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Abstract: Chitosan is a biodegradable polymer derived from chitin, that is a versatile material for
various Dbiological applications for its attractive properties such as biocompatibility,
biodegradability, and non-toxicity. Furthermore, chitosan possesses Second Harmonic Generation
properties, that are useful for bio-sensing applications. In this work we explored the possibility to
exploit chitosan-based nanospheres as SHG-based bio-sensors, and also as carriers of #Sr
radionuclide, an Active Pharmaceutical Ingredient for radiopharmaceutical treatments in cancer
therapy. To load opportunely the Sr ion on the nanospheres, we used a fructose-based Metal
Organic Framework, of formula [Sr(CsH1206)2(H20):2]Cl>-H20, because the sugar was able to drive
the Sr ions on the chitosan matrix. The Sr-loaded chitosan nanospheres were synthetized,
characterized, and their SHG response was measured. The results encouraged us to propose the
nanospheres for theranostic purposes, i.e., at the same time valuable for both therapy and diagnostic
applications.

Keywords: metal organic frameworks; chitosan nanospheres; theranostics; radiopharmaceutical;
second harmonic generation properties

1. Introduction

Chitosan is a biodegradable polymer derived from chitin, found in the shells of marine
crustaceans. It consists of (3 (1-4)-linked 2-amino-2-deoxy-D-glucose (D-glucosamine) and 2-
acetamido-2-deoxy-D-glucosamine (N-acetyl-D-glucosamine) units, sharing structural similarities
with cellulose [1,2]. Being the second most diffuse polysaccharide on the Earth, it can be considered
a very cheap material with attractive properties such as biocompatibility, biodegradability, non-
toxicity, adhesion, and sorption, making it versatile for various biological applications [3-5].
Extensive in vitro studies evidenced positive cellular responses to chitosan in several tissues,
including smooth muscle cells, macrophages, osteoblasts, chondrocytes, erythrocytes, and whole
blood [6,7].

The application of chitosan as a carrier of Active Pharmaceutical Ingredient (API) has also been
widely explored both in vitro and in vivo [2,8-10], especially in the form of nanospheres (NPs) that
were proposed as novel non-toxic and efficient drug delivery systems [11-13]. Another noteworthy
property of chitosan is related to its Non-Linear Optical (NLO) properties, particularly Second
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Harmonic Generation (SHG) properties [14], that in principle allows the exploitation of this material
also for bio-imaging. Optical imaging techniques based on SHG properties are particularly
advantageous for bio-sensing, since the SHG-based nanoprobes do not undergo bleaching or
blinking, as observed for fluorescence probes, and the second-harmonic signal does not saturate with
increasing illumination intensity [15,16].

In particular, we are interested in developing new biologically compatible radioisotope carriers.
Radionuclide delivery bio-systems are the new frontiers of cancer therapy [17-19], because they allow
the development of systemic personal therapies that can noticeably reduce the devastating side
effects of conventional therapies. These carriers should be appropriately engineered, in order to drive
the radioisotopes quickly toward the targeted tumoral tissue, reducing as much as possible their
permanence in the health tissues.

In this work, we propose the use of chitosan NPs, loaded with #Sr radionuclide, for
radiopharmaceutical treatments in cancer therapy. The #Sr radionuclide is a readily available and
affordable beta-emitter. It is already extensively employed in radiotherapy for treating metastases
and pain in bone cancer because of its low chemical toxicity and low half-life (50.57 d), which reduces
post-treatment risks [20-23]. The possibility of carrying the 8°Sr radioisotope through biocompatible
nanoparticles, that can be concentrated to specific target tumor cells and also in tissue different from
bones, can open new opportunities in the systemic cancer treatments with this radioisotope. For this
purpose, chitosan is a promising carrier, since suitably functionalized chitosan can selectively
permeate through tumor cells, increasing its concentration in targeted tumor tissue and avoiding
damage in healthy tissue [24-27]. Furthermore, since chitosan possesses the SHG property [28], the
NPs loaded with #Sr can be considered excellent candidates for applications in theranostics, i.e.,
contemporary therapeutic and diagnostic purposes.

Thus, the aim of this work is to synthetize chitosan-based NPs with SHG properties loaded with
Sr, that can also be enriched with #Sr radionuclide. To promote the encapsulation of the metallic ions
on the chitosan NPs, we used a D-fructose-based Metal Organic Framework (MOF) of formula
[Sr(CsH1206)2(H20)2] Cl-H20 (SrFRUCI) [29], since Sr ions surrounded by sugar could approach more
easily the chitosan matrix. We characterized the chitosan-based NPs loaded with Sr (Sr-NPs) by X-
ray Powder Diffraction (XRPD), Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron
Microscopy (SEM) and energy dispersive X-Ray spectroscopy (EDS). Furthermore, in order to
understand the mechanism of interaction between the chitosan and the Sr and Cl ions, theoretical
calculations were performed using Born-Oppenheimer molecular dynamics (BOMD) at the density
functional theory (DFT) level [30,31]. Finally, we tested the SHG properties of the NPs, before and
after the Sr loading, using the SHG microscopy technique.

