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Abstract: Incorporating knowledge graphs as auxiliary information to enhance recommendation systems can

improve the representations learning of users and items. Recommendation methods based on knowledge graph

can introduce user-item interaction learning into the item graph, focusing only on learning the node vector

representations within a single graph; alternatively, they can treat user-item interactions and item graphs as two

separate graphs and learn from each graph individually. Learning from two graphs has natural advantages in

exploring original information and interaction information, but faces two main challenges: 1) in complex graph

connection scenarios, how to adequately mine the self-information of each graph, and 2) how to merge interaction

information from the two graphs while ensuring that user-item interaction information predominates. Existing

methods do not thoroughly explore the simultaneous mining of self-information from both graphs and effective

interaction information, leading to the loss of valuable insights. Considering the success of contrastive learning

in mining self-information and auxiliary information, this paper proposes a dual-graph contrastive learning

recommendation method based on knowledge graphs (KGDC) to explore a more accurate representations of

users and items in recommendation systems based on external knowledge graphs. In the learning process within

the self-graph, KGDC has strengthened and represented the information of different connecting edges in both

graphs, and extracted the existing information more fully. In interactive information learning, KGDC reinforces

the interaction relationship between users and items in the external knowledge graph, realizing the leading role of

the main task. We have conducted a series of experiments on three standard datasets, and the results show that

the proposed method can achieve better results.

Keywords: dual-graph learning; contrastive learning; knowledge graph; user-item graph; recommendation system

1. Introduction

In the era of information explosion, users are confronted with an overwhelming number of choices.
recommendation systems alleviate this issue by providing personalized recommendations [1–3], help-
ing users quickly find content or products of interest, thus reducing information overload and en-
hancing user satisfaction and experience. For e-commerce and content platforms, recommendation
systems can efficiently guide users to content they are more likely to purchase or consume, significantly
boosting conversion rates and sales, thereby directly increasing economic benefits for businesses. Col-
laborative filtering algorithms, widely employed in recommendation systems, leverage users’ historical
behavior data to provide personalized recommendations for each user, improving the relevance of
recommendations and user satisfaction [4–7]. However, real-world data often presents challenges
such as data sparse and cold start, which greatly limit the performance of collaborative filtering-based
recommendation algorithms [8–10]. To address the issue of sparse data, an effective approach is to
integrate auxiliary information into the collaborative filtering recommendation model, and Knowledge
graph-based recommendation is a typical method in this regard [11–15]. Knowledge graphs contain
rich entity relationship information about items, enabling the construction of comprehensive item
features and helping to uncover hidden relationships between items, thereby improving the accuracy
of recommendations.
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There already exists much research effort for sufficiently utilizing both collaborative filtering (CF)
information and knowledge graph (KG) information. Earlier studies [11,16,17] focus on independently
learning from the two graphs, which mainly represent the triplet information from the item knowl-
edge graph as embedding and use as contextual information for enhancing recommendations in the
CF graph. These methods typically employ knowledge graph embedding (KGE) models (such as
TransE [18], TransH [19]) to learn representations of entities in the KG. However, these approaches
have limitations in extracting meaningful information from entities, and they can only extract infor-
mation from a single graph structure, failing to integrate information from the CF graph. Therefore,
subsequent works [20–22] have increasingly focused on how to extract more relevant information
for recommendations from the KG. One productive approach is to represent the interactions with
multi-hop paths from users to items, which is hard to optimize because of the manually designed
meta-paths. Recently, graph neural networks (GNNs) have demonstrated strong capabilities in rep-
resenting structural knowledge in graphs [12,13,23,24]. They are widely used in recommendation
methods based on knowledge graphs and have achieved excellent performance.

Although knowledge graph-based recommendation has achieved promising results, it still faces
the following issues:

• Insufficient Mining of the Two Graphs’ Own Information: Existing methods often use the interac-
tion data between users and items as supervision signals to derive user and item representation
vectors from the entities in KG for learning and training. However, these methods do not fully
exploit the information inherent in the two graphs, especially the strong and effective features of
user and item IDs in the recommendation domain. This oversight can lead to the loss of valuable
information, adversely affecting the recommendation performance.

• Unbalanced Information Between the Two Graphs: Unlike the sparse behavioral data between
users and items, the connections in knowledge graphs are dense, containing a wealth of informa-
tion. The difference in the amount of knowledge contained in the two graphs can cause issues in
the subsequent utilization of the information. The supervision signals in CF are directly related
to the predictions, whereas the abundant redundant information in the KG can weaken these
CF supervision signals. If the dominance of CF information is not maintained, it can lead to a
decline in recommendation accuracy.

