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Abstract: This paper examines the impact of random sample sizes on the extreme value theory
of competing risks, a significant area in finance and environmental science. We capture limit
distributions of two extreme types under random sampling sizes, known as accelerated mixed
l-max and p-max stable type distributions. The study presents results for both maxima and minima
in competing risks scenarios, addressing cases of independent and non-independent random sample
sizes. Numerical examples validate our theoretical findings, demonstrating the applicability of our
approach to various random sample size distributions, including time-shifted Poisson or binomial,
geometric, and negative binomial distributions.
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1. Introduction

Extreme Value Theory (EVT) is dedicated to modeling extreme events within a sequence of a
large number of independent and identically distributed (i.i.d.) random variables. Its applications
are diverse, spanning fields such as finance, insurance, environmental science, and engineering [?
? ]. Let X1, X2, . . . , Xn be a sequence of i.i.d. random variables with common distribution function
(d.f.) F, and denote by Mn = max(X1, X2, . . . , Xn) the sample maxima. The risk X ∼ F is called to be
in the max-domain attraction of G, if there exist some normalization constants an > 0, bn ∈ R and a
non-degenerate d.f. G such that (with d→ convergence in distribution)

P (an (Mn − bn) ≤ x) d→ G (x) as n → ∞. (1.1)

The limit distribution G is the so-called generalized extreme value distribution (GEV), which is of the
sample l-type (namely, x can be replaced with ax + b for some a > 0, b ∈ R) as

G(x; γ, µ, σ) = exp

(
−
(

1 + γ
x − µ

σ

)−1/γ

+

)
. (1.2)

We denote this by F ∈ Dl(G). Here the three parameters γ, µ ∈ R, σ > 0 are called the shape, location,
and scale parameters, respectively. In addition, the tail behavior of the potential risk X is well classified
into Fréchet, Weibull, and Gumbel domains, corresponding to the cases with γ >,=,< 0, respectively
[? ].

Given the wide applications of EVT, many extensive studies of limit theory alike Eq.(??) have
been conducted. ? ] extended first the limit distribution under linear normalization in Eq.(??) to
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the power limit laws Dp(H), i.e., there exist some power normalization constants αn, βn > 0 and a
non-degenerate d.f. H such that

P
{

αn |Mn|βn sign (Mn) ≤ x
}

d→ H(x) (1.3)

with the sign function sign(x) equal 1, −1 and 0 for x being positive, negative and zero, respectively. It
is well-known that H is of p-max stable distributions composed of six types of limits, which can be
rewritten uniformly as below [? ]. For some µ, σ > 0 and γ ∈ R (recall G is the GEV defined in Eq.(??)),

H(x; γ, µ, σ) =

{
G(log x; γ, µ, σ), if the support is included in (0, ∞),
G(− log(−x); γ,−µ, σ), otherwise.

(1.4)

In what follows, we denote this by F ∈ Dp(H).
Recently, ? ] and ? ] investigated the limit behavior of extremes under linear and power

normalization in the scenario of competing risks, with the practical consideration of aggregating
multiple sources. Namely, the studied sample maxima Mn is actually obtained from k heterogeneous
subsamples Xj,i, i = 1, . . . , nj from source/population Xj ∼ Fj, j = 1, . . . , k. This considerate modeling
in the big data era is desirable due to the complexity of real applications [? ? ]. The limit theory of Mn

obtained for the k multiple sources is the so-called limit theory of max of max since

Mn = max
1≤j≤k

Mj,nj with Mj,nj = max
1≤i≤nj

Xj,i. (1.5)

Clearly, the obtained limit laws of Eq.(??) extending the classical extreme value theory given in Eqs.(??)
and (??) are the so-called accelerated l-max stable and accelerated p-max stable distributions, see ? ,
Theorem 2.1] and ? , Theorem 2.1]. Note that the key condition in determining accelerated limit theory
is the interplay of the sample length and the tail behavior among the multiple competing risks. A
natural question is how the extreme law varies in the uncertainty of the sample size involved. This is
very common in environmental and financial fields, for instance, the extreme claim size of νn claims
over a n-day period and the extreme daily precipitation within a νn duration of wet period [? ? ]. This
paper aims to study the limit theory under both linear and power normalization in the framework of
competing risks with random sample size.

