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Featured Application: A hybrid forecasting model with two subcomponents is presented in this study. A basic 
and secondary models are combined in a hierarchy to improve forecasting performance. This is particularly 
important for complex data sets with multiple patterns. Such data sets do not respond well to simple models, 
and hybrid models based on the integration of various forecasting tools often lead to better forecasting 
performance. 

Abstract: This study involves the development of a hybrid forecasting framework that integrates two different 
models in a framework to improve prediction capability. Although the concept of hybridization is not a new 
issue in forecasting, our approach presents a new structure that combines two standard simple forecasting 
models uniquely for superior performance. Hybridization is significant for complex data sets with multiple 
patterns. Such data sets do not respond well to simple models, and hybrid models based on the integration of 
various forecasting tools often lead to better forecasting performance. The proposed architecture includes 
serially connected ARIMA and ANN models. The original data set is first processed by ARIMA. The error (i.e., 
residuals) of the ARIMA is sent to the ANN for secondary processing. Between these two models, there is a 
classification mechanism where the raw output of the ARIMA is categorized into three groups before they are 
sent to the secondary model. The algorithm is tested on well-known forecasting cases from the literature. The 
proposed model performs better than existing methods in most cases. 

Keywords: hybrid forecast; integrated forecast; multi-pattern data forecasting; forecast error 
classification 

 

1. Introduction 
A time series is a set of records collected over time. To be called a time series, the data should be 

ordered chronologically, with equal distance between observation points. A weekly sale of a 
particular item in a store would comprise a time series. Depending on circumstances, data may be 
collected hourly, daily, weekly, monthly, etc. Time-indexed data could be the subject matter of a 
diverse spectrum of research areas, including science, engineering, and finance. Such broad interest 
from different fields has led to developing an assorted set of forecasting approaches. 

Developing forecast models for time series can be challenging from several perspectives. In 
many instances, there is no insight into the underlying mechanism that generates data, hindering the 
development of a valid mathematical model. Empirical data is a product of a complex real-world 
mechanism (e.g., daily change in stock prices); standard statistical procedures may be inadequate to 
reveal the underlying relationships. 

That built-up complexity in the data may exhibit itself as noise or be observed as nonstationary 
or nonlinear behavior. Noise is a natural phenomenon because many undetected variables impact 
the controlled variable. For effective modeling, the noise has to be appropriately identified and 
excluded by the model. Nonstationarity refers to the dynamic nature of the data. The underlying 
process that generates the data changes over time, and the model has to be capable of determining 
these changes. In the long run, almost all data series become nonstationary because of the dynamic 
nature of the underlying processes. This brings the issue of determining the length of usable history, 
which is a challenging task. To further aggravate the issue, noise in the series may vary with time. 
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Nonlinearity is also another interesting issue. Most of the time, models are based on the assumption 
that the underlying relationship is linear, which may not be valid for all instances. There are many 
examples where it has been shown that the nonlinear model serves as a better fit for the data [1].  

Inherent difficulties in time series modeling led researchers to look for creative alternatives. One 
popular method is to combine different forecasting models in a framework to enhance forecasting 
capability. This process is better known as hybridization, based on the following premise. Each 
modeling methodology has its superior aspects but may be weak in others, and it is possible to 
combine them in a framework to maximize the overall benefit. Efforts to combine multiple forecasting 
models can be traced back to the pioneering work of Bates and Granger [2], in which two separate 
forecasts generated by different approaches are combined into one to minimize the variance. Many 
researchers followed the path opened by Bates and Granger [2] to develop creative hybrid models. 
With more accurate and reliable forecasts, hybrid models ranked top in prominent forecasting 
competitions. In a recent M4 competition, where each entrant had to generate forecasts for thousands 
of data sets, a hybrid model that combined exponential smoothing and recurrent neural networks 
came first by a solid margin [3]. Our research contributes to this field with its unique structure of 
combining two standard forecasting methods. 