Inspired by the success of contrastive learning (CL) methods in sparse data scenarios, this
paper proposes a Dual-graph Contrastive learning recommendation model based on the Knowledge
Graph (KGDC) to address the aforementioned issues. To fully exploit the effective information from
each of the two graphs, KGDC utilizes information propagation and aggregation techniques from
GNNs to learn the vector representations of IDs in the CF graph and the entities and relations in
the KG, respectively. To integrate information from both graphs, the proposed method leverages
the concept of contrastive learning to fuse information from two aspects. The first method treats the
items interacted with by the same user in the CF graph as pseudo-positive item sets, using them as
positive supervision signals in the KG, while using other non-similar, non-connected items as negative
samples to further learn and train the representation vectors of entities in the KG. The second method
considers the corresponding items and entities in the CF graph and KG as similar samples, with
other non-corresponding samples as negative samples, to further enhance the information fusion and
transfer between the two graphs. Finally, we employ a multi-objective training mode, where the vector
representations of different components are used to calculate the loss according to different objectives,
and the losses are summed with different weights to optimize and train the model parameters. We
conducted extensive experiments on two public datasets, and the results show that our proposed
method outperforms some state-of-the-art methods.

We summarize the contributions of this paper as follows:
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• We identify and analyze the shortcomings and challenges of existing graph-based recommenda-
tion methods, such as their inability to simultaneously mine each graph’s own information and
effectively integrate information between two imbalanced graphs.

• We propose a method named KGDC, which leverages contrastive learning and multi-objective
learning to fully exploit the information within each graph while effectively integrating informa-
tion between the graphs.

• We conduct extensive experiments on public datasets, further validating the superior perfor-
mance of the proposed method.

2. Related Work

The study in this paper is mainly relevant to two parts of works: knowledge graph-based
recommendation and contrastive learning.

2.1. Knowledge Graph-Based Recommendation

Research into Knowledge graph-based recommendation systems has explored various method-
ologies, focusing on leveraging the structure and semantics of knowledge graphs to enhance recom-
mendation performance. This part reviews notable contributions from two aspects: non-GNNs-based
methods and GNNs-based methods.

2.1.1. Non-GNNs-Based Methods

Early work on integrating knowledge graphs with recommendation systems primarily focused on
leveraging the rich semantic relationships inherent in knowledge graphs to improve recommendation
accuracy [11,17,31]. Zhang [17] introduces the Collaborative Knowledge Base Embedding (CKE)
framework, which combines collaborative filtering techniques with knowledge graph embeddings to
enhance recommendation performance by incorporating additional contextual information. Similarly,
KTUP [31]considers both explicit user-item interactions and implicit knowledge graph relationships to
improve the recommendation process with the TransH [19] method. Wang [11] proposes the RippleNet
model, which propagates user preferences over a knowledge graph to uncover multi-hop relational
paths, thereby enriching the user’s preference representation.

Another significant contribution in this area is the use of path-based methods. These approaches
often employ random walk techniques or path ranking algorithms to identify relevant connections
between entities. PER [32] extracts meta-path or meta-graph latent features from the knowledge graph
to exploit the connectivity between users and items along different types of relation paths or graphs.
KPRN [22]goes beyond predefined meta-paths by dynamically extracting paths that are relevant to
user-item interactions, thereby improving the ability to capture complex relationships.

Embedding-based methods and path-based methods are both useful and effective. But embedding-
based methods may not fully capture the nuances of user preferences in recommendation scenarios
where user-item interactions are sparse or when personalized recommendation accuracy is critical.
Path-based methods heavily rely on the quality of path extraction and the ability to capture relevant
semantic relationships.

2.1.2. GNNs-Based Methods

GNNs-based methods in knowledge graph-based recommendation systems have evolved sig-
nificantly, addressing challenges related to sparse interactions, unbalanced graph utilization, and
knowledge extraction. KGCN [12] focuses on leveraging user preferences to aggregate neighborhood
information of items in KG. Similarly, KGAT [13] uses GNNs to recursively aggregate information
across the unified heterogeneous graph, emphasizing the importance of both collaborative filtering
signals and knowledge signals. CKAN [15] highlights the significance of collaborative filtering signals
in addition to knowledge signals. In KGIN [24], GNNs are applied on the user-intent-item-entity
graph to capture nuanced user preferences. CG-KGR [25] uses pre-trained collaborative signals to
guide the aggregation process on the knowledge graph, focusing on extracting sufficient knowledge
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for recommendations. KGIC [26] employs GNNs to capture hierarchical and structural dependencies
within the KG.

Most of GNNs-based methods operate under supervised learning paradigms, which can be
challenging when dealing with sparse user-item interactions. This limitation affects recommendation
accuracy, particularly in scenarios with limited data. Moreover, the connections in knowledge graphs
are dense, containing a wealth of information. These methods often overly emphasize the knowledge
graph, potentially neglecting the crucial collaborative filtering signals inherent in user-item interactions.

