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1. Introduction
A inspirational and popular talk presented by S.M Ulam [37] in 1940, refreshed the reading of

stability problems for various functional equations. He gave a wide range of talk before a Mathematical
Colloquium at the University of Wisconsin in which he presented a list of unsolved problems.

The first assertive answer to Ulam’s question concerning the problem of stability of functional
equations was given by D.H. Hyers [20] for the case of additive mappings in Banach spaces. In growth
of time, the theorem delivered by Hyers was generalized by T. Aoki [3], Th.M Rassias [30], J.M. Rassias
[28], P. Gavruta [19] for additive mappings and K. Ravi [32] for quadratic mappings.

The famous additive and quadratic functional equations are

F (w1 + w2) = F (w1) +F (w2), (1)

and

F (w1 + w2) +F (w1 − w2) = 2F (w1) + 2F (w2). (2)

The general solution and generalized Ulam - Hyers stability of several types of functional equa-
tions in various normed spaces were discussed by many authors one can see [2,16,18,21,22,31] and
references there in.

Also, the general solution and Hyers-Ulam-Rassias stability of the several affine functional
equations are discussed by L. Lucht, C. Methfessel [23], L. Cadariu, L. Gavruta, P. Gavruta [15], Md.
Nasiruzzaman [26], M. Mursaleen, KJ. Ansari[25].

Infact, the general solution and generalized Hyers-Ulam stability of the several AQ functional
equations are established in [4–12,14,29].

In this paper, the we analyze the generalized Ulam-Hyers stability of affine type AQ Functional
Equation of the form

F (3w1 + w2 + w3) +F (w1 + 3w2 + w3) +F (w1 + w2 + 3w3)

= 6F
(

3

∑
ψ=1

wψ

)
+

1
2

{
F
(

3

∑
ψ=1

wψ

)
+F

(
−

3

∑
ψ=1

wψ

)}
−

3

∑
ψ=1

{
F (wψ)−

5
2

[
F (wψ) +F (−wψ)

]}
(3)

in various Banach Spaces using Direct and Fixed Methods .
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Lemma 1.1. [26] Let A and B be real vector spaces. Suppose F : A → B be an odd mapping satisfies (3) then
F is additive.

Lemma 1.2. [17] Let A and B be real vector spaces. Suppose F : A → B be an even mapping satisfies (3) then
F is quadratic.

Now, we present the result due to Margolis, Diaz [24] and Radu [27] for fixed point theory.

Theorem 1.3. [24,27] Suppose that for a complete generalized metric space (Ω, δ) and a strictly contractive
mapping T : Ω −→ Ω with Lipschitz constant L. Then, for each given x ∈ Ω , either

d(Tnx, Tn+1x) = ∞ ∀ n ≥ 0,

or there exists a natural number n0 such that
(FPC1) d(Tnx, Tn+1x) < ∞ for all n ≥ n0 ;
(FPC2) The sequence (Tnx) is convergent to a fixed point y∗ of T
(FPC3) y∗ is the unique fixed point of T in the set ∆ = {y ∈ Ω : d(Tn0 x, y) < ∞};
(FPC4) d(y∗, y) ≤ 1

1−L d(y, Ty) for all y ∈ ∆.

2. Stability In Banach Space of (3)
In this section, we explore the generalized Ulam - Hyers stability of the functional equation (3) in

Banach space. To prove stability results, let us take W1 be a normed space and W2 be a Banach space.
Suppose that F : W1 → W2 and Ψ : W3

1 → [0, ∞) satisfying the following functional inequalities∥∥∥F (3w1 + w2 + w3) +F (w1 + 3w2 + w3) +F (w1 + w2 + 3w3)

− 6F
(

3

∑
ψ=1

wψ

)
− 1

2

{
F
(

3

∑
ψ=1

wψ

)
+F

(
−

3

∑
ψ=1

wψ

)}

+
3

∑
ψ=1

{
F (wψ)−

5
2

[
F (wψ) +F (−wψ)

]}∥∥∥ ≤ Ψ(w1, w2, w3), (1)

and ∥∥∥F (3w1 + w2 + w3) +F (w1 + 3w2 + w3) +F (w1 + w2 + 3w3)− 6F
(

3

∑
ψ=1

wψ

)

− 1
2

{
F
(

3

∑
ψ=1

wψ

)
+F

(
−

3

∑
ψ=1

wψ

)}
+

3

∑
ψ=1

{
F (wψ)−

5
2

[
F (wψ) +F (−wψ)

]}∥∥∥

≤



δ,

δ
3
∑

ψ=1

∣∣wψ

∣∣φ,

δ
3
∑

ψ=1

∣∣wψ

∣∣φψ ,

δ
3

∏
ψ=1

∣∣wψ

∣∣φ,

δ
3

∏
ψ=1

∣∣wψ

∣∣φψ ,

δ

{
3
∑

ψ=1

∣∣wψ

∣∣3φ
+

3
∏

ψ=1

∣∣wψ

∣∣φ},

(2)

for all w1, w2, w3 ∈ W1 and δ be a positive constant.
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2.1. Oddness of F : Additive Case Stability Results : Direct Method
Theorem 2.1. Suppose that an odd function F : W1 → W2 satisfying the functional inequality (1) where
Ψ : W3

1 → [0, ∞) with the condition

lim
ℓ→∞

Ψ
(

5ℓµw1, 5ℓµw2, 5ℓµw3

)
5ℓµ

= 0; µ = ±1 (3)

for all w1, w2, w3 ∈ W1. Then there exists a unique additive mapping A(w1) : W1 → W2 which satisfying (3)
and the functional inequality

∥F (w1)−A(w1)∥ ≤ 1
5

∞

∑
η=

1−µ
2

1
5ηµ ΨA(5ηµw1) (4)

=
1
5

∞

∑
η=

1−µ
2

1
5ηµ

{
1
3

{
Ψ(5ηµw1, 5ηµw1, 5ηµw1) + 3Ψ(5ηµw1, 5ηµw1,−5ηµw1)

}}
(5)

and the mapping A(w1) is obtained by

A(w1) = lim
ℓ→∞

1
5ℓµ

F
(

5ℓµw1

)
(6)

for all w1 ∈ W1.

