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Abstract: In marine ecosystems communication among microorganisms is crucial since the distance is
significant if considered on a microbial scale. One of the ways used by microorganism cells to reduce this gap
is the production of extracellular vesicles. Marine bacteria release extracellular vesicles (EVs), small membrane-
bound structures of 50 to 250 nm diameter, into their surrounding environment. The vesicles contain various
cellular compounds, including lipids, proteins, nucleic acids, and glycans. EVs may mediate the
communication between microorganisms in aquatic environments thus influencing ecosystem function and
determining the structure and composition of microbial populations. This review will focus on marine bacterial
EVs analysing their structure, composition, functions, and applications.
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1. Introduction

Extracellular vesicles (EVs) are small lipid-bilayer nanospheres (about 40-400 nm diameter)
secreted from cells belonging to the three domains of life [1-3] and vary in their morphology,
biogenesis, composition, and biological role [2]. Although initially under-appreciated and considered
cellular debris, biological fluids can contain large quantities of EVs that shuttle various molecules
from parental cells to other cells, including proteins, genetic material and toxins. Eukarya EVs, and
particularly those produced from mammalian cells, have then attracted great interest for their role in
to struggle for infection, and in the control of normal physiological and disease processes [2—4].

EVs fulfil a myriad of functions and are recognized as important vehicles of long-range
intercellular communication, especially during stress conditions and host-pathogen interactions.
Considering their ability to move into biological fluids, EVs are now considered promising
biomarkers for disease diagnoses and therapeutical applications [5-7].

In marine environments bacteria and cyanobacteria account for > 90% of the total oceanic
biomass [8]. Although largely unexplored, they provide a useful source of natural products, with a
high-value biotechnological potential. During the last two decades, the scientific community has
focused attention on bacterial extracellular vesicles (BEVs) [9-11] involved in cell-to-cell interactions
[2-4], virulence [12], horizontal gene transfer [13], biofilm formation [14], and quorum signaling [15].

Interestingly, while for pathogenic [12,16] and gut [17-19] bacteria, the secretion of BEVs and
their functions have been investigated, still largely uncharted is the state of the art in the marine
environment. Indeed, researchers are trying to shed new light on these structures' diverse roles in
microbial ecology. One possibility is that in addition to that found for pathogens, the functions of
marine BEVs could guarantee survival in an environment where the nutrients are poor [20]. Another
option is that the vesicles can carry a higher number of chemical effectors so that the cells have to
produce a lower number of molecules. The final effect is less energy expenditure for the bacterial cell
[21]. This review will focus on marine BEVs since there is a growing interest in understanding their
roles in biofouling, cellular defence, and horizontal gene transfer [11-15,22,23]. Moreover, the BEVs’
motion over long distances implies that these structures are responsible for the marine carbon flux
and may modulate the growth of heterotrophic communities. Beyond their ecological significance,
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vesicles produced by marine organisms hold promise for biotechnological applications. The
molecular cargos encapsulated within these vesicles, including enzymes, metabolites, and genetic
material, present opportunities for bioprospecting and biotechnological innovation.

2. Biogenesis of Bacterial Vesicles

BEVs are produced during normal growth, and stress can influence their production. In some
cases, abiotic factors, including changes in temperature, nutrient availability, reactive oxygen species,
and UV exposure, correlate with increased vesicle production. The release of EVs may also be induced
by intracellular stimuli, such as the accumulation of peptidoglycan (PG) fragments and LPS [24]. In
Cylindrospermopsis raciborskii vesicle formation is accompanied by phosphatidylserine exposure, a
molecular event also observed in EV-secreting eukaryotic cells [25].

There are several types of BEVs depending on the microorganism’s type (Gram-positive or
Gram-negative) and the way by which they are generated [26].