Many authors refined the extreme limit theory under linear normalization with random sample
size for two different cases:

Case I) with independent random sample size. The basic risks X1, . . . , Xn and sample size index
νn are supposed to be independent and νn/n converges weakly to a non-degenerate distribution
function [? ];
Case II) with non-independent random sample size. There exists a positive-valued variable
V such that νn/n converges to V in probability, allowing the interrelation of the basic risk and
sample size index νn [? ].

The limit theorems with random sample size were further extended for sample minima [? ], extreme
order statistics under power normalization [? ? ], stationary Gaussian process [? ], stationary
chi-process [? ], and recent contributions on multivariate extreme behavior [? ]. This paper will
further consider the limit behavior of extremes (both minima and maxima) under linear and power
normalization in the competing risk scenario, extending those accelerated l-max and p-max stable
limit distributions when the sample size sequence {νn, n ≥ 1} satisfies conditions indicated in Cases I)
and II). The theoretical results will be illustrated by numerical studies with typical examples such as
νn are time-shifted Poisson, (negative) Binomial distributions, which have extensive applications in
insurance and hydrology [? ? ].

The remainder of the paper is organized as follows. Section ?? presents the main results for
maxima of maxima under both linear and power normalization with sample sizes. Extensional
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results for competing minima and typical examples are discussed in Section ??. Numerical studies are
conducted to illustrate our theoretical findings in Section ??. The proofs of all theoretical results are
deferred to the Appendix.

2. Main Results

Notation. Recall that the max of max defined in Eq.(??), is generated from k independent samples
of size nj’s from risk Xj ∼ Fj. Let νnj , 1 ≤ j ≤ k be mutually independent, positive integer-valued
variables, standing for the random sample size, which is independent of the basic risks Xj ∼ Fj. Similar
to Eq.(??), we write

Mνn = max
1≤j≤k

Mj,νnj
with Mj,νnj

= max
1≤i≤νnj

Xj,i. (2.1)

Here νn := ∑1≤j≤k νnj and n = ∑k
j=1 nj. Throughout this paper, for any risk X following a cumulative

distribution function (cdf) F, we write F(x) := 1 − F(−x − 0), standing for the cdf of −X. Further, all
limits are taken as min1≤j≤k nj → ∞.
To simplify the notation, in what follows, we consider competing risks from two sources, namely
with k = 2. We will present below the limit behavior of Mνn for Cases I) and II) in Section ?? and ??,
respectively.

2.1. Limit theorem for Case I) with independent sample size

In this section, we present our main results on the limit behavior of competing risks under linear
and power normalization in Theorems ?? and ??, respectively. Basically, we focus on the following
random sample size scenario: Assume that there exist independent non-degenerate distributed Vj, 1 ≤
j ≤ k such that

νnj

nj

d→ Vj. (2.2)

Condition (??) is commonly used for the limit behavior of extremes with random sample size [? ? ? ].
We refer to ? ] for relevant examples, see also Examples ?? to ??.

Limit behavior of Mνn under linear normalization. Clearly, for Fj ∈ Dl(Gj), there exist aj,nj >

0, bj,nj ∈ R such that Mj,nj satisfies Eq.(??) as nj → ∞. We will show in Theorem ?? below that, under
condition (??), the limit theorem for competing extremes Mνn holds for an accelerated mixed GEV
distribution with

Lj(x) =
∫ ∞

0
(Gj(x))zdP

{
Vj ≤ z

}
. (2.3)

Theorem 1. Let Mνn be given by Eq.(??) with the basic risks Xj ∼ Fj, j = 1, 2 and random sample sizes
ν1, ν2 mutually independent. Suppose that condition (??) and Fj ∈ Dl(Gj) holds with Eq.(??) for Mj,nj and
aj,nj , bj,nj , j = 1, 2. If there exist two constants a ∈ [0, ∞] and b ∈ R such that

an :=
a1,n1

a2,n2

→ a, bn := a1,n1(b2,n2 − b1,n1) → b (2.4)

as min(n1, n2) → ∞.