2. Results and Discussion
2.1. Synthesis of Chitosan-Based NPs Loaded with Sr (Sr-NPs)

The first step to synthesize the chitosan-based NPs suitable for our purposes was the formation of
a hydrogel by mixing two polymeric aqueous solutions of chitosan (CS) and poly(vinyl alcohol)
(PVA) at a 3:1 volume ratio, according to the procedure reported in the literature [32-34]. This
CS:PVA volume ratio promotes the miscibility and formation of a polymeric network with strong
intermolecular interactions, yielding CS/PVA hybrid hydrogels with the best chemical and physical
properties in terms of porosity and swelling capability for their loading with an API [35].

The second step involved forming the polymeric hybrid nanospheres by slowly adding the
CS/PVA hydrogel solution to an emulsion of polyisobutylene and sorbitan monooleate emulsion,
using the oil-in-water emulsion method [36]. The chitosan-based NPs were formed and suspended in
the emulsion after the addition of the cross-linker GA. The mixture was then centrifuged, and the
chitosan-based NPs were collected from the bottom of the test tube. Subsequently, they were washed
first with hexane and then with deionized water to remove any residual oil and surfactant. After
washing with water, the NPs were kept wet to prevent cluster formation.

In order to promote the encapsulation of the metallic ions on the chitosan NPs, we used the
SrFRUCI MOF, since each metal in the structure was strictly bonded with four fructose molecules
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(see Figure S1 in Supplementary Material), which could facilitate the approach to the chitosan matrix.
Thus, an equal amount of wet NPs and finely ground SrFRUCI powder were suspended in ethanol
and sonicated for 10 min, and the MOF and the chitosan-based NPs remained in contact for 48 h. The
resulting sample appeared highly homogeneous and was further washed with deionized water to
remove the excess of STFRUCI MOF, resulting in Sr-NPs.

2.2. Characterization of Chitosan-Based NPs Loaded with Sr (Sr-NPs)
2.2.1. FTIR Spectroscopy

FTIR spectroscopy was conducted on both the pure components of the chitosan-based NPs (i.e.,
CS, PVA, and GA) and their corresponding blends (i.e., CS/PVA and CS/PVA/GA), in the form of
films or nanospheres. The FTIR spectra obtained are presented in Figure 1.

For CS (Figure 1a), typical absorption bands were observed at 3348 and 3268 cm™ (NH2 and O-
H stretching vibration modes), 2925-2860 cm™ (axial stretching of C-H bonds), and at 1645, 1549, 1375
and 1310 cm™. These correspond to amide I (stretching of the C=O group), amine/amide II (NH:
deformation and mixed vibration of N-H bending and C-N stretching in secondary amides), CH-CH:
and CH-OH bending modes, respectively. The position of the amide II band at 1548-1560 cm™!
indicates the protonation of primary amino groups (-NH2 - -NHs*) [37,38]. Additionally, bands
associated with C-O and C-N bond stretching modes were located at 1060-1030 cm™!, while bands at
1152 and 894 cm™ correspond to saccharide rings. The FTIR spectrum of pure PVA (Figure 1b)
exhibited characteristic bands, including hydroxyl groups at 3500-3000 cm™, stretching vibrational
modes for C-H bonds at 2935-2900 cm™', CH-CH: and O-H bending modes at 1411 and 1323 cm™,
respectively, stretching of C-O bonds at 1085 cm™ and out-of-plane O-H deformation bonds at 833
cmL

As observed in Figure 1c, the FTIR spectrum of the CS/PVA hydrogel exhibits characteristic
bands corresponding to its individual components. Compared to the PVA spectrum, CS/PVA shows
a slightly wider band at 3500-3000 cm™, indicating an increase in OH bonds due to interactions
between NH: and/or OH groups in CS with the OH groups in PVA polymeric chains. Additionally,
the band associated with amide II of CS shifts to 1559 cm™, resulting from ionizing of the free primary
amino groups in the acid medium (-NHs*).

The FTIR spectrum of the chitosan-based NPs (CS/PVA/GA, Figure 1d) exhibited differences
compared to that of CS/PVA hydrogels. An increase in the intensity of the NHz/O-H band was
detected at 3500-3000 cm™, attributed to the moisture present in the wet sample. The small shoulder
observed at 1708 cm™ corresponds to the deformation of C=O bonds in the terminal groups of GA.
The cross-linking reaction between CS and GA was evidenced by the strong band a 1630 cm™ (C=N,
imine bonds in Schiff bases), which overlaps with the amide I band. Furthermore, a decrease in
intensity of the amine/amide II band intensity at 1559 cm™! was observed, indicating the formation of
the Schiff bases at the expense of -NHz groups. Additionally, the definition of bands at 1060-1030 cm™!
related to C-O bonds suggests the formation of acetal groups (O-C-O), indicating cross-linking of
PVA chains by GA [39,40]. These results suggest that GA induced extensive cross-linking, resulting
in a chemically and mechanically stable NPs over time and in diverse chemical environments.