2.2. Contrastive Learning

Contrastive learning, as an effective unsupervised learning method, has been widely studied
and applied in recent years across domains such as image and natural language processing. Its core
idea is to compare positive examples (similar samples) and negative examples (dissimilar samples),
aiming to bring similar samples closer together in the representation space while pushing dissimilar
samples further apart. This approach helps alleviate issues related to insufficient learning caused by
sparse data. SimCLR [33] utilizes data augmentation techniques to generate multiple views of the
same instance and employs a contrastive loss function to maximize the similarity between different
views of the same instance while minimizing the similarity between different instances.

In recent research, several approaches have applied contrastive learning to enhance knowledge
graph (KG)-based recommendation systems. SGL introduces three operators to generate augmented
views and employs a multi-task strategy, jointly optimizing contrastive loss and recommendation
loss to improve the robustness of representation learning in KG-based recommendation systems.
SEPT [28] proposes a socially-aware contrastive learning framework, and mines additional social
information of users to enrich the learning process, aiming to better capture user preferences and
interactions in recommendation tasks. CKER [29] integrates a contrastive learning module to enhance
the sharing of user preferences, and derives additional supervision signals to improve the collaborative
filtering aspect of KG-based recommendation systems. KGCL [30] introduces a knowledge-guided
contrastive learning paradigm to derive more robust node representations, enhancing the quality of
recommendations. KGIC [26] applies contrastive learning to learn embeddings or representations that
distinguish relevant (positive) interactions from irrelevant (negative) ones based on the knowledge
graph. KACL [27] utilizes contrastive learning to discern meaningful patterns and relationships within
the knowledge graph.

Despite these advancements, recent works in KG-based recommendation still face significant
challenges such as interaction domination and knowledge overload. These refer to issues where
the sheer volume of interactions or the complexity of knowledge representation within the KG can
overwhelm the recommendation model, leading to suboptimal performance.

3. Problem Formulation

In this section, we first introduce the structural data: the collaborative filtering graph of user-item
interactions and the knowledge graph, and then formulate the problem statement of knowledge
graph-based recommendation.

Collaborative Filtering Graph: To maintain consistency with the settings in GNNs-based rec-
ommendation systems, we construct a bipartite graph Gc f = {(u, yuv, v)} based on the historical
interactions between users and items, such as the consumption, viewing, clicking. In the construction
of this graph, there are connections only between item and user nodes, with edges existing between
nodes of users and items that have had historical interactions, where u ∈ U and v ∈ V denote the user
and item involved in the interaction, and U and V are the sets of users and items respectively. yuv is an
indicator whether there is a connection between user u and item v based on the historical interactions.
yuv = 1 indicates an interaction, while yuv = 0 indicates no interaction.

Knowledge Graph: In knowledge graph-based recommendation methods, in addition to the
user-item interaction data, there is also a knowledge graph that provides relationships between items.
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In the knowledge graph, the connections are denoted as a set of triplets Gkg = {(h, r, t)}, and each
triplet describes a connection from head entity h ∈ I to tail entity t ∈ I with the relationship r ∈ R.
There, it usually denotes I and R as the sets of entities and relations in the knowledge graph, and I
includes items V and non-item entities I \ V.

KG-based Recommendation: Based on the user-item interaction graph Gc f and item knowledge
graph Gkg, the target of KG-based recommendation is to learn a function y(u, v) that predicts the
probability how likely a user u would interact with an item v.

4. Methodology

In this section, we present our proposed KGDC recommendation method. The purpose of the
proposed KGDC is to fully exploit the individual information and interactive information from the
CF graph and the KG graph. Figure 1 presents the framework of KGDC, which consists of three
parts: Individual Graph Constructing and Encoding, Interactive Graph Constructing and Encoding,
Multi-task Learning. It performs contrastive learning in both individual graph and interactive graph
learning to extract more effective information. Then we introduce the details of the three components.

User

Item

Entity

Individual
Learning

item  embedding

entity embedding

recom
m

endation

user embedding

Interactive Contrastive Learning

Relation

KG

CF

Individual
Learning

relation embedding

user
embedding

item
embedding

Multi-Task 
Learning

Figure 1. The framework of KGDC. The red arrows in the figure indicate the higher weights of the
related information.

4.1. Individual Graph Constructing and Encoding

Different from most existing methods, KGDC learns node and entity embedding from KG and CF
respectively with GNNs methods. In the KG graph, KGDC uses contrastive learning to overcome the
problem of missing explicit labels. In the CF graph, KGDC uses propagation and aggregation methods
for learning ID embedding of users and items.

4.1.1. Graph Constructing and Encoding in KG

In the individual graph constructing and encoding in KG, only triplets Gkg = {(h, r, t)} are valid
here. Considering that there are no explicit signals, KGDC utilizes contrastive learning to construct
samples for information aggregation, loss calculation and parameters optimization.