Gram-negative bacteria possess a cell wall of two phospholipids-enriched membranes spaced
out by a thin peptidoglycan layer. The outer membrane (OM) comprises proteins, phospholipids, and
lipopolysaccharides (LPSs) [27], whereas the inner membrane (IM) is a fluid phospholipid bilayer. In
Gram-positive cell walls, as much as 90% is a single type of molecule, the peptidoglycan, although
teichoic acids are usually present in small amounts. Furthermore, both Gram-negative and Gram-
positive cell walls can be decorated by a polysaccharide material forming a capsule.

The ways of generation for Gram-negative bacteria vesicles up to now identified are two:
blebbing of the outer membrane [28] and explosive cell lysis [29]. The non-lytic biogenesis can
produce different types of vesicles (Figure 1), of which the Outer membrane vesicles (OMVs) are
devoid of cytoplasmic components and only include membrane molecules. The blebbing biogenesis
can also furnish vesicles including inner-membrane products (OIMVs) and cytoplasmic membrane
vesicles (CMVs) containing cytoplasmic components [24]. All these vesicles are the results of the stress
on the cell wall such as antibiotics or environmental conditions [24,26,30]. Conversely, the lytic
mechanism generates two subtypes of vesicles, namely explosive outer-inner membrane vesicles
(EOIMVs) and explosive outer-membrane vesicles (EOMVs), depending on the presence of the
double-layered membrane [24,26,28].
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Figure 1. Biogenesis of bacterial extracellular vesicles. In Gram-positive bacteria, the CMVs
(Cytoplasmic Membrane Vesicles) originate from cell membranes with cytoplasm and membrane-
associated proteins. In Gram-negative bacteria, the EVs can be generated through two different
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mechanisms: a) explosive cell lysis, and b) blebbing of the outer membrane. The lytic mechanism
generates EOMVs (explosive outer-membrane vesicles) and OIMVs (outer inner-membrane vesicles),
while the blebbing production gives CMVs, OIMVs, and OMVs (Outer membrane vesicles).

Gram-positive bacteria have been demonstrated to form vesicles through a different mechanism
triggered by endolysin, rising to vesicles containing both membrane and cytoplasmic components
(cytoplasmic membrane vesicles, CMVs) [26,31,32]. Finally, although the production of EVs on the
cell wall of cyanobacterial strains has been demonstrated by microscopy images, the detailed
mechanism regarding EVs’ biogenesis in these microorganisms is still very limited [11,13].

3. Structure of the BEVs and Molecular Components

Membrane vesicles are small particles [24] carrying many molecules inserted in a nanosystem
surrounded by a double-layered membrane, the last being different depending on the type of
microorganism and biogenesis. Following the most recent papers about the structure of membrane
vesicles the following components are described.

3.1. Proteins

Proteins in vesicles have been demonstrated to be cytoplasmic, periplasmic, inner and outer
membrane proteins (OMP) [33,34], virulence factors [35], enzymes, and proteins involved in biofilm
formation [36]. Alteromonas macleodii KS62 has been reported to produce OMVs, the protein content
of which is very rich in hydrolytic enzymes (30 % of the proteome) [37]. This is not surprising since
the hydrolytic enzymes are necessary for nutrient supply and colonization surfaces. Similarly, for
Bacteroides fragilis, a gut microbiota bacterium, it has been suggested that the EVs equipped with
hydrolytic enzymes could facilitate the recruiting of the necessary nutrients for the entire microbiota
bacterial community [38].

The production of OMVs containing hydrolytic enzymes was also found for a pool of
Alteromonas macleodii strains [39]. For all the examined strains, despite the presence of two different
populations of OMVs due to their different sizes, the content of hydrolytic enzymes was high. In
addition, the presence of proteins probably involved in bacterial adhesion processes was observed.