Proof. Using oddness of F in (1), we get

∥∥∥F (3w1 + w2 + w3) +F (w1 + 3w2 + w3) +F (w1 + w2 + 3w3)− 6F
(

3

∑
ψ=1

wψ

)
+

3

∑
ψ=1

F (wψ)
∥∥∥

≤ Ψ(w1, w2, w3), ∀ w1, w2, w3 ∈ W1. (7)

Interchanging (w1, w2, w3) by (w1, w1, w1) in (7), we obtain∥∥∥3F (5w1)− 6F (3w1) + 3F (w1)
∥∥∥ ≤ Ψ(w1, w1, w1), ∀ w1 ∈ W1. (8)

Again interchanging (w1, w2, w3) by (w1, w1,−w1) in (7), we have∥∥∥2F (3w1)− 6F (w1)
∥∥∥ ≤ Ψ(w1, w1,−w1)

⇒
∥∥∥6F (3w1)− 18F (w1)

∥∥∥ ≤ 3Ψ(w1, w1,−w1), ∀ w1 ∈ W1. (9)

Combining (8) and (9), we arrive∥∥∥3F (5w1)− 15F (w1)
∥∥∥ ≤

∥∥∥3F (5w1)− 6F (3w1) + 3F (w1)
∥∥∥+ ∥∥∥6F (3w1)− 18F (w1)

∥∥∥
≤ Ψ(w1, w1, w1) + 3Ψ(w1, w1,−w1), ∀ w1 ∈ W1. (10)

One can see from (10) that∥∥∥F (5w1)− 5F (w1)
∥∥∥ ≤ 1

3

{
Ψ(w1, w1, w1) + 3Ψ(w1, w1,−w1)

}
= ΨA(w1), ∀ w1 ∈ W1. (11)

It follows from (11) that ∥∥∥1
5
F (5w1)−F (w1)

∥∥∥ ≤ 1
5

ΨA(w1), ∀ w1 ∈ W1. (12)
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Generalizing for a positive integer ℓ, we get

∥∥∥ 1
5ℓ
F (5ℓw1)−F (w1)

∥∥∥ ≤ 1
5

ℓ

∑
η=0

1
5η ΨA(5ηw1), ∀ w1 ∈ W1. (13)

Now, changing w1 by 5ℓ1 w1 in (13), we obtain∥∥∥ 1
5ℓ+ℓ1

F (5ℓ+ℓ1 w1)−
1

5ℓ1
F (5ℓ1 w1)

∥∥∥ =
1

5ℓ1

∥∥∥ 1
5ℓ
F (5ℓ+ℓ1 w1)−F (5ℓ1 w1)

∥∥∥
≤ 1

5

ℓ

∑
η=0

1
5η+ℓ1

ΨA

(
5η+ℓ1 w1

)
→ 0 as ℓ1 → ∞, ∀ w1 ∈ W1. (14)

Therefore, the sequence {
1
5ℓ
F (5ℓw1)

}
,

is a Cauchy sequence and it converges to A(w1) in W2. So, we define

A(w1) = lim
ℓ→∞

1
5ℓ
F
(

5ℓw1

)
, ∀ w1 ∈ W1. (15)

Taking limit ℓ → ∞ in (13), we have∥∥∥A(w1)−F (w1)
∥∥∥ ≤ 1

5

∞

∑
η=0

1
5η ΨA(5ηw1), ∀ w1 ∈ W1. (16)

Thus, (4) and (5) holds for µ = 1. Interchanging

(w1, w2, w3) =
(

5ℓw1, 5ℓw2, 5ℓw3

)
,

we arrive

1
5ℓ

∥∥∥F (5ℓ(3w1 + w2 + w3)) +F (5ℓ(w1 + 3w2 + w3)) +F (5ℓ(w1 + w2 + 3w3))

− 6F
(

3

∑
ψ=1

5ℓwψ

)
− 1

2

{
F
(

3

∑
ψ=1

5ℓwψ

)
+F

(
−

3

∑
ψ=1

5ℓwψ

)}

+
3

∑
ψ=1

{
F (5ℓwψ)−

5
2

[
F (5ℓwψ) +F (−5ℓwψ)

]}∥∥∥
≤ 1

5ℓ
Ψ
(

5ℓw1, 5ℓw2, 5ℓw3

)
, ∀w1, w2, w3 ∈ W1. (17)

Taking limit ℓ → ∞ in (17), using (15) and (3), we get

A(3w1 + w2 + w3) +A(w1 + 3w2 + w3) +A(w1 + w2 + 3w3)

= 6A
(

3

∑
ψ=1

wψ

)
+

1
2

{
A
(

3

∑
ψ=1

wψ

)
+A

(
−

3

∑
ψ=1

wψ

)}
−

3

∑
ψ=1

{
A(wψ)−

5
2

[
A(wψ) +A(−wψ)

]}
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for all w1, w2, w3 ∈ W1. So, A(w1) satisfies (3). In order to confirm that A(w1) is unique, suppose
B(w1) be another mapping (3), (15) and (16), we obtain∥∥∥A(w1)−B(w1)

∥∥∥ =
∥∥∥ 1

5ℓ
A
(

5ℓw1

)
− 1

5ℓ
B
(

5ℓw1

)∥∥∥
≤ 1

5ℓ

∥∥∥A(5ℓw1

)
−F

(
5ℓw1

)∥∥∥+ 1
5ℓ

∥∥∥F(5ℓw1

)
−B

(
5ℓw1

)∥∥∥
≤ 2

5

∞

∑
η=0

1
5η+ℓ

ΨA

(
5η+ℓw1

)
→ 0 as ℓ1 → ∞,

for all w1 ∈ W1. Therefore A(w1) is unique. So, the Theorem holds for µ = 1.

