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Abstract: The exponential growth of user-contributed data provides a comprehensive basis for assessing 

collective perceptions of landscape change. A variety of possible public data sources exist, such as geospatial 

data from social media or Volunteered Geographic Information (VGI). Key challenges with such ‘opportunistic’ 

data sampling are variability in platform popularity and bias due to changing user groups and contribution 

rules. In this study, we use five case studies to demonstrate how intra- and inter-dataset comparisons can help 

to assess the temporality of landscape scenic resources, such as identifying seasonal characteristics for a given 

area, or testing hypotheses about shifting popularity trends observed in the field. By focusing on the 

consistency and reproducibility of temporal patterns for selected scenic resources and comparisons across 

different dimensions of data, we aim to contribute to the development of systematic methods for disentangling 

the perceived impact of events and trends from other technological and social phenomena included in the data. 

The proposed techniques may help to draw attention to overlooked or underestimated patterns of landscape 

change, fill in missing data between periodic surveys, or corroborate and support field observations. Despite 

limitations, the results already provide a comprehensive basis for developing indicators with a high degree of 

timeliness for monitoring perceived landscape change over time. 

Keywords: spatial-temporal, landscape change; opportunistic data; photo content; perception 

 

1. Introduction 

It is common to think of landscape as a specific arrangement of objects in space. These objects 

can then be measured, inventoried, and mapped for purposes of environmental planning and natural 

resource management. To shift the perspective to a process-oriented view, anthropologist Tim Ingold 

[1] coined the term landscape temporality. According to Ingold, this concept encompasses both the 

human viewer component and the physical manifestation of objects in space and time. Landscape 

temporality can therefore refer to both human and phenomenal change. This is similar to concepts in 

landscape and urban planning, where ‘experiential’ approaches aim to describe how people perceive 

and interact with the landscape [2]. It is generally accepted that both human and phenomenal change 

can significantly influence human-environment interactions and the perceived meaning and value of 

landscapes [3]. However, the human viewer component in particular complicates the assessment of 

landscape scenic resources. Landscape and environmental planners need to assess not only physical 

changes (including ephemeral features), but also how people respond to these changes, which in turn 

affect landscapes. This includes temporal characteristics, trends, and collective perceptions of 

landscape change. Consequently, both the human viewer and the landscape are important issues in 

landscape scenic resource assessment. In recent years, algorithms and the global spread of 

information increasingly influence the behavior of large groups of people and how they engage with 

the landscape and its scenic resources [4]. For this reason, social media and the dissemination of 

information have become a new component that planners need to consider. 

To systematize these three components for landscape change assessment, we propose the 

application of the Social-Ecological-Technological System (SETS) framework [5] to temporal geosocial 

media analysis. As a means to demonstrate and discuss a variety of situations, we examine temporal 
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patterns from five platforms (Reddit, Flickr, Twitter, Instagram and iNaturalist) and for five case 

studies. In particular, we interpret the results from a human-centered perspective, with the aim of 

disentangling the human viewer component from several other superimposed patterns in the data, 

such as algorithmic bias, platform dynamics, or shifting perceptual preferences. The results can help 

to corroborate or complement traditional scenic resource assessments. The presented approach can 

also extend the means to include newer phenomena resulting from changing communication patterns 

in a globally connected world. 

2. Literature Review 

In an attempt to improve the empirical assessment of ephemeral landscape features, Hull & 

McCarthy [6] proposed a concept they called “change in the landscape”. While the authors give a 

specific focus to wildlife, they describe a wide range of processes associated with change: “[…] day 

changes to night, autumn to winter and flowers to fruit; there is plant succession, bird migration, 

wind, rain, fire and flood [...]” (ibid., p. 266). These changes are characterized by nine types, such as 

slow changes (gentrification of neighborhoods, growth of vegetation), sudden changes (weather 

fluctuations), regular changes (seasonal in plants, animal migration, sunrises), frequent (presence of 

wildlife, wind, sounds), infrequent (fire, floods), long duration (buildings, roads, consequences of 

natural disasters), medium duration (harvesting of trees, seasons), ephemeral-irregular, -occasional, 

and -periodic (wildlife, weather, hiking, evidence of other hikers). In their conclusion, the authors 

warn that ignoring these conditions leads to biased assessments of landscape quality. In practice, 

however, common temporal assessments continue to focus on physical manifestations of change, 

such as those observed in biotopes [7], which are often assessed using remote sensing technologies 

[8]. 

A number of approaches investigate people's perceptions, attitudes, and responses to 

environmental change and how people engage with the landscape over time [9]. With the emergence 

of large collections of user-generated content shared on the Internet, several studies have attempted 

to assess temporal aspects. Juhász & Hochmair [10] compare temporal activity patterns between 

geolocated posts shared on Snapchat, Twitter, and Flickr, and find that the different active groups on 

these platforms are a responsible for significant differences in the observed spatial patterns. Better 

understanding the source and nature of these differences has become a central focus of research 

around VGI. Paldino et al. [11] study the temporal distribution of activity by domestic tourists, 

foreigners, and residents in New York City, analyzing daily, weekly, and monthly activity patterns 

and differences between these groups. Mancini et al. [12] compare time series collected from social 

media and survey data. They conclude that day trips have the greatest impact on the differences 

between survey and social media data. Tenkanen et al. [13] show how Instagram, Flickr, and Twitter 

can be used to monitor visitation to protected areas in Finland and South Africa. Their findings 

suggest that the amount and quality of data varies considerably across the three platforms.  