Many BEVs are composed not only of membrane proteins but also cytoplasmic and periplasmic
ones. This is not true for the marine extremophile Novosphingobium pentaromativorans, for which the
proteomic analysis of the vesicles indicated most exclusively the presence of OMPs [40]. Authors
suggested that for this bacterium the possibility to load cytoplasmic cargo proteins in the vesicles
could be hampered by high salts and low nutrients available in its natural environments. A family of
marine Gram-negative bacteria of particular interest is Vibrio. This comprises both pathogens and
non-pathogenic bacteria. Among the former, Vibrio cholerae has been found to produce a higher
amount of vesicles after shifting from the aquatic environment to the infected host [40]. It is possible
that the vesiculation is augmented to eliminate outer membrane unfavourable compounds and for
better colonizing the host environment. The bacterium regulates the protein expression (and the lipid
A structure, see below) to adapt to different environments. The expression of porin OmpT in place of
OmpU in Vibrio cholerae affects the pathogenesis mechanism, and promotes the resistance to bile,
and the ability to colonize [41]. In another paper, Vibrio cholerae cells and vesicle proteomics have been
compared [42]. The study demonstrated that the vesicles were enriched in virulence factors with
respect to the cells. The authors hypothesize that this enrichment points to the theory that the vesicles
are not simply the product of membrane blebbing but a programmed way to vehicle molecules [42].

The protein profile of the OMVs from Pseudomonas syringae Lz4W, an Antarctic isolate, comprises
OMPs, lipoproteins, ABC transporters, ribosomal proteins cytosolic enzymes, and many others [43].
Kulkarni and co-authors underlined that OMVs from P. syringae Lz4W are involved in antibiotic
resistance and sensitivity. The mechanisms of action played by the vesicles seem to be environmental
situation-dependent. In addition, since phospholipids and LPSs from cold-adapted bacteria are
different from corresponding mesophiles, due to the higher amount of unsaturated fatty acids
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necessary for membrane fluidity at low temperatures, the packing parameters of the membrane are
different for this bacterium.

The genus Shewanella is prone to the production of OMVs, as revealed by the species
livingstonensis AC10 [44], vesiculosa M7 [45,46] and HM13 [47]. All these strains are cold-adapted with
a putative consideration for the secretory production of proteins in the extracellular. Proteomic
studies have been performed for S. vesiculosa M7 vesicles, revealing that this bacterium can produce
a new type of vesicles named outer-inner membrane vesicles (EOIMVs, see Figure 1). The last
possesses a double-bilayered structure harboring cytoplasmic and plasma membrane proteins and
can incorporate DNA [46]. Unlike the M7 strain, the vesicles of HM13 have been carefully
characterized for the presence of a cargo protein, named P49, for which the function is still unknown
[47]. Interestingly, S. wvesiculosa HM13 also produces a putative sensor protein involved in the
suppression of biofilm formation [48].

3.2. Nucleic Acids

Nucleic acids associated with vesicles play significant roles in marine microbial communities
and ecosystem dynamics [49]. The incorporation into vesicles occurs through passive encapsulation
within the vesicle lumen as the vesicle forms from the budding of the cell membrane. Furthermore,
marine bacteria and cyanobacteria employ molecular chaperones, RNA-binding proteins, and
membrane-associated complexes that recognize and sort nucleic acids into vesicles. Finally, the
interaction between marine bacteria, cyanobacteria, and viruses (phages) influences nucleic acid
incorporation into vesicles. For example, cyanophages infecting Prochlorococcus cyanobacteria have
been shown to package their DNA into vesicles released by infected cells, leading to the co-presence
of host and viral nucleic acids [13].

The incorporation of nucleic acids into vesicles significantly enriches their functional repertoire,
contributing to various biological processes in marine microbial communities: serve as vectors for
horizontal gene transfer (HGT), facilitating the dissemination of genetic material, including antibiotic
resistance genes, metabolic pathways, and virulence factors, among microbial populations [49,50].
For instance, vesicles released by Vibrio cholerae, Pseudomonas aeruginosa, Synechococcus, and Shewanella
genera contain both functional genes, facilitating HGT in marine environments and DNA-encoding
bacteriocins that inhibit the growth of competing bacterial species [51,52]. Nucleic acids may encode
regulatory elements, such as small regulatory RNAs (sRNAs), microRNAs (miRNAs), and
transcription factors, which modulate gene expression and cellular responses to environmental cues
([50,53]. Vesicles released by the cyanobacteria belonging to Synechococcus genus contain miRNAs
involved in regulating photosynthesis and nitrogen metabolism in recipient cells [53]. Vesicles
released by Vibrio parahaemolyticus and Vibrio cholerae carry DNA fragments encoding virulence genes,
enhancing the pathogenic potential of these bacteria [52,54]. Shewanella spp. vesicles contain DNA
fragments encoding chemotaxis proteins involved in sensing environmental gradients [50].

