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Abstract: Investigation of functional magnetic resonance imaging (fMRI) data with machine learning (ML)

techniques, including also deep learning (DL) methods, have been widely used to study Autism Spectrum

Disorder (ASD). This disorder is characterized by symptoms that affect the individual’s behavioral aspects and

social relationships. Early diagnosis is crucial for intervention, but the complexity of ASD poses challenges for

treatment development. This study compares traditional ML techniques with deep learning (DL) methods in

the analysis of functional connectivity measures obtained from the time series of multicentric ABIDE dataset.

Specifically, Support Vector Machines (SVM) classifiers, with both linear and Radial Basis Function (RBF) kernels,

as well as eXtreme Gradient Boosting (XGBoost) classifiers, are compared against the TabNet classifier, which is a

DL architecture customized for tabular data analysis and a Multi Layer Perceptron (MLP). The findings suggest

that DL classifiers may not be optimal for the type of data analyzed, as their performance trails behind that of

standard classifiers. SVMs achieve performances, in terms of AUC, around 75%, compared to the best TabNet

and MLP results, which are 65% and 71%, respectively. Additionally, this work investigates the brain regions

that contribute most to the classification task, which are found to be those primarily responsible for sensory and

spatial perception, as well as attention modulation, known to be altered in ASD.

Keywords: ABIDE; multi-site data; deep learning; machine learning; autism spectrum disorder

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive
and stereotyped behaviours as well as deficit in social communication and interaction [1]. ASD affects
approximately 1 child out of 59, with strong male prevalence, one in every 37 males and 1 in every 51
females [2]. Currently the diagnosis is based on behavioral criteria that require a team of specialists
which can be often time consuming and sometimes does not lead to a conclusive response due to
factors such as comorbidity [3,4]. Given the heterogeneous nature of this disorder, it is still studied
across different fields and the diagnosis criteria is constantly updated [5,6]. Early diagnosis and
intervention is crucial to improve the quality of life and develop effective intervention strategies
[7]. Thus far, many studies focus on the analysis of brain images acquired with functional magnetic
resonance imaging (fMRI). This is a non-invasive imaging technique that can be used to measure the
brain activity through the hemodynamic response associated with the neural activity of a specific
brain area (Region of Interest - ROI). Brain activity can be revealed through the Blood Oxygenation
Level Dependent (BOLD) signal, whose intensity depends on the oxygenation level of the brain areas
involved in neural activity. In particular, resting-state functional magnetic resonance imaging (rs-fMRI)
has been regarded as a valuable tool in the ASD studies. This imaging technique involves acquiring
functional magnetic resonance images while the patient is not performing specific tasks, i.e. while
he/she is at rest. This acquisition technique is often used in the study of brain functional connectivity,
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which refers to the study of the correlation between the temporal signals of two anatomically distinct
brain areas. By assuming that functional connectivity is a phenomenon involving interactions that
occur on time scales shorter than acquisition times, it is possible to evaluate the correlation between
the temporal signals of two anatomically distinct brain areas, considering the entire observation time
interval, instant by instant. This process, repeated for all brain areas, allows to quantify the functional
connection between brain areas, from which researchers can identify neurological distinctions between
typically developing (TD) individuals from ASD ones leading to more accurate interventions. Given
the abundance of data in neuroimaging, machine learning (ML) and deep learning (DL) techniques
have been employed to advance ASD prediction and detection with good accuracy [8,9]. Usually
neuroscientists apply traditional machine learning techniques for classification, such as support vector
machine [10] and random forest [11,12], DL models like convolutional neural networks [13] and
deep neural networks[14]. Deep neural networks have achieved significant success different fields,
including image and text processing [15,16]. In practical applications, tabular data is the most common
data type, particularly in medicine. Recent studies have shown that deep learning-based methods
can have a crucial role in diagnosing of ASD [17,18]. Over the last decade, traditional ML methods
have remained dominant when dealing with tabular data and frequently achieved better performance
than DL approaches. Usually, ML models are simpler compared to DL ones, which facilitates their
understanding and interpretation. While DL complexity, lack of transparency and interpretability
[19], limiting their applicability in clinical contexts, leading to the necessity of identify the features
that contribute the most to the classification results, emphasizing which are the features involved in
identifying ASD subjects.

