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Abstract: The complex network is an abstract modeing of complex systems in the real world, which plays an
important role in analyzing the function of complex systems. Community detection is an important tool for
analyzing network structure. In this paper, we propose a new community detection algorithm (RWBS) based on
different seed nodes aims to understand the community structure of the network, which provides a new idea
for the allocation of resources in the network. RWBS provides a new centrality metric (MC) to calculate node
importance, which calculates the ranking of nodes as seed nodes. Furthermore, two algorithms are proposed for
determining seed nodes on networks with and without ground-truth, respectively. We set the number of steps for
the random walk to 6 according to the six degrees of separation theory to reduce the running time of the algorithm.
Since some traditional community detection algorithms may detect smaller communities, e.g., two nodes become
one community, this may make the resource allocation unreasonable. Therefore, modularity (Q) is chosen as the
optimization function to combine communities, which can improve the quality of detected communities. Final
experimental results on real-world and synthetic networks show that the RWBS algorithm can effectively detect

communities.

Keywords: complex networks; community detection; random walk; seed nodes

1. Introduction

In recent years, complex networks have been widely studied because of its important applications
in reality. It is a special mathematical model that considers the relationships between objects in the real
world. Moreover, it generally has three properties: (1) The small world property [1], which describes
the shortest distance between any two nodes on the network is short. (2) Scale-free property [2,3],
where the degree distribution of nodes conforms to a power rate distribution, i.e., most of the nodes
have smaller degree and very few nodes have larger degree. (3) Community structure [4,5], i.e.,
the nodes on the network exhibit the characteristics of clusters. It is a subgraph structure with
tight internal connections and sparse external connections. Most networks are characterized with
community structure. For example, communities in the social network [6,7] represent closely related
groups. Communities in the citation network [8] represent clusters of articles in a particular field of
study. Communities in the protein-to-protein interaction network [9] represent clusters of proteins
with similar biological functions. Therefore, community detection is gradually becoming an important
research area in complex networks.

Some community detection algorithms based on random walk [10,11] need to set a convergence
condition and end the random walk when this condition is satisfied, which may spend a longer time.
The label propagation algorithm (LPA) [12] has a disadvantage in detecting communities, i.e., the
randomness of label propagation. It may detect poor quality communities. The proposed algorithm
uses random walk and the label propagation while addressing its disadvantages.
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In this paper, a random walk algorithm based on different seed nodes to detect communities
is proposed, named RWBS. A new metric is proposed to measure the importance of nodes, we can
get the similarity F(i, j) between any two nodes on the network by this metric. Based on F(i, j), we
propose two algorithms that are suitable for different types of networks to obtain seed nodes of the
random walk. Moreover, RWBS changes the transfer probability matrix to get better information
about the network. According to the six degrees of separation theory in complex networks, the steps
of random walk is set to 6, which not only can shorten the time of the random walk, but also can
obtain the structural information of the network. After calculating the weight of the edge, the new
label propagation rule is used to propagate the label, and the initial community structure is obtained
based on the convergent label. Finally, the modularity (Q) is chosen as the optimization function
to further combine communities and improve communities quality. Experiments on real-world and
synthetic networks demonstrate the effectiveness and superiority of RWBS. The following are the main
innovations of paper.

*  We propose a random walk algorithm based on different seed nodes to detect communities, named
RWBS.

*  We propose a new centrality metric (MC) for measuring the importance of nodes that combines
degree centrality (DC’) and closeness centrality (CC) and performs better than (DC’) and (CC).

¢ Two algorithms are proposed to obtain seed nodes for different networks.

e  Experimental results on real-world and synthetic networks show that the RWBS algorithm can be
effective in finding communities.

2. Related Works

With the intensive study of community structure in complex networks, more and more effective
community detection algorithms have been proposed. Below, we describe each of these methods.

2.1. The Traditional Methods

The Traditional methods can be meticulously classified into the following three methods.

¢ The partitional clustering method: The method is to divide the network into K subgraphs of
predefined size such that the edges within each subgraph are denser and the edges between
different subgraphs are sparser. Commonly used algorithms are KL algorithm [13] and spectral
bisection algorithm [14]. The disadvantage of this class of methods is that the size of the community
needs to be set in advance. However, real-world networks are largely unknown about their
community structure, making it difficult to apply it in practice.

e  The hierarchical clustering methods: Networks can be represented by adjacency matrices or small
matrices after dimensionality reduction such as matrix factorization transformation, and then
clustered using conventional clustering algorithms. The first method is the hierarchical clustering
approach, which considers a graph to be a large community that contains a complex topology,
i.e., the community may be a collection of smaller communities of different sizes [15]. Another
method is that of spectral clustering, which consists of the method of using matrix eigenvectors
and the method of classifying nodes based on pairwise similarities between data points [16]. In
2022, Ullah et al. proposed an Information Interaction Model, named RIIM algorithm [17].