3.3. Phospholipids

Phospholipids in vesicles play a fundamental role in cargo selection and transport. Even if some
sphingolipids have been demonstrated to be delivered for a long distance through vesicles in
Bacteroides species [55] the importance of characterization of lipid fraction in BEVs has been
overlooked in many papers. Essential parts in the biogenesis of membrane vesicles are the structures
of the fatty acids. The last ones are usually involved in maintaining the fluidity or the rigidity of the
membrane, which is particularly important for microorganisms thriving in cold environments. A few
papers describing phospholipid structure from bacterial membrane vesicles are devoted to studying
cold-adapted bacteria. Antarctic Pseudomonas syringae has been described as a producer of vesicles
containing phospholipids with both saturated and unsaturated fatty acids [43]. This was expected
since the increase of membrane fluidity of cold-adapted bacteria necessary to survive at low T entails
the biosynthesis of unsaturated fatty acids [56]. In the case of another cold-adapted bacterium,
Pseudoalteromonas antarctica, only phosphatidylethanolamine and phosphatidylglycerol have been
reported [57].
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An enhancement in the production of membrane vesicles has been observed for change in the
phospholipids biogenesis with another Gram-negative bacterium named Shewanella livingstonensis
Acl0. A depletion of the gene for the biosynthesis of the eicosapentaenoic acid (EPA) induced a
significative and quantitative increase in vesicle production [58]. It was suggested that the lack of EPA
fatty acid could alter the protein composition of the vesicles since in these conditions the transfer of
a misfolded OmpC176 was facilitated.

Some marine bacteria can alter the molecular surface in response to different environments. The
key case is represented by Vibrio cholerae for which a change in the phospholipid composition moving
from marine to host environment was observed. Zingl et al. [59] reported that phospholipid
accumulation on the membrane surface can be related to membrane vesicles release. After Vibrio
enters host cells it has been observed a change in the lipid moiety of the LPS (see below), with a
consequent change in the asymmetry of the outer membrane and an accumulation of phospholipids
[31]. The different ratios of phospholipids/LPS are crucial to produce the vesicles. Among the factors
regulating the increase of BEV production, is the repression of the Vac]/Yrb transporter influenced by
the depletion of iron [31] and sulfur [60].

Vibrio species can produce CAI-1, a long-chain amino ketone, a signal molecule involved in the
so-called quorum sensing, a way of communication among microorganism cells [61,62]. In some
cases, the QS molecules can be associated also with vesicles, as has been reported for Vibrio harveji
strain MR17. The loading of this molecule is probably due to its lipophilic character that allows the
interaction with phospholipids bilayer and LPS, facilitating its distribution among bacterial cells [62].

3.4. Lipopolysaccharides

Lipopolysaccharides are the main components of the outer membrane of Gram-negative bacteria
of which they constitute 75% of the outer leaflet [63]. LPS is one of the most well-studied pathogen-
associated molecular patterns (PAMPs) since it is a powerful activator of innate immune responses
[64,65]. LPS binds to the proteins Toll-like receptor 4 (TLR4) and myeloid differentiation factor-2
(MD2) to activate pro-inflammatory signaling pathways. The TLR4-MD2 receptor complex is crucial
for the host recognition of Gram-negative bacterial infection [66]. These molecules are composed of
three different domains, lipid A, embedded within the outer leaflet of the outer cell membrane, an
oligosaccharide named “core”, and a polysaccharide mentioned as O-antigen that sticks out the
extracellular environment [67-70]. Since the biogenesis of vesicles in Gram-negative bacteria is
generated directly from the outer membrane, the lipopolysaccharides are particularly abundant in
EVs. Nevertheless, their structures and the roles they eventually played in transportation have been
only barely understood.