Changing w1 =
w1

5
in (11), we have∥∥∥F (w1)− 5F

(w1

5

)∥∥∥ ≤ ΨA

(w1

5

)
, ∀ w1 ∈ W1. (18)

Generalizing for a positive integer ℓ, we get

∥∥∥F (w1)− 5ℓF
(w1

5η

)∥∥∥ ≤ 1
5

ℓ

∑
η=1

5η ΨA

(w1

5η

)
, ∀ w1 ∈ W1. (19)

The rest of the proof is similar to that of above case. So, the Theorem holds for µ = −1. Hence the
proof is complete

Corollary 2.2. Suppose that an odd function F : W1 → W2 satisfying the functional inequality (2) for all
w1, w2, w3 ∈ W1. Then there exists a unique additive mapping A(w1) : W1 → W2 which satisfying (3) and
the functional inequality

∥F (w1)−A(w1)∥ ≤



δ
|3| ,
4δ|w1|φ
|5−5φ | ; φ ̸= 1,

4δ
3

3
∑

ψ=1

|wψ |
φψ

|5−5
φψ |

; φ1, φ2, φ3 ̸= 1,

4δ|w1|3φ

3|5−53φ | ; 3φ ̸= 1,

4δ|wψ |

3
∑

ψ=1
φψ

3
∣∣∣5−5

3
∑

ψ=1
φψ
∣∣∣ ;

3
∑

ψ=1
φψ ̸= 1,

16δ|w1|3φ

3|5−53φ | ; 3φ ̸= 1,

(20)

for all w1 ∈ W1.

2.2. Evenness of F : Quadratic Case Stability Results : Direct Method
Theorem 2.3. Suppose that an even function F : W1 → W2 satisfying the functional inequality (1) where
Ψ : W3

1 → [0, ∞) with the condition

lim
ℓ→∞

Ψ
(

5ℓµw1, 5ℓµw2, 5ℓµw3

)
25ℓµ

= 0; µ = ±1 (21)
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for all w1, w2, w3 ∈ W1. Then there exists a unique quadratic mapping Q(w1) : W1 → W2 which satisfying
(3) and the functional inequality

∥F (w1)−Q(w1)∥ ≤ 1
25

∞

∑
η=

1−µ
2

1
25ηµ ΨQ(5ηµw1) (22)

=
1

25

∞

∑
η=

1−µ
2

1
25ηµ

{
1
3

{
Ψ(5ηµw1, 5ηµw1, 5ηµw1) +

7
2

Ψ(5ηµw1, 5ηµw1,−5ηµw1)
}}

(23)

and the mapping Q(w1) is obtained by

Q(w1) = lim
ℓ→∞

1
25ℓµ

F
(

5ℓµw1

)
(24)

for all w1 ∈ W1.

Proof. Using evenness of F in (1), we get

∥∥∥F (3w1 + w2 + w3) +F (w1 + 3w2 + w3) +F (w1 + w2 + 3w3)− 7F
(

3

∑
ψ=1

wψ

)
− 4

3

∑
ψ=1

F (wψ)
∥∥∥

≤ Ψ(w1, w2, w3), ∀ w1, w2, w3 ∈ W1. (25)

Interchanging (w1, w2, w3) by (w1, w1, w1) in (25), we obtain∥∥∥3F (5w1)− 7F (3w1)− 12F (w1)
∥∥∥ ≤ Ψ(w1, w1, w1), ∀ w1 ∈ W1. (26)

Again interchanging (w1, w2, w3) by (w1, w1,−w1) in (25), we have∥∥∥2F (3w1)− 18F (w1)
∥∥∥ ≤ Ψ(w1, w1,−w1)

⇒
∥∥∥7F (3w1)− 63F (w1)

∥∥∥ ≤ 7
2

Ψ(w1, w1,−w1), ∀ w1 ∈ W1. (27)

Combining (26) and (27), we arrive∥∥∥3F (5w1)− 75F (w1)
∥∥∥ ≤

∥∥∥3F (5w1)− 7F (3w1)− 12F (w1)
∥∥∥+ ∥∥∥7F (3w1)− 63F (w1)

∥∥∥
≤ Ψ(w1, w1, w1) +

7
2

Ψ(w1, w1,−w1), ∀ w1 ∈ W1. (28)

One can see from (28) that∥∥∥F (5w1)− 25F (w1)
∥∥∥ ≤ 1

3

{
Ψ(w1, w1, w1) +

7
2

Ψ(w1, w1,−w1)
}
= ΨQ(w1), ∀ w1 ∈ W1. (29)

It follows from (29) that ∥∥∥ 1
25

F (5w1)−F (w1)
∥∥∥ ≤ 1

25
ΨQ(w1), ∀ w1 ∈ W1. (30)

The rest of the proof is similar to that of Theorem 2.1. Hence the proof is complete.
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Corollary 2.4. Suppose that an even function F : W1 → W2 satisfying the functional inequality (2) for all
w1, w2, w3 ∈ W1. Then there exists a unique quadratic mapping Q(w1) : W1 → W2 which satisfying (3) and
the functional inequality

∥F (w1)−Q(w1)∥ ≤



3δ
2|24| ,
27δ|w1|φ
6|25−5φ | ; φ ̸= 2,

9δ
6

3
∑

ψ=1

|wψ |
φψ

|25−5
φψ |

; φ1, φ2, φ3 ̸= 2,

9δ|w1|3φ

6|25−53φ | ; 3φ ̸= 2,

9δ|wψ |

3
∑

ψ=1
φψ

6
∣∣∣25−5

3
∑

ψ=1
φψ
∣∣∣ ;

3
∑

ψ=1
φψ ̸= 2,

36δ|w1|3φ

6|25 − 53φ|
; 3φ ̸= 2,

(31)

for all w1 ∈ W1.