®  The divisive method: This method obtains the community structure by calculating the similarity
of edges to remove edges with lower similarity [18]. The entire network is first categorized into
a community, and then the edges connecting the low-similarity vertices and the highest edge
interdimensionality are removed. The method is a top-down hierarchical clustering algorithm.
For example, the time complexity of the GN algorithm [5] proposed by Girvan and Newman in
2002 is O(n3). The disadvantage of this algorithm is the high time complexity, which makes it
difficult to be applied to large networks.
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2.2. The Modularity-Based Methods

Modularity [19] can be used to measure the quality of the community. A higher value of mod-
ularity also means that the quality of the community obtained is better. Many scholars have used
the modularity as the optimization function to achieve the optimal division result when dividing
communities.

¢ Greedy optimization: In 2004, Newman [20] proposed a greedy method for maximizing modular-
ity, which was an aggregation technique. Its time complexity on the sparse graph is O((m + n)n).
Another greedy optimization algorithm is an algorithm called Louvain (BGLL) [21] proposed by
Blondel et al. Its time complexity is O(m + n).

¢ Simulated annealing: It is a globally optimized discrete stochastic method to detect communities
in complex networks by maximizing the modularity. For example, Guimera and Amaral [22] pro-
posed an annealing modularity optimization algorithm (SA) based on the principle of simulated
annealing algorithm.

¢  Extremal optimization: In 2001, Boettcher [23] et al. proposed extremal optimization as a general
heuristic search technique for physical and combinatorial optimization problems. In 2005, Duch
et al. [24] used it for modularity optimization to detect communities.

®  Genetic algorithms: Genetic algorithms are optimization techniques inspired by biological evolu-
tion. They can also be used to optimize the modularity to detect communities. For example, in
2018, M'Barek [25] et al. proposed a Genetic Algorithm (GA) based approach to find communities
in a gene interaction network. In 2019, a new matrix-based genetic algorithm for community
detection was proposed by Chen and Bi, named MGA algorithm [26].

¢ Evolutionary algorithms: It is a type of metaheuristic optimization algorithm based on artificial
intelligence. Their effectiveness in local learning and global search is well known. For example, in
2021, Pourabbasi et al. proposed a single-chromosome evolutionary algorithm combining content
and structural information to detect communities [27]. Su et al. proposed a parallel multi-objective
evolutionary algorithm, called PMOEA [28].

2.3. The Dynamic Community Detection Methods

We introduce three dynamic community detection methods.

¢ Algorithms based on random walk: In the process of random walk, the random walker starts
walking within the community from one node and randomly moves to the neighboring nodes at
each step. The random walker spends a long time in the dense community because of the dense
edge connections within the community. The algorithms based on random walk are PageRank
algorithm [29], Walktrap [10], and Infomap [30].

e Algorithms based on LPA [12]: The LPA algorithm is widely used to find communities in large
networks due to its advantages of lower time complexity and space complexity. The detailed
steps of LPA are shown in Section 3.4. Since the LPA algorithm has the advantage of low time
complexity, many scholars have researched and proposed many LPA-based community division
algorithms based on this algorithm. For example, SLPA [31], LPA_CL [32], VLPA [33], etc..

e  Other algorithms: There are a few other dynamic community division algorithms. For example,
the CDME algorithm that is based on the Matthew effect [34], The GBTM algorithm for community
detection in dynamic networks by Hidden Markov Method [35].

3. Preparation of Algorithm

3.1. The Definition of Symbols

The community division algorithm proposed in this paper is proposed for undirected and un-
weighted networks. Therefore, all the datasets used in this paper are undirected and unweighted
networks. We assume that the network is G. The set of nodes and edges of the network can be defined
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as V(G) and E(G), respectively. Then, G can be expressed by V(G) and E(G), ie., G = (V(G),E(G)) .
The definitions of other mathematical symbols used in this paper are shown in Table 1.

Table 1. The definitions of other mathematical symbols used in this paper.

Symbol Definition

n The number of nodes

m The number of edges

k(i) The degree of node i

L; The label of node i

community(i) The community to which node i belongs

c The number of communities.

N(i) The neighbor nodes of node i

« The restart probability

L(A) The set of labels that have been updated A times
kimax The maximum degree of the nodes on the network
<k> The average degree of the network

3.2. Evaluation Metrics

We use Normalized Mutual Information (NMI) [36], Adjusted Rand Index (ARI), and Modularity
(Q) [19] as the evaluation metrics to measure the quality of communities. Let X = (Cll, CIZ, .y C;,)
and Y = (Cy,Cy, ..., C.) represent the detected community by the proposed algorithm and the real
community of the network, respectively. All three metrics are such that a larger value represents a

better quality community obtained. The specific descriptions of these metrics are shown below.

e NMI [36]: Where NMI is used to measure the similarity of the communities detected by our
proposed algorithm with the real communities of the network. The definition of NMI is shown

below.
21(X;Y)

NMI(X,Y) = X THT

)
H(X) and H(Y) are the entropies of X and Y. I(X;Y) represents the mutual information between
XandY.

e  ARI [37]: Similarly, ARI is used to measure the similarity of the communities detected by our
proposed algorithm with the real communities of the network. It is defined as Eq. (2).

nji i
G- G ER/ ()
ARI = Y o : )
aj; aj;
3G +FZ - EGZE/G)
]

Where n;; = |C; N Cjl, a; = |C;|, and b; = |C;| (i € {1,2,..., p}, j € {1,2,....c}).
*  Q[19,38]: The modularity is defined as follows:

o_ 1 [ Ay k(i)k(j)] b, 3)

T 2m = 2m
i)j

Where ¢; represents the community to which node i belongs. The network G can be described
by the adjacency matrix A = (Aij)nxn, Ajj = 1if (i,j) € E(G) and 0 otherwise. (5Ci,cj islifc; =c;
and 0 otherwise.