(i). If Eq.(??) holds for a > 0 and b < ∞, then

P (a2,n2(Mνn − b2,n2) ≤ x) d→L1
(
ax + b

)
L2(x).

(ii). If Eq.(??) holds for a = 0 and b = ∞, then

P (a2,n2(Mνn − b2,n2) ≤ x) d→L2(x).

Here Lj, j = 1, 2 are given by Eq.(??).
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Remark 1. a) Theorem ?? is reduced to Theorem 2.1 by ? ] if Vj’s are degenerate at one, the limit theorem for
competing maxima with determinant sample size.
b) In addition, the two results in (i) and (ii) correspond to the cases for two competing risks being comparable
tails and balanced sampling process and the dominated case, respectively.
c) Theorem ?? extends Theorem 6.2.2 in ? ] for a non-competing risk scenario, where the extremes are from one
single source. In general, the accelerated mixed H distributions family is a larger class including those of form in
Eq.(??).

Limit behavior of Mνn under power normalization. Clearly, for Fj ∈ Dp(Hj), there exist
αj,nj , β j,nj > 0 such that Mj,nj satisfies Eq.(??) as nj → ∞. We will show in Theorem ?? below that,
under condition (??), the limit theorem for competing extremes Mνn holds for an accelerated mixed H
distribution given below

Pj(x) =
∫ ∞

0
(Hj(x))zdP

{
Vj ≤ z

}
. (2.5)

Theorem 2. Let Mνn be given by Eq.(??) with the basic risks Xj ∼ Fj, j = 1, 2 and random sample sizes
ν1, ν2 mutually independent. Suppose that condition (??) and Fj ∈ Dp(Hj) holds with Eq.(??) for Mj,nj and
αj,nj , β j,nj > 0, j = 1, 2. If there exist two non-negative constants α and β such that

αn := α1,n1

(
1

α2,n2

) β1,n1
β2,n2 → α, βn :=

β1,n1

β2,n2

→ β. (2.6)

as min(n1, n2) → ∞. The following claims hold for Pj, j = 1, 2, the mixed Hj distributions defined in Eq.(??).

(i). If condition (??) holds with two positive constants α and β, then

P
{

α2,n2 |Mνn |
β2,n2 sign (Mνn) ≤ x

}
d→ P1

(
α|x|βsign(x)

)
P2(x). (2.7)

(ii). The following limit distribution holds

P
{

α2,n2 |Mνn |
β2,n2 sign (Mνn) ≤ x

}
d→ P2(x)

provided that one of the following four conditions is satisfied (notation: x∗1 := inf{x : H1(x) < 1}, the
right endpoint of H1)

a). When H2 is one of the same p-types of G(log x; γ, µ, σ), and H1 is one of the same p-types of
G(− log(−x); γ,−µ, σ).

b). When H2 is one of the same p-types of G(log x; γ, µ, σ), and H1 is one of the same p-types of
G(log x; γ, µ, σ) for γ ≥ 0. In addition, Eq.(??) holds with α = ∞ and 0 ≤ β < ∞.

c). When H2 is one of the same p-types of G(log x; γ, µ, σ), and H1 is the same type of G(log x; γ, µ, σ)

for γ < 0. In addition, Eq.(??) holds with x∗1 ≤ α < ∞ and β = 0 or α = ∞ and 0 ≤ β < ∞.
d). When both H1 and H2 are one of the same p-types of G(− log(−x); γ,−µ, σ). In addition, Eq.(??)

holds with 0 ≤ α ≤ −x∗1 and β = 0 or α = 0 and 0 ≤ β < ∞.