New bands at 1108, 1000 and 970 cm™ correspond to unreacted GA (Figure 1d, dashed lines
marked with an asterisk). Note that these bands align with absorption bands in the fingerprint region
of the GA spectrum (Figure 1le). Therefore, their presence indicates that additional washes are
necessary to completely remove the unreacted cross-linking reagent from the chitosan-based NPs
completely. Similar results have been reported by Ceylan et al. when the concentration of GA in the
CS/PV A blend exceeds 5% w/w [41].
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Figure 1. FTIR spectra of a) CS-film, b) PVA film, c¢) CS/PVA film, d) Chitosan-based NPs, and e) GA
solution. The dotted lines indicate the assignment of the bands to the relevant functional groups.

Figure 2 shows the FTIR spectrum of the chitosan-based NPs loaded with Sr (Sr-NPs, Figure 2a),
alongside that of the pure chitosan-based NPs (CS/PVA/GA, Figure 2b) previously discussed. As can
be observed, after loading the chitosan-based NPs with Sr (Sr-NPs), their FTIR spectrum (Figure 2a)
exhibited noticeable changes compared to the chitosan-based NPs spectrum (Figure 2b), particularly
in the region between 1750 and 750 cm™. In this region, the band intensity was significantly reduced
at 1710 cm™, corresponding to the C=O bond of the GA dialdehyde terminal groups. Additionally,
the bands associated with GA (1108, 1000, and 997 cm™) observed in the chitosan-based NPs were
absent in the Sr-NPs spectrum, which instead showed only the characteristic absorption band for C-
O/C-N bonds (1060-1030 cm™) of CS/PVA hydrogels. These findings indicate that the remnants of
unreacted GA were removed entirely from the Sr-NPs during washing.

The appearance of a weak band at 856-812 cm™ in the Sr-NPs spectrum (Figure 2a) could be
attributable to the presence of Sr. According to several studies, bending vibrations of Sr-O bonds
typically occur at this wavenumber [42—44]. The change in intensity and a slight shift to lower
frequencies of the amide II band (from 1564 to 1552 cm™') might be associated with the binding of CI
ions, which could interact with the protonated amines in chitosan through electrostatic attractions.
Finally, the band between 3500-3000 cm™! corresponds to the overlapping stretching vibrations of N-
H and O-H bonds, showing a decrease in intensity compared to that of chitosan-based NPs, which is
attributed to lower moisture content in the Sr-NPs sample.
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Figure 2. FTIR spectra of a) Sr-NPs and b) chitosan-based NPs. The dotted lines indicate the
assignment of the bands to the relevant functional groups.

2.2.2. XRPD Characterization

The XRPD patterns of polymers are typically characterized by wide bands due to a prominent
low crystallinity of the material, and furthermore they can show preferred orientation. For this
reason, to obtain definitely reproducible results, we collected the XRPD pattern with a diffractometer
equipped with a 2D detector, that permits to collect the whole diffraction circles. Then, the final XRPD
pattern was calculated by averaging the intensities of the points of each circle drawn around the zero
value of 20. In this way, for each 20 value any eventual lower intensity points were compensated by
the higher intensity ones, and the XRPD patterns results much more reproducible.

In Figure 3 are reported the XRPD patterns of the chitosan-based NPs (blue), chitosan-based NPs
filtered from the SrFRUCI solution (red), and the washed Sr-NPs (black). The chitosan-based NPs
obtained from the procedure proposed in this work show a pattern typical of a polymer with low
crystallinity: the pattern is characterized by two wide bands at 20 values of ca. 15.5° and 19.7°. The
chitosan-based NPs filtered from the SrFRUCI solution, instead, show the typical pattern of the
crystalline material STFRUCI (green), even if the relative intensities were not completely respected,
since the sample was not ground for stability reasons. After washing with water, the XRPD pattern
of Sr-NPs completely lost the crystalline SfFRUCI peaks, and the pattern of the low crystalline
polymer resurfaces again, slightly modified: the broad band at 26 ca. 15.5° almost disappeared, while
the band at 20 ca. 19.7° is maintained. Thus, the STFRUCI MOF was not incorporated as crystalline
fragments inside the chitosan-based NPs and, consequently, where dissolved by the washing with
water, but the Sr-NPs XRPD pattern is different from the one of the pure chitosan-based NPs: clearly,
the polymer structure is slightly altered by the treatment with the solution of the MOF. This agrees
with the possibility of embedding of Sr and/or Cl ions inside the NPs.
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Figure 3. Measured XRPD patterns of pure chitosan-based NPs (blue), chitosan-based NPs filtered
from the SrTFRUCI solution (red), Sr-NPs (black), and of the STFRUCI MOF calculated from the XRD
structure (green).