3.3. The Importance of Nodes

Measuring the importance of nodes is also an important issue in the field of complex networks
and has a wide variety of applications. Some centralities are important metrics for measuring the
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importance of nodes. For example, degree centrality [39], betweenness centrality [40], closeness
centrality [41], eigenvector centrality [42], pagerank centrality [43], etc. The centralities used in this
paper are described below.

3.3.1. Degree Centrality

Degree centrality [39] measures the importance of a node by its degree. Higher degree of a node
means that the node is more important. It is defined as Eq. (4).

pc(i) = 20 @

However, the above definition does not take into account the size of the network. To solve this problem,
Stanley Wasserman and Katherine Faust [44] proposed the standardized degree centrality. It can be
described as:

pc' (i) = 20 6)

3.3.2. Closeness Centrality

This centrality [41] can reflect the closeness between two nodes. It is defined as follows:

o
Y di,))

jeV(G),j#i

CC(i) = (6)

where d(i, j) represents the shortest distance between node i and node j. When the sum of the shortest
distances from node i to other nodes on the network is shorter, then its closeness centrality is higher.
3.3.3. Mixed Centrality

To fully combine both of these centrality, we introduce the mixed centrality. MC (i) is defined as

Eq. (7).

/

D' (i) #CCl0)
* -
max{eDC/(i) 1ic V(G)} max{e“W) ;i € V(G)}
o[DC' (i) +CC(i)]

max{ewc’wccon Hi € v<c>}

MC(i) =

7)

We test the effectiveness of the mixed centrality. Network efficiency reflects how well-connected

the network is. As a general rule, the better the network connection, the more efficient the network [45].
The following is its definition.

1

T=atn—1) #jezv(c) (i, ))

(8)

Then, we observe the decline rate of network efficiency by deleting node i as a way to determine
whether the node’s importance ranking in the network is justified. Let A; be the decline rate of network
efficiency:

A=1-1 )

"o

where 7; is the efficiency of the network after removing node i and 7 is the original efficiency of
the network. The larger A; is, the more important the removed node i is. It should occur with a
clear correlation between the decline rate of network efficiency and the importance of a node as the
importance of a node decreases. As an explanation of the decline rate of network efficiency when
the node is removed, Figure 1 is shown. Figure 2 shows the correlation between the decline rate of
network efficiency and the importance of nodes ranked by DC', CC, and MC. From Figure 2(c), it can

d0i:10.20944/preprints202407.0562.v1
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be seen that overall the rate of decrease in network efficiency decreases as the MC value of the deleted
node decreases. It is clear that the decline rate of the network efficiency correlates with the importance
of the node for DC’ and MC methods, and MC performs better. The performance of CC is the worst,
and in Figure 2(b), the decline rate of the network efficiency and the importance of the node do not
appear to be correlated. Therefore, we propose MC as an effective metric to measure the importance of
nodes.

5 55 4 24 2621 18

137 71

Figure 1. The network with 27 nodes and 26 edges.
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Figure 2. The correlation between the decline rate of network efficiency and the importance of nodes
ranked by DC', CC, and MC. (a) DC'. (b) CC". (¢) MC'.

3.4. LPA Algorithm

First, we introduce the process of the LPA algorithm [12].

Step 1: We assign a label to each node in the network and the labels are different for different
nodes, i.e., I; = i,and if i # j, then l; # I; (i,j € V(G)).

Step 2: Randomly select node i from V(G) and update the label of this node according to the
following rule: Node i selects one of the most frequently occurring labels from the labels of its
neighboring nodes as the new label of node i. If the label with the most frequent occurrence is not
unique, one is chosen randomly.

Step 3: The algorithm stops when the labels of all nodes are no further updated.
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In Step 2, when the node randomly selects labels it may be the case that a wrong label selection in
one step leads to wrong label selection in each of the following steps. Poor quality communities may
eventually be detected. In section 4.1.2, we will introduce a new rule to address this shortcoming.

4. The Proposed Algorithm (RWBS)

4.1. The Detailed Steps of Algorithm

The proposed algorithm (RWBS) consists of three main steps: random walk based on different
seed nodes, propagation of labels and combination of communities. We explain these three steps in
details below.