2.3. Oddness and Evenness of F : Additive Quadratic Case Stability Results : Direct Method
Theorem 2.5. Suppose that a function F : W1 → W2 satisfying the functional inequality (1) where Ψ :
W3

1 → [0, ∞) with the conditions (3) and (21) for all w1, w2, w3 ∈ W1. Then there exists a unique additive
mapping A(w1) : W1 → W2 and a unique quadratic mapping Q(w1) : W1 → W2 which satisfying (3) and
the functional inequality

∥F (w1)−A(w1)−Q(w1)∥

≤ 1
2

1
5

∞

∑
η=

1−µ
2

1
5ηµ

{
ΨA(5ηµw1) + ΨA(−5ηµw1)

}
+

1
25

∞

∑
η=

1−µ
2

1
25ηµ

{
ΨQ(5ηµw1) + ΨQ(−5ηµw1)

}
≤ 1

2

1
5

∞

∑
η=

1−µ
2

1
5ηµ

{
1
3

{
Ψ(5ηµw1, 5ηµw1, 5ηµw1) + 3Ψ(5ηµw1, 5ηµw1,−5ηµw1)

}

+
1
3

{
Ψ(−5ηµw1,−5ηµw1,−5ηµw1) + 3Ψ(−5ηµw1,−5ηµw1, 5ηµw1)

}}
+

1
25

∞

∑
η=

1−µ
2

1
25ηµ

{
1
3

{
Ψ(5ηµw1, 5ηµw1, 5ηµw1) +

7
2

Ψ(5ηµw1, 5ηµw1,−5ηµw1)
}

+
1
3

{
Ψ(−5ηµw1,−5ηµw1,−5ηµw1) +

7
2

Ψ(−5ηµw1,−5ηµw1, 5ηµw1)
}}}

(32)

and the mapping A(w1) and Q(w1) are given in (6) and (24) for all w1 ∈ W1.

Proof. Consider a function Fodd(w1) by

Fodd(w1) =
1
2

{
F (w1)−F (−w1)

}
, ∀ w1 ∈ W1, (33)

which gives

Fodd(0) = 0; Fodd(−w1) = −Fodd(w1), ∀ w1 ∈ W1. (34)
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By Theorem 2.1, it follows from (33), (1), (5) and (6), we arrive

∥Fodd(w1)−A(w1)∥

≤ 1
2
· 1

5

∞

∑
η=

1−µ
2

1
5ηµ

{
ΨA(5ηµw1) + ΨA(−5ηµw1)

}
(35)

=
1
2
· 1

5

∞

∑
η=

1−µ
2

1
5ηµ

{
1
3

{
Ψ(5ηµw1, 5ηµw1, 5ηµw1) + 3Ψ(5ηµw1, 5ηµw1,−5ηµw1)

}

+
1
3

{
Ψ(−5ηµw1,−5ηµw1,−5ηµw1) + 3Ψ(−5ηµw1,−5ηµw1, 5ηµw1)

}}
(36)

for all w1, w2, w3 ∈ W1. Consider a function Feven(w1) by

Feven(w1) =
1
2

{
F (w1) +F (−w1)

}
, ∀ w1 ∈ W1, (37)

which gives

Feven(0) = 0; Feven(−w1) = Feven(w1), ∀ w1 ∈ W1. (38)

By Theorem 2.3, it follows from (37), (1), (22) and (23), we see

∥Feven(w1)−Q(w1)∥

≤ 1
2
· 1

25

∞

∑
η=

1−µ
2

1
25ηµ

{
ΨQ(5ηµw1) + ΨQ(−5ηµw1)

}
(39)

=
1
2
· 1

25

∞

∑
η=

1−µ
2

1
25ηµ

{
1
3

{
Ψ(5ηµw1, 5ηµw1, 5ηµw1) +

7
2

Ψ(5ηµw1, 5ηµw1,−5ηµw1)
}

+
1
3

{
Ψ(−5ηµw1,−5ηµw1,−5ηµw1) +

7
2

Ψ(−5ηµw1,−5ηµw1, 5ηµw1)
}}

(40)

for all w1, w2, w3 ∈ W1. Assume a function F (w1) by

F (w1) = Fodd(w1) +Feven(w1), ∀ w1 ∈ W1. (41)

Now, it follows from (35), (36), (39), (40) and (41), we have

∥F (w1)−A(w1)−Q(w1)∥
≤ ∥Fodd(w1)−A(w1)∥+ ∥Feven(w1)−Q(w1)∥

≤ 1
2

1
5

∞

∑
η=

1−µ
2

1
5ηµ

{
ΨA(5ηµw1) + ΨA(−5ηµw1)

}
+

1
25

∞

∑
η=

1−µ
2

1
25ηµ

{
ΨQ(5ηµw1) + ΨQ(−5ηµw1)

}
≤ 1

2

1
5

∞

∑
η=

1−µ
2

1
5ηµ

{
1
3

{
Ψ(5ηµw1, 5ηµw1, 5ηµw1) + 3Ψ(5ηµw1, 5ηµw1,−5ηµw1)

}

+
1
3

{
Ψ(−5ηµw1,−5ηµw1,−5ηµw1) + 3Ψ(−5ηµw1,−5ηµw1, 5ηµw1)

}}
+

1
25

∞

∑
η=

1−µ
2

1
25ηµ

{
1
3

{
Ψ(5ηµw1, 5ηµw1, 5ηµw1) +

7
2

Ψ(5ηµw1, 5ηµw1,−5ηµw1)
}

+
1
3

{
Ψ(−5ηµw1,−5ηµw1,−5ηµw1) +

7
2

Ψ(−5ηµw1,−5ηµw1, 5ηµw1)
}}}

for all w1, w2, w3 ∈ W1.
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Corollary 2.6. Suppose that a function F : W1 → W2 satisfying the functional inequality (2) for all
w1, w2, w3 ∈ W1. Then there exists a unique additive mapping A(w1) : W1 → W2 and a unique quadratic
mapping Q(w1) : W1 → W2 which satisfying (3) and the functional inequality