Remark 2. a) Theorem ?? is reduced to Theorem 2.1 by ? ] if Vj’s are degenerate at one, which means the
asymptotically almost randomlessness of νn, the limit theorem for competing maxima with determinant sample
size. This situation happens in practice, e.g., νn follows a shifted Poisson df with mean λn such that λn ∼ n.
For more examples, see Example ?? below and Remark 2.2 by ? ].
b) In addition, the two results in i) and ii) correspond to the two different cases with αβ > 0 and αβ = 0, ∞
in condition (??), illustrating the limit behavior of two competing risks with comparable tails and balanced
sampling process and the dominated case, respectively.
c) Theorem ?? extends Theorem 2.1 by ? ] for a non-competing risk scenario, where the extremes are from one
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single source. In general, the accelerated mixed-GEV distributions family is a larger class including those of
form in Eq.(??).

2.2. Limit theorem for Case II) with non-independent sample size

In this section, we focus on Case II), relaxing the independent condition between the basic risk
and random sample size. On the other hand, we need to strengthen the convergence in distribution as
the convergence in probability, as stated below. Assume that there exist positive random variables

Vj, j = 1, 2 such that (notation:
p→ stands for convergence in probability)

νnj /nj
p→ Vj, j = 1, 2. (2.8)

Theorem 3. Let Mνn be given by Eq.(??) from two independent pairs of basic risk and sample size (Xj, νj), j =
1, 2. Suppose that conditions (??) and (??) hold for Xj ∼ Fj ∈ Dl(Gj) with Eq.(??) satisfied for Mj,nj and
aj,nj , bj,nj , j = 1, 2. Then the claim in Theorem ?? holds.

Theorem 4. Let Mνn be given by Eq.(??) from two independent pairs of basic risk and sample size (Xj, νj), j =
1, 2. Suppose that conditions (??) and (??) hold for Xj ∼ Fj ∈ Dp(Hj) with Eq.(??) satisfied for Mj,nj and
αj,nj , β j,nj , j = 1, 2. Then the claim in Theorem ?? holds.

3. Discussion

In this section, we first extend our results for competing minima risks in Section ??, and then
present typical examples of random sizes with specific mixed extreme distributions in Section ??.

3.1. Extreme Limit Theory for Competing Minima Risks

In some practical applications, such as the lifetime in reliability analysis or race time of athletes
in physical studies, extreme minima plays an important role. As we will see in Corollaries ?? and
?? below, analytical claims follow for competing risks with random sample size in terms of minima
of minima. Essentially, noting that the right tail behavior of Xj ∼ Fj is demonstrated by its sample
maxima Mj,nj , the left tail behavior of −Xj ∼ Fj(x) := 1 − Fj(−x − 0) can be shown by the sample
minima mj,nj

= min(−Xj,1, . . . ,−Xj,nj) since (cf. see ? , Theorem 1.8.3] and ? ])

mn = min
1≤j≤k

mj,nj
= − max

1≤j≤k
Mj,nj = −Mn. (3.1)

Noting that, the condition that Fj ∈ Dl(Gj), i.e., there exist aj,nj > 0, bj,nj ∈ R such that Mj,nj satisfies
Eq.(??) as nj → ∞, is equivalent that

P
(

aj,nj(mj,nj
+ bj,nj) ≤ x

)
d→ Gj (x) , (3.2)

where Gj is of the same l-type of GEV distribution given in Eq.(??).

Corollary 1. Suppose the same conditions as for Theorems ?? or ?? are satisfied.

(i). If Eq.(??) holds for a > 0 and b < ∞, then

P
(
a2,n2(mνn + b2,n2) ≤ x

) d→1 − L1
(
− (ax − b)

)
L2(−x).

(ii). If Eq.(??) holds for a = 0 and b = ∞, then

P
(
a2,n2(mνn + b2,n2) ≤ x

) d→L2(x).
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Here Lj, j = 1, 2 are given by Eq.(??).

Noting that αn|mn|βn sign(mn) = −αn|Mn|βn sign(Mn), the following corollary holds for the
power normalized minima of minima.

Corollary 2. Suppose the same conditions as for Theorems ?? or ?? are satisfied. The following claims hold for
Pj(x), j = 1, 2 with Pj the mixed Hj distributions defined in Eq.(??).