4.1.1. Random Walk Based on Different Seed Nodes

Let the transfer probability matrix is P = (pjj)nx»- In general, the probability of node i jumping

to its neighboring nodes is the same, i.e., pij = % For example, in Figure 3, node i has the same
probability of selecting node u and node v as the node for the next jump. But the proposed algorithm
changes the transfer rule of node i. We consider that nodes with larger degree have higher probability
to attract node i, i.e., node i has higher possibility to transfer to node v in Figure 3 (k(v) = 4 > k(u) = 1).

pij is defined as Eq. (10).
i / o)
I v\o
u

Figure 3. A network to explain the transfer probability of node i.

k() * A
pij = W (10)
ueN(i)

After the random walk algorithm is ended, the random walker prefers to stay at nodes with large
degree. If the node with large degree is chosen as the initial node for random walk, there is no doubt
that the random walker will stay at the node with large degree when the random walk stops. It will
result that the information of the nodes with small degree will be ignored. Then, a new rule for the
selection of initial nodes is proposed. To better obtain the structure of the network, we consider the
distance between the nodes when selecting the initial nodes. The selected nodes with small mixed
centrality tend to be located at the fringe of the network. Thus, when the selected seed nodes have the
larger distance between them and have the small mixed centrality, the random walker can walk faster
to the center nodes, and the structure of the network can be obtained faster. To select seed nodes with
the above characteristics, we define the attraction between nodes F(i, ]), which considers the mixed
centrality of nodes and d(i, j).

E(i,j) = MC(;LZ MC(j)
1)

After obtaining the attraction F(i, j) between any two nodes, we select the set of seed nodes S.
For networks with ground-truth, we set the number of seed nodes is the number of communities,
i.e. c. Let community = {community(i) : i € V(G)}, which store the name of the community to which
each node on the network belongs. The pseudo-code for selecting specific seed nodes is shown in
Algorithm 1. For networks without ground-truth, we set the number of seed nodes is /4, and the

(11)

pseudo-code for selecting specific seed nodes is shown in Algorithm 2.
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Algorithm 1 Select seed nodes on the network with ground-truth.

Input:
G = (V(G),E(G)); S = {}; community = {community(i) :i € V(G)}
Output:
S
1: (i,j) = argmin{F(i,j) :i #j € N(G)}; > Randomly select one (i, j) when (7, j) is not unique.
i
. if community(i) # community(j) then
S SU{ij};
com_node = find(community == community(i)) U find(community == community(j));
V(G) «+ V(G) — com_node;
else

S+ SuU{i} (or S+ SU{j});
com_node = find(community == community(i)) (or com_node = find(community ==

® N S aEw N

community(j)))
9. V(G) «+ V(G) — com_node;
10: end if
11: while |S| < c do

12:  Initialize M < +o0;
13:  fori=1to|V(G)|do

14: Initialize sum < 0;
15: Let Node + S;

16: while Node # @ do
17: Select j € Node;
18: sum < sum + F(i, f);
19: Node < Node — j
20: end while

21: if sum < M then
22: M < sum;

23: X<+ i

24: end if

25:  end for

26 S=5SU{x};

27: com_node = find(community == community(x));
28 V(G) « V(G) — com_node;

29: end while

Let 7(0) denote the probability that the random walker stays at each node in the initial state, and
the i-th (1 < i < n) element of 7(0) is 7(0);. The proposed algorithm lets the random walker start from
the seed nodes (S) in the initial state, and if the degree of the node is larger, the probability of starting
from that node is higher. It is shown in Eq. (12).

UM
3(0); _{ Lo ’ (12)
0, else

We use the random walk with restart algorithm (RWR) [46], which is a modification of the random
walk algorithm. The algorithm faces two options at each step of the walk, the first option is to jump
randomly to the neighbor node of the current node, and the other option is to return to the initial node,
i.e., S. It contains a parameter «, which indicates the restart probability. When the number of random
walk steps ¢ is too large, the random walker prefers to stay at the node with large degree. The six
degrees of separation theory states that the path length between any two people in the social network


https://doi.org/10.20944/preprints202407.0562.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 July 2024 d0i:10.20944/preprints202407.0562.v1

9 of 20

is short. That is, everyone in the social network can reach out to others in about six steps or less [47].
Thus, let the random walker stop after walking 6 steps, i.e., t = 5.

5(t+1) = aPT5(t) + (1 - a)3(0), t =0,1,2,...,5 (13)

In this paper, let &« = 0.96. We can obtain the probability & = (v(1),v(2),...,v(n))T that the random
walker stays at each node after the end of the random walk algorithm.

Algorithm 2 Select seed nodes on the network without ground-truth.

Input:
G = (V(G) E(G)); S ={};
Output:
S
1 (i,j) = argmin{F(i,j) : i #j € V(G)}; > Randomly select one (i, j) when (i, j) is not unique.

ij
2 S« SU{i,j};
3 V(G) «+ V(G)-=S;
4: while |S| < T do

5. Initialize M < +o0;

6: fori=1to|V(G)|do

7: Initialize sum < 0;

8: Let Node < S;

9: while Node # @ do
10: Select j € Node;
11: sum < sum + F(i, f);
12: Node < Node — j
13: end while
14: if sum < M then
15: M < sum;

16: X<+ i
17: end if
18: end for

190 S=SU{x};
200 V(G) «+ V(G) —{x};
21: end while

4.1.2. Propagation of Labels

In this model we also consider the triangular to measure the closeness between node pairs. Its
specific structure is shown in Figure 4. If node i and node j have a common neighbor node k, the
triangle is formed between i, j, k, which indicates that they have a close relationship. We measure the
closeness between node i and node j by the number of neighbor nodes between them. The number of
triangles can be expressed by Eq. (14).

i J

Figure 4. The structure of the triangle.