In terms of sample construction, we first determine the set of entities, denoted as E, to be trained
based on the specific scenario. For example, in the pre-training process, the entities to be trained
are all the entities in the KG, E = I, with the goal of fully training each entity in the graph. In
the subsequent model fine-tuning process, the entities to be trained are those involved in user-item
interactions E ∈ I, with the aim of performing better for the prediction target. For any entity ei ∈ E,
the positive samples of e are sampled from the connected tails and relations from Gkg, denoted as
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(ri,p, ti,p) ∈ Gkg. Then the negative samples are sampled from all entities that are not connected in Gkg,
denoted as (ri,n, ti,n) /∈ Gkg. Combining the positive and negative samples, we can get the samples for
KG, denoted as Skg = {(ri,p, ti,p), (ri,n, ti,n)... ...}, ei ∈ E.

With the constructed samples, KGDC uses the attentive mechanism in GNNs to propagate and
aggregate information in KG. Also for any entity ei ∈ E, we first compute the representations of
positive samples by linear summation,

h+kg,i = ∑
j∈(ri,p ,ti,p)

αijhkg,j, (1)

where hkg,j is the representation of entity j, and αij denotes the attention score between entity ei and
entity ej. And αij is calculated as follows:

αij =
exp(hkg,i · rj)

∑k∈(ri,p ,ti,p)
exp(hkg,k · rk))

. (2)

Then the positive representation of entity i is calculated as follows:

h+kg,i = ∑
j∈(ri,p ,ti,p)

exp(hkg,i · rj)

∑k∈(ri,p ,ti,p)
exp(hkg,k · rk))

hkg,j. (3)

Similarly, the negative representation of entity i is calculated as follows:

h−kg,i = ∑
j∈(ri,n ,ti,n)

exp(hkg,i · rj)

∑k∈(ri,n ,ti,n)
exp(hkg,k · rk))

hkg,j. (4)

With these representations of entity i, we calculate the similarity score between positive samples
and sample i through the inner product, p+i = hkg,i · h+kg,i. Similarly, the similarity score between

negative samples and sample i is denoted as p−i = hkg,i · h−kg,i. Then, we adopt a pairwise BPR loss to
encourage the positive samples to be higher than the negative samples:

Lkg = ∑
ei∈E

− log σ(p+i − p−i ), (5)

where σ is the Sigmoid function.

4.1.2. Graph Constructing and Encoding in CF

In the individual graph constructing and encoding in CF, KGDC learns the embedding of users
and items by user-item interactions. CF is a heterogeneous graph composed of users and items, and
these nodes have no attribute features. Therefore, KGDC utilizes neighbor sampling and embedding
aggregation, which are common in GNNs, to achieve information propagation.

During representation learning, the main idea is to update the vector representation of each vertex
based on its own representation and that of its neighbors using some aggregation function. This
process is repeated for all vertices for T iterations to obtain the representation of each node. Before
representation learning, the neighbors of each vertex in CF are stored globally, denoted as N(s), where
the nodes s do not distinguish between users and items. Assuming it is the t-th iteration, for any node
si, KGDC directly retrieves its neighbor set from global storage, denoted as N(si). Different from GCN,
we randomly select a fixed number K of neighbors from N(si), denoted as N(si)

t. If the number of
neighbors is less than K, sampling with replacement is used to reach the desired number; if greater
than K, sampling without replacement is used.
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With the sampled neighbors of the node si in the t-th iteration, we can obtain the embedding set
of these nodes using the equation as follows:

h(t)c f ,N(si)
= AGGREGATEt(h

(t)
c f ,j, ∀j ∈ N(si)

t), (6)

where AGGREGATEt means the aggregation method at the (t-th iteration, such as mean pooling, sum
pooling, max pooling, RNN, transformer, and other methods. Getting the presentation embedding
of the neighbors, we perform a linear transformation and enhance the representation of the original
node si by using a custom activation function. And the vector representation of vertex si at the t + 1-th
iteration is calculated as:

h(t+1)
c f ,si

= σ
(

Wt

(
CONCAT(h(t)c f ,si

, h(t)c f ,N(si)
)
)
+ bt

)
, (7)

where Wt ∈ R2d∗d and bt ∈ Rd are the trainable weights and the trainable bis at the (t-th iteration.
After T iterations, the node representation h(T)c f ,si

is L2-normalized to get the final representation
vector:

hc f ,si
=

h(T)c f ,si

∥h(T)c f ,si
∥2

. (8)

With the nodes’ embedding in CF, we compute the Individual loss of CF as follows:

Lc f = − ∑
(si ,yi,j ,sj)∈Gc f

(yi,jlog( ˆyi,j) + (1 − yi,j)(1 − log( ˆyi,j)))), (9)

where ˆyi,j = Sigmoid(hT
c f ,si

hc f ,sj
) is the predicted score of node si and node sj, yi,j is namely the edges

in CF and the value is the same as yu,v.