In this work, we investigated different ML and DL methods to show the differences in classification
performances and most important features involved in the classification.

2. Materials and Methods

2.1. Data Selection

For this work, we used the data obtained with rs-fMRI of the ABIDE archive [20]. The entire
ABIDE dataset has been published in two versions: ABIDE I and ABIDE II. Not all sites belonging to
ABIDE II are different from those of ABIDE I, but even if some clinical centers are the same, the pipeline
and acquisition parameters may have been modified between the two publications. For this reason,
they will be considered as different acquisition sites. Furthermore, even within a single collection, such
as ABIDE II, there are sites that have released two different data samples. For this reason, some of
these samples are labeled with a subscription number (e.g. 1 or 2). Subjects belonging to the ABIDE
II collection will have the prefix ”ABIDE II” before the site name. When this prefix is missing, it is
understood that the collection belongs to ABIDE I.

The data selected for this work have been preprocessed with the Configurable Pipeline for the
Analysis of Connectomes (CPAC) pipeline [21]. CPAC applies filters for noise from respiration, heart
rate, movements of the subjects’ heads, and other smoothing techniques. This pipeline is among the
most used, and previous studies have found that, when compared to images preprocessed with other
pipelines, those preprocessed with CPAC led to better ASD/TD classification [22]. CPAC also provides
the time series of brain areas of interest for patients.

We selected 1001 male subjects aged between 5 and 40 years, with their eyes open during
acquisition. The subjects come from 23 different sites. Male subjects were chosen because the sample
is larger than the female one and because males have a probability about four times higher of being
affected by the disorder [23]. Moreover, the female dataset was insufficiently populated to allow
statistically significant studies. The choice of the condition with eyes open was made to avoid
including cases with potentially sleeping subjects during the examination. The dataset is equally
distributed between ASD and TD, it consists of 506 TD subjects and 495 ASD. Figure 1 shows the
distribution of ASD/TD for each site.
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Figure 1. Dataset composition. Sites without a prefix belong to the ABIDE I collection.

2.2. Features Generation

In neuroimaging, Pearson correlation analysis determines the potential correlation between the
instantaneous variation in activation state of different brain regions and how these areas are involved
in carrying out a specific function. The values, or coefficients, of Pearson correlation are defined as
follows:

rxy =
∑n

i=1
(
xi − x̄

)(
yi − ȳ

)√(
∑n

i=1
(
xi − x̄

)2)(
∑n

i=1
(
yi − ȳ

)2) (1)

In the studied case, x and y represent the time series of two brain regions and n is their dimension
(number of time points), the coefficient r represents signals that are fully correlated or anti-correlated
[24]. Pearson coefficients were normalized using the Fisher transformation (2) to make them statistically
more significant [25].

Z =
1
2

√
n − 3 ln

(
1 + r
1 − r

)
(2)

In equation (2), n represents the number of time points of the time series and r indicates the
Pearson coefficient calculated with equation (1). Pearson coefficients will be used as features for
classification. The number of features depends on the atlas used. In fact, for N regions, we will have
N(N−1)

2 features. This is because calculating the Pearson correlation between the time series of each
of the regions of an atlas generates a square and symmetric connectivity matrix (see equation (1),
which is invariant under the interchange of time series indices), thus, the upper triangle of the matrix
contains the only elements of interest. In this work we used the Harvard-Oxford anatomical atlas [26],
composed of 110 regions, which result in 110(110−1)

2 = 5995 features.
For this study, out of the initial 110 ROIs, 7 were excluded due to having null time series in

a substantial number of patients. This led to a total of 103 ROIs for each patient. The correlation
was then computed for each pair of brain areas, resulting in Ncomb = 103(103−1)

2 = 5253 independent
combinations of connectivity features for each subject.