In a relatively new direction, ecologists are increasingly relying on unstructured VGI for 

biodiversity monitoring [14]. Rapacciuolo et al. [15] demonstrate a workflow to separate measures of 

actual ecosystem change from observer-related biases such as changes in online communities, user 

location or species preferences, or platform dynamics. In particular, they find that trends in 

biodiversity change are difficult to separate from changes in online communities. In a recent study, 

Dunkel et al. [16] examined reactions to sunset and sunrise expressed in the textual metadata of 500 

million photographs from Instagram and Flickr. Despite significant differences in data sampling, 

both datasets revealed a strong consistency in spatial preference patterns for global views of these 

two events. Platform biases were observed in locations where user groups differed significantly, such 

as for the Burning Man festival in Nevada. The festival location ranked second globally for sunrise 

viewing on Instagram, while Flickr users shared very few photos, a pattern that is explained by the 

different user composition of these platforms. 

As becomes obvious with the above review, a key task in analyzing user-generated content is to 

reduce bias in the data to increase representativeness. Bias can include factors such as uneven data 

sampling affected by population density, or highly active individual users skewing patterns through 
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mass uploads, as well as changes in platform incentives that affect how and what content is shared 

[12]. There are a number of methods that can help compensate for these effects. However, these 

methods can also introduce bias and further reduce the amount of data available, making 

interpretation more difficult. For this reason, [15] divide approaches into two broad categories that 

are not mutually exclusive but tend to have opposite effects: Filtering and aggregation (ibid.). 

Filtering increases precision, which helps to derive more reliable and useful inferences but also tends 

to reduce the available variance, richness, and representativeness of the data. Aggregation, on the 

other hand, minimizes bias in the overall data by, for example, increasing quantity through sampling 

from a larger, more representative number of observers and by integrating data from different 

platforms. This comes at the expense of precision. Aggregation and filtering approaches can be 

combined [17]. 

A gap in the current literature is how to systematize the application of filtering and aggregation 

approaches for new studies. The number of possible biases in data is large (e.g., [14]), and it is not 

possible to know a priori which biases affect the data. There is a lack of a categorization scheme to 

help understand the phenomena that affect sampling at specific times and places. A first step in this 

direction is the consideration of any user generated data as ‘opportunistic‘ sampling and the 

contributing users as ‘observers’. Both terms are increasingly used in biodiversity monitoring [14,18]. 

Opportunistic in this case refers to the degree to which data are sampled without predefined 

systematic contribution rules or objectives. The classification is not abrupt, and a continuum of 

platforms exists between fully standardized and rigorous survey protocols at one end (e.g., the 

United Kingdom Butterfly Monitoring Scheme, [19]) to semi-structured data (iNaturalist or eBird as 

volunteered geographic information aimed at collecting data for a specific purpose), to fully 

crowdsourced data (Flickr, Twitter, Reddit, Instagram as geosocial media) [20]. The ranking of 

platforms along this continuum can be judged by the homogeneity of contributing user groups and 

contribution rules. In summary, the above research suggests that opportunistic data tend to better 

reflect the user's own value system, including individual preferences for activities and observational 

behavior, making them suitable for assessing landscape perception and scenic resources. 

This openness typically results in larger volumes of observations than are typically available 

from more systematized field surveys, but also leads to more biases that can negatively affect the 

reliability and validity of the data. In species monitoring, [15] several solutions to reduce bias, such 

as reverse engineering the ‘survey structure’ (1), finding the lowest common denominator for 

comparison (2), modeling the observation process (3), and comparing to standardized data sources 

(4). Applying these solutions to landscape perception, however, requires a broader set of 

considerations for disentangling results. While ecological changes are critical for landscape and urban 

planners, changes in the observer and the observation process itself are equally important. The latter 

covers effects introduced by the use of global social media and information spread. Examples include 

mass invasions [4] and algorithmic bias [21], which can have negative effects on landscapes and their 

perception. 

This research presents five case studies. We discuss a system for categorizing three broad 

umbrella biases found in opportunistic data: Ecological, Social, and Technological. These biases are 

used to assess perceived landscape change from different perspectives. Rather than looking at a single 

dataset in detail, the cross section allows us to test the system under different parameters. The 

categories are borrowed from the Social-Ecological-Technological System (SETS). We demonstrate 

how the framework can help analysts disentangle three major system domains when interpreting 

and making sense of temporal patterns in community-contributed opportunistic data sources. 

3. Materials and Methods 

The SETS framework is a system consisting of three poles, the social (S), ecological (E), and 

technological (T) pole [22]. So-called couplings exist between these poles. Couplings can be thought 

of as a ‘lens’ for understanding the dynamics between different parts of complex ecosystems. 

Perceptions of landscape change are part of such a system. To date, research on landscape perception 

has mainly focused on two of these poles: the physical landscape and the perceiving human (see [23]). 
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The third technological pole of the SETS framework has usually been subsumed under physical 

landscape assessment, which may include changes such as infrastructure. However, Rakova & Dobbe 

[24] emphasize that algorithms have become a critical part of the technological pole. Algorithms 

increasingly affect the interactions between society and ecosystems on a global scale. From this 

perspective, it makes sense to consider technology as a separate third component. Using geosocial 

media or VGI as an interface for data collection means that technological couplings can be identified 

as imprints in data (shown on the right side of Figure 1). Conversely, people communicating on these 

platforms use their senses and social context (the social dimension, S) to choose what to share and 

when to share it. Lastly, scenic resources and the environment (the ecological dimension, E) provide 

incentives that affect people's agency and their ability to perceive and respond in a particular way.   

 

Figure 1. SETS framework for separating three types of couplings influencing opportunistic data 

collection through geosocial media and VGI over time (left) and space (right). 