(i). If condition (??) holds with two positive constants α and β, then

P
{

α2,n2

∣∣mνn

∣∣β2,n2 sign
(
mνn

)
≤ x

}
d→ 1 − P1

(
− α|x|βsign(x)

)
P2(−x).

(ii). The following limit distribution holds

P
{

α2,n2

∣∣mνn

∣∣β2,n2 sign
(
mνn

)
≤ x

}
d→ P2(x)

provided that one of the conditions a)∼ d) in Theorem ?? holds.

Remark 3. a) Recalling that G and H given by Eqs.(??) and (??) are the so-called l-max stable and p-max
stable, we call L and P the mixed accelerated l-max stable and the mixed accelerated p-max stable distributions if
they can be written as a product of Lj and Pj, respectively.
b) Recalling that the G and H are the so-called l-min stable and p-min stable distributions [? , Corollary 1]
if G and H are given by Eqs.(??) and (??), we call L and P the mixed accelerated l-min stable and the mixed
accelerated p-min stable distributions if they can be written as a product of Lj and Pj, respectively.

3.2. Examples

Below, we will give three examples to illustrate our main results obtained in Theorems ?? and
??. In particular, we considered that random sample size follows respectively time-shifted version
of Poisson or binomial distribution, geometric and negative binomial distributions with relevant
parameters satisfying certain average stable conditions [? ], see Examples ?? ∼ ??.

Example 1 (Time-shifted binomial/Poisson distributed random sample size). Let νn follow a time-shifted
binomial distribution with probability mass function (pmf) given as

P {νn = k + m} =

(
ln
k

)
pk

nqln−k
n , k + m = m, m + 1, . . . , ln + m.

If ln pn → 1, then νn/n converges in probability to one. Similarly, for a time-shifted Poisson distributed

νn
d
= m + Poisson(λn) with λn/n → 1, then νn/n converges in probability to 1 [? , Lemmas 4.3]. For the

random sample size aforementioned, the claims of Theorems ?? and ?? follow as the reduced determinant random
size cases, see Remarks ??(a) and ??(a).

Example 2 (Time-shifted geometric distributed sample size). In the case of linear normalization, with G
being one of the three l-types distribution, say G(x; γ, µ, σ) specified in Eq.(??). Suppose that the random sample
size νnj follows a geometric distribution with mean nj. We have νnj ≈ njV in distribution with a random scale
V following a standard exponential distribution. Consequently, Theorem ?? holds with an accelerated mixed
l-max stable distribution L, the product of mixed l-max stable distributions of form L as below.

L(x; γ, µ, σ) =
∫ ∞

0
(G(x; γ, µ, σ))zd(1 − e−z)

=
∫ ∞

0
exp

(
−z

((
1 + γ

x − µ

σ

)−1/γ

+
+ 1

))
dz =

1

1 +
(

1 + γ
x−µ

σ

)−1/γ

+

,
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which is taken as its limit 1/[1 + exp (−(x − µ)/σ) , x > µ for γ = 0.
Similarly, for the power normalization case, recalling H is specified in Eq.(??), as the p-max type of limit
distributions, Theorem ?? follows with an accelerated mixed p-max stable distribution P, the product of mixed
p-max stable distribution P as below (cf. ? , Example 2.1]).

P(x; γ, µ, σ) =
∫ ∞

0
(H(x; γ, µ, σ))zd(1 − e−z)

=

{ ∫ ∞
0 Gz(log x; γ, µ, σ)e−zdz, if the support is included in (0, ∞),∫ ∞
0 Gz(− log(−x); γ,−µ, σ)e−zdz, otherwise

=



1

1 +
(

1 + γ
log x − µ

σ

)−1/γ

+

, if the support is included in (0, ∞),

1

1 +
(

1 + γ
− log(−x) + µ

σ

)−1/γ

+

, otherwise.

Example 3 (Time-shifted negative binomial distributed sample size). As an extension of m-shifted
geometric distributions, we consider time-shifted negative binomial distributed sample size νn with r ≥ 1 given
by

P {νn = k} =

(
−r

k − rm

)
pr

n[−(1 − pn)]
k−rm, k = rm, rm + 1, . . . .