∥F (w1)−A(w1)−Q(w1)∥ ≤



δ
|3| +

3δ
2|24| ,

4δ|w1|φ
|5−5φ | +

27δ|w1|φ
6|25−5φ | ; φ ̸= 1, 2,

4δ
3

3
∑

ψ=1

|wψ |
φψ

|5−5
φψ |

+ 9δ
6

3
∑

ψ=1

|wψ |
φψ

|25−5
φψ |

; φ1, φ2, φ3 ̸= 1, 2,

4δ|w1|3φ

3|5−53φ | +
9δ|w1|3φ

6|25−53φ | ; 3φ ̸= 1, 2,

4δ|wψ |

3
∑

ψ=1
φψ

3
∣∣∣5−5

3
∑

ψ=1
φψ
∣∣∣ +

9δ|wψ |

3
∑

ψ=1
φψ

6
∣∣∣25−5

3
∑

ψ=1
φψ
∣∣∣ ;

3
∑

ψ=1
φψ ̸= 1, 2,

16δ|w1|3φ

3|5−53φ | +
36δ|w1|3φ

6|25−53φ | ; 3φ ̸= 1, 2,

(42)

for all w1 ∈ W1.

2.4. Oddness of F : Additive Case Stability Results : Fixed Method
Theorem 2.7. Suppose that an odd function F : W1 → W2 satisfying the functional inequality (1) where
Ψ : W3

1 → [0, ∞) with the condition

lim
ℓ→∞

Ψ
(

τℓ
ν w1, τℓ

ν w2, τℓ
ν w3

)
τℓ

ν

= 0; τν =

{
5; ν = 0
1
5 ; ν = 1

, ∀ w1, w2, w3 ∈ W1. (43)

If there exists L = L(ν) be a function have the property

ΨA(w1) = ΨA

(w1

5

)
and

1
τν

ΨA(τνw1) = L ΨA(w1), ∀ w1 ∈ W1. (44)

Then there exists a unique additive mapping A(w1) : W1 → W2 which satisfying (3) and the functional
inequality

∥F (w1)−A(w1)∥ ≤ L1−ν

1 − L
ΨA(w1) (45)

=
L1−ν

1 − L

{
1
3

{
Ψ(w1, w1, w1) + 3Ψ(w1, w1,−w1)

}}
(46)

and the mapping A(w1) is obtained by

A(w1) = lim
ℓ→∞

1
τℓ

ν

F
(

τℓ
ν w1

)
(47)

for all w1 ∈ W1.

Proof. Assume a set
G = {F/F : W1 → W2, F (0) = 0} (48)

and introduce the generalized metric on the above set G as

d(F ,F1) = inf{K ∈ (0, ∞) : ∥F (w1)−F1(w1)∥ ≤ K Ψ(w1, w1, w1), w1 ∈ W1}. (49)

It is easy to see that (G, d) is complete. Define a function H : G → G by

HF (w1 ) =
1
τν
F (τν w1 ), f or all w1 ∈ W1. (50)
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Now F ,F1 ∈ G and w1 ∈ W1, we see

d(F ,F1) ≤ K ⇒ ∥ F (w1)−F1(w1) ∥≤ K Ψ(w1, w1, w1),

⇒
∥∥∥∥ 1

τν
F (τνw1)−

1
τν
F1(τνw1)

∥∥∥∥ ≤ 1
τν

K Ψ(τνw1, τνw1, τνw1),

⇒ ∥ HF (w1)−HF1( w1 ) ∥≤ L K Ψ(w1, w1, w1),
⇒d(HF ,HF1) ≤ L K,

i.e., H is a strictly contractive mapping on G with Lipschitz constant L (see [24]).
For the case ν = 0, it follows from (12) and with the help of (44), (50), (49), we get∥∥∥1

5
F (5w1)−F (w1)

∥∥∥ ≤ 1
5

ΨA(w1),⇒ d(HF ,F ) ≤ L = L1−ν, ∀ w1 ∈ W1. (51)

For the case ν = 1, it follows from (18) and with the help of (44), (50), (49), we obtain∥∥∥F (w1)− 5F
(w1

5

)∥∥∥ ≤ ΨA

(w1

5

)
,⇒ d(F ,HF ) ≤ 1 = L1−ν, ∀ w1 ∈ W1. (52)

Combining (51) and (52), we have

d(F ,HF ) ≤ 1 = L1−ν. (53)

Therefore (FPC1) of Theorem 1.3 holds. The rest of the proof follows by Theorem 1.3. Hence the proof
is complete.

Corollary 2.8. Suppose that an odd function F : W1 → W2 satisfying the functional inequality (2) for all
w1, w2, w3 ∈ W1. Then there exists a unique additive mapping A(w1) : W1 → W2 which satisfying (3) and
the functional inequality (20) for all w1 ∈ W1.