2. Literature Review 
Because of the broad nature of time series forecasting, the literature review is confined to 

previous works related directly to our proposed approach. The subject of hybridization, which covers 
umbrella structures combining different forecasting methods, can be divided into two broad 
categories. In the first category, each model runs independently and generates a separate forecast. 
These forecasts are then consolidated into a final number. The pioneering work of Bates and Granger 
[2] falls into this category. Their method involves generating two separate forecasts and then 
averaging them into a single number. In the second category, models are connected in series. Figure 
1 shows a simple, serially connected model, where the output of the first model is directly fed into 
the second one. In this serial combination, the underlying implicit assumption is that the series can 
be decomposed into distinct sub-categories. Once the series is decomposed, we can handle each sub-
category with a different model.  

 

 
 

Figure 1. A serially connected hybrid model 

 
For the serial combination of models, the earliest arrangement is proposed by Zhang [4] where 

ARIMA (autoregressive integrated moving average) and ANN are connected in series as basic and 
secondary models. Following this work, various serially connected models utilizing both linear and 
nonlinear methods have been proposed. Additionally, the original approach was fine-tuned for better 
performance [5]. 

The accumulated work in serially-connected hybrid models can be further divided into two 
broad categories. The first category includes studies that propose a new forecasting method for basic 
or secondary models. The "new" methodology does not necessarily refer to an original approach, but 
it is something new within the context of serial hybridization. Here, the emphasis is on the novelty 
of the method used, and model verification and validation are often done by using popular data sets 
from the literature. The second category of research is about applications of hybrid models. This work 
aims to generate the most accurate forecast and often involves trial and error of multiple hybrid 
alternatives.  

One caveat is that the categorization schema presented above is not clear-cut, and some works 
can claim novelty in terms of both methodology and data sets involved. Within the framework of this 
broad division, the list of recent works for each category is listed below. For methodology-oriented 
research: Autoregressive moving average (MARMA) and exogenous multi-variable input [6], 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 July 2024                   doi:10.20944/preprints202407.0808.v1

https://doi.org/10.20944/preprints202407.0808.v1


 3 

 

ARIMAX (ARIMA with explanatory variables), Holt-winter, ANN [7], SARIMAX (seasonal ARIMA 
with explanatory variables), LSSVM (least-squares support-vector machine) [8], ARMAX, ANN [9] , 
ARIMA and ANN [10–12]. For application-oriented research: Wind speed forecasting [7,13], oil prices 
[12], tourist arrivals [14], monthly rainfall [8], computer network traffic [15], and dengue epidemics 
[11]. 

Two interesting serial-model studies deserve special mention, as they are related directly to our 
work. In both studies, the output of the first model is not sent directly to the secondary model. 
Instead, the residuals, the difference between actual and fitted values, are analyzed and then sent to 
the second model according to a preset algorithm. The first approach proposed by Khashei et al. [5] 
combines ARIMA with PNN (probabilistic neural networks) as first and secondary models. The PNN 
utilizes the error output of the ARIMA. Error values coming out of ARIMA are categorized, and each 
category is treated differently by PNN. The second study, by Babu and Reddy [16], also uses the 
ARIMA and ANN combination, and it has a similar error classification mechanism between the first 
and second models. The error output of the first model is classified according to spread around the 
mean. For this purpose, the mean value for the error output of the first model and the accompanying 
deviation for each observation are calculated. Based on the magnitude of the deviation, observations 
are categorized as high- and low-volatility groups, and each group is treated differently by the ANN 
model. 

3. Methodology 
The proposed hybrid model has two components that are connected sequentially. The first one 

is called the basic model, and includes ARIMA forecasting to capture the linear relationship of the 
input data. The output of the ARIMA is fed into the second component. A neural network model 
capable of capturing both linear and nonlinear patterns is used in the second component. As most 
data sets are composed of linear and nonlinear elements, two separate models that work in tandem 
will be more effective in capturing different portions of the data. Before moving into details of the 
hybrid model, brief descriptions of ARIMA and ANN models are given below. 