T(i,j) = IN@) N NG, (G f) € E(G) (14)
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where T (i, j) denotes the number of triangular structures formed by node i and node j. The closeness
p(i,j) between node i and node j can be expressed by Eq. (15).
(i) = = i) € E(G) (15
pA1) = e*T(izf) + 1/ /]
For the label propagation in the next, we add a weight w(i, j) to edge (i,j) ((i,j) € E(G)), which
considers the closeness between node i and node j and the probability of staying at node i and node ;.
w(i,j) can be defined by Eq. (16).

wli j) = pli,j) "0
_ @) +o()
2(e~ T 4-1)

(16)

Before performing label propagation, we assign a label to each node. The set of labels of nodes is
settol = {ly,lo,....In}, and I; # I when i # j. The label of the current node is updated according to
the labels of its neighboring nodes in turn, and the label update rule is shown below.

17 = argmax{w(i,j) : j € N(i)} (17)
fj

where [ denotes the new label of node i. When there exists more than one node j such that w(, j) has
a maximum value, then [["*” randomly selects one from the labels of these nodes. The algorithm stops
when the labels of all nodes are no further updated. Let the final community as Com = {Cy, Cy, ..., Cc}.
Where each node in C; (i = 1,2, ..., c) has the same label. The label propagation rule in Eq. (17) solve
the shortcoming of LPA mentioned in Section 3.4.

4.1.3. Combination of Communities

To improve the quality of the detected communities, we use Q as the optimization function to
combine communities. Take any two different communities from Com and the rule of combining
communities is shown in Eq. (18).

(18)

Com — COT}’l*Ci*C]'+(CZ‘UC]‘), AQ(CZUC]) >0
Com, else

where AQ = Q, — Qp, and Q1 (Qy) represents the modularity before (after) combining communities.

4.2. Time Complexity

The pseudo-code of RWBS is shown in Algorithm 3.

Obtain the mixed centrality of nodes on the network, and its time complexity is O(n). Next,
calculate the similarity F(i, j) between any two nodes on the network, which has the time complexity
O(n?). The seed nodes of random walk are obtained by Algorithm 1 or Algorithm 2. For networks
with ground-truth, the time complexity of Algorithm 1 is O(cn). For networks without ground-truth,
the time complexity of Algorithm 2 is O(2 * (n —2) + 3 x (n — 3) + ... + % % 3) ~ O(n?). The time
complexity of obtaining the probability vector ¥ after t steps is O(tm) [10]. In this paper, the random
walker is set to walk 6 steps on the network, so the time complexity of the process is O(m). Assume that
the label propagation requires & iterations to converge. The time complexity of the label propagation
is O(h * max(n,m)). After the end of label propagation, assume that ¢ communities are obtained.
The time complexity of combining any two communities is O(c?). In summary, for networks with
ground-truth, the total time complexity of the RWBS algorithm is O(n?) + O(cn) + O(n) + O(m) +
O(h * max(n,m)) + O(c?) ~ O(n?). For networks without ground-truth, the total time complexity of
the RWBS algorithm is O(n?). So the time complexity of the RWBS algorithm is O(n?).

d0i:10.20944/preprints202407.0562.v1
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Algorithm 3 RWBS
Input:
G = (V(G),E(G));

The undirected network G with n nodes and m edges;
Output:

Com;
: Obtain the mixed centrality of all the nodes;
: Get F by Eq. (11);
: Select the set of seed nodes S according to Algorithm 1 or Algorithm 2;
. Initialize 7(0);
: whilet < 6do

Run the restart random walk algorithm according to Eq. (13);
end while
: while E(G) # @ do

Choose (i,j) € E(G);

10:  Calculate the weight w(i, j) of edge (i, j) by Eq. (16);

11:  E(G) < E(G) — (i,));

12: end while

13: Assign a mutually different label to each node and let the set of labels is L(0).
14: while L(A) # L(A —1) do

15 while V(G) # @ do

16: Select node i € V(G);

17: Update the label of node i according to Eq. (17);
18: V(G) < V(G) —i;

19:  end while

20: end while

21: Obtain Com according to the label;

22: fori =1to |Com|—1do

© O NS Ul W N e

23 forj=i+1to|Com|do
24: if AQ(C;UC;j) > 0 then

25: Com « Com — C; — Cj + (C;UCj);
26: end if

27 end for

28: end for

29: Obtain the final community structure Com.

4.3. A Simple Example

To explain the RWBS algorithm in details, we give an sample network to illustrate how it detects
communities. The sample network is shown in Figure 5(a), which contains 9 nodes and 15 edges. Figure
5(b) shows the real community structure of this sample network, which contains two communities
C1 =[1,2,3,4,5] and C; = [6,7,8,9]. The degree, closeness, and mixed centrality of the nodes are
calculated, and the results are shown in Table 2.