2.2.3. SEM Characterization

Figure 4 reports the SEM characterization of the Sr-NPs. The nanoparticles show a spherical
morphology in the nanoscale dimension (Figure 4a), with an average size of 0.39 microns and a
standard deviation of 0.19 microns. The Map Sum Spectrum in Figure 4d reports the chemical
composition of the NPs: besides the C, O, and N atoms expected from the polymer, there is also
present a low quantity of Cl and Sr. Figure 4b and 4c depict, respectively, images of the distribution
of Sr (purple) and Cl (blue) demonstrating a homogeneous distribution of these two ions in the
sample.

To determine the role of the MOF in the Sr loading on the NPs, we prepared chitosan-based NPs
also loaded with SrClz, or a mixture of SrCl2 and fructose, instead of the STFRUCI MOF powder, using
the same procedure used for the MOF. Table 1 reports the relative abundances, averaged with respect
to different points of the sample, of the Sr and Cl ions resulting from Energy Dispersive Spectroscopy
(EDS) analysis for the Sr-NPs, chitosan-based NPs loaded with SrCl: alone, and those loaded with
SrClz and fructose.

Table 1. Energy Dispersive Spectroscopy (EDS) analysis for the Sr-NPs, the chitosan-based NPs
loaded with SrCl> alone, and chitosan-based NPs loaded with SrClz and fructose. The relative
abundances are averaged with respect to different points of the sample.

Sr-NPs
Element Weight% Standard deviation
Cl 2.9 0.1
Sr 0.6 0.1

Chitosan-based NPs + SrCl2
Cl 1.9 0.1
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Figure 4. FESEM and EDS characterization of Sr-NPs: a) SEM electron image of Sr-NPs, b)-c)
distribution of Sr and Cl ions, and d) mappng the sum spectrum of Sr-NPs.

From the results in Table 1, it is clear that chlorides were loaded on the NPs in similar amounts
in all the sample, while Sr was loaded only in the presence of the SfTFRUCI MOF, confirming the role
of the MOF in the encapsulation of the Sr cation. Notably, a significant amount of chlorides was
loaded on the chitosan NPs loaded with SrClz. Thus, the chitosan NPs should possess high positive
charges that are balanced by the negative Cl anions. This suggests that the chitosan NPs would refuse
the Sr?*ions, and only the presence of the negative Cl ions induced the encapsulation of the Sr cations.

2.3. Geometry Optimization and Born-Oppenheimer Molecular Dynamics (BOMD)

To elucidate the interaction between the chitosan-based NPs and the Sr?* and Cl- ions, we
performed ab initio calculations, starting from the simulation of a fragment of chitosan, linking two
units of chitin, the constituent monomer of the chitosan, whose XRD structure was downloaded from
the crystallographic CSD databank (CCDC 1425611, the image of the unit and some crystallographic
data are reported in Figure S2 and Table S1 in Supplementary Materials). In a previous study on the
CS/PVA/GA hydrogel [45], it was suggested that interactions through hydrogen bonding between
chitosan and PVA and/or its chemical cross-linking with GA, induce modifications to the amine
groups. Therefore, to simulate a fragment of chitosan NPs, we assembled two chitin units, and one
amide group was modified to NHz (FRAG 1, Figure 5).

In Table 2, the bond lengths of the FRAGI, calculated at the B3LYP/6-31G-d level of theory, are
compared to the corresponding X-ray structural data of chitin downloaded from CSD.
Computational optimized coordinates (A) for FRAGI are reported in Table 3S. The low differences
(the largest is 0.09 A) between the XRD and optimized B3LYP parameters, suggest that the chosen
model adequately simulates the chitin unit.
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Figure 5. View of the FRAGI. the fragment composed of two connected chitin units that simulate a
fragment of chitosan. One amide group of a chitin unit was modified to NHz. This fragment (FRAG1)
was the starting structure for the theoretical calculations. Red=oxygen, blue=nitrogen, grey=carbon,
white=hydrogen.

Table 2. Bond lengths (A) of the chitin unit from the X-ray data (XRD) and the fragment of chitosan
simulated at B3LYP/6-31G(d) level of calculations (FRAGLI).