3.1. ARIMA Models 

ARIMA is a popular forecasting tool used in time series forecasting. In this approach, the forecast 
is based on the linear combination of past values and random errors. The general formula for an 
ARIMA (p,d,q) model is given in Equation 1. Two primary components of ARIMA are autoregressive 
(AR) and moving average (MA) functions. The p and q parameters in Equation 1 represent the order 
of AR and MA functions, respectively. The third parameter, d, gives the number of differencing 
performed on the series to make it stationary.  

 
൫1 − ߶ଵܤ − ߶ଶܤଶ−. . . −߶௣ܤ௣൯(1 − ௗ(ܤ

௧ܻ = ൫1 − ܤଵߠ − .−ଶܤଶߠ . . ௤൯݁௧ (1)ܤ௤ߠ−
 

where ௧ܻ  and ݁௧ represent the actual value and the error (offset between the actual and the fitted 
value). Parameter sets i  (i= 1,2,…,p) and j  (j= 0,1,2,…,q) represent AR and MA sections of the 
ARIMA. The term (1-B)d serves as a difference operator. 

 
3.2 Artificial Neural Networks (ANN) 

ANN are computational systems based on the operational structure of a biological brain. ANN 
architecture consists of units (i.e., neurons) that are organized in layers. In addition to input and 
output layers, there are hidden layers between the input and the output. ANN is a nonparametric 
approach that can extract nonlinear dynamics present in the data. Because of the limitations of 
statistical tools, ANN has long been regarded as an alternative route to deal with nonlinear problems 
in various fields. There are various architectures used in ANN, some of which mimic the function of 
the brain, but others are mathematical representations constructed according to the problem 
requirements. Among these varieties, MLP (multi-layer perceptron) has long been used for nonlinear 
regression problems. 

3.3. Forecast Accuracy Metrics 
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The accuracy of a forecast can be assessed in several different ways. In this study, three standard 
metrics, MAD, MSE, and MAPE, are used to compare the performance of different forecasting 
methods. The MAD and MSE are scale-dependent metrics, and the magnitude of the error varies with 
the magnitude of the underlying series. On the other hand, the MAPE is a relative-error metric 
ranging between 0 and 1. The scale-independent nature of MAPE makes it a convenient assessment 
tool in a one-to-one comparison of time series with varying magnitudes. The formulation for each 
error metric is given in Equations 2, 3, and 4. 

 
 Mean Absolute Deviation (MAD)  

ܦܣܯ =
1
݊

෍| ௧ܻ − |௧ܨ
௡

௧ୀଵ

 (2) 

 Mean Squared Error (MSE)  

ܧܵܯ =
1
݊

෍( ௧ܻ − ௧)ଶܨ
௡

௧ୀଵ

 (3) 

 Mean Absolute Percent Error (MAPE): 

ܧܲܣܯ =
1
݊

෍ ฬ ௧ܻ − ௧ܨ

௧ܻ
ฬ

௡

௧ୀଵ

∗ 100 (4) 

where ௧ܻ  and ܨ௧ represent the actual and the forecast. As we propose a new forecasting approach in 
this study, our primary focus is to compare the performance of the proposed method with respect to 
previous work. For a one-to-one comparison of different models, each model has to be tested on the 
same data set. In test runs, we used MAD and MSE to evaluate forecast accuracy. These two metrics 
are easy to compute and understand [17,18].  

3.4. Hybrid Model 

The proposed hybrid arrangement combines ARIMA and ANN models in series. As given in 
Equation 5, the original time series is considered as the sum of two components. First, a multi-period 
lagged ARIMA model (Mt) captures the underlying linear relationship in the data. The second 
component (Nt) is built on the leftover error of the first model. Whatever cannot be explained by 
ARIMA is fed into the ANN.  