Proof. If we take

Ψ(w1, w2, w3) =



δ,
δ ∑3

ψ=1
∣∣wψ

∣∣φ,
δ ∑3

ψ=1
∣∣wψ

∣∣φψ ,
δ ∏3

ψ=1
∣∣wψ

∣∣φ,
δ ∏3

ψ=1
∣∣wψ

∣∣φψ ,

δ
{

∑3
ψ=1
∣∣wψ

∣∣3φ
+ ∏3

ψ=1
∣∣wψ

∣∣φ},

(54)

in Theorem 2.7 and changing (w1, w2, w3) by
(

τℓ
ν w1, τℓ

ν w2, τℓ
ν w3

)
and dividing by τℓ

ν in (54), one can
see

1
τℓ

ν

Ψ
(

τℓ
ν w1, τνwℓ

2, τℓ
ν w3

)
=



δ
τℓν

→ 0 as ℓ to ∞,
δ

τℓν
∑3

ψ=1

∣∣∣τℓ
ν wψ

∣∣∣φ, → 0 as ℓ to ∞,
δ

τℓν
∑3

ψ=1

∣∣∣τℓ
ν wψ

∣∣∣φψ , → 0 as ℓ to ∞,
δ

τℓν
∏3

ψ=1

∣∣∣τℓ
ν wψ

∣∣∣φ, → 0 as ℓ to ∞,
δ

τℓν
∏3

ψ=1

∣∣∣τℓ
ν wψ

∣∣∣φψ , → 0 as ℓ to ∞,

δ
τℓν

{
∑3

ψ=1

∣∣∣τℓ
ν wψ

∣∣∣3φ
+ ∏3

ψ=1

∣∣∣τℓ
ν wψ

∣∣∣φ}, → 0 as ℓ to ∞.
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Therefore (43) holds for all w1, w2, w3 ∈ W1. Now, from (44), we have

ΨA(w1) = ΨA

(w1

5

)
=

1
3

{
Ψ
(w1

5
,

w1

5
,

w1

5

)
+ 3Ψ

(w1

5
,

w1

5
,−w1

5

)}
=



4δ
3 ,
12| w1

5 |φ
3 ,

4δ
3 ∑3

ψ=1
∣∣w1

5

∣∣φψ ,
4δ| w1

5 |3φ

3 ,

4δ| w1
5 |

3
∑

ψ=1
φψ

3 ,
16δ| w1

5 |3φ

3 ,

(55)

1
τν

ΨA(τνw1) =
1
τν

1
3

{
Ψ(τνw1, τνw1, τνw1) + 3Ψ(τνw1, τνw1,−τνw1)

}

=



4δ
τν ·3 ,
12δ|τνw1|φ

τν ·3 ,
4δ

τν ·3 ∑3
ψ=1
∣∣τνwψ

∣∣φψ ,
4δ|τνw1|3φ

τν ·3 ,

4δ|τνw1|
∑3

ψ=1 φψ

τν ·3 ,
16δ|τνw1|3φ

τν ·3 ,

=



τ−1
ν ΨA(w1),

τ
φ−1
ν ΨA(w1),

∑3
ψ=1 τ

φψ−1
ν ΨA(w1),

τ
3φ−1
ν ΨA(w1),

τ
∑3

ψ=1 φψ−1
ν ΨA(w1),

τ
3φ−1
ν ΨA(w1),

=



L ΨA(w1)
L ΨA(w1)
L ΨA(w1)
L ΨA(w1)
L ΨA(w1)
L ΨA(w1)

(56)

for all w1 ∈ W1.
For the case ν = 0, we have L = τ−1

0 = 5−1 and from (46), we arrive

∥F (w1)−A(w1)∥ ≤ L1−ν

1 − L
ΨA(w1) =

L1−ν

1 − L

{
1
3

{
Ψ(w1, w1, w1) + 3Ψ(w1, w1,−w1)

}}
=

(5−1)1−0

1 − 5−1

{
4δ

3

}
=

δ

3
.

For the case ν = 1, we have L = τ−1
1 = ( 1

5 )
−1 = 5 and from (46), we obtain

∥F (w1)−A(w1)∥ ≤ L1−ν

1 − L
ΨA(w1) =

L1−ν

1 − L

{
1
3

{
Ψ(w1, w1, w1) + 3Ψ(w1, w1,−w1)

}}
=

(5)1−1

1 − 5

{
4δ

3

}
=

δ

−3
.

For the case ν = 0, we have L = τ
φ−1
0 = 5φ−1 and from (46), we arrive

∥F (w1)−A(w1)∥ ≤ L1−ν

1 − L
ΨA(w1) =

L1−ν

1 − L

{
1
3

{
Ψ(w1, w1, w1) + 3Ψ(w1, w1,−w1)

}}
=

(5φ−1)1−0

1 − 5φ−1

{
12δ|w1

5 |φ

3

}
=

4δ

5 − 5φ .

For the case ν = 1, we have L = τ
φ−1
1 = ( 1

5 )
φ−1 = 51−φ and from (46), we get

∥F (w1)−A(w1)∥ ≤ L1−ν

1 − L
ΨA(w1) =

L1−ν

1 − L

{
1
3

{
Ψ(w1, w1, w1) + 3Ψ(w1, w1,−w1)

}}
=

(51−φ)1−1

1 − 51−φ

{
12δ|w1

5 |φ

3

}
=

4δ

5φ − 5
.
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For the case ν = 0, we have L = τ
3φ−1
0 = 53φ−1 and from (46), we arrive

∥F (w1)−A(w1)∥ ≤ L1−ν

1 − L
ΨA(w1) =

L1−ν

1 − L

{
1
3

{
Ψ(w1, w1, w1) + 3Ψ(w1, w1,−w1)

}}
=

(53φ−1)1−0

1 − 53φ−1

{
4δ|w1

5 |3φ

3

}
=

4δ|w1|3φ

3(5 − 53φ)
.

For the case ν = 1, we have L = τ
3φ−1
1 = ( 1

5 )
3φ−1 = 51−3φ and from (46), we obtain

∥F (w1)−A(w1)∥ ≤ L1−ν

1 − L
ΨA(w1) =

L1−ν

1 − L

{
1
3

{
Ψ(w1, w1, w1) + 3Ψ(w1, w1,−w1)

}}
=

(51−3φ)1−1

1 − 51−3φ

{
4δ|w1

5 |3φ

3

}
=

4δ|w1|3φ

3(53φ − 5)
.

Similarly, we can prove for rest of the cases.

