification of ISIC2020 − imprint −∇ϕ̂ by
SRCQW was 88.89% while the original ISIC2020 was classified with 84.21%. Hence the ISIC2020
imprint classification showed an increase of 4.68%.

There was a drop in accuracy for the database YaleB with embedded ∇ϕ̂ and ∇ψ̂ compared to
the accuracy of the original YaleB because the objects’ boundaries are not present in the images. Hence
the SP edges, which play a role in the classification, were not generated by the VFs.

Our study continues by enlarging our repository with more image databases with embedded VFs
and imprints of image databases into VFs. Also, we are developing VFs of the linear combinations of
the functions ϕ̂ and ψ̂ and will embed them into the presently used and other contemporary image
databases. Further we will create an image database of SPs [22] to train ML classifiers and develop an
approach to apply VFs to image data augmentation.
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