࢚ࢅ = ࢚ࡹ +  (5) ࢚ࡺ

Processes involved in hybrid modeling can be divided into six sub-tasks performed in sequential 
order: (1) The routine starts with the basic model; (2) The error output of the basic model is processed 
in the classification; (3) Based on the classification, the input lists are prepared for the second model; (4) The 
secondary model runs on each list separately; (5) Output of the second model is consolidated in 
hybridization; (6) In the final stage, projections are generated with the hybrid model. Figure 2 shows 
tasks and relationships graphically.  

 
 
 
 

 
 
 

 
 
 
 

Figure 2. Proposed hybrid structure. 
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Step 1. The Basic Model 
The modeling process starts with the division of the original time series into training and test 

series. Next, the basic model is developed using only the training data, which includes the first 
portion of the data set (i.e., the chronologically older). In terms of size, the training data is typically 
several times larger than the test portion. In selecting the split point, we followed the guidelines used 
in previous studies on the same data sets. It should be noted that the number of observations in the 
training data is further reduced because of the lag effect in the data. The formula for the basic model 
is given in Equation 6. 

௧ܻ = ௧ܯ + ݁௧ (6) 

 
where ௧ܻ  and ܯ௧ represent the actual and forecast values at point t. The offset between the two is 
the error (݁௧), and it is used as a basis to construct a new time series for the second component. 

݁௧ = ௧ܻ −  ௧ (7)ܯ

Step 2. Classification 
In the second stage, the error output of the first component (Equation 7) is classified into three 

distinct groups. The classification is done according to a priori selected threshold value. Over-
shooters include non-negative errors that are greater than the threshold. Under-shooters are negative 
errors that are smaller than the negative value of the threshold limit. Anything that falls between 
these two limits is categorized as neutral. This type of categorization was first proposed by Khashei 
et al. [19], where the threshold limits are defined as the desired level of error (DLE). The value of this 
parameter could be set by the user based on the analysis of the error coming from the basic model. In 
particular, the distribution of error coming from the basic model can provide insight regarding when 
or how the basic model over- or under-estimates. If there is no insight into the performance of the 
basic model, it could be set to a fixed value. For example, the DLE is set to 5% in experimental runs 
by Khashei et al.  [19]. The error output of the basic model is categorized into three groups as A, B, 
and C, with the following definitions: 

 {݁௜|݁௜ >  Category A ,{ܧܮܦ
 {݁௜|݁௜ <  Category B ,{ܧܮܦ−
 {|݁௜| ≤  Category C ,{ܧܮܦ

 
Step 3. Input Lists for the Second Model  
Based on the categorization of the second step, three separate data lists are constructed from the 

original error output in Equation 7. To explain the process, let us assume that the output of the basic 
model is stored in a list, E, with n members, ܧ = {݁ଵ, ݁ଶ, ݁ଷ, … , ݁௡}. Three separate lists, A, B, and C, 
are generated from list E. While lists A and B represent underestimated and overestimated values of 
E, list C holds neutral error values. The content of E is directly copied to A, B, and C to initialize the 
lists. Then, with the guidelines given in Equation 8, adjustments are made to each list. In list A, which 
represents underestimated values, all category A values are kept as they are, but everything else is 
set to zero. Similarly, list B, representing overestimated errors (i.e., category B), retains its original 
values, but overwrites everything else with zero. For list C, all elements with over- and 
underestimated values are set to zero. 