At the same time, more complex feedback loops exist between these poles that require special 

attention. In particular, technological phenomena such as algorithms influence individual social-

ecological interactions [25]. People gather information from all sources when making travel 

arrangements, for example. Their choices may be influenced by physical characteristics of the 

landscape, such as scenic quality, as an ecological coupling (hereafter referred to as E). Or by reports, 

reviews, and recommendations from other travelers, which can be seen as an example of a social 

coupling (S). Such a spatial discourse has effects over time on perceived values, norms, or the ways 

cultures perceive scenic beauty [2]. Finally, algorithms that promote some information while 

downgrading others can be described as a technological coupling (T). Especially in the latter case and 

for geosocial media, many algorithms and platform incentives have known and unknown effects on 

user behavior [26,27]. The sum of these experiences defines how information about the environment 

is perceived and communicated. Geosocial media and VGI therefore can have a profound influence 

on long-term dynamics. Through repetition and reinforcement, algorithmic couplings increasingly 

manifest as actual changes in the social or ecological domain. Van Dijck [25] already argued that 

networks such as Flickr "actively construct connections between perspectives, experiences, and 

memories", but also warned that "the culture of connectivity [...] leads to specific ways of 'seeing the 

world'" (p. 402). For example, by rewarding particularly stunning landscape photographs with "user 

reach" on social media, some landmarks are already under unusual visitation pressure [4]. 

Figure 1 illustrates geosocial media and VGI as a core component and as indistinct from SETS. 

This concept helps to consider these algorithms together with their social (including institutional) 

and ecological couplings that define the broader ecosystem in which they operate [24,28]. To draw 

useful conclusions and derive actionable knowledge, planners need to assess all three poles. 

However, approaches to disentangling the effects of these poles vary widely depending on the data 

source and analysis context. To explore these different analytical contexts and data characteristics for 

assessing perceived landscape change, we use data from five platforms in five small case studies. The 

case studies illustrate a variety of tasks, challenges, and pitfalls in early exploratory parts of analyses. 

We discuss these case studies from a SETS perspective. The discussion is sorted based on the 

complexity of identified data couplings, from less complex to more complex. Table 1 lists platforms 

and number of observations collected for each study. 
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Table 1. Overview of case studies and collected data. 

Case Study Instagram Flickr Twitter Reddit iNaturalist 

(1) “Mass invasions” 1.5 M 

2007-2019 

/ / / / 

(2) “National parks” / / / 345,900 

2007-2023 

/ 

(3) “Cherry blossoms” / 100,700 

2007-2018 
1.6 M 

2007-2018 

/ / 

(4) “Biodiversity hotspots” 997,200 

2007-2020 

915,800 

2007-2022 

221,100 

2007-2022 

/ 117,000 

2007-2022 

(5) “Red Kite” / 22,080 

2007-2023 

/ / 9 M 

2007-2023 

Data collection for these studies was performed using the official application programming 

interfaces (APIs) provided by the platforms. Only publicly shared content was retrieved. With the 

exception of the Reddit data, we only selected content that was either geotagged or contained some 

other form of explicit reference to a location or coordinate. To reduce the effort of cross-platform 

analysis, we mapped the different data structures and attributes of all platforms to a common 

structure for comparison.1 In addition, the data were transformed into a privacy-friendly format that 

allows quantitative analysis without the need to store raw data [29]. As a result of this data abstraction 

process, all measures reported in this paper are estimates, with guaranteed error bounds of ±2.30%. 

To assess temporal patterns, we used either photo timestamps (Flickr), time of observation 

(iNaturalist), or post publication date as a proxy (Twitter, Instagram, Reddit). In the following, we 

keep the discussion of data collection and processing steps to a necessary minimum and refer readers 

to Supplementary Materials S1-S9 for commented code, data collection, processing, and visualization. 

The first study focuses on data from Instagram, as a single data source, and a specific 

phenomenon related to landscape change that is observed at 14 selected vantage points across 

Europe. As a second example, we looked at Reddit, a discussion platform that does not support 

explicit georeferencing. However, spatial information can be inferred, for example, from subreddits 

that refer to different spatial regions. We manually matched 46 subreddits related to US national 

parks and collected comments and posts from 2010 to 2022 (S1-S4). This dataset contains 53,491 posts 

and 292,404 comments. Due to significant differences in data availability, we limit our analysis to the 

20 national parks that receiv the most communication exposure. The third study focuses on a single 

ecological phenomenon (cherry blossoming) and examines seasonal and long-term variation across 

two platforms, Flickr and Twitter (S5). The fourth study illustrates cross-platform analysis by 

sampling and aggregating data from Instagram, Flickr, Twitter, and iNaturalist for 30 biodiversity 

hotspots in Germany. The total number of photos and observations is 2,289,722. In this case study, 

we do not apply any filtering techniques, and the results show the absolute frequencies of photos, 

tweets, and animal and plant observations, respectively (S6). In the last case study, we look at global 

observations of the Red Kite (Milvus milvus) and use a variety of filtering techniques to examine 

temporal patterns (S7-S9). Specifically, we apply the signed chi normalization to temporal data. This 

equation was originally developed by Visvalingam [30] to visualize overrepresentation and 

underrepresentation in spatial data. 

𝑐ℎ𝑖𝑡 =
((𝑜𝑏𝑠𝑡 ∗ 𝑛𝑜𝑟𝑚) − 𝑒𝑥𝑝𝑡)

√𝑒𝑥𝑝𝑡

          𝑛𝑜𝑟𝑚 =
𝛴𝑒𝑥𝑝

𝛴𝑜𝑏𝑠
 

Applying this normalization allows analysts to distinguish properties of filtered subsets of data 

from phenomena or biases found in the entire data set [30]. The two components can also be described 

as a generic query (expected) and a specific query (observed). A specific query might be the frequency 

of photographs related to a particular topic or theme (e.g., all photographs of the Red Kite). A generic 

 
1 https://lbsn.vgiscience.org/ 
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query, on the other hand, ideally requires a random sample of data. Observed and expected values 

are usually evaluated for individual "bins", which can be spatial grid cells or temporally delimited 

time periods. Based on the global ratio of frequencies between observed and expected (norm), 

individual bins are normalized. Positive chi values indicate overrepresentation and negative values 

indicate underrepresentation of observations in a given time interval. Randomness of the generic 

query is typically difficult to achieve due to the opaque nature of APIs. For example, it is not always 

clear how data has been pre-filtered by algorithms before being served to the user [16]. The easiest 

way to ensure randomness is to sample all data from a platform. For Flickr and iNaturalist, this was 

possible, and all geotagged photos and observations were queried for the period from 2007 to 2022. 