I 7 I 7
5%?! 6é§>9 5%?! 6é!>9
4 3 8 4 3 8
(@) (b)

Figure 5. (a) The sample network with 9 nodes and 15 edges. (b) The real community structure of the
sample network.
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Table 2. The information of nodes

Information 1 2 3 4 5 6 7 8 9
k(i) 3 4 4 3 3 4 3 3 3
DC (i) 0.3750 0.5000 0.5000 0.3750 0.3750 0.5000 0.3750 0.3750 0.3750
cC (Z) 0.0625 0.0667 0.0833 0.0625 0.0500 0.0769 0.0556 0.0556 0.0556

MC(i) 0.8643 0.9835 1.0000 0.8643 0.8536 0.9936 0.8583 0.8583 0.8583

First, the transfer probability matrix P can be obtained by Eq. (10), and it is shown in Eq. (19).

044030000
5045530000
205032000
047 0F0000
P=13& 20500000 (19)
005000333
000002033
00000¢%30%
00000¢%330

The similarity between nodes can be calculated by Eq. (11), and it is shown in Figure 6. Because
the sample network contains two communities, let the number of seed nodes is 2, and obtain the
specific seed nodes by Algorithm 1. From Figure 6, the similarity between node 5 and nodes 7, 8, 9
all have minimum value, node 5 can be selected as seed node. Moreover, we randomly select node 9
between 7, 8, 9 as seed node. Finally, S = {5,9}.

1/0.0000 0.4322 21 0.4645 | 0.2871 | 0.2871 | 0.2871

2 0.0000 0.4943 | 0.3070 0.3070 | 0.3070

3 0.0000 0.4634 0.4646 | 0.4646 | 0.4646

404322 0.0000 0.4645 | 0.2871 (0.2871 | 0.2871 0.6

5 9 0.4634 21 0.00000.3079 0.2140 | 0.2140 | 0.2140 0.5

Node

60.4645|0.4943 0.4645 0.3079 | 0.0000 04

710.2871{0.3070 | 0.4646 | 0.2871 | 0.2140 0.0000 [{IRS

%

0.2871 0.3070 | 0.4646 | 0.2871 | 0.2140 8 0.0000 {02

910.2871{0.3070 | 0.4646 | 0.2871 | 0.2140 858 LEEEN 0.0000

1 2 3 4 5 6 7 8 9
Node

Figure 6. The value of F(i, j).

We assign a data pair (v;,];) to each node. v; denotes the name of the node. Let 7(0) =
(0,0,0,0, %, 0,0,0, %)T 7 and w can be obtained when the algorithm ends (Four decimal places of 7
are retained). Where 7 = (0.0861,0.1318,0.1275,0.0861,0.1164,0.1471,0.0886, 0.0886,0.1279)T, and w
is shown in Figure 7. The label propagation process is shown in Figure 8. From Figure 8, the sample
network contains two communities (C; = [1,2,3,4,5] and C; = [6,7,8,9]), which is consistent with the
real community structure of this network. The modularity Q of this situation is 0.4244. If C; and C;
are combined into one community, then AQ = —0.4244 < 0. Thus, C; and C; are the final community
structure.
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0.12
1{0.0000 HONERCE 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000
2 JUOEECH 0.0000 [OSSERANKICECAIRILEN 0.0000 | 0.0000 | 0.0000 | 0.0000 0.1

3 (IRRESA 0.0000
410.0000 [ORIEE) 0.0000
(RUEER 0.0000

6{0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 KURERIIS(IEEANIR AR

0.0000 0.0000 | 0.0000 | 0.0000

0.0000 | 0.0000 | 0.0000 | 0.0000

0.08

0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 0.06

Node
o

0.04

7 {0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 KIBKEEH 0.0000 0.0954

8{0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 KURKIEE] 0.0000 [OXNERES 0.02

9 {0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 KINPARBRVKIEEERNIERES 0.0000

Node

Figure 7. The value of w when S = {5,9}.

Figure 8. The label propagation process when S = {5,9}.

5. Experiments

To evaluate the performance of RWBS algorithm in finding communities, we conducted exper-
iments on the real-world and synthetic networks, respectively. For both the real-world networks
with-ground truth and the synthetic networks, the community structure of these networks is already
known, NMI and ARI are used to measure the similarity between the communities detected by
RWBS and the real community structure. Higher values of these metrics indicate better quality of
communities. For real-world networks without ground truth, the modularity (Q) is used to measure
the quality of the detected communities, since we are not sure about the community structure of such
networks.

5.1. Experiment on Real-World Networks

The following seven different real-world networks are chosen. The Karate, Dolphin, Political, and
Football networks are networks with ground-truth. The Last, PGP, and Email networks are networks
without ground-truth. In Table 3, we give information about these networks.

Table 3. The information of real networks

Network n m kmax <k>

c
Karate 34 78 17 4.588 2
Dolphin 62 159 12 5.129 2
3
1

Political 105 441 25 8.400

Football 115 616 12 10.661 2
Last 8003 16824 46 4.204 -
PGP 10K 24K 206 4.558 -

Email 33K 180K 1383 10.732 -
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1. Karate network [48]: It is a social network with 34 members and 78 member relationships
constructed by Zachary by observing the social relationships between members of a karate club
at a university in the USA. Two members are considered to have edges to each other if they are
frequently seen together in settings other than club activities. The club split into 2 smaller clubs
with their own core because of a dispute between the director and the coach.