4.2. Interactive Graph Constructing and Encoding

KGDC also leverages the concept of contrastive learning to learn the interactive information from
the two graphs. To ensure the dominant position of the CF graph, KGDC takes the signals in CF
to guide the learning of entities in the KG. To further enhance the information fusion between the
two graphs, KGDC uses the entities corresponding to the items in both graphs as similar samples for
alignment.

4.2.1. Graph Encoding in KG with signals of CF

In this section, KGDC extracts the signals of user/item from the user-item interactions in graph CF.
And the signals are first-order relationships in CF. For any user u in CF, all of the items that interacted
with u are collected. Therefore, the signals from graph CF are denoted as:

Vc f (u) = {v | (u, v) ∈ Gc f , and v ∈ {v | yuv = 1}}. (10)

With the signals above, the initial entities learned in the KG are those that correspond to the items
in the node set Vc f (u), which are denoted as:

V+
kg,0(u) = {e | (u, e) ∈ Gc f }. (11)

In the collaborative filtering recommendation, each user has interests and preferences, and there
are commonalities in preferences among different users, which means that the items that interact with
the same user tend to be more similar. Therefore, for any sample in CF (ui, vj) and yui ,vj = 1, the
items in Vkg,0(ui) are more similar with vj than others. Furthermore, KGDC takes the items randomly
selected from non-connected items across the entire dataset as negatives, denoted as V−

kg,0(vj). Taking
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the positive samples Vkg,0(ui) and negative samples V−
kg,0(vj) as the initial entity sets of KG, KGDC

constructs the embedding through a natural propagation in the KG. The propagation is the same as
in Section 4.1.2 and aggregation is similar to Section 4.1.1, which randomly selects a fixed number
of connected (relation, tail) as neighbors and aggregates the information using attentive method as
in Equation (1). Supposing at the l−th layer, the embedding of any entity e (including the positive
samples and negative samples) defined above is as follows:

h(l+1)
kg,e = CONCAT

hl
kg,eAGGREGATEl

 ∑
j∈(re ,te)

αijh
(l)
kg,j

, (12)

where hkg,∗ is the embedding in KG.
Similarly, after L iterations, we can get the entity presentation, denoted as hkg,e. Then we utilize

the triplet function which is usually used in contrastive learning to compute the loss. The distance
score between two entities is caculated through the inner product. Therefore, the loss function is as
follows:

Lkic = ∑
(u,v)∈Gc f

∑
ei∈V+

kg,0(u)
∑

ej∈V−
kg,0(v)

Max(hT
kg,vhkg,ej

− hT
kg,vhkg,ei

+ m, 0.0) (13)

where m is the margin.

4.2.2. Align Encoding with CF and KG

To further enhance the interaction between the two graphs, we propose to map the item in CF
and the corresponding entity in KG into the same space. For better understanding, we use hc f (v) to
represent the item embedding in CF, and use hkg(e) to represent the entity embedding in KG, where
eandv are the same item. Based on the contrastive learning method, we take the corresponding items
in CF and KG are similar pairs, and we randomly select other items in KG as the negative samples.
Therefore, for any item v in CF, the positive sample is the corresponding item e in KG, and the negative
sample is the randomly selected item j from batch-wise. With the batch-wise negative sampling
strategy, we do not need to sample globally, addressing computational power constraints and reducing
time consumption.

Before the alignment between the two graphs, KGDC utilizes two MLPs to map them into the same
space (zc f (v), zkg(e)) to achieve the information shared across interaction and knowledge views. Thus,
the positive pair is denoted as {zc f (v), zkg(e)}, and the negative pairs are denoted as {zc f (v), zkg(j)}
and {zc f (j), zkg(e)}. With these samples, we adopt the InfoNCE function to calculate the loss, which is
commonly used in contrastive learning. InfoNCE loss aims to encourage the consistency between the
representations of its different views, while enforcing the divergence of negative pairs. The calculation
formula is as follows:

Lali(v) = − log
exp(cos(zc f (v), zkg(e))

∑j∈V∪{v} exp(cos(zc f (v), zkg(j)) + exp(cos(zc f (j), zkg(e)))
(14)

where cos(·) measures the cosine similarity of two vectors, and V (namely the items in CF) is the set of
negative samples.