XRD FRAG1 XRD FRAG1
C1-C2 1.46(4) 1.55 C4-0O11 1.45(4) 143
C1-01 1.47(3) 141 C5-C6 1.48(5) 1.52
C1-05 1.32(4) 1.40 C5-05 1.47(3) 1.42
C2-C3 1.51(2) 1.54 C6-06 1.42(5) 141
C2-N1 1.43(4) 145 C7-C8 1.49(2) 1.52
C3-C4 1.50(2) 1.53 C7-N1 1.38(4) 1.38
C3-03 1.40(3) 1.42 C7-07 1.31(4) 1.22
C4-C5 1.51(4) 1.54 01-C42 1.45(4) 141

1-X,-Y,-1/2+Z; 2-X,-Y,1/2+Z.

Starting from the optimized geometry of FRAGI, we performed Born-Oppenheimer molecular
dynamics (BOMD) calculations on fragments containing an Sr?* ion, two chlorides, and a fructose
unit (FRAG2, Figure 6a). To construct FRAG2, we were inspired by the original metal-organic
framework (MOF) structure, a crystalline material with fully known atomic positions. As shown in
Figure 6b, the oxygen atoms of the hydroxyl groups in the MOF coordinate the Sr?* ion. A similar
structure was considered for BOMD calculations.

This new fragment was optimized at the same level of theory used for FRAG1. Computational
optimized coordinates (A) for FRAG2 are reported in Table S4. In Table 3, the bond lengths of the
chitin units in FRAG2 are compared to the corresponding X-ray structural data of chitin from the
CSD. Again, the low differences (the largest being 0.08 A) between the XRD and optimized B3LYP
parameters suggest that the chosen model adequately simulates the chitin unit.
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Figure 6. Molecular fragments used in Born-Oppenheimer molecular dynamics (BOMD) calculations.
a) View of FRAG2, composed of FRAG1 with Sr?, two Cl- and a fructose molecule added. b) Fragment
of the structure of MOF SrFRUCI. Red=oxygen, blue=nitrogen, grey=carbon, white=hydrogen.

Table 3. Bond lengths (A) of the chitin unit from the X-ray data (XRD) and the fragment of chitosan
interacting with SrClz and Fructose (FRAG2) simulated at B3LYP/6-31G(d) level of calculations.

XRD FRAG2 XRD FRAG2
C1-C2 1.46(4) 1.54 C4-0O11 1.45(4) 1.42
C1-01 1.47(3) 143 C5-C6 1.48(5) 1.53
C1-05 1.32(4) 1.40 C5-05 1.47(3) 1.44
C2-C3 1.51(2) 1.53 C6-06 1.42(5) 141
C2-N1 1.43(4) 1.46 C7-C8 1.49(2) 1.52
C3-C4 1.50(2) 1.55 C7-N1 1.38(4) 1.35
C3-03 1.40(3) 1.42 C7-07 1.31(4) 1.25
C4-C5 1.51(4) 1.54 01-C42 1.45(4) 1.42

1-X,-Y,-1/2+Z; 2-X,-Y,1/2+Z.

Part of the interest in conducting BOMD was to assess the stability of the system presented. The
stability was evaluated based on changes in their coordinate configurations and energy levels. To
measure variations in coordinate configurations, we employed pairwise Root Mean Square Deviation
(RMSD), which considers all possible pairs of points between two structures, unlike standard RMSD.
This method provides a more robust description of positional changes in the compounds.

Figure 7 displays the pairwise RMSD graph for FRAG2. The vertical and horizontal axes
represent an ordered pair by comparing two frames. The color bar on the side indicates the RMSD
values, where yellow represents the highest value and purple is the lowest.

There are only 12 frames representing the total simulation time. This is because the configuration
represents a very unstable system, causing some atoms to separate so much during the simulation
that the dynamics could not continue due to convergence issues.
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Figure 7. The pairwise RMSD from the dynamics of the FRAG2. The vertical and horizontal axes
represent an ordered pair from the comparison between two frames. The color bar on the side
indicates the RMSD values, where yellow represents the highest value and purple the lowests.

Since FRAG2 is unstable, we modified the chitosan model, considering that the environment for
forming the CS/PVA/GA hydrogel is acid. Thus, we can hypothesize that the NHz group actually was
present as NHs*. Therefore, the chitosan fragment should have positive charges on the surface, which
should be responsible for the attraction of the chlorides in the chitosan structure. With these
considerations, we created a new model of chitosan (FRAGS3, Figure 8), in which one NH-: of a chitin
unit is protonated. Tables 4 shows the bond lengths of the chitin units of the FRAG3, optimized at
the B3LYP/6-31G-d level of theory, compared to the corresponding X-ray structural data. Also in this
case, we found low differences (the largest is 0.09 A), so we performed the BOMBD calculations on
this fragment (Figure 9).

Figure 8. View of FRAG 3 composed of FRAGI, in which the amide group of one chitin unit was
modified to NHs*, and a CI- was connected through strong hydrogen bonds to the NHs* group and a
near OH group. Red=oxygen, blue=nitrogen, grey=carbon, white=hydrogen.