In some pathogenic Gram-negative bacteria, it has been demonstrated that the structure of the
LPS components is involved in the vesiculation process. P. aeruginosa is reported to produce two
different O-chains, namely A and B-bands, respectively. The A-band is a hydrophobic D-rhamnan
chain whereas the B-band displays negative charges due to the presence of acidic monosaccharides.
The repulsion among the polysaccharide chains of the B-band could be responsible for a different
curvature of the outer membrane thus releasing a higher number of vesicles [71]. Differently from
Pseudomonas aeruginosa, Salmonella enterica serovar Typhimurium is involved in a novel mechanism
for OMV biogenesis where the lipid A modification is involved in a remodelling event caused by the
induction of PagL enzyme [72]. Feldman's group has clarified that the LPS can play a role in the BEVs
biogenesis [73]. They proposed the presence of a peculiar cargo selection process in which the lack of
some fatty acids on the lipid A moiety isolated from the Porphyromonas gingivalis BEVs is responsible
for the insertion of different proteins on the vesicles. Instead, for the same bacterium they
demonstrated that there is no involvement of the O-chain in vesicle formation. Differently from P.
gingivalis, a study performed by the same research group on Bacteroides fragilis, showed that there
were no differences in the lipid A structures between cells and vesicles [74].

Very few structures of LPS from marine EVs have been isolated and characterized. The molecular
characterization of the LPS from both cells and EVs of Shewanella vesiculosa HM13 has revealed the
same structures [75,76]. The bacterium, classified as cold-adapted and isolated from the intestine of a
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fish, can produce abundant EVs carrying an unknown cargo protein named P49 [47]. Even if many
other Shewanella strains have been reported to produce EVs [77] no experiments to detect the chemical
structures of the LPS from these strains have been performed [45,46]. Frias et al. observed a different
amount of EVs for the marine S. livingstonensis NF22T when the microorganism was grown at
different temperatures. The lowering of temperature determines a higher amount of the recovered
EVs [77]. Other marine bacteria have been studied for the content of LPS in their produced EVs, such
as Pseudoalteromonas antarctica NF3, for which the LPS polymers from the cells and the vesicles have
the same mobility on the SDS-PAGE [57]. This bacterium was particularly interesting due to the
presence of an additional band for both LPS samples near the top of the gel most probably due to a
capsular polysaccharide. The negative stained TEM images of the vesicles and the observed fibrous
fringe around the cells suggested the production of extracellular polysaccharides, thus confirming
the above hypothesis.

The lipopolysaccharide from cells and OMVs of Cellulophaga lytica, a marine Gram-negative
bacterium, is involved in the process of metamorphosis for the marine worm Hydroides elegans [78].
A bioassay-guided fractionation of the molecular components of OMVs from C. lytica indicated that
LPS was responsible for the larva settlements. Authors hypothesized that the induction of larva
settlement and metamorphosis is strain-specific due to the inherent structural variability of LPS.

3.5. Capsular Polysaccharide

Among the bacterial surface glycans, capsular polymers occupy an escalating position due to
their involvement in many biological processes, such as engagement with biofilm formation [79],
pathogenesis mechanisms [80], nutrients, involvement in biogeochemical cycling of elements in the
oceans [81]. Polysaccharides contribute to the formation of Extracellular Polymeric Substances (EPS)
biofilm matrix, in which bacterial vesicles are entrapped [82].

Capsular polysaccharides are strictly associated with the outer membrane of both Gram-positive
and -negative bacteria [83], the presence of which can be revealed by microscopy. The polysaccharide
can be retained on the surface by a lipid moiety [84] or by ionic interactions [85] since most of these
polymers are anionic. Bacteria can also produce exopolysaccharides, that are secreted into the
surrounding environment [86].

Since the generation of BEVs occurs through mechanisms involving the outer membrane it is
reasonable to find a layer of capsular polysaccharide around the vesicles.