2.3. Harmonization Procedure

Given that large datasets can be obtained by collecting images from different centers, this brings
a heterogeneity of data due to differences in scanners and/or acquisition protocols that requires a
harmonization technique to minimize these differences. In this work we used the Neuroharmonize
tool proposed by Pomponio et al. [27,28], which is derived from Fortin et al.’s ComBat [29,30].
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Neuroharmonize aims to eliminate the site effect while preserving the dependence of the features on
biologically significant covariates, like age and sex.

According to Serra et. al [31], in order to avoid a bias due to data leakage, the harmonization
parameters were estimated using only the subjects belonging to the control group of the training set.
Once the set of covariates is defined, the harmonization model is computed. In this work we used age
and site as covariates. Subsequently, the model is used to harmonize both the train and test sets. In a
cross-validation scheme, the procedure is repeated for each fold separately.

2.4. Classification Strategy

For this work, traditional classifiers, Support Vector Machine with a Linear kernel (L-SVM),
Support Vector Machine with a Gaussian kernel (SVM-RBF) and eXtreme Gradient Boosting (XG-
Boost) were chosen, alongside deep classifiers, Attentive Interpretable Tabular Learning (TabNet)
and Multi Layer Perceptron (MLP). The SVM classifiers are the most commonly used classifiers in
these classification problems. SVMs have demonstrated superior performance compared to other
classifiers, particularly in scenarios with a small number of samples and a large number of features
[32]. XGBoost, was chosen because tree ensemble models are recommended when dealing with tabular
data classification problems [33] and offers better generalization capability and is less susceptible
to overfitting. TabNet is a deep learning model mostly used when dealing with tabular data, it
employs sequential attention to select the most relevant features for reasoning at each decision step
enhancing interpretability and optimizes learning efficiency by focusing the learning capacity on
the most significant features [34]. MLP consists of fully connected layers where every node of each
adjacent layer is connected, is a classifier easy to implement, fast and has shown performances that
outperform other classifiers [35]. The L-SVM and SVM-RBF classifiers were implemented using the
sklearn.svm.SVC module from the Python library scikit-learn,svmpy,svm2. For XGBoost, we used the
XGBoostClassifier from the xgboost package in Python [38]. The TabNet model was implemented
with the TabNetClassifier from the PyTorch library pytorch_tabnet.tab_model [39] and the MLP was
implemented using the MLPClassifier from sklearn.neural_network package [40].

Once the features for each subject are obtained, these characteristics, along with the labels (+1 for
ASD subjects and -1 for TD subjects), are used for classification. We applied a feature scaling method,
the Scikit-learn RobustScaler and a hyperparameters tuning for XGBoost and TabNet classifiers. The
classification results are obtained using the Repeated Stratified k-fold cross-validation method, setting
the number of folds to 5 and the number of repetitions to 10. The classification performance was
evaluated using the area under the ROC curve (AUC) [41,42]. The AUC was calculated for each fold
and repetition and the final result is calculated as the mean of the AUC at which we associated the
standard deviation as error.

With such a high number of features compared to the number of samples, the analysis, in addition
to being more complex, is highly prone to overfitting. For this reason the performances of the classifiers
were observed both without Principal Component Analysis (PCA) and with PCA, varying the number
of principal components (PCs) from 30 to 300 PCs (30, 50, 100, 200, 300).

2.5. Features Importance

Understanding the most important features that contribute to the classification of ASD and TD
individuals is crucial for advancing diagnostic and therapeutic strategies. In order to determine which
pairs of regions were discriminating for distinguishing TD from ASD, the permutation importance
[43] technique was used for each analyzed classifier because it can be applied uniformly to all of the
models tested.