Table 4. Relevant distances (A) of the chitin unit from the X-ray data (XRD) and the fragment of
chitosan with an NHs* group and a Cl- anion, simulated at B3LYP/6-31G(d) level of calculations
(FRAG3).

XRD FRAG4 XRD FRAG4
Cl1-C2 1.46(4) 1.55 C4-O1! 1.45(4) 1.42
C1-01 1.47(3) 1.41 C5-C6 1.48(5) 1.53
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C1-05 1.32(4) 1.40 C5-05 1.47(3) 1.44
C2-C3 1.51(2) 1.54 C6-06 1.42(5) 1.42
C2-N1 1.43(4) 145 C7-C8 1.49(2) 1.52
C3-C4 1.50(2) 1.53 C7-N1 1.38(4) 1.38
C3-03 1.40(3) 1.42 C7-07 1.31(4) 1.22
C4-C5 1.51(4) 1.54 01-C42 1.45(4) 143

1-X,-Y,-1/2+Z; 2-X,-Y,1/2+Z.

Figure 9 reports the Pairwise RMSD graph for the configuration FRAG4. There are 3000 frames
representing the total simulation time. On the contrary with respect to FRAG2, FRAG3 not only
completed the total simulation time, but also exhibited very low RMSD variations: the highest RMSD
recorded was 0.06, which is very low. These data indicate a very stable configuration.
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0.10
500
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0 0.00
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Figure 9. The pairwise RMSD from the dynamics of the FRAG3. The vertical and horizontal axes
represent an ordered pair by comparing two frames. The color bar on the side indicates the RMSD
values, where yellow represents the highest value and purple is the lowest.

The results of FRAG3 can explain the SEM results for the chitosan-based NPs treated with SrClz,
in which only chlorides were encapsulated on the polymeric matrix, and encouraged us to consider
a new fragment composed of FRAG3 with Sr?* and other two Cl- added (FRAG4) and connected as
shown in Figure 10. Again, we optimized at B3LYP/6-31G(d) level, and we compared with the chitin
structure (see Table 5), and finally we performed BOMD (Figure 11)

Figure 10. View of FRAG4 composed of FRAG3 with Sr*, two Cl- and a fructose molecule.
Red=oxygen, blue=nitrogen, grey=carbon, white=hydrogen.
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Table 5. Relevant distances (A) of the chitin unit from the X-ray data (XRD) and the fragment of
chitosan loaded with a Cl anion, simulated at B3LYP/6-31G(d) level of calculations (FRAG4).

XRD FRAG4 XRD FRAG4
C1-C2 1.46(4) 1.55 C4-O11 1.45(4) 1.42
C1-01 1.47(3) 141 C5-C6 1.48(5) 1.53
C1-05 1.32(4) 1.40 C5-05 1.47(3) 1.44
C2-C3 1.51(2) 1.54 C6-06 1.42(5) 1.42
C2-N1 1.43(4) 145 C7-C8 1.49(2) 1.52
C3-C4 1.502) 1.53 C7-N1 1.38(4) 1.38
C3-03 1.40(3) 1.42 C7-07 1.31(4) 1.22
C4-C5 1.51(4) 1.54 01-C42 1.45(4) 143

1-X,-Y,-1/2+Z; 2-X,-Y,1/2+Z.

Figure 11 displays the pairwise RMSD graphs for FRAG4. There are only 12 frames representing
the total simulation time. As for FRAG?2, the configuration represents a very unstable system, causing
some atoms to separate so much during the simulation that the dynamics could not continue due to
convergence issues.
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Figure 11. The pairwise RMSD from the dynamics of the FRAG4. The vertical and horizontal axes
represent an ordered pair by comparing two frames. The color bar on the side indicates the RMSD
values, where yellow represents the highest value and purple is the lowest.
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Figure 12. Graphs of energy versus time for the three simulations studied: a) FRAG2, b) FRAGS3, and
c) FRAG4. Each point in the graph represents an energy difference between the initial energy and that
at the marked time instant. The initial energy was arbitrarily set to zero. Time is measured in

picoseconds and energy in Hartrees.
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The graphs for the three systems are presented as follows in Figure 12. It can be seen that graph
b) shows the slightest variation, whereas graphs a) and c) exhibit diverging energy values.

In summary, the simulations indicate that the protonation of the NH: group to NHs* contributes
to the system’s stability and explains the experimentally observed encapsulation of chlorides.
However, the overall interaction with Sr?* remains unstable, requiring a more complex system.

2.4. SHG Measurements

The SHG properties of the chitosan-based NPs before and after the Sr loading were characterized
using the SHG microscopy technique. Three SHG images were collected in different positions for
each sample, and the average intensity generated from the samples was measured (Figure 13). All
the images show similar SHG intensities, with a slightly higher brightness of the Sr-loaded chitosan-
based NPs than the not-loaded ones (419 +25 counts after Sr loading versus 397 +49 counts before Sr
loading).