 

Underestimation list:  A = ൜ if       e௜ ∈ category A     ⇒     e௜ = ݁௜
 else                                                e௜ = 0ൠ 

 
Overestimation list: B = ൜if    e௜ ∈ category B    ⇒     e௜ = ݁௜

 else                                          e୧ = 0 ൠ    (8) 

 

Neutral list:   C = ൝
 if       e௜ ∉ categ. A  AND e௜ ∉ category B    

                                      ⇒     e௜ = ݁௜
 else                                                  e௜ = 0

ൡ 

 
Step 4. The Second Model 
The second model performs a complementary function. It uses leftover error values of the basic 

model to extract additional explanatory information. As explained in the previous step, the error 
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output is categorized into three separate lists. The lists A and B represent under- and overestimated 
values, and they are the inputs for the second model. List C contains error values that remain below 
the threshold (i.e., DLE), and are excluded from the run. The second model includes an artificial 
neural network (ANN) to identify nonlinear patterns and any high-order linear relationships that the 
basic model missed. In the original approach proposed by Zhang [20], the primary and secondary 
models are assigned specific tasks. While the primary model deals with the linear component of the 
data, the leftover error is assumed to be the nonlinear component. This type of classification of the 
domain may not be applicable in every situation, and the residual error of the primary model cannot 
be presupposed as a nonlinear component. It is likely that leftover error values are a combination of 
linear and nonlinear error values.  

The ANN model is run separately on A and B lists to generate two sets of forecasts, representing 
the under- and overestimation portions of the model. As stated in Equations 9 and 10, the ANN uses 
n period lagged values from t to t-n to generate the forecast for t+1.  

஺ܰ(௧ାଵ) = ݁஺(௧ାଵ) = ஺݂(݁஺௧ , ݁஺(௧ିଵ), ݁஺(௧ିଶ), . . . , ݁஺(௧ି௡)) +  ஺(௧ାଵ) (9)ߝ

ܰ஻(௧ାଵ) = ݁஻(௧ାଵ) = ஻݂(݁஻௧ , ݁஻(௧ିଵ), ݁஻(௧ିଶ), . . . , ݁஻(௧ି௡)) +  ஻(௧ାଵ) (10)ߝ

where ஺݂  and ஻݂  represent functions used by ANN. The terms ߝ஺(௧ାଵ)  and ߝ஻(௧ାଵ)  are random 
errors. 

 
Step 5. Hybridization 
Hybridization involves integrating basic and secondary models in a schema to produce a single 

(i.e., hybrid) forecast. In the proposed schema, the hybrid forecast for t+1 is the sum of outputs 
generated by ܯ௧ and ௧ܰ. 

 
෠ܻ஺(௧ାଵ) = (௧ାଵ)ܯ + ஺ܰ(௧ାଵ) (11) 
෠ܻ஻(௧ାଵ) = (௧ାଵ)ܯ + ܰ஻(௧ାଵ) (12) 

 
Forecasts given in 11 and 12 can be considered as a modified version of the basic model forecast. 

The ෠ܻ஺(௧ାଵ)  in 11 is the corrected version when the basic model underestimates the true value. 
Underestimation produces positive errors in the basic model. When positive values are fed into the 
secondary model, the secondary model, in turn, is likely to produce positive-valued forecasts. This 
could be considered as compensation for the underestimation of the basic model. A reverse 
mechanism works in 12. When the basic model overestimates, errors are likely to be negative. To 
compensate, the second model will produce negative-valued forecasts ( ෠ܻ஻(௧ାଵ)). 

In addition to these two forecasts, the basic model's direct output can be considered as a third 
forecast. The second model is bypassed, and the output of the basic model is the final forecast: 
෠ܻ஼(௧ାଵ) =  The ෠ܻ஼(௧ାଵ) can be considered as category C, and it represents the mid-value of three .(௧ାଵ)ܯ
forecasts. While category C determines the midpoint, forecasts for A and B are upper and lower 
estimates. Among three candidate forecast points (i.e., ෠ܻ஺(௧ାଵ) ෠ܻ஺(௧ାଵ) ෠ܻ஺(௧ାଵ)), one must be selected as 
the final forecast. The selection is based on the error metrics discussed in (3.3). The combination with 
the lowest score is chosen as the final hybrid model. 