The resulting dataset we use for “expected” frequencies consists of metadata 9 million iNaturalist 

observations. Observed frequencies are based on 22,075 Flickr photos and 20,561 iNaturalist 

observations. All data and code used to generate the graphs are made available in a separate data 

repository [31]. 

4. Results and Discussion 

4.1. Mass invasions (Instagram) 

For the first case study, we looked for a phenomenon called "mass invasions" by Oian et al. [4], 

which refers to landscape changes triggered by technology and the use of geosocial media. We 

expected that such a phenomenon would be easier to identify in the data collected from geosocial 

media and VGI, since the phenomenon under observation and the interface for data collection are 

closely related. We focused on a selected list of 14 scenic places in Europe that were known to be 

affected. This analytical context is part of a master's thesis by Tautenhahn [32]. The term is used to 

describe a sudden increase in visitors that cannot be explained without taking into account geosocial 

media and the global spread of information. Here, the effect of people crowding certain places can be 

described as primarily belonging to the social (S) domain. Crowding existed before social media (see 

[33]). Likewise, without the existence of scenery and beauty at these locations, mass invasions might 

not have occurred in the first place. Thus, the ecological (E) and social (S) domains can be seen as a 

necessary backdrop for this coupling. However, platforms, algorithms, and the Internet as technology 

(T) seem to reinforce and incentivize certain behaviors that produce a particular outcome in these 

places.  

Data collection and the analysis for this study presented relatively few challenges. The author's 

a priori knowledge (a list of places) and the nature of the platform, which enables place-based 

communication through a named gazetteer of user-contributed places, could be used directly to 

query and filter data. For the given 14 places, all Instagram posts were retrieved, starting in 2019 and 

going backward in time. Figure 2 shows time series visualizations for a subset of four of these places. 

The graphs were generated based on the total monthly Instagram post volume. In addition, the single 

month with the highest frequency of posts and the 12-month moving average are shown. 
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Figure 2. Time series visualization (Instagram) for selected vantage points in Europe that are known 

to have shown “Mass invasions” (see Tautenhahn 2019). 

To begin exploring questions of why and how, a common first step in interpreting such graphs 

is to formulate hypotheses [34]. Comparing relative differences is an important key task, as absolute 

post volume is not a robust and reliable measure [35]. We accounted for this fact by scaling the y-axes 

between the minimum and maximum values in Figure 2, and by omitting absolute values. Based on 

visual comparison, the relative differences between the four graphs can be grouped into three 

categories. Dark Hedges, a famous avenue of old beech trees in the UK made famous by the TV series 

"Game of Thrones", shows a continuously increasing trend that also starts relatively early compared 

to the other locations. In contrast, the two viewpoints Trolltunga and Preikestolen in Norway both 

show a strong seasonal trend, peaking in the summer months. For these two sites, the first significant 

peak in Instagram post volume also appears relatively late in 2016-2017. As an outlier, the Devil's 

Bridge in Germany, known for its distinctive water reflection that forms a full circle, shows an 

increasing trend in Instagram posts that peaks in the fall of 2017 and then suddenly declines. In 

contrast to the other three locations, the Devil's Bridge graph shows no noticeable seasonal patterns. 

The formulation of useful hypotheses typically requires the consideration of additional data. For 

Devil's Bridge, a review of infrastructure changes reveals that the bridge was undergoing renovations 

from 2018 to 2021 [32, p. 55], a finding that can explain the declining trend in Instagram photos. In 

other words, the opportunity to take stunning photos of the bridge and generate "reach" on geosocial 

media, was severely limited during this time period. This simple and obvious relationship can be 

described as a coupling from the SETS framework. The construction, as a (1) technological 

phenomenon, affects the (2) social dimension of visitors’ agency to take photos of a given scene. The 

motivation to take these photos (3) is perhaps related to the platform, which incentivizes the 

reproduction of idealized photos that generate as many comments, likes, or reshares online as 

possible (Bubalo et al. 2019). A similar social-technological incentive could also be at work at Dark 

Hedges, further fueled by the global spread of information through geosocial media, as an 

algorithmic-technological coupling that reinforces these trends. Such hypotheses would need further 

confirmation through (e.g.) questionnaires. In an interview by Tautenhahn [32] at Dark Hedges, a 

couple confirmed the relationship between the TV series and their motivation to visit the avenue 

(transcript, p. 201): 

I: So what were your motives to come here? Your reasons? 

P 1: Ahm… 

P 2: Of course the movie. 
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[...] 

I: (Laughs) And what did you expect when you came here? 

P 1: Ahm, basically something like that. [Okay] A little bit overcrowded. [Yeah. Okay] Yeah. But beautiful 

landscape of course. 

Options for confirmatory analysis also include internal consistency checks, such as regression 

analysis or comparing the consistency of individual ratios. For example, for Dark Hedges, [32] looked 

at the ratio of posts that contain hashtags relating to the TV series (#gameofthrones, #GoT, 

#kingsroad). Her results show that the ratio of posts containing at least one of these hashtags 

continuously increased up to 55% in April 2015 and remained relatively stable afterwards, a finding 

that can be used to underpin hypotheses and gain trust in the data. Similarly, the small peak for 

Devil’s Bridge in December 2016 can be linked to Lorenz Holder winning the Red Bull award with a 

photo of the bridge and its reflection (ibid., p. 54), an event that may have originally triggered 

responses on geosocial media. 