Figure 13. SHG images measured in different points of the chitosan-based NPs, a)-c) before the Sr
loading, d)-f) after the Sr loading (Sr-NPs).

It is noteworthy that chitosan-based NPs before and after Sr loading show a suitable SHG
emission for the application as biosensors. This result encouraged us to propose Sr loaded chitosan-
based NPs (Sr-NPs) as SHG biosensors that, if opportunely functionalized on the surface, can also
carry #Sr radioisotope for radiotherapy.

3. Materials and Methods
3.1. Synthesis of Chitosan/Poly(Vinyl Alcohol)/Glutaraldehyde Nanospheres Loaded with Sr (Sr- NPs)

The synthesis process of the chitosan/poly(vinyl alcohol) (CS/PVA) nanospheres chemically
cross-linked with glutaraldehyde (GA) and loaded with Sr is described in this section. All chemicals
utilized were purchased from Sigma-Aldrich and used as received.
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3.1.1. Preparation of CS/PVA Hydrogel Blend

The CS/PVA hydrogel blend was obtained by dissolving chitosan (CS) powder in a 1% (w/v)
acetic acid water solution, under magnetic stirring for 24 h at room temperature, to obtain a 2.5% w/v
chitosan solution. The acetic acid was HPLC-grade, and the CS powder was of medium-molecular
weight, with a 75-85% degree of deacetylation. An aqueous solution of poly(vinyl alcohol) (PVA,
10% w/v) was prepared by dissolving PVA, with a 99% degree of hydrolysis and a typical average
molecular weight (Mw) of 89,000-98,000 g/mol, in deionized water under magnetic stirring at 80 °C
for two hours. Both polymeric solutions were then mixed at a 3:1 (CS:PVA) volume ratio, under
magnetic stirring at room temperature for about two hours, until a homogeneous polymeric blend
was obtained.

3.1.2. Preparation of CS/PVA/GA Nanospheres

An emulsion was prepared by stirring a solution of polyisobutylene (Polysciences, CAS: 9003-
27-4) and sorbitan monooleate (SPAN 80, Fluka, CAS: 1338- 43-8) with an Ultra-Turrax disperser at
12,000 rpm. The concentration of the SPAN-80 in the emulsion was 1% (w/v). Subsequently, the
CS/PVA solution was added dropwise to the emulsion, followed by the addition of GA (analytical-
grade, 25% w/v) to achieve a weight ratio of approximately 1:1 relative to the polymers in the
emulsion. The emulsion was magnetically stirred for 40 min at room temperature, and then
centrifuged at 4,000 rpm for 10 min. The formed CS/PVA/GA NPs, named as chitosan-based NPs
henceforth, were collected from the bottom of the test tube and washed with two hexane aliquots
followed by two washes of deionized water. The wet powder containing the NPs was used without
drying in further assays.

3.1.3. Synthesis of the S'TFRUCI MOF

To synthesize the SrFRUCI MOF, 0.66 g of strontium chloride hexahydrate and 0.46 g of D-
fructose were dissolved in 12 mL of ethanol at 74.85 °C (348 K), at a 1:1 stoichiometric ratio. After a
few minutes, both solids were utterly dissolved, precipitating a fine white powder of STFRUCI. The
obtained powder was subsequently washed with a few drops of ethanol, filtered, and air-dried.

Loading of chitosan-based NPs with Sr (Sr-NPs). To load the chitosan-based NPs with Sr, 51 mg of
the wet CS/PVA/GA NPs were suspended in 1 mL of ethanol with an equal amount (51 mg) of
SrFRUCI MOF fine powder. Subsequently, the suspension was sonicated for ten minutes. After
sonication, the suspension appeared homogeneous and was left to rest for two days to favor
absorption by the chitosan-based NPs. Finally, the nanospheres were filtered and washed with
deionized water to obtain the Sr-NPs.

3.2. Nanosphere Characterization
3.2.1. Fourier Transform Infrared (FTIR) Spectroscopy

An FTIR spectrometer (Nicolet iS50R, Thermo Scientific) equipped with an attenuated total
reflectance (ATR) module was used for this analysis. The FTIR spectra were acquired over a
wavenumber range from 4000 to 650 cm™, using 32 scans and a resolution of 2 cm™'. All FTIR spectra
were normalized concerning the band at 2950-2850 cm™, corresponding to the stretching of C-H
bonds.

3.2.2. X-ray Powder Diffraction (XRPD) Characterization

The XRPD patterns were collected using the Atlas S2 Rigaku-Oxford Diffraction Gemini R-Ultra
diffractometer, equipped with mirror monochromatized Cu-Ka (1.5418 A) radiation. The wet
powders of nanospheres were easily compacted and molded into balls of ca. 0.45 mm in diameter
(smaller than the diameter of the X-ray beam). Each ball was glued to a glass capillary and mounted
on the goniometer head of the instrument. Each powder pattern was collected by rotating 60 degrees,
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with an exposure time of 60 s. The CrysAlisPro package (CrysAlisPro 1.171.42.49, Rigaku Oxford
Diffraction, 2022) was used for data collection and integration.