Capsular polysaccharides from pathogenic bacteria are classified as PAMPs and therefore they
are among the preferred subjects for the construction of vaccines. E.coli OMVs, used as a platform to
deliver capsular polysaccharides against Streptococcus pneumoniae, were found to induce a significant
immune response [87]. Also, engineered E.coli were able to produce recombinant vesicles carrying
the capsular PNAG, able to induce the formation of IgG antibodies after immunization in mice [88].

Marine bacteria capable of producing cells covered by capsular polysaccharides have been
reported for Shewanella strains, and the presence of such polymers together with smooth LPS has been
related to the surface strong adhesion capacity of members of this genus [89]). In a paper from
Mercade’s group, it has been reported that growths of cold-adapted bacteria belonging to various
genera of class Gamma proteobacteria revealed the presence of a large amount of extracellular material
together with BEVs [77]. It was speculated that the reasons for which extracellular matter was
abundant could be to constitute a micro-environment for the survival of bacterial cells. In addition,
when the temperature is low it has been demonstrated [90,91] that capsular polysaccharides can play
a cryoprotectant role whereas the exopolysaccharides can protect from desiccation, enhance metal
chelation, scavenge nutrients and small molecular compounds from solution, and aid cell motility
and adherence [92] Recently, a capsular polysaccharide isolated from both the cells and EVs of
Shewanella vesiculosa HM13 has been characterized [93]. It is constituted by a pentasaccharide
repeating unit containing three aminosugars, of which one is a new monosaccharide named
shewanosamine. The structure of this capsule is peculiar since is characterized by a subtle equilibrium
between hydrophilic and hydrophobic features. In the study Casillo et al. [93] observed the formation
of a “polysaccharide corona” on the surface of both synthetic polystyrene and liposome


https://doi.org/10.20944/preprints202407.0457.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 July 2024 d0i:10.20944/preprints202407.0457.v1

nanoparticles, thus demonstrating the strong adhesive properties of this polysaccharide. Capsular
polysaccharides from some other cold-adapted and marine bacteria have been characterized
[90,91,94-96]. Intriguingly, all of them show the presence of aminosugars, hydrophobic moieties, and
ionic groups. We could speculate that these features are necessary for adhesion on the biotic and
abiotic surfaces. In addition, the sticky behaviour of these molecules is certainly exploited for biofilm
formation. It has been reported that the MVs have a pivotal role in starting biofilm formation [97,98],
and then the capsular polysaccharide may take an active part in this event.

Changes in the environment can create stress for the microorganisms [99] and bacterial vesicles
with their components are involved both as production amount and functional differences. However,
a distinct role due to the presence of capsular polysaccharides on the MVs is far from being clarified.

4. Conventional Techniques for BEV Isolation, Purification and Characterization

The isolation and purification of BEVs is a difficult task due to the possibility of recovering the
vesicles together with non-EV materials, such as flagella, pili, phages, protein complexes, and DNA-
protein complexes. For these reasons, shared protocols have been set up and published by the
International Society for Extracellular Vesicles (2014 and 2018). The protocols have been regularly
updated since 2014, and report both separation and characterization methods [100].

To be sure that a bacterium produces membrane vesicles methods for their visualization are
necessary (Figure 2). The large majority of marine BEVs have been visualised by negative stained
TEM (Transmission Electron Microscopy) [37,40,47,57,77,78,101-106] SEM (Scansion Electron
Microscopy), epifluorescence microscopy, Atomic Force Microscopy (AFM). FE-SEM (Field Emission-
Scanning Electron Microscopy) analysis has been used for Shevanella vesiculosa HM13 for observing
the surface morphology of the cells secreting BEVs thus demonstrating the absence of cell lysis while
producing vesicles [47]. Finally, super-resolution microscopy (Cryo-EM) the cryo-electron
micrographs, allowed the visualization of a large periplasm, a protrusion of the cytoplasm and
tubular appendages [105].
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and NTA for determining concentration and size distribution of particles. To obtain details about the
chemical composition, the purified EVs are subjected to chemical analyses.