It follows by Lemma 4.1 by ? ] that, as npn → 1, we have νn/n converges in distribution to V, a gamma random
variable with shape parameter r and scale parameter 1, i.e., the cdf of V is given by

FV(z) = P {V ≤ z} =
∫ z

0

1
Γ(r)

tr−1 exp(−t)dt, z > 0,

where Γ(·) denotes the gamma function. It follows by Theorem ?? that

L(x; γ, µ, σ) =
∫ ∞

0
(G(x; γ, µ, σ))zdFV(z)

=
∫ ∞

0

1
Γ(r)

zr−1 exp

(
−z

((
1 + γ

x − µ

σ

)−1/γ

+
+ 1

))
dz

=

[
1 +

(
1 + γ

x − µ

σ

)−1/γ

+

]−r

.

Similarly, Theorem ?? follows with the accelerated mixed p-max stable distributions, the product of form P given
below.

P(x; γ, µ, σ) =


[

1 +
(

1 + γ
log x−µ

σ

)−1/γ

+

]−r
, if the support is included in (0, ∞),[

1 +
(

1 + γ
− log(−x)+µ

σ

)−1/γ

+

]−r
, otherwise.

4. Numerical Studies

We will conduct a Monte Carlo simulation to illustrate Theorems ?? and ?? with m-shifted random
sample size given in Examples ?? ∼ ??. In what follows, we take the shift parameter m = 5 in all
time-shifted random sample size distributions, and the basic risks X1, X2 from Pareto distributions with
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parameters α1, α2 > 01 and the random sample sizes νn1 , νn2 are supposed to be mutually independent.
In addition, the repeated time is taken as R = 10, 000. We will illustrate our main results specified in
Theorems ?? with the three examples given in Section ?? above.

1. Comparison of Pareto competing extremes with determinant sample size and Poisson
distributed random sample size. In Figure ??, we will demonstrate that the competing extremes with

(a) (b)

(c) (d)

Figure 1. Distribution approximation of linear normalized Mνn = max(M1,νn1
, M2,νn2

) (a, b) and
Mn = max(M1,n1 , M2,n2 ) (c,d) with both Mj,nj ’s from Pareto(αj) and Poisson distributed sample size
νnj with mean nj. Here (α1, α2) = (2, 4) and n1 = 100, n2 = nc

1 with c = 2, 2.5 in (b,d) and (a,c) by
Φ(x; α1) ∗ Φ(x; α2) and Φ(x; α2), respectively.

Poisson distributed sample size are similar to the case with nonrandom sample size case. Let νnj follow
m-shifted Poisson with mean parameters 1/nj, j = 1, 2. We then generate competing Pareto extremes
with basic risks following Pareto(αj) with αj > 0, j = 1, 2. It follows from Theorems ??, ?? and Example
?? together with Example 4.6 by ? ] that (recall Φ(x; α) = exp (−x−α) , x > 0 the Fréchet distribution)

1. For n2 = n1 or n2 = nc
1 with c > α2/α1, we have

n−1/α2
2 Mνn

d→ Φ(x; α2), n−1
2 Mα2

νn
d→ Φ(x; 1).

2. For n2 = nc
1 with c = α2/α1, we have

n−1/α2
2 Mνn

d→ Φ(x; α1)Φ(x; α2), n−1
2 Mα2

νn
d→ Φ(x; α1/α2)Φ(x; 1).

1 The cdf of Pareto(α) is given as P {X ≤ x} = 1 − x−α, x > 1.
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Noting that the power normalized extremes will behave similarly to the linear normalized ones up to
a power transformation. We show only the behavior of linear normalization for the numerical studies
below.

In Figure ??, we take α1 = 2, α2 = 4 and n1 = 100, n2 = nc
1 with c = 2, 2.5 to show the above two

cases. Overall, the competing Pareto extremes are well fitted by the accelerated GEV distribution for
the non-randomized sample size, where the latter is slightly better than the randomized sample size
cases. Further, the accelerated GEV approximation (Figure ?? (a, c)) is relatively closer to the empirical
competing extremes than the dominated case.