4.3. Multi-Task Learning

Considering that some of the losses obtained above are not directly related to the target, we take
a portion of the representations to reconstruct the user and item embedding to ensure the update
direct is more directly to the target. For any data (u, v) in the interaction dataset, the representations
of individual CF in Section 4.1.2 are hc f ,u and hc f ,v, and the representations of interactive learning in
Section 4.2.1 are {hkg,e}|e∈V+

kg,0(u)
and hkg,v. Specifically, for the set of embedding {hkg,e | e ∈ V+

kg,0(u)},

we utilize the mean pooling method to aggregate them to obtain the user’s presentation, denoted as
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h̄kg,V+
kg,0(u)

. By concatenating these vectors, we can get the final presentations of the users and items,

which are also the model’s predictions. The formulations of reconstruction and the matching score are
as follows:

hu = CONCAT(hc f ,u, h̄kg,V+
kg,0(u)

), (15)

hv = CONCAT(hc f ,v, hkg,v), (16)

ŷ(u, v) = σ(hT
u hv). (17)

where σ(·) is the Sigmoid function. With the predicted scores ŷ(u, v) and the real labels y(u, v), we
utilize the cross-entropy function to compute the loss as Equation (9), denoted as Ltarget.

To combine the individual learning as well as the interactive learning proposed above with the
recommendation task, we proposed a multi-task learning framework to jointly train the multiple losses
as in Algorithm 1. In the proposed framework, the individual learning of KG is conducted in the
pre-train process, which enables all of the entities and relations in KG can be fully trained compared
with learning it in the training process. Besides, the equation of Ltotal consists of four parts, where
Ltarget and Lc f are directly related to the final objective and the other two are indirectly related. This
ensures that the user-item interaction signal maintains a dominant position.

Algorithm 1 KGDC Algorithm

1: Input: user-item interaction graph Gc f ; knowledge graph Gkg; trainable parame-
ters: {hc f ,u, hc f ,v}u∈U,v∈V , {e}e∈E, {r}r∈R, {Wi, bi}L

i=1; hyper-parameters and functions:
L, dim, σ(·), CONCAT(·), AGGREGATE(·)

2: Output: Prediction vectors

3: for h = 1, . . . , epoch(pre-train) do
4: for e ∈ E do
5: Construct samples and presentations as in Section 4.1.1
6: Calculate loss Lkg
7: Update parameters by gradient descent
8: end for
9: end for

10: for h = 1, . . . , epoch(train) do
11: for (u, v) in Gc f do
12: Construct samples and presentations as in Sections 4.1.2, 4.2.1, 4.2.2
13: Calculate loss Lc f , Lkic, Lali
14: Reconstruct hu, hv
15: Calculate target loss Ltarget
16: Ltotal = Ltarget + αLc f + βLkg_ + γLCL
17: Update parameters by gradient descent
18: end for
19: end for
20: return hu, hv

5. Experiments

In this section, we conduct extensive experiments on two real-world datasets to evaluate the
proposed KGDC. Next, we will sequentially provide detailed introductions to the experimental
datasets, comparison baselines, experiment settings, and experimental results.
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5.1. Datasets

We evaluate the proposed KGDC through experiments across two distinct scenarios: books and
music. These datasets are publicly available and vary significantly in size and sparsity, and they are
often used in the field of knowledge graph-based recommendation. Below are the details of each
dataset:

• Amazon-book.1: This dataset includes user ratings and extensive metadata for books, such as
descriptions, category information, price, and brand, sourced from Amazon.

• LFM.FM2: Collected from the Last.FM online platform, this music dataset consists of user-
generated music listening events.

The basic statistics of the two datasets are presented in Table 1.

Table 1. Basic statistics of the two datasets.

Book-Crossing Last.FM

User-item Interaction
# users 17,860 1,872
# items 14,967 3,846
# interactions 139,746 42,346

Knowledge Graph
# entities 77,903 9,366
# relations 25 60
# triplets 151,500 15,518

We adopt the method in [11] to convert explicit feedback across three datasets into implicit
feedback, where a label of 1 denotes positive samples. In the Book-Crossing dataset, the ratings greater
than or equal to 4 are labeled as 1, while the threshold is 0 in the Last.FM dataset. For every dataset,
the ratio of training, evaluation, and test set is 6 : 2 : 2. Each experiment is repeated 3 times, and the
average performance is reported. For constructing sub-KGs, we utilize Microsoft Satori4, which are
similar to RippleNet [11] and KGCN [12]. Each sub-KG adheres to the triple format and constitutes a
subset of the entire KG with confidence levels exceeding 0.9. From the sub-KG, we extract Satori IDs of
all valid movies, books, or musicians by matching their names with the tail of triples. Subsequently,
we match item IDs with the head of all triples and select well-matched triples from the sub-KG.