 
Step 6. Projection 
The hybrid model selected in the previous step is used for projection. Model selection is based 

on the performance of the training data, which is exclusively used for model development. Once the 
model is finalized, its forecasting performance is evaluated on the test data. This data set is a 
continuation of the training data and is used for model validation only. 

In terms of platform and software, we used IBM's SPSS statistical software to build ARIMA 
models. MATLAB Toolbox is used for ANN models. Development and test runs were conducted on 
a Windows-based laptop with Intel Core i5-7200U CPU @ 2.50GHz. For both ARIMA and ANN 
models, the run times were trivial. 

4. Results 
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To test the performance of the proposed approach, we used several well-known data sets from 
the literature. Our analysis also includes a local data set for Turkish wheat yield, which was the 
primary motivation to undertake this study. Data sets from the literature include the following series: 
annual sunspot observations [20], Canadian Lynx counts [21], airline passenger data [22], and hourly 
electricity rates from New South Wales [23]. Lastly, a new data set of Turkish wheat yields is part of 
this study. The series for monthly yields from 1938 onwards is available at the Turkish Grain Board 
[24]. 

Selected data sets are used in evaluating the performance of the proposed approach. The 
evaluation is based on a one-to-one comparison of our model with the ones reported in the literature. 
For this reason, we have tried to use the same error metric of the original benchmark study for 
performance comparison. A brief explanation of the error metrics can be found in section (3.3). 

4.1. Sunspot Data 

The number of darker spots on the sun's surface has long been a subject of curiosity for 
humanity, so we have a solid history of records going back several hundred years. An observatory 
in Belgium keeps records of current sunspot activity and has an archive of historical numbers [20]. 
The sunspot series is often referred to as Wolf's sunspot data because Rudolf Wolf first compiled the 
time series [25]. Because of its crucial influence on various fields, from climate to telecommunications, 
statisticians have studied sunspot data extensively. However, identifying a functional relationship in 
the sunspot series has been challenging because of the nonlinear, nonstationary, and non-Gaussian 
nature of the series [26,27]. In addition, a high level of complexity in the series has made sunspot data 
a yardstick in evaluating forecasting models.  

The sunspot series used in this study comprises 288 annual observations, covering 1700 to 1987. 
The data set was split into two parts for training and testing purposes. The test data includes 221 
observations from 1700 to 1920, and the remaining portion, from 1921 to 1987 (67 data points), is used 
for testing. In parallel with previous studies on this series, we followed a two-step hybrid model 
approach to model the series [19,28,29].  

An autoregressive model of order nine, AR(9), and an ANN architecture of 4x4x1 are used in 
basic and secondary models. The decision to select these models is based on the previous research 
work done on the problem [29–31].  

Figure 3 shows the forecast and actual data over the test period. For most of the observations, 
the difference between the forecast and the actual remains small. Table 1 compares the performance 
of various methods in terms of MAD (mean absolute deviation). The list indicates that the proposed 
method performs better than previous models. 

 

Figure 3. Hybrid forecast vs. actual data over the test data (Sunspot data—67 observations) 

Table 1. Comparison of forecast performance over test data. 

MODEL MSE MAD 

Zhang Hibrit AR(9)-MLP 280.160 12.780 
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Khashei, Bijari AR(9)-MLP I  234.206 12.117 

Khashei, Bijari AR(9)-MLP II  218.642 11.447 

Khashei, Bijari, Ardali AR(9)-PNN  234.775 11.549 

Proposed Hybrid AR(9)-MLP 240.896 11.416 

4.2. Canadian Lynx Trapping 

This series includes Canadian lynx trapped in Northwest Canada from 1821 to 1934. The lynx 
population has a cyclical behavior with a period of 10 years. It is reported that this interesting cycle 
is observable for other animal populations in North Canada [21]. The cyclical behavior has tall peaks 
and deep bottoms, making it a challenging series for forecasting. The first 100 observations, data from 
1821 to 1920, are used as the training set. The test section covers observations from 1921 to 1934, with 
14 data points. Based on previous research on this problem, an AR(12) model is used in the basic 
model. An ANN architecture of 7x5x1 is selected for the secondary model. 