4.2. National parks (Reddit) 

Clearly delineated contexts with a single phenomenon and pole as a common denominator, as 

in the first example, are unfortunately rare in landscape change assessment. Many contexts require 

the study of landscapes at smaller scales, often covering large regions with many phenomena and a 

variety of perceiving user groups. This not only requires more effort to query, filter, and map data, 

but also reduces the specificity of hypotheses that can be identified from exploring patterns. To 

illustrate such a context, we selected a list of 20 Reddit subreddits related to US national parks for the 

second example. The list of subreddits is comparable to the list of Instagram locations in the first 

example. Both gazetteers allow analysts to examine a set of locations or regions (E) from the 

perspective of a selected group (S) of users on a particular platform (T). Figure 3 shows the average 

monthly post and comment volume for the Reddit data for each park. The graphs are stacked into a 

single visualization. This type of visualization, also known as a Joyplot, is particularly useful for 

comparative analysis of changes in distributions over time [36]. The Joyplot sorts the graphs for the 

national parks in descending order of importance based on the average volume of data per month. 

To avoid obscuring parks with less communication, parks with the most comments are shown in the 

background. 
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Figure 3. A Joyplot visualizing seasonal communication trends for selected national parks based on 

unique user counts from community-led subreddits. Mountain peaks are used as a metaphor for the 

volume of monthly patterns that deviate from the norm (the average monthly frequency for each 

park). 

Contrary to what one might expect, the ranking of Reddit parks (the order of ridges in Figure 3) 

does not match the rankings reported by official visitation statistics. For example, Great Smoky 

Mountains National Park is ranked #1 in official visitation statistics, while it is ranked #14 based on 

the volume of posts and comments on Reddit. However, when this overall bias is ignored, the 

monthly post volume for individual parks actually confirms our expectation that seasonal 

preferences and limitations for viewing scenic resources are reflected in communication trends. For 

example, Yosemite, Glacier, and Grand Teton national parks are difficult to visit in the winter due to 

harsh weather conditions. This is also evident in Reddit's communication trends. Similarly, Joshua 

Tree, Zion, Grand Canyon, Big Bend, and Death Valley national parks are popular during the winter 

season when temperatures are more moderate. 

However, just because people communicate and share photographs online does not necessarily 

mean (1) that they visited a national park, (2) that they perceived scenic resources, or (3) that the 

quality of their experience was positive or negative. The strength of the coupling between visual 

perception and collected data varies based on the interface that is used for data collection [37]. This 

also applies to data collected from different social media platforms. Flickr's metadata, for example, 

often contains relatively direct links to the visually perceived environment, through photo 

timestamps or GPS coordinates [27]. In contrast, posts on X (formerly Twitter) are frequently 

published retrospectively and do not necessarily refer to the referenced geolocation [38]. From the 

perspective of visual resource assessment, these biases can be seen as a detrimental effect. It can also 

be seen as an opportunity to investigate different forms of environment perception. Reddit, for 

instance, incentivizes a particular form of communication that regularly produces extensive 

discussion on a specific topic [39]. This is evident when looking at a small subset of four Reddit post 

titles for Yosemite selected from Supplementary Materials (S1): 

1. What equipment do I need for Vernal Fall in April? 

2. Does group size of 1 help half dome lottery chances? 

3. Yosemite Valley with little kids - in the snow - Trip Report 

4. Mirror Lake today before the snow 

One might wonder what "equipment" (1) has to do with appreciating the beauty of Vernal Falls. 

Or how and why the "Half Dome Lottery" (2) affects the visitor experience. Or the effect of traveling 

with or without small children on the perception of the valley (3). These questions may be only 

indirectly related to actual visual changes observed in the landscape, but they can be critical for 

exploring dynamic relationships and making sense preference factors. Particularly, these discussions 

can be used by visual resource specialists to examine three independent forms of landscape 

perception: (1) pre-visit expectations, (2) on-site, in-situ perceptions and experiences, and (3) post-

visit retrospective reports and memories. 

Here, considering Reddit as a separate technological factor or lens can help draw attention to the 

strengths and weaknesses of different platforms. Individual platform features and algorithms result 

in a specific set of written and unwritten contribution rules, restrictions, and incentives that affect the 

opportunistic contribution of data [10]. These circumstances create a self-selection bias for 

contributing users. Hargittai [39] identifies several of these for Reddit, including gender bias (more 

men than women), education bias (more middle to higher education), and a bias toward users from 

urban areas. Biases generally limit representativity. They may also explain why certain parks receive 

more (e.g., Yosemite, Yoshua Tree) or less (e.g., Death Valley, Everglades) attention on Reddit than is 

observed in field surveys. Many biases are difficult to assess systematically as they are a consequence 

of complex couplings between the social and technological domain. Depending on the context of 

analysis, these factors limit the ability to draw valid and accurate conclusions, such as for comparing 
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different park use. Conversely, correlations between the seasonality of platform use and ecological 

characteristics of individual parks indicates an easier to identify coupling. This may offer options for 

developing indicators for monitoring of perceived landscape change for individual parks. 

4.3. Cherry blossoms (Flickr, Twitter) 

The first two case studies showed relatively weak ecological coupling (E), with technological 

and social dynamics dominating the data patterns. To illustrate the exploration of a single ecological 

phenomenon across multiple platforms, we considered observations of cherry blossoms (E) shared 

on Twitter and Flickr. Cherry blossoms can be seen as one of the many phenomena that Hull & 

McCarthy [6] categorize under landscape change (see Introduction). Our expectation was that the 

regularity and seasonal appearance of cherry blossoms each spring should allow us to better observe 

changes in patterns related to the other two SETS dimensions. For example, cultural changes (S) could 

lead to a steady increase in perceived importance that is visible online (T). Or, unexpected 

fluctuations in the regularity of reactions could draw attention to trends and events not captured so 

far. Figure 4 illustrates the global volume of tweets and Flickr photographs that contain references to 

cherry blossoming from 2007 to 2018.  

 

Figure 4. Global Flickr & Twitter cherry blossom -related online communication. 