2.5. Evenness of F : Quadratic Case Stability Results : Fixed Method
Theorem 2.9. Suppose that an even function F : W1 → W2 satisfying the functional inequality (1) where
Ψ : W3

1 → [0, ∞) with the condition

lim
ℓ→∞

Ψ
(

τℓ
ν w1, τℓ

ν w2, τℓ
ν w3

)
τ2ℓ

ν

= 0; τν =

{
5; ν = 0
1
5 ; ν = 1

, ∀ w1, w2, w3 ∈ W1. (57)

If there exists L = L(ν) be a function have the property

ΨQ(w1) = ΨQ

(w1

5

)
and

1
τ2

ν
ΨQ(τνw1) = L ΨQ(w1), ∀ w1 ∈ W1. (58)

for all w1, w2, w3 ∈ W1. Then there exists a unique quadratic mapping Q(w1) : W1 → W2 which satisfying
(3) and the functional inequality

∥F (w1)−Q(w1)∥ ≤ L1−ν

1 − L
ΨQ(w1) (59)

=
L1−ν

1 − L

{
1
3

{
Ψ(w1, w1, w1) +

7
2

Ψ(w1, w1,−w1)
}}

(60)

and the mapping Q(w1) is obtained by

Q(w1) = lim
ℓ→∞

1
τ2ℓ

ν

F
(

τℓ
ν w1

)
(61)

for all w1 ∈ W1.

Proof. By Theorem 2.7, define a function H : G → G by

HF (w1 ) =
1
τ2

ν
F (τν w1 ), f or all w1 ∈ W1. (62)
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Now F ,F1 ∈ G and w1 ∈ W1, we see

d(F ,F1) ≤ K ⇒ ∥ F (w1)−F1(w1) ∥≤ K Ψ(w1, w1, w1),

⇒
∥∥∥∥ 1

τ2
ν
F (τνw1)−

1
τ2

ν
F1(τνw1)

∥∥∥∥ ≤ 1
τ2

ν
K Ψ(τνw1, τνw1, τνw1),

⇒ ∥ HF (w1)−HF1( w1 ) ∥≤ L K Ψ(w1, w1, w1),
⇒d(HF ,HF1) ≤ L K,

i.e., H is a strictly contractive mapping on G with Lipschitz constant L (see [24]). The rest of the proof
is similar to that of Theorem 2.7. Hence the proof is complete.

Corollary 2.10. Suppose that an even function F : W1 → W2 satisfying the functional inequality (2) for all
w1, w2, w3 ∈ W1. Then there exists a unique quadratic mapping Q(w1) : W1 → W2 which satisfying (3) and
the functional inequality (31) for all w1 ∈ W1.

2.6. Oddness and Evenness of F : Additive Quadratic Case Stability Results : Fixed Method
Theorem 2.11. Suppose that a function F : W1 → W2 satisfying the functional inequality (1) where
Ψ : W3

1 → [0, ∞) with the conditions (43) and (57) for all w1, w2, w3 ∈ W1. If there exists L = L(ν) be
function have the properties (44) and (58) Then there exists a unique additive mapping A(w1) : W1 → W2 and
a unique quadratic mapping Q(w1) : W1 → W2 which satisfying (3) and the functional inequality

∥F (w1)−A(w1)−Q(w1)∥

≤ 1
2
· L1−ν

1 − L

{
ΨA(w1) + ΨA(−w1) + ΨQ(w1) + ΨQ(−w1)

}
(63)

=
1
2
· L1−ν

1 − L

{
1
3

{
Ψ(w1, w1, w1) + 3Ψ(w1, w1,−w1) + Ψ(−w1,−w1,−w1) + 3Ψ(−w1,−w1, w1)

+Ψ(w1, w1, w1) +
7
2

Ψ(w1, w1,−w1) + Ψ(−w1,−w1,−w1) +
7
2

Ψ(−w1,−w1, w1)
}}

(64)

and the mapping A(w1) and Q(w1) are given in (47) and (61) for all w1 ∈ W1.

Proof. The proof is similar ideas to that of Theorem 2.5.

Corollary 2.12. Suppose that a function F : W1 → W2 satisfying the functional inequality (2) for all
w1, w2, w3 ∈ W1. Then there exists a unique additive mapping A(w1) : W1 → W2 and a unique quadratic
mapping Q(w1) : W1 → W2 which satisfying (3) and the functional inequality (42) for all w1 ∈ W1.

3. Stability In Intuitionistic Fuzzy Banach Space of (3)
In this section, we explore the generalized Ulam - Hyers stability of the functional equations (3) in

Intuitionistic Fuzzy Banach Space.
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In order to prove stability results, assume (W1, µ, ν) and (W2, µ′, ν′) are Intuitionistic Fuzzy
normed space and Intuitionistic Fuzzy Banach space respectively. Suppose that F : W1 → W2 and
Ψ : W3

1 → [0, ∞) satisfying the following functional inequalities

µ

(
F (3w1 + w2 + w3) +F (w1 + 3w2 + w3) +F (w1 + w2 + 3w3)− 6F

(
3
∑

ψ=1
wψ

)

−1
2

{
F
(

3

∑
ψ=1

wψ

)
+F

(
−

3

∑
ψ=1

wψ

)}
+

3

∑
ψ=1

{
F (wψ)−

5
2

[
F (wψ) +F (−wψ)

]}
, Λ

)
≥ µ′(Ψ(w1, w2, w3), Λ)

ν

(
F (3w1 + w2 + w3) +F (w1 + 3w2 + w3) +F (w1 + w2 + 3w3)− 6F

(
3
∑

ψ=1
wψ

)

−1
2

{
F
(

3

∑
ψ=1

wψ

)
+F

(
−

3

∑
ψ=1

wψ

)}
+

3

∑
ψ=1

{
F (wψ)−

5
2

[
F (wψ) +F (−wψ)

]}
, Λ

)
≤ ν′(Ψ(w1, w2, w3), Λ)