The characterization of BEVs is done by taking into account the physical state of the sample, both
native vesicles and lysed vesicles, by considering their shape, size distribution, concentration, surface,
or internal contents (Figure 2). The preliminary optical analytical approaches that can be used are
usually related to the physical state of the isolated vesicles. The intact EVs can be analysed in the form
of a dynamic suspension by using NTA, which gives information about particle number and size
distribution [107,108], dynamic light scattering [109], but also fluorescence correlation spectroscopy
(FCS) and high-resolution flow cytometry [11], flow cytometry, fluorescence anisotropy, live
microscopy, or captured on a surface employing immunomagnetic beads, arrays, microfluidics,
microscopy on fixed samples. Instead, the analyses of lysed EVs generally require molecular analyses
[110,111]. Generally, because none of these approaches can yield comprehensive data about MVs, a
panel of these approaches is usually used [112].

The main activity for the purification of BEVs is reported to be differential ultracentrifugation,
integrated with various other techniques, such as precipitation, filtration, density gradients, gel
filtration chromatography, and immunoisolation [111,113-115]. Preliminary information about BEV
composition can be obtained through the quantification of suitable markers such as proteins and
phospholipids. The protein concentration can be measured by classical colourimetric methods such
as Lowry or Bradford, together with stained gel-electrophoresis analysis showing at least membrane
or outer membrane proteins [107,113] whereas the lipids can be measured through a fluorescent
probe with a fluorometer [113].

The purification of vesicles is mandatory for the consecutive analyses for proteomic [116,117],
lipids [118], nucleic acids [119], and carbohydrate analyses [120,121].

5. Functional Significance and Biotechnology Application of Vesicles

The extracellular vesicles are implicated in various biological processes. One of the most
recognized functions of BEVs is transmitting information between bacterial and eukaryotic cells.
Furthermore, material vehicled through BEVs rather than excretion directly into the environment
may be advantageous for the bacterium. Indeed, BEVs are more suitable for delivering microbial
molecules at higher distances than a surface secretion system [122]. The human microbiota Bacteroides
fragilis has been found to deliver to the host immune system an inflammatory molecule such as the
PSA polysaccharide, where the transportation takes advantage of the vesicle system [123]. Vesicles
are also involved in cell signaling, since they contain quorum-sensing molecules, secondary
messengers, and other signaling compounds, thus facilitating cell-cell and cell-environment
communication. Vesicles can serve as vehicles for transporting nutrients such as carbon, nitrogen,
and phosphorus. Indeed, in nutrient-limited environments, this mechanism allows cyanobacterial
populations to efficiently scavenge and share scarce resources, enhancing their collective fitness and
resilience [124].

Extracellular vesicles may carry antimicrobial compounds, toxins, and defensive proteins that
help protect cells from predation, competition, and environmental stressors. Additionally, they can
serve as vehicles for horizontal gene transfer facilitating the exchange of genetic information between
cells and potentially contributing to the evolution and diversification of microbial populations.
Finally, they are involved in environmental interactions.

Studies have shown that Prochlorococcus EVs can interact with diverse microbial cells, suggesting
a potential role in mediating microbial interactions and ecosystem dynamics in marine environments
[13,125]. They can be taken up by other microbial cells, including bacteria, archaea, and eukaryotes,
influencing their physiology, metabolism, and behaviour. Additionally, vesicles released by
cyanobacteria can impact the structure and function of microbial communities, shaping ecosystem
dynamics and biogeochemical cycling in marine environments.

While the role of vesicles in bacterial pathogens is actively studied, the role of vesicles in the
marine environment is poorly understood. Membrane vesicles were previously observed in the
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cyanobiont that colonizes the sporocarp of the water fern Azolla microphylla [126]. The authors
hypothesized that vesicles could deliver soluble sugars and material for biofilm development.