Three key observations can be made. Firstly, the regularity and strong delineation of peaks each 

spring underpins the overarching ecological bias of the phenomenon. Blossoms are visually sensed. 

The possibility to physically observe cherry blossoms is further limited to a brief period each year. 

Confirmation of this aspect in the graph (Figure 4) can be seen as a consistency check for the data 

collection process. In other words, both Twitter and Flickr capture at least some of the experiential 

dynamic of perceiving cherry blossoms as a visible change in the landscape. Secondly, and perhaps 

more interestingly, Twitter and Flickr patterns differ (T). While Flickr photograph volume is mainly 

limited to the short periods when blossoms are actually visible (February through April), the data 

from Twitter features a more continuous volume of tweets throughout the year. A possible 

explanation could be the unequal platform impact on the data collection process. Photographs can be 

considered as shared digital artifacts of landscape perception [40]. Taking a photograph usually 

requires active observation and presence [41]. This is not necessarily the case for users of X (formerly 

Twitter) who make use of text-only tweets, or only metaphorically reference cherry blossoms. A peek 

at a small subset of the collected data can underpin this assumption and reveal further differences 

between platforms. 

Twitter: 

1. wondering why the cherry blossom tourists have to take the Metro during rush hour 

2. Ugh cherry blossom fest traffic hell. Avoid the downtown mall 

3. The Sakura flowers are expected to be on its full bloom tomorrow, can’t wait to just sit under the Cherry 

Trees 

4. LED Cherry Blossom Tree – National Deal, Special 1 

Flickr: 

1. This looked so nice in the sunlight. A whole tree filled with big clumps of cherry blossom and this little 

clump was leaning out into the sunlight. 
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2. This is our Cherry tree in full bloom a couple of months ago, before the wind blew the blossom away. You 

can't tell from this how overgrown the garden is. Can't comment at moment. 

Interestingly, while the two selected Flickr descriptions are positive, half of the shown tweets 

also refer to negative events related to the cherry blossoms. Technology (T) and the way 

communication works on X seems to motivate users (S) to report on negative experiences as well. 

Based on our limited observation, the same cannot be said for Flickr, where users rarely share 

negatively perceived content. Furthermore, a tweet referencing the "LED Cherry Blossom Tree" (a 

corporate advertisement) illustrates a strong bias toward the intertwining of cherry blossoms in 

culture and technology. This observation of occurrence is almost decoupled from its ecological origin 

(E) and would be considered noise that must be excluded for any analysis of actual landscape change. 

These observations may mean that analysts need better filtering procedures to consider Twitter as a 

valid data source for studying visual perception, or to exclude the platform's data altogether. 

Empirical testing could confirm and support these subjective observations, which was not done in 

this paper. Finally, the regularity of the cherry blossoms and the global data collection also allow us 

to observe underlying platform trends [42]. Flickr's overall popularity increased until 2012-13, with a 

downward trend in users since then (Figure 4). The rise and fall of Twitter, on the other hand, appears 

to be slightly offset, with a noticeable peak in 2014, according to our data. These technological artifacts 

distort interpretation over longer periods and must be accounted for, which we demonstrate in the 

last case study (section 4.5). 

4.4. Biodiversity hotspots (Flickr, Twitter, iNaturalist, Instagram) 

As becomes obvious, comparing data from multiple platforms is particularly useful for 

identifying and separating technological (T) impacts from ecological (E) and social (S) phenomena. 

To underpin this approach, our next case study explicitly aimed to collect data from many platforms 

and for a variety of regions of scenic interest. Using data from Flickr, Twitter, iNaturalist, and 

Instagram, we examined the variance of seasonal user frequency for five platforms and for 30 

biodiversity hotspots in Germany. Figure 5 shows stacked frequency bar plots. All hotspots show 

divergent patterns, with user frequency varying significantly over the year and across platforms. For 

example, the "Ammergebirge, Niederwerdenfelser Land und Obere Isar" (Hotspot 2) appears to be a 

popular holiday destination at the turn of the year and for Instagram (e.g., winter sports tourism). At 

the same time, this region shows a relatively constant flow of visitors across all platforms in all 

seasons. In contrast, the "Limestone and Volcanic Eifel" (Hotspot 14), a region known for its 

attractiveness for nature lovers and hikers, seems to attract a disproportionately high number of 

animal and plant observers, especially in summer (iNaturalist), according to our data. Other regions, 

such as "Mecklenburg-Brandenburgisches Kleinseenland" (Hotspot 25), are primarily characterized 

by summer tourism. Many of the remaining hotspots, available in Supplementary Material S5, can 

also be assigned to these three categories. In our data, Twitter and Instagram tend to show the least 

variation in frequency throughout the year. In comparison, iNaturalist and Flickr users seem to share 

more data, relatively speaking, during the summer months. 
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Figure 5. Average monthly number of users for three of 30 biodiversity hotspots in Germany, 

measured by intersecting georeferenced posts from four platforms (2007-2022) with hotspot shapes. 

Looking at these graphs, it is clear that different platforms (T) promote different user groups (S) 

with different interests. These interests influence how and when data is shared. For example, for 

hotspot 25, characteristic lakes provide a number of ecosystem services (E) for well-being that attract 

families and young people during the summer months. On the other hand, rare species are difficult 

to observe with children playing nearby, which may explain the underrepresentation of iNaturalist 

and the overrepresentation of Flickr observations in this region. Similar couplings between ecology 

(E) and social preferences (S) can be identified for the other hotspots. It would be natural to assume 

that older people and species and plant observers, seeking quiet recreation during the summer 

months, are more likely to avoid the busy family tourism in hotspot 25. Instead, hotspot 14 may offer 

a set of features that better correlate with the interests of these groups, resulting in an 

overrepresentation of iNaturalist data in this region. Finally, hotspot 2 is located in a region bordering 

the Alps, which is popular for group travel. This characteristic overlaps well with group activities 

such as skiing or snowboarding. New Year's Eve is a singular event of particular importance for this 

group, which is shown as a significant peak for January in our data. These patterns can be used to 

understand environmental justice and socio-spatial inequality in decision making [24]. The regularity 

and persistence of these seasonal trends can further support monitoring changes over time. In these 

cases, cross-platform sampling can reduce bias and increase the trustworthiness of the data. 