Permutation importance is generally useful for understanding data and interpreting models: by
calculating the score for each feature, one can determine which features most influenced the utilized
model. Permutation importance is considered as one of the global Explainable Artificial Intelligence
(XAI) methods. It provides insights into the overall behavior of a model and offers a comprehensive
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view of feature contributions across the entire dataset. Using a global XAI approach, the interpretability
and reliability of the model are increased. The basic idea of permutation importance is to observe
how much a particular score decreases when a feature is not available. The score thus represents the
importance of each feature. A higher score indicates that the feature in question has a greater effect
on the utilized model. In principle, one could remove features, retrain the classifier, and check the
score. However, this approach can be computationally complex because it would require retraining the
classifier for each feature. Additionally, this method demonstrates which features might be important
in the dataset rather than which features are important for the classifier. To avoid retraining the
classifier, a feature is replaced with noise derived from the same distribution as the original feature
values during each permutation. The simplest way to derive this noise is by shuffling the values of
one feature using the values of another. In this study, permutation importance was implemented
using the method described above. The purpose of the analysis was to determine whether the key
features for the classification vary depending on the model used. We used the feature permutation
importance implemented in the ELI5 python library [44]. This library offers a function that takes into
account a trained model, a validation dataset, a scoring metric and it returns the importance score for
each feature. The importance score reflects the decrease in model performance: the greater the drop
in performance when a feature is shuffled, the more significant that feature will be considered. We
employed the AUC as a scoring metric and computed the permutation importance for each fold of the
5-fold cross-validation and repetition. The final results were obtained as the average importance score
across the folds and repetitions. We carried out the feature permutation importance analysis for all
classification models.

3. Results and Discussion

3.1. Classification Performances

In Figure 2 are illustrated the classification performances in discriminating ASD subjects from
TD ones. The results are reported for each classifier analyzed (TabNet, MLP, XGBoost, L-SVM, and
SVM-RBF) and with different numbers of PCs. The best classification results are obtained for the
SVM-RBF classifier with an AUC of 0.75±0.03 (100 PCs), followed by L-SVM with an AUC of 0.74±0.02
(50 and 100 PCs). As for the DL models the classification results fall behind, 0.71±0.02 (200 PCs
and no PCA) for MLP and 0.65±0.02 (no PCA) for TabNet. These results are in accordance with the
current literature, where performance typically hovers around 70% in multi-site approaches [45–47].
The higher classification performance of standard ML models indicates that the use of deep learning
algorithms does not always provide an advantage for this type of data.

Table 1. Best classification performances for each classifier.

Classifier AUC # of PCs

MLP
0.71±0.02 no PCA
0.71±0.05 200 PCs

TabNet 0.65±0.02 no PCA
XGBoost 0.67±0.02 no PCA

L-SVM
0.74±0.02 50 PCs
0.74±0.05 100 PCs

SVM-RBF 0.75±0.03 100 PCs
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Figure 2. The ASD and TD classification results are reported, for each classifier considered and for
different values of PCs.

3.2. Feature Importance

Identifying the key features that differentiate ASD from TD subjects is essential for understanding
ASD. Given that these features measure the correlation between the temporal signals of ROIs, they
provide valuable insight into which aspects most significantly impact the distinction between ASD
and TD subjects. In order to compare which regions were most significant in discriminating ASD/TD,
we selected the top 50 features with the highest scores for each classifier. Subsequently, we checked for
common features among all the top-50 features. From this analysis we didn’t find any common feature
for all the classifiers but only some features that were in common between two or three classifiers. This
difference in the most important features for different classifiers is certainly connected to the high
number of features (5253) and the intrinsic multivariate nature of the problem. Hence, a large set of
features appears to be relevant in the classification, while no small subset can be defined relevant in
the classification. To provide an example, the most important features present a feature importance
that is in the range of 0.1%-1% of AUC, depending on the classification method.

However, despite the lack of global common features, we looked for brain regions occurrences
in the 50 most relevant correlations by counting the number of times these regions were present in
all classifiers. This allowed us to observe which regions had the most significant effect on ASD/TD
classification based on their connectivity to other regions. The results are shown in Table 2. Consistent
regions can be identified in all classifiers. These regions are those whose correlation with other regions
was most significant in discriminating between ASD and TD. We also examined the belonging of these
regions in the functional networks of Mesulam [48] catalog. In this way it was possible to highlight
how the most significant areas for distinguishing between ASD and TD belong to the heteromodal,
unimodal, primary and paralimbic network. The importance of these networks has also been found in
literature [49–51]. These highlighted areas are crucial for sensory perception, processing visual and au-
ditory signals, spatial perception, and attention modulation. They are fundamental for understanding
social signals that require the integration of complex sensory information such as facial expression, tone
of voice and gesture [52]. Therefore, they are important in understanding the mechanisms underlying
autism spectrum disorder [53]. Heteromodal networks, involving various cortical areas, are crucial
for integrating complex sensory information and processing multisensory knowledge. In contrast,
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unimodal networks are specialized in a specific sensory modality. Neuroimaging studies have shown
alterations in these areas in autism spectrum disorder, suggesting dysfunction in sensory integration
and processing of complex information in this disorder [54].