5.2. Baselines

To demonstrate the effectiveness of the proposed KGDC, we compare it with the recent state-of-
the-art methods, including BPRMF, CKE, KGCN, KGNN-LS, KGAT, CKAN, KGIN, and KGIC. The
description of these methods are as follows:

• BPRMF [34]: It aims to rank user-item interactions in a way that places higher preference scores
on items that users have interacted with, which is a traditional CF-based method;

• CKE [17]: It leverages structured information from knowledge graphs to enhance the quality of
recommendations by embedding both user-item interactions and the rich semantic relationships
present in the knowledge graph;

• KGCN [12]: It captures both the structural and semantic information from the knowledge graph,
enabling it to learn more comprehensive and rich representations of items;

• KGNN-LS [14]: It integrates knowledge graph information with neural networks, incorporating
the technique of label smoothing to improve model performance;

• KGAT [13]: It integrates knowledge graph information using attention mechanisms;

1 http://www2.informatik.uni-freiburg.de/ cziegler/BX/
2 https://grouplens.org/datasets/hetrec-2011/
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• CKAN [15]: It employs attention mechanisms to dynamically focus on the most relevant entities
and relationships within the knowledge graph, enhancing the collaborative filtering process;

• KGIN [24]: It applies GNN to the user-intent-item-entity graph, allowing for a more granular
and nuanced understanding of these interactions;

• KGIC [26]: It enhances traditional collaborative filtering by leveraging rich semantic relationships
from knowledge graphs with the contrastive learning method;

• CG-KGR [25]: It employs a collaborative guidance mechanism, which encodes historical inter-
actions as guidance for personalized knowledge extraction, making it particularly effective for
tasks like Top-K recommendation.

5.3. Experiment Settings

The settings of hyper-parameters for baselines and the proposed KGDC are as follows. To ensure
the fairness of the experimental results, some parameters are set to fixed values. The dimensions of
nodes in CF and nodes(and relations) in KG are set as 64, and the batch size is set as 1024. Model
parameters are initialized using Xavier, and optimization is performed using Adam.

For some parameters, we search for the optimal values within a certain range. We explore
learning rates in the range {0.0001, 0.0005, 0.001, 0.0015}, and vary the number of neighbors between
2 to 50. And the depth exploration of GNNs ranges from 1 to 4. Baselines retain their default hyper-
parameter settings except for the aforementioned parameters. To mitigate over-fitting, we ensure
training convergence by limiting the number of steps to 50.

To evaluate the effectiveness of our proposed KGDC in the knowledge graph-based recommenda-
tions, we employ four widely used metrics: AUC, F1, Recall@K and NDCG@K, where the K values
of Recall@K and NDCG@K are set to [10, 20, 50]. AUC and F1 are two widely used metrics in click-
through rate (CTR) prediction, while Recall@K and NDCG@K are two methods usually used in the
Top-k recommendation.

5.4. Results

In this section, we present a comprehensive performance analysis between the CG-KGR model
and all representative baselines in the tasks of CTR prediction and Top-K recommendation.

5.4.1. Results of CTR Prediction

We present the experimental results of CTR prediction task across all datasets in the Table 2.
From these results, we draw the following observations and analyses. Our proposed method KGDC
demonstrates significant improvements in performance for the CTR prediction task, particularly on
the Book-Crossing dataset. KGDC enhances the baselines on the Book-Crossing datasets with AUC
and F1 improvements of 2.45% and 1.15% respectively. While on the Last.FM dataset, KGDC only
improves AUC by 0.7% and F1 by 0.23%.

This is likely due to the relatively limited impact of knowledge supplementation on the Music
dataset. We use the ratio of the number of KG triplets to the number of items to measure the average
knowledge contribution to enrich item embeddings. A higher ratio typically indicates richer semantics
in the KG, enhancing item backgrounds. For the Music dataset, this ratio is 4.03, while the ratio of the
Book dataset is 10.12. Thus KGDC can perform significantly better on the Book dataset by effectively
utilizing the rich semantics in these KGs for accurate predictions.
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Table 2. Average results of AUC and F1 in CTR prediction task. The best results are in boldface and the
second best results are underlined.

Model Book-Crossing Last.FM
AUC F1 AUC F1

BPRMF 0.6583 0.6117 0.7563 0.7010
CKE 0.6759 0.6235 0.7471 0.6740

KGCN 0.6841 0.6313 0.8027 0.7086
KGNN-LS 0.6762 0.6314 0.8052 0.7224

KGAT 0.7314 0.6544 0.8293 0.7424
CKAN 0.7420 0.6671 0.8418 0.7592
KGIN 0.7273 0.6614 0.8486 0.7602
KGIC 0.7473 0.6690 0.8592 0.7753

CG-KGR 0.7472 0.6794 0.8368 0.7424

KGDC 0.7656 0.6872 0.8652 0.7771
%Improv 2.45% 1.15% 0.7% 0.23%

5.4.2. Results of the Top-K Recommendation

Similarly, we conduct experiments of Top-K recommendations across all datasets, and vary K in {
5, 10, 20, 50, 100}. For a better comparison between KGDC and these baselines, we firstly show the
average results of the Top20 in Table 3. And then we take use of four figures (Figures 2–5) to further
illustrate the complete results for the Recall@K and NDCG@K metrics. From these results, we have the
following observations:

1. The proposed method shows more significant improvement in the Top-K recommendation task.
As shown in Table 3, KGDC improves Recall@20 and NDCG@20 by 8.418% and 6.762% compared
to the state-of-the-art method on the Book-Crossing dataset. On the Last.FM dataset, it improves
Recall@20 and NDCG@20 by 5.856% and 6.525%, separately. Compared with the CTR task,
the improvements in the Top-K task are significantly larger. We believe that the significant
improvements are attributed to the extensive integration of contrastive learning techniques and
pair-wise loss formulations in the algorithm.