2. Dolphin network [49]: In 2003, Lusseau et al. observed the habits of 62 broad-snouted dolphins,
and they found that these dolphins showed specific patterns of interactions and constructed a
social network containing 62 nodes. If two dolphins are frequently active together, an edge exists
between the two corresponding nodes in the network.

3. Political network [50]: The network is built by Krebs from pages of American politics-related
books sold on Amazon. Its nodes represent American politics-related books, and edges represent
a certain number of readers who have purchased both books. The nodes on the network are
categorized as "liberal”, "conservative" and "centrist". These divisions were manually analyzed by
Newman based on the views and ratings of books on Amazon.

4.  Football network [5]: The network shows games played in the American College Football League.
The nodes in the network represent 115 teams, and edges represent two teams that have played a
game against each other.

5. Last network [51]: This is a network based on the friendship between Last.fm users in Finland.

6. PGP network [52]: The network is an undirected network of bidirectional trust connections where
each node contains both public and private keys.

7. Email network [53]: The network is built on the basis of relationships between users who email
each other.

NMI and ARI are used to measure the quality of the communities, which are detected by RWBS
on the network with ground-truth. The number of seed nodes affects the detected community structure
for different networks. The results of the comparison between the communities detected by RWBS and
the real communities of the network are shown in Figure 9.

For the Karate network, it contains two communities, so let the number of seed nodes be 2. In
this case, NMI = 1 and ARI = 1. As can be seen from Figure 9, the community detected by RWBS at
this case is consistent with its real community structure. For the Dolphin network, when the number
of seed nodes is 2, NMI = 0.8889 and ARI = 0.9348. RWBS only divides node 40 to the wrong
community and divides the other nodes to the correct community. This is almost consistent with
the real community structure of the Dolphin network. For the Political network, it contains three
communities, so let the number of seed nodes be 3. In this case, NMI = 0.7365 and ARI = 0.7648. The
real community structure of the network is shown in Figure 9(f), which contains three communities.
Although the proposed algorithm detects the number of communities of this network is two, the
quality of the obtained communities is satisfactory. For the Football network, the number of seed
nodesis 12, NMI = 0.8671 and ARI = 0.7530. RWBS detected that it contains 9 communities, and the
division result is consistent with its real community structure. In summary, RWBS can find satisfactory
communities when the number of seed nodes is ¢ for networks with ground-truth.

To further show the superiority of RWBS in detecting communities, we selected Walktrap [10],
LPA [12], KL [13], SLPA [31], CDME [34], and RIIM [17] as benchmark algorithms. Table 4 and Figure
10 show the results of the comparison between RWBS and benchmark algorithms in terms of NMI and
ARI. From Table 4 and Figure 10, it can be seen that the results on the networks with ground-truth
obtained by RWBS have maximum values in terms of NMI and ARI. Moreover, the division result
obtained by RIIM on the Karate network is consistent with its real community structure. CDME (LPA
and CDME) can also achieve satisfactory results on the Karate (Football) network. Walktrap detects
poor community structures on these four networks.
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Figure 9. Comparison results obtained by RWBS with the real division result on real-world networks
with ground-truth. (a) The division result obtained by RWBS (NMI = 1, ARI =1, ¢ = 2). (b) The
real community structure of the Karate network (¢ = 2). (¢) The division result obtained by RWBS
(NM1I1=0.8889, ARI = 0.9348, ¢ = 2). (d) The real community structure of the Dolphin network (c = 2).
(e) The division result obtained by RWBS (NMI=0.7365, ARI = 0.7648, c = 2). (f) The real community
structure of the Political network (¢ = 3). (g) The division result obtained by RWBS (NMI=0.8671,
ARI = 0.7530, ¢ = 9). (h) The real community structure of the Football network (c = 12).

We use Q as the metric to measure the quality of detected communities on networks without
ground-truth. We let the number of seed nodes be 1n/4. Comparison results between RWBS and
benchmark algorithms in terms of Q are shown in Table 5 and Figure 11. RWBS can obtain the
maximum Q values on Last and Email networks, CDME can also achieve satisfactory Q values on
both networks. For PGP network, RIIM can obtain the maximum Q value. RWBS, LAP, and CDME
can also obtain large Q (they all have Q values more than 0.7).
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Table 4. Comparison results on real networks with ground-truth (The values of LPA, SLPA, and CDME
are averages obtained by running 10 experiments independently).