2. Comparison of Pareto competing extremes with Geometric distributed and negative
Binomial distributed sample size. We consider the max of maxima Mνn with both basic risks
Xj ∼ Pareto(αj) with random sample size νnj following m-shifted negative Binomial distribution
with probability 1/nj and r ≥ 1. It follows by Example 4.6 by ? ], Theorem ??(a, b) and Example ??
that, with L̃(x; α) = [1 + x−α]−r

1. For n2 = n1 or n2 = nc
1 with c > α2/α1, we have n−1/α2

2 Mνn
d→ L̃(x; α2).

2. For n2 = nc
1 with c = α2/α1, we have n−1/α2

2 Mνn
d→ L̃(x; α1)L̃(x; α2).

Thus, its density function is given by

l(x; α1, α2) =


dL̃(x;α2)

dx = rα2
xα2+1(1+x−α2 )r+1 ,

dL̃(x;α1)L̃(x;α2)
dx = rα1x−α1−1

(1+x−α1 )r+1(1+x−α2 )r +
rα2x−α2−1

(1+x−α2 )r+1(1+x−α1 )r ,
(4.1)

In Figure ??, we set n1 = 100, n2 = nc
1 with c = 2, 2.5 in (a, c) and (b, d), respectively. Meanwhile, the

random sample size follows a 5-shifted negative Binomial distribution with r = 1 in (a, b) (namely
geometric distribution), and r = 2 in (c, d), and successful probability 1/nj, j = 1, 2. Meanwhile, we
take α1 = 2, α2 = 4 in the Pareto basic risks. Consequently, the sub-maxima are completely competing
when n2 = n2

1, resulting in the accelerated mixed extreme limit distributions as shown in Figure ?? (a,
c). In contrast, the dominated limit behavior is given in Figure ?? (b, d) as n2 = n2.5

1 .
In general, our theoretical density curve given by Eq.(??) approximates the histogram very well (Figure
??). Further, we see that the approximation with geometric distributed random size is slightly better
than the negative binomial case. In addition, the approximation for the dominated case (Figure ?? (d))
is slightly better than the accelerated case when negative Binomial random size applies.
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(a) (b)

(c) (d)

Figure 2. Distribution approximation of linear normalized Mνn = max(M1,νn1
, M2,νn2

) with both Mj,nj ’s
from Pareto(αj). The random sample size follows a negative Binomial distribution with r = 1 (the
geometric distribution) (a,b) and r = 2 (c, d) and successful probability 1/nj. Here (α1, α2) = (2, 4) and
n1 = 100, n2 = nc

1 with c = 2, 2.5 in (a, c) and (b, d) with pdf curves of L̃(x; α1)L̃(x; α2) and L̃(x; α2),
respectively.
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Appendix A Proofs of Theorems ?? ∼ ??

Proof of Theorem ??. It follows by the independence between the basic risks Xj ∼ Fj and the
random sample size νj, and condition (??) holding for Mj,nj , aj,nj , bj,nj that

P
(

aj,nj(Mj,νnj
− bj,nj) ≤ x

)
d→Lj(x) =

∫ ∞

0
(Gj(x))zdP

{
Vj ≤ z

}
. (A1)

Further, it follows by the mutual independence between (X1, ν1) and (X2, ν2) that

P
{

a2,n2(Mνn − b2,n2) ≤ x
}
= P

{
max(a2,n2(M1,νn1

− b2,n2), a2,n2(M2,νn2
− b2,n2))

}
= P

{
a2,n2(M1,νn1

− b2,n2) ≤ x
}
P
{

a2,n2(M2,νn2
− b2,n2) ≤ x

}
=: In · IIn. (A2)

The straightforward application of Eq.(??) gives

IIn
d→ L2(x), n2 → ∞. (A3)

Similarly, we rewrite In as

In = P
{

a2,n2(M1,νn1
− b2,n2) ≤ x

}
= P

{
a1,n1(M1,νn1

− b1,n1) ≤ a1,n1

(
x

a2,n2

+ b2,n2 − b1,n1

)}
.