Recently the applications of vesicles from marine bacteria have increased in various fields as
they offer a great diversity of cargo molecules (Figure 3 and Table 1). Vesicle-associated nucleic acids
hold significant biotechnological potential for various applications, including environmental
monitoring, bioremediation, and biopharmaceutical production [126]. The utilization of vesicle-
derived DNA for metagenomic analysis has emerged as a powerful tool for studying microbial
diversity and functional potential in marine ecosystems [13].

Main Biotechnological Applications and Advantages

Vaccine Disease Markerin

development / I N\ N\, Diagnostic Application
‘ Drug delivery

Ease of '
modification | §

3 ments
-

G enes

Secondary
. messengers

Quorum-sensing

molecules

Figure 3. Roles of BEVs in marine ecosystems and their possible applications Marine BEVs have
been involved in cell-cell communication, including host-virus interactions, genes and toxins transfer,
nutrient transport, and biofilm formation. The natural ability to deliver cargo molecules makes the
BEVs a useful drug delivery system.

Table 1. Biotechnological applications of BEVs.

Field Function

Drug Delivery o Targeted Delivery to specific cells or tissues, enhancing the [124,127]

efficacy and reducing the side effects of treatments.

¢ Controlled Release of therapeutic agents, improving the
management of chronic diseases.

Vaccine ¢ As adjuvants, to boost the immune response in vaccines. [28,128]
Development ¢ As antigen Presentation to the immune system thus

enhancing the host’s response to pathogens.

Diagnostics ¢ Biomarkers for the early detection of diseases. 2,22]

¢ Biosensors for detecting environmental toxins or pathogens.
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Bioremediation ¢ Pollutant Degradation through the incapsulation of enzymes [129,130]
¢ Heavy Metal Removal: They can also be engineered to bind
and remove heavy metals from water and soil.
Nut ticals and
utraceuticals an ¢ Bioactive Compounds: Vesicles can be used to deliver [131]
Functional Food
unctionat foods bioactive compounds in functional foods, enhancing their
health benefit.
e Probiotics: They can encapsulate probiotics, improving their
stability and efficacy.
Cosmetics N . . N
e Anti-aging: Vesicles can deliver anti-ageing compounds more [127]
effectively to the skin.
e Skin Repair: They can also carry compounds that promote
skin repair and regeneration.
Agriculture . . . :
o DPesticide Delivery: Vesicles can provide a controlled release [28,127]
of pesticides, reducing the amount of chemicals needed.
o Plant Growth: They can deliver nutrients and growth factors
to plants more efficiently.
Nanotechnol
anotechnology o Nanoreactors: Vesicles can serve as nanoreactors for chemical [22,124]

reactions, providing a controlled environment at the
nanoscale.
¢ Nanocarriers: They can be used as carriers for nanoparticles,

enhancing the delivery of various materials.

The use of nanoparticles (NPs) for drug delivery has been extensively exploited [132]. When
released in circulation, NPs are immediately exposed to high protein concentrations, thus
determining the formation of a protein layer on their surface, altering their identity and producing
its so-called ‘biological identity’. Conversely, the surface of BEVs is often decorated by complex
glycans that reduce the adsorption of proteins, thus maintaining the same composition. The BEVs are
hence considered attractive for use as drug nanocarriers, due to their high biocompatibility and
ability to enter cells [133]. BEVs can also be considered a therapeutic platform due to their capacity to
load and deliver active molecules [134].

6. Conclusions and Future Perspectives

The study of BEVs offers valuable insights into microbial ecology, biogeochemistry, and
biotechnology. Further research is needed to unravel the mechanisms underlying EV production,
decipher the functional roles of vesicles in marine ecosystems, and explore their potential
applications in biotechnology. Understanding the intricate interplay between marine
microorganisms, their vesicles, and the surrounding environment holds promise for advancing our
knowledge of microbial life and harnessing its potential for the benefit of society and the
environment. Their natural propensity to serve as vehicles for delivering bioactive compounds [135],
combined with the recent advances in synthetic biology for engineering vesicles with tailored cargos,
makes these natural nanoparticles a promising strategy for specific biotechnological purposes,
opening new avenues for bioprospecting and innovation [136].
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