Figure 4 shows the fitted values versus the actual data. The forecast performance in comparison 
to other models is presented in Table 2. Although the proposed model performed better than Zhang's, 
the performance is slightly lower, or on par, compared to the others. 

 

 
Figure 4. Hybrid forecast vs. actual data over the test data (Canadian lynx—14 observations) 

Table 2. Comparison of forecast performance over test data 

MODEL MSE MAD 

Zhang Hibrit AR(12)-MLP [2] 0.0172 0.1040 

Khashei, Bijari AR(12)-MLP I [3] 0.0136 0.0896 

Khashei, Bijari AR(12)-MLP II [31] 0.0100 0.0851 

Khashei, Bijari, Ardali AR(12)-PNN [17] 0.0115 0.0844 

Proposed Hybrid AR(12)-MLP* 0.0129 0.0986 

 
4.3. Hourly Electricity Rates 
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This data set includes hourly electricity prices in the New South Wales State of Australia. The 
price data is kept by the Australian Energy Market Operator (AEMO), a semi-official organization in 
charge of Australia's national electricity and gas markets [32]. Price statistics for March 2013 are 
analyzed in this study. In the original data set, the price is recorded at half-hour intervals. First, the 
data set is converted to hourly rates with 24 records per day, totaling 744 (31x24) data points for the 
entire month (i.e., March 2013). While the first 30 days of data are used for development, the last day 
of the month is reserved as test data. ARIMA (1,0,1) and a multi-layer perceptron type of ANN 
architecture of 7x6x1 are used in basic and secondary models. Figure 5 shows the fitted versus actuals 
for the 24-hour period of March 31, 2013. Table 3 includes MSE and MAD comparisons. Error 
statistics suggest that the proposed approach performed relatively better than benchmarks in terms 
of both metrics. 

Figure 5. Hybrid forecast vs. actual data over the test data (Hourly electricity rates—24 observations) 

Table 3. Comparison of forecast performance over test data (Hourly electricity rates) 

MODEL MSE MAD 

Babu, Reddy ANN 22.4304 3.7374 

Zhang Hibrit ARIMA(1,0,1)-MLP 27.0377 3.9204 

Khashei, Bijari ARIMA(1,0,1)-MLP 26.1396 3.8346 

Babu, Reddy ARIMA(1,1,1)-MLP 18.2793 3.2342 

Proposed Hybrid ARIMA(1,0,1)-MLP 14.7566 2.5634 

 
4.4. Airline Passenger Data 

This is a popular time-series data, including monthly international passenger counts from 1949 
to 1960. Since its introduction by Brown [22], this series has been the subject of many studies, and it 
is a popular benchmark for forecasting models. The series is readily available in data repositories and 
statistical software libraries [33]. There is a clear seasonality and an upward trend in the data, making 
it an exemplary test case for any time series modeling (Figure 6). The twelve-year monthly series has 
144 observations. In our analysis, the first 11 years of the data (1949 to 1959) are used as a training 
set, while the remaining 12 observations of 1960 are used for testing. 
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Figure 6. Monthly airline passenger data 

For this data set, we used SARIMA(0,1,1) x (0,1,1)12 in the basic model. This representation was 
first used by Box et al. [34]. Because of the exponential upward trend, a logarithmic transformation is 
applied beforehand. The model originally proposed by Box et al. [34] is also confirmed by later studies 
[35,36]. For ANN in the secondary model, the input includes three nodes with lags 1, 2, and 12. There 
are two nodes in the hidden layer and a single output. Our basic model is based on the SARIMA (i.e., 
seasonal ARIMA) architecture, as proposed by [36]. 