Table 2. ROIs whose connectivity with other regions had the most significant effect on ASD/TD classifi-
cation. The Occurrences column includes the number of times a ROI appears in the five classifiers, while
the numbers in the ROI column represent the identifiers of the ROIs in the HO atlas. The Anatomical
Part column lists the corresponding anatomical parts of the brain (according to HO parcellation), while
the Mesulam column identifies the associated functional networks.

Occurrences ROI Anatomical Part Mesulam
18 3102 L-Precuneous Cortex Heteromodal
15 1002 L-Superior Temporal Gyrus; posterior division Unimodal
15 501 R-Inferior Frontal Gyrus; pars triangularis Heteromodal
14 1302 L-Middle Temporal Gyrus; temporo-occipital Heteromodal
11 1101 R-Middle Temporal Gyrus; anterior division Heteromodal
10 1301 R-Middle Temporal Gyrus; temporo-occipital Heteromodal
8 4301 R- Parietal Operculum Cortex Unimodal
8 3301 R-Frontal Orbital Cortex Paralimbic
8 2702 L-Subcallosal Cortex Paralimbic
8 1102 L-Middle Temporal Gyrus; anterior division Heteromodal
7 3401 R-Parahippocampal Gyrus; anterior division Paralimbic
7 2801 R-Paracingulate Gyrus Heteromodal
7 2302 L-Lateral Occipital Cortex; inferior division Paralimbic
7 1702 L-Postcentral Gyrus Primary
6 2201 R-Lateral Occipital Cortex; superior division Unimodal
6 401 R-Middle Frontal Gyrus Heteromodal
5 4402 L-Planum Polare Unimodal

4. Conclusions

In this work we investigated the effectiveness of both traditional ML methods and DL approaches
in classifying individuals with ASD against TD controls. Our findings revealed that ML methods
achieved state-of-the-art classification performance, outperforming the DL models, TabNet and MLP.
These results suggest that DL classifiers may not always provide optimal outcomes for this specific
data domain. Moreover, our analysis emphasizes the need to pay attention when interpreting DL
models performance, given that optimizing DL models presents greater challenges compared to
traditional ML techniques. Additionally, the features that have the most significant impact in the
classification task vary across different classifiers. Such diversity could be also related to overfitting.
This highlights the challenges posed by the dataset’s complexity and the abundance of features in
achieving robust model generalization and accurately identifying significant features. Therefore, when
employing a classification task to identify brain regions or features which are the most involved in the
discrimination of a neurological or neurodevelopmental disease, it is necessary to consider the validity
of these findings.
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Abbreviations

The following abbreviations are used in this manuscript:

ABIDE Autism Brain Imaging Data Exchange
ASD Three letter acronym
AUC Area Under the Curve
BOLD Blood Oxygenation Level Dependent
CPAC Configurable Pipeline for the Analysis of Connectomes
CV Cross Validation
DL Deep Learning
fMRI Functional Magnetic Resonance Imaging
HO Harvard Oxford
L-SVM Support Vector Machine with Linear Kernel
ML Machine Learning
MLP Multi Layer Perceptron
PCA Principal Component Analysis
PCs Principal Components
RBF-SVM Support Vector Machine with Gaussian Radial Basis Function
ROC Receiver Operating Characteristic
ROI Region of Interest
rs-fMRI resting-state Functional Magnetic Resonance Imaging
SVM Support Vector Machine
TabNet Attentive Interpretable Tabular Learning
TD Typically Developing
XAI Explainable Artificial Intelligence
XGBoost eXtreme Gradient Boosting
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