The remaining proof of In
d→ L1(ax + b) follows from those for Theorem 2.1 in ? ] and Eq.(??).

We complete the proof of Theorem ??.
Proof of Theorem ??. Firstly, we rewrite the left-hand side of Eq.(??) as follows.

P
{

α2,n2 |Mνn |
β2,n2 sign(Mνn) ≤ x

}
= P

{
Mνn ≤

∣∣∣∣ x
α2,n2

∣∣∣∣1/β2,n2
sign(x)

}

= P
{

α2,n2

∣∣∣M1,νn1

∣∣∣β2,n2 sign(M1,νn1
) ≤ x

}
P
{

α2,n2

∣∣∣M2,νn2

∣∣∣β2,n2 sign(M2,νn2
) ≤ x

}
=: In · IIn. (A4)

It follows by Theorem 2.1 in ? ] that

IIn
d→ P(2)(x), n2 → ∞. (A5)

Next, we show the limit of In. We rewrite In as

In = P
{

M1,νn1
≤
(

xn

α1,n1

)1/β1,n1
sign(x)

}
,

where xn = α1,n1

(
|x|

α2,n2

)β1,n1
/β2,n2

=: αn |x|βn with αn, βn given by Eq.(??). The remaining proof is

similar to those for Theorem 2.1 by ? ]. We complete the proof of Theorem ??.
Proof of Theorem ?? It follows by Theorem 6.2.1 of ? ] that, for the jth sample maxima Mj,νnj

,
when the constant sequences aj,nj > 0, bj,nj ∈ R such that (??) holds, and νnj satisfies Eq.(??), we have
the claim in Eq.(??). The remaining proofs follow by those for Theorem 2.1 by ? ].
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Proof of Theorem ?? We show first that, the claim follows for the jth sample maxima Mj,νnj
with

the constant sequences αj,nj , β j,nj > 0, i.e.,

P
{

αj,nj

∣∣∣Mνnj

∣∣∣β j,nj sign
(

Mνnj

)
≤ x

}
d→ Pj(x). (A6)

Denote by {pnj(k), k ≥ 0} the probability mass function of νnj . We have

pnj(k) ≥ 0,
∞

∑
k=0

pnj(k) = 1.

It follows by the total law of probability and the independence between basic risks and sample size
that

P
{

αj,nj |Mj,νnj
|β j,nj sign(Mj,νnj

) ≤ x
}
= pnj(0) +

∞

∑
k=1

pnj(k)
[
P
{

αj,nj |Mj,nj |
β j,nj sign(Mj,nj) ≤ x

}]k
.

Since νnj

p→ ∞ as nj → ∞, we have limnj→∞ pnj(0) = 0. Therefore,

P
{

αj,nj |Mj,νnj
|β j,nj sign(Mj,νnj

) ≤ x
}

∼ E
{

exp

[(
νnj

nj

)
nj log Fj(|x/αj,nj |

1/β j,nj sign(x))

]}
. (A7)

Noting that condition (??) implies that, there exists a sub-sequence νn′
j

such that νn′
j
/n′

j
p→ Vj. It follows

thus from Theorem 2.1 by ? ] that, for every s > 0,

lim
n′

j→∞
E
{

exp

[
−s

νn′
j

n′
j

]}
=
∫ ∞

0
e−szdP

{
Vj ≤ z

}
.

This together with condition (??) for Mj,nj , αj,nj , β j,nj and Eq.(??) implies that

lim
n′

j→∞
E
{

exp

[(
νnj

nj

)
nj log Fj(|x/αj,nj |

1/β j,nj sign(x))

]}
=
∫ ∞

0
exp(z log Hj(x))dP

{
Vj ≤ z

}
.

Consequently, we obtained the claim (??).
Consequently, the claims follow by combining the obtained (??), Eq.(??) and the proof of Theorem 2.1
by ? ].
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