Unfortunately, rigid spatial delineation of hotspots requires coordinates of sufficient accuracy, which 

are only available from a limited number of platforms.  

4.5. Red Kites (iNaturalist) 

Finally, in addition to seasonal patterns, we wanted to explore whether we could identify long-

term temporal trends for a selected landscape resource. In this last case study, we filtered for 

observations of the Red Kite, a relatively common bird of prey in Europe, as an ecological theme (E). 

After excluding Flickr due to low volume and noisy data, we selected the iNaturalist platform for 

data collection. Unlike the other data sources explored so far, iNaturalist can be considered as explicit 

Volunteered Geographic Information (VGI). Explicit VGI directs user behavior toward a common 

goal for data collection, such as to "Explore and share [...] observations from the natural world".2 The 

platform is specifically tailored for nature and plant observers, allowing (for example) sharing and 

filtering by taxonomic species name. From a data collection perspective, this type of sampling is less 

 
2 https://www.inaturalist.org/ 
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error prone and does not require significant data cleaning (see [43]). The map in Figure 6 visualizes 

all locations from which users sighted and reported Red Kites in Europe between 2007 and 2022. 

Shown in the background is the shape of the Red Kite range, which is an additional dataset 

maintained by iNaturalist. The area is derived from user activity and illustrates the possible presence 

range of the Red Kite. 

 

Figure 6. Using umbrella communities, such as all "bird photographers" (Aves), to compensate for 

within-community variation: (a) Signed chi for "Red Kite" calculated without compensation, based on 

all iNaturalist observations, (b) test for "Aves" vs. all iNaturalist observations, producing a similar 

distribution as (a), (c) "Red Kite" vs. "Aves" observations to compensate for within-community 

variation. 

Disentangling social (S), ecological (E), and technological (T) couplings in the temporal patterns 

of these data proves difficult for two reasons. First, the popularity of iNaturalist increased 

significantly over the observation period (Figure 6). This means that the number of Red Kite sightings 

must be adjusted to account for the overall increase in observers on the platform. This requires 

downloading the complete iNaturalist data for all species observations. We used the chi-square 

equation to account for this effect (see Methods and Data). Second, due to the concrete filtering, akin 

to a needle in a haystack, any noise, co-occurring event, or underlying data problem can produce 

effects that make the results difficult to interpret. The resulting graph (Figure 6-a) shows an 

overrepresentation of Red Kite observations in the years 2013 to 2017. Is this overrepresentation 

associated with an actual increase in abundance (an ecological coupling) for this particular species? 

In fact, structured survey data [44] suggest a continuous increase in Red Kite abundance over the last 

decade. 

We questioned this initial assumption. Given that the platform has grown significantly, a bias 

introduced by certain subgroups, such as birdwatchers, overly joining in some years could also 

explain fluctuations in Red Kite observations. To test the data based on this hypothesis, the expected 

frequencies (all iNaturalist observations) can be compared to all observations of the Aves (birds) 

“umbrella class”. The resulting graph (Figure 6-b) produces a similar overrepresentation as is visible 

in Figure 6-a, which supports our earlier expectation. Bird photographers joining comparatively early 
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may have led to an overrepresentation of Aves observations shared on the platform during these 

years.  Later, as iNaturalist grew in popularity, the platform also perhaps attracted more species 

observers from other interest groups, such as plant photographers.  

Based on these assumptions, we adjusted for the overrepresentation of Aves photographers by 

selecting all observations of the class Aves as expected frequencies and calculating chi for the 

observed frequencies of the Red Kite (Figure 6-c). In other words, we examine overrepresentation of 

selected subgroups by comparing behavioral similarities to a broader “umbrella” group. While the 

resulting graph (Figure 6-b) still shows an overall increase in relative Red Kite sightings, it is less 

pronounced than without compensation (Figure 6-a). A significant outlier of under-represented Red 

Kite observations compared to all Aves observations is visible in 2019 (Figure 6-c), corresponding to 

a decrease in general bird photography in the following year of 2020 (Figure 6-b). Further 

investigation of the contributions of the Aves community compared to other subsamples would be 

necessary to explain this outlier. At the same time, increased filtering also reduces reliability and 

representativeness. For iNaturalist, representativity is already severely limited because of the 

required expertise in a selected, specific topic (species monitoring). This may prevent further 

zooming in on particular regions of interest and limit analysis to small-scale or regional contexts 

where sufficient data are available. 

5. Conclusions 

Many of the relationships between visual perception, photo-based communication, and 

collective social behavior have been known since Urry wrote about "the tourist gaze" [33]. Since then, 

geosocial media and online communication have radically altered the technological counterpart. 

Geosocial media and algorithms now influence, distort, and modify the way people perceive their 

environment. This has given rise to new phenomena, such as mass invasions or cyber cascades, which 

cannot be explained without considering the global spread of information. Trends such as fake news 

[46], social bubbles [45], and GenAI are creating an "era of artificial illusions" [47] in which the senses 

are increasingly challenged to distinguish between the real and the imagined. On the other hand, 

masses of data on how people perceive their environment are readily available online as what we call 

opportunistic occurrence data. Assessing perceived landscape change from this data requires 

disentangling multiple superimposed patterns in the data. For biodiversity monitoring and species 

observation, [15] refer to this process as "reverse engineering survey structure" (p. 1226). Their goal 

is to identify changes in the physical world (species trends) based on data collected online. However, 

unlike species modeling, landscape perception analysis requires equal consideration of the human 

observer and the physical landscape. Both poles are important subjects of analysis. In this paper, we 

introduce technology as a third pole. Based on the SETS framework, we distinguish three main 

domains in which change can occur: the ecological (E), social (S), and technological (T) domain. We 

discuss the application of the SETS framework in five case studies and show how couplings between 

these domains can be used to disentangle relationships. 