2. The introduction of contrastive learning and pair-wise loss have significantly improved the effec-
tiveness of Top-K recommendation. Compared to traditional methods, introducing contrastive
learning and pair-wise loss can achieve better results. It also demonstrates that contrastive
learning can help the model to fully and effectively mine information when the supervision
signals are insufficient. Meanwhile, the pair-wise loss function enhances the model’s learning of
local ranking, which is particularly beneficial for Top-K recommendation scenarios.

3. BPRMF performs better than CKE: As a traditional CF-based method, BPRMF performs better
than the knowledge graph-based CKE on both Book-Crossing and Last.FM datasets. It also
demonstrates that simply integrating KGs into recommendation systems does not always guar-
antee improved performance. Both CF and KG graphs contain rich information, while not all
information within KGs may contribute effectively to recommendations. Therefore, optimizing
recommendation effectiveness requires making comprehensive and coherent use of CF and KG.
This also indicates that the proposed KGDC can fully leverage the individual information and
the interactive information.

4. As the value of K ranges, KGDC shows consistently better performance compared to baselines.
As illustrated in Figures 2–5, KGDC consistently outperforms best across different values of K in
the evaluations of Recall@K, and it demonstrates competitive performance in the evaluation of
NDCG@K. By explicitly propagating interaction information between users, items and entities,
KGDC effectively learns latent representations of user preferences and item attraction patterns
from CF and KG graphs. Besides, instead of directly integrating the individual graph information,
KGDC also employs a collaborative guidance mechanism and an alignment mechanism to
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enhance the interaction between CF and KG. Moreover, KGDC adopts a multi-task framework
to ensure the dominance of the supervision signals in CF. These results prove that KGDC has a
significant advantage in Top-K recommendation.

5. KGDC performs better on the datasets that KG owns richer semantics to boost items’ back-
grounds. Similar to CTR-based recommendations, KGDC shows greater improvement on the
Book-Crossing dataset compared to the Last.FM dataset. This further demonstrates that the
proposed method can extract more valuable information from semantically rich knowledge
graphs while maintaining the dominant role of CF information and preventing interference from
irrelevant redundancies of KG.

Table 3. Average results of Recall@20 and NDCG@20 in Top-K recommendation task. The best results
are in boldface and the second best results are underlined.

Model Book-Crossing Last.FM
Recall NDCG Recall NDCG

BPRMF 0.0467 0.0280 0.1684 0.0875
CKE 0.0438 0.0217 0.1151 0.0496

KGCN 0.0785 0.0593 0.1825 0.0973
KGNN-LS 0.0851 0.0606 0.1773 0.0911

KGAT 0.0534 0.0301 0.1822 0.0931
CKAN 0.0619 0.0347 0.2078 0.1194
KGIN 0.0659 0.354 0.2257 0.1347
KGIC 0.0666 0.0397 0.2179 0.1405

CG-KGR 0.1081 0.0769 0.2442 0.1410

KGDC 0.1172 0.0821 0.2585 0.1502
%Improv 8.418% 6.762% 5.856% 6.525%

5 10 20 50 100
K

0.05

0.10

0.15

0.20

0.25

Re
ca
ll@

K

BPRMF
CKE
KGCN
KGNN-LS
KGAT
CKAN
KGIN
KGIC
CG-KGR
KGDC

Figure 2. Average results of Recall@K of the Book-Crossing dataset.
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Figure 3. Average results of Recall@K of the Last.FM dataset.
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Figure 4. Average results of NDCG@K of the Book-Crossing dataset.
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Figure 5. Average results of NDCG@K of the Last.FM dataset.
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6. Conclusions

In this paper, we propose a new method KGDC to tackle the aforementioned challenges. KGDC
leverages GNNs-based information propagation and aggregation techniques to effectively utilize
the individual information from CF and KG, and also enhance the interaction of the two graphs by
leveraging contrastive learning and multi-task learning. The extensive experiments show that KGDC
significantly improves the recommendation performance over state-of-the-art methods on both tasks
of CTR recommendation and Top-K prediction.

In this paper, we do not distinguish the different ratings that users give to items. For future
work, we will explore the effective information related to different ratings to further improve the
recommendation performance.
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