The output of the hybrid model on the test data covering 12 months of 1960 is shown in Figure 
7. In addition, the performance comparison with respect to two previous studies is presented in Table 
4. Although the model performed significantly better than one of the comparisons [35] in MSE 
metrics, its performance was slightly worse in the second one [36]. It is worth mentioning that our 
model performed marginally better in MDA metrics. 

 

 
Figure 7. Hybrid forecast vs. actual data over the test data (Airline passenger data) 

Table 4. Comparison of forecast performance over test data (Airline passenger data). 

MODEL MSE MAD 

Faraway, Chatfield ANN 0.024167 - 

Hamzacebi Seasonal-ANN 0.001083 0.0280 

Proposed Hybrid SARIMA-MLP 0.001133 0.0242 
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4.5. Wheat Yield in Turkey 

This data is about wheat yield in Turkey. The yield refers to the dry grain of the harvested crop, 
and it is often expressed in terms of either kilogram per decare or tons per hectare. The yield data is 
in annual series, covering the period from 1938 to 2013. Turkey is a major wheat producer, and a 
leading trader of cereals, including wheat. Because of the strategic importance of the crop, speculations 
regarding wheat yield are a great concern for many parties, particularly those involved in commodities trading. 
Although wheat is considered a strategic agricultural commodity in Turkey, the output has been flat 
for years. The decline in land dedicated to wheat agriculture has been partially compensated by an 
increase in yields, which kept the output at a level of 20 million tons per year [37]. For agricultural 
commodities such as wheat, yield is defined in terms of kilograms of seeds harvested per decare 
(1,000 m2). As a first step in the model development, the available data set was split into development 
and test sections, with 80% and 20% ratios. Yield data from 1938 to 1998 was used for model 
development, and the remaining portion, data from 1999 to 2013, was used for testing.  

 Historical change in yields from 1938 to 2013 is given in Figure 8. As the graph shows, the wheat 
yield in Turkey has been rising in recent years, but it is still well below the major wheat producers of 
Europe, such as Germany or France [38,39]. The yield data has an upward trend with random 
fluctuations. It does not exhibit any seasonal or periodic variations. For basic and secondary models, 
ARIMA (0,1,0) time series and ANN architecture of 7x7x1 are selected as final models after testing 
various combinations. 

Figure 8. Historical wheat yield in Turkey 

The graph of fitted values versus actuals for the test data (from 1999 to 2013) shows that the 
model captures the recent upward trend with reasonable accuracy (Figure 9). Performance statistics 
(MSE, MAD, MAPE) for the hybrid model are given in Table 5. This table includes statistics for two 
more models. Two sub-components of the hybrid approach, the ARIMA model in the basic model 
and the ANN model of the secondary models, are run separately on the yield data. The performance 
of each model is recorded, and relevant error metrics are included in Table 5. 
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Figure 9. Hybrid forecast vs. actual data over the test data (wheat yield). 

Table 5. Comparison of forecast performance over test data (Wheat yield data) 

MODEL MSE MAD 
MAPE 

(%) 

ARIMA (0,1,0) – stand-alone 375.33 16.00 6.99 

ANN – stand-alone 348.39 16.29 6.81 

Proposed hybrid model, 
ARIMA-MLP 

212.24 11.09 5.00 

5. Conclusion 
Previous research has shown that combining different forecasting methods in a framework 

generates superior results to the stand-alone models based on a single methodology. The last case 
(i.e., yield forecasting) presented in the "Experimental Results" section clearly illustrates this 
phenomenon. For that case, we first run ARIMA and ANN models separately. Then, we run the 
hybrid model that combines ARIMA and ANN in a unique framework. Accuracy metrics in Table 5 
show that the hybrid model's performance is far superior to stand-alone ARIMA or stand-alone 
ANN. Combining different forecasting methods in a framework has been previously studied by 
many researchers, and different approaches have been proposed. Our approach is an improvement 
along this line of research. As we detailed in the previous section, the performance in terms of forecast 
accuracy has been better than, or on par with, similar approaches. 
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