In terms of scenic resource assessment, the five case studies can be grouped based on how they 

address two common tasks: (1) identifying temporal characteristics for a given area or region 

(national parks 4.2, biodiversity hotspots 4.4), and (2) characterizing and identifying temporal trends 

for selected scenic resources or phenomena (mass invasions 4.1, cherry blossoms 4.3, red kites 4.5). 

Generic queries and the integration of multiple data sources can reduce bias and increase 

representativeness, which helps to gain confidence in the data. In particular, comparisons between 

data from different platforms help to better understand tourist flows for different user groups. 

However, only unspecific and broad interpretations are possible, such as identifying and confirming 

common, recurring seasonal visitation patterns for selected areas and regions. Our results show this 

for two case studies of US national parks and for 30 biodiversity hotspots in Germany. On the other 

hand, it proved difficult to identify trends for selected themes or scenic resources. Our interpretation 

is that overall platform changes (e.g., popularity) or changes in subcommunities (e.g., bird 

photographers or the group of "red kite photographers" on Flickr and iNaturalist) have a stronger 

influence on the observed patterns than phenomenal changes, such as the actual growth of the red 
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kite population. As an exception, observations of cherry blossom, as a globally perceived ecological 

event, are found to be very stable and seem to be less affected by changes in communities. One 

possible interpretation is that the phenomenon is valued equally across many cultures and 

communities. Such events may therefore be useful as “benchmark events” to compensate for within-

community variation in the study of more localized aspects of landscape change. 

Our results show that platform biases exist toward individual poles that affect their suitability 

for assessing some contexts of landscape change better than others. iNaturalist or Flickr, for example, 

feature metadata that appears more directly linked to the actual perceived environment. This makes 

these platforms better suited for monitoring actual ecological change (E), such as the timing of events 

like flowers, fruits, and leaf color change. Other aspects related to broader societal behavior, human 

preferences, and collective spatiotemporal travel footprints (S) may require consideration of a 

broader set of platforms, including (e.g.) Instagram or Twitter. Due to the rules and incentives on 

these platforms, not all aspects are captured equally. In our study, we observed that charged 

discussions with positive and negative reaction sentiments, associations, metaphors, and political 

couplings are primarily found on X (formerly Twitter) and Reddit. The influence of technology and 

algorithms further varies, as shown in our case studies and confirmed by other authors [37]. 

Capturing these different perspectives and conditions of opportunistic data contribution helps 

planners gain a more holistic understanding of the dynamics influencing visual perception and 

behavior observed in the field. Cross-platform comparisons, such as in case study 4.4, are found to 

be particularly useful in reducing bias and gaining actionable knowledge for decision making. 

Results can be used, for example, to increase environmental justice or reduce socio-spatial inequality 

[24]. It can also help develop techniques to counteract phenomena associated with the technological 

domain, such as crowd bias toward certain visual stimuli and imitative photo behavior. 

When evaluating scenic resources through the “lens” of user-generated content from geosocial 

media, we urge planners to consider the following three situations. First (1), some ecological features 

(E) may be valuable even if they are not perceived by someone. This applies to ecological phenomena 

that are rare, take a long time to occur, or cannot be recreated or replaced once lost. Such features 

may be difficult to detect in user-generated content and with quantitative analysis. Second (2), some 

content may be shared online for social purposes (S) even if the original experience was not perceived 

as scenic or valuable. We observed this effect for places affected by "mass invasions" (4.1). Here, users 

appear to selectively share photos that show few people or solitary scenes from what are actually 

crowded vantage points. Tautenhahn explains this phenomenon as a “self-staging” in the landscape 

[32, p. 9]. Finally (3), even in those cases where people share their original, unaltered experiences with 

(e.g.) photographs of crowded scenes, geosocial media ranking algorithms (T) may prevent these 

experiences from ever gaining a wider user "reach" by (e.g.) downgrading unaesthetic or negatively 

perceived content. These algorithmic effects may make it difficult for planners to interrupt feedback 

loops, such as mass invasions, with negative consequences for infrastructure, ecology, and human 

well-being (see [4]). 

From a broader perspective, we see variable specificity as a key challenge in capturing landscape 

change through user-generated content, including ephemeral features and how people respond to 

these changes. Depending on the definition, events can range from simple atomic changes that people 

perceive and respond to, such as a single rumble of thunder or a sunset, to more complex events or 

collections of events arranged in a particular pattern or sequence [35]. The level at which events and 

landscape change needs to be assessed can vary widely. From an analyst's perspective, integrating 

and comparing data from multiple sources can increase representativeness, but it can also produce 

only generic results, leading to broad and non-specific interpretations that are difficult to translate 

into decision making. Conversely, specific queries can produce results of higher specificity, with the 

trade-off of increased bias and reduced representativeness. Rapacciuolo et al. [15] propose individual 

data workflows to reduce bias in selective biodiversity monitoring. Specifically, they recommend the 

use of "benchmark species" to normalize observed data for the species under investigation, such as 

the Red Kite. Applying this concept to landscape change monitoring could mean first considering 

observations from umbrella communities, such as all "bird photographers" on iNaturalist (case study 
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4.5), as the expected value in the signed chi equation. This generic query can then be used to 

compensate for within-community variation to visualize corrected trends for specific observations 

(e.g., to normalize observations of specific bird species). In the fields of landscape and urban planning, 

such normalized observations over time can help to better understand the unique transient 

characteristics of places, areas and landscapes, to protect and develop specific ephemeral scenic 

values, or to propose actions to change negative influences. 
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