3.2.3. Scanning Electron Microscopy (SEM)/Energy Dispersive Spectroscopy (EDS)

Field-Emission Scanning Electron Microscopy (FESEM) and EDS were performed using a
TESCAN $9000G FESEM 3010 microscope working at 30kV and equipped with a high-brightness
Schottky emitter. For the microanalysis, the OXFORD Ultim Max-software Aztec was used. To
average the measurements of the nanospheres, the program Image] was used [46].

3.3. Theoretical Simulations

Geometry Optimization. Theoretical calculations were performed using the GAUSSIAN16
program [47]. All the geometries in this work were optimized by gradient-based techniques [48-50]
with no symmetry constraints at the DFT B3LYP level of theory [51,52], in conjunction with the 6—
31G(d) basis set for the C, H, and N atoms [53]. For Sr, the LANL2DZ basis was used [54]. All critical
points were characterized as energy minima by calculating their analytical frequencies.

3.3.1. Born-Oppenheimer Molecular Dynamics (BOMD)

BOMD was conducted using the NorthWest Chemistry (NWChem) modeling software [55]. To
maintain consistency with other theoretical calculations, the B3LYP functional was used with the 6—
31G (d, p) basis set, and a polarization function was added to enhance the description of quantum
effects. The basis set used for the Sr ion was Def2-TZVP [56]. The dynamics spanned a total of 3 ps
with a timestep of 1 fs.

3.4. Second Harmonic Generation (SHG) Measurements

An Yb-fiber-based pump laser (Emerald Engine HP Basic DUO, A.P.E. GmbH, Berlin, Germany)
was used to provide an optimized pulsed laser source to pump an Optical Parametric Oscillator
(Levante Emerald OPO) (APE, Berlin, Germany). The excitation source was tuned at about 892.5 nm
with a pulse width of about 2 ps, and a repetition rate of 80 MHz.

The beam entered an upright microscope (BX51WI, Olympus, Tokyo, Japan) through the
scanning unit (FluoView FV300, Olympus, Tokyo, Japan) for image acquisition. The total average
power of the excitation pulses at the sample was set to about 30 mW. The excitation beams were
focused on the powder using a microscopy objective (UPlanSApo 20x NA = 0.75, W.D.= 0.65 mm,
Olympus), and a condenser objective (UPLSAPO 10x objective NA = 0.4, Olympus) was used to
collect forward SHG signal at about 446 nm, that was optically filtered and then detected using a
PMT (R3896, Hamamatsu, Japan).

The images were measured by Kalman, averaging five acquisitions, keeping the PMT voltage,
gain, and offset constant for all the acquisitions, and using a pixel depth of 12 bits. The collected
images were processed in a way to extract the average intensity of the foreground using the same
threshold level of 300 counts.

4. Conclusions

In this work, we synthesized new chitosan-based NPs loaded with Sr and Cl ions, that can be
applied as carriers of the radioisotope #Sr for radio-cancer therapy. From SEM analyses of the NPs,
we observed a good homogeneously dispersed amount of Sr and Cl ions in the NPs. However, to
load the metal ion on the NPs, the role of the STFRUCI MOF is fundamental, since the loading with
SrClz produces NPs loaded only with chlorides. Evidently, the fructose that coordinates the Sr cation
in the MOF has a role in the encapsulation of the metal ion.

In order to understand the interaction of the chitosan matrix with the Sr and Cl ions, BOMD
calculations were performed on different fragments, that simulate small chitosan matrices with the
ions encapsulated. The calculations evidenced that chitosan-based NPs, during their synthesis in an
acidic environment, acquire positive charges on the surfaces, due to the acidification of some NH:

d0i:10.20944/preprints202407.0688.v1
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groups of chitosan. The positive charges are able to attract the chlorides, which explains the amount
of chlorides encapsulated on NPs observed on EDS spectroscopy, more than the stoichiometric ratio
Sr:Cl 1:2 expected for the charge balance. However, BOMD simulations of the fragments with Sr ion
encapsulated were not stable, probably because the chitosan matrix simulated was too small, and
unfortunately, we were not yet able to clearly understand the interaction of this ion with chitosan
with our current simulations. However, the NPs loaded with the Srions, show a good SHG emission,
which encouraged us to propose them also as biosensors. Thus, the chitosan NPs enriched with 8Sr
can be proposed for theranostic purposes, i.e., at the same time for therapy and diagnostic purposes.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org., (1) description of X-ray diffraction structure of the SrFruCl MOF, (2) details on
X-ray molecular structure of chitin, (3) computational optimized coordinates of fragments.
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