Karate Dolphin
Approaches
NMI ARI NMI ARI
RWBS 1 1 0.8889 0.9348
LPA 0.626870.2134 0.549970.2500 0.530570.0450 0.285710.0255
KL 0.8372 0.8823 0.4599 0.4077
Walktrap 0.1507 0.1722 0.0374 -0.0213
SLPA 0.596770.3174 0.606670.3646 0.623570.0873 0.676970.0776
CDME 0.993170.0218 0.994570.0175 0.559770.0493 0.391110.0576
RIIM 1 1 0.6287 0.4391
Political Football
Approaches
NMI ARI NMI ARI
RWBS 0.7365 0.7648 0.8671 0.7530
LPA 0.503370.0207 0.569070.0673  0.858210.0089 0.711310.0304
KL 0.6409 0.6987 0.4560 0.1437
Walktrap 0.5478 0.6661 0.2132 -0.0050
SLPA 0.544870.0142 0.651870.0238 0.812410.0286 0.616570.0679
CDME 0.564410.0208 0.6615170.0279  0.842210.0364 0.750610.1306
RIM 0.5427 0.6719 0.7931 0.4442
1.04 1.0
0.8 0.8 -
0.6 4 0.6 4
= 3
0.4 4 0.4
0.2 4 0.2 4
0.0 4 0.0 4
Kall'ale Dol;:hin Po]iltical Foo;ball Ka;ate Do]})hin Pnliltica] Fooltba]]
Network Network
() (b)

Figure 10. Comparison results between RWBS and benchmark algorithms on networks with ground-
truth in terms of NMI and ARI (The values of LPA, SLPA, and CDME are averages obtained by
running 10 experiments independently). (a) NMI. (b) ARI.

Table 5. Comparison results on real networks without ground-truth (The values of LPA, SLPA, and
CDME are averages obtained by running 10 experiments independently).

Last PGP Email
Approaches
c Q c Q c Q

RWBS 183 0.7671 197 0.7094 62 0.4102
LPA 157478  0.657470.0017 1967716 0.742570.0056 1686727 0.325070.0141
KL 2 0.4017 2 0.4290 2 0.2703
Walktrap 1358 0.4783 1753 0.4335 353 0.3273
SLPA 1251717 0.598870.0042 1629716 0.694770.0038 525723  0.392610.0123
CDME 627742  0.759970.0084 580744 0.7353170.0074 31272  0.400170.0116
RIIM 606 0.4457 560 0.7625 521 0.3014



https://doi.org/10.20944/preprints202407.0562.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 July 2024 d0i:10.20944/preprints202407.0562.v1

17 of 20

—=—RWBS
—&—LPA
—h— KL
—w¥— Walktrap
—&—SLPA
—<— CDME
—»—RIIM

0.8 4

0.6 4

0.4 4

0.2+

0.0

T T T
Last PGP Email
Network

Figure 11. Comparison results on networks without ground-truth in terms of Q (The values of LPA,
SLPA, and CDME are averages obtained by running 10 experiments independently).
5.2. Experiment on Synthetic Networks

We synthesize networks with the community structure by the LFR model [54]. Next, we further
test the effectiveness of RWBS on these synthesized benchmark networks. Parameters of this model
are shown in Table 6.

Table 6. Parameters of LFR

Networks n kmax <k> Cupin Cumax #

LFR 1 100 20 10 20 30 0.1
LFR 2 1000 50 30 40 50 0.1
LFR 3 2000 50 30 45 50 0.1

We use RWBS and the benchmark algorithm to detect the community, and use NMI and ARI to
measure the quality of the detected communities. The comparison results are shown in Table 7 and
Figure 12. The community structures detected by RWBS, LPA, Walktrap, and SLPA on these three
networks are completely consistent with their real community structures. The community structures
detected by CDME and RIIM do not completely consistent with their real community structures, but
satisfactory results can still be obtained. KL detected poor communities on these three networks.

Table 7. Comparison results on synthetic networks (The values of LPA, SLPA, and CDME are averages
obtained by running 10 experiments independently).

LFR 1 LFR 2 LFR 3

Approaches

NMI ARI NMI ARI NMI ARI
RWBS 1 1 1 1 1 1
LPA 1 1 1 1 1 1
KL 0.6233 0.4627 0.4565 0.0881 0.4237 0.0462
Walktrap 1 1 1 1 1 1
SLPA 1 1 1 1 1 1
CDME 0.979810.0596  0.968910.0948 0.992710.0206 0.981910.0537 0.994310.0169 0.985610.0430

RIM 0.9325 0.9004 0.9894 0.9648 0.9959 0.9877
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Figure 12. Comparison results between RWBS and benchmark algorithms on synthetic networks in
terms of NMI and ARI (The values of LPA, SLPA, and CDME are averages obtained by running 10
experiments independently). (a) NMI. (b) ARI.

6. Results and Discussion

In this study, we propose a new random walk algorithm based on different seed nodes for
community detection, named RWBS. The mixed centrality MC is proposed to measure the importance
of nodes. According to the value of MC, the similarity F(i, j) between nodes is calculated. Let the
number of seed nodes of networks with (without) ground-truth is c (n/4). For networks with and
without ground-truth, based on F(i, j), we propose algorithms to obtain seed nodes of the random
walk, respectively. Furthermore, RWBS changes the transition probability matrix of the random walk
algorithm and sets the number of steps of random walk to 6 according to the six degrees separation
theory. We use a new label propagation rule that lets labels be updated in a fixed direction. Finally;,
modularity (Q) is chosen as an optimization function to combine communities, which can optimize
the structure of communities. Experimental results on the network also verify the superiority of the
RWBS algorithm.

We hope to generalize the RWBS algorithm to other networks in the future, such as directed
networks, signature networks, weighted networks, etc. Moreover, we also hope to discover other
strategies to find random walk seed nodes for better community division results.
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