(1)

and

µ

(
F (3w1 + w2 + w3) +F (w1 + 3w2 + w3) +F (w1 + w2 + 3w3)− 6F

(
3
∑

ψ=1
wψ

)

−1
2

{
F
(

3

∑
ψ=1

wψ

)
+F

(
−

3

∑
ψ=1

wψ

)}
+

3

∑
ψ=1

{
F (wψ)−

5
2

[
F (wψ) +F (−wψ)

]}
, Λ

)

≥



µ′(δ, Λ),

µ′
(

δ
3
∑

ψ=1

∣∣wψ

∣∣φ, Λ

)
,

µ′
(

δ
3
∑

ψ=1

∣∣wψ

∣∣φψ , Λ

)
,

µ′
(

δ
3

∏
ψ=1

∣∣wψ

∣∣φ, Λ

)
,

µ′
(

δ
3

∏
ψ=1

∣∣wψ

∣∣φψ , Λ

)
,

µ′
(

δ

{
3
∑

ψ=1

∣∣wψ

∣∣3φ
+

3
∏

ψ=1

∣∣wψ

∣∣φ}, Λ

)
,

ν

(
F (3w1 + w2 + w3) +F (w1 + 3w2 + w3) +F (w1 + w2 + 3w3)− 6F

(
3
∑

ψ=1
wψ

)

−1
2

{
F
(

3

∑
ψ=1

wψ

)
+F

(
−

3

∑
ψ=1

wψ

)}
+

3

∑
ψ=1

{
F (wψ)−

5
2

[
F (wψ) +F (−wψ)

]}
, Λ

)

≤



ν′(δ, Λ),

ν′
(

δ
3
∑

ψ=1

∣∣wψ

∣∣φ, Λ

)
,

ν′
(

δ
3
∑

ψ=1

∣∣wψ

∣∣φψ , Λ

)
,

ν′
(

δ
3

∏
ψ=1

∣∣wψ

∣∣φ, Λ

)
,

ν′
(

δ
3

∏
ψ=1

∣∣wψ

∣∣φψ , Λ

)
,

ν′
(

δ

{
3
∑

ψ=1

∣∣wψ

∣∣3φ
+

3
∏

ψ=1

∣∣wψ

∣∣φ}, Λ

)
,



(2)
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for all w1, w2, w3 ∈ W1 and all Λ > 0 with δ be a positive constant.

3.1. Definitions and Notations of Intuitionistic Fuzzy Banach Space
Now, we recall the basic definitions and notations in the setting of intuitionistic fuzzy normed

space given in [33].

Definition 3.1. [33] A binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1] is said to be continuous t-norm if ∗
satisfies the following conditions:

(∗1) ∗ is commutative and associative;
(∗2) ∗ is continuous;
(∗3) a ∗ 1 = a for all a ∈ [0, 1];
(∗4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 3.2. [33] A binary operation ⋄ : [0, 1]× [0, 1] −→ [0, 1] is said to be continuous t-conorm if ⋄
satisfies the following conditions:

(⋄1) ⋄ is commutative and associative;
(⋄2) ⋄ is continuous;
(⋄3) a ⋄ 0 = a for all a ∈ [0, 1];
(⋄4) a ⋄ b ≤ c ⋄ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 3.3. [33] The five-tuple (X, µ, ν, ∗, ⋄) is said to be an intuitionistic fuzzy normed space (for short,
IFNS) if X is a vector space, ∗ is a continuous t-norm, ⋄ is a continuous t− conorm, and µ, ν are fuzzy sets on
X × (0, ∞) satisfying the following conditions. For every x, y ∈ X and s, t > 0

(IFN1) µ(x, t) + ν(x, t) ≤ 1;
(IFN2) µ(x, t) > 0;
(IFN3) µ(x, t) = 1, if and only if x = 0;
(IFN4) µ(dx, t) = µ

(
x, t

d
)

for each d ̸= 0;
(IFN5) µ(x, t) ∗ µ(y, s) ≤ µ(x + y, t + s);
(IFN6) µ(x, ·) : (0, ∞) → [0, 1] is continuous;
(IFN7) lim

t→∞
µ(x, t) = 1 and lim

t→0
µ(x, t) = 0;

(IFN8) ν(x, t) < 1;
(IFN9) ν(x, t) = 0, if and only if x = 0;

(IFN10) ν(dx, t) = ν
(

x, t
d
)

for each d ̸= 0;
(IFN11) ν(x, t) ⋄ ν(y, s) ≥ ν(x + y, t + s);
(IFN12) ν(x, ·) : (0, ∞) → [0, 1] is continuous;
(IFN13) lim

t→∞
ν(x, t) = 0 and lim

t→0
ν(x, t) = 1.

In this case, (µ, ν) is called an intuitionistic fuzzy norm.

Example 3.4. [33] Let (X, ∥·∥) be a normed space. Let a ∗ b = ab and a ⋄ d = min{a + b, 1} for all
a, b ∈ [0, 1]. For all x ∈ X and every t > 0, consider

µ(x, t) =

{
t

t+∥x∥ i f t > 0;
0 i f t ≤ 0;

and ν(x, t) =

{
∥x∥

t+∥x∥ i f t > 0;
0 i f t ≤ 0.

Then (X, µ, ν, ∗, ⋄) is an IFN-space.

Definition 3.5. [33] Let (X, µ, ν, ∗, ⋄) be an IFNS. Then, a sequence x = {xk} is said to be intuitionistic fuzzy
convergent to a point L ∈ X if

lim µ(xk − L, t) = 1 and lim ν(xk − L, t) = 0

for all ρ > 0. In this case, we write

xk
IF−→ L as k → ∞

Definition 3.6. [33] Let (X, µ, ν, ∗, ⋄) be an IFN-space. Then, x = {xk} is said to be intuitionistic fuzzy
Cauchy sequence if

µ
(

xk+p − xk, t
)
= 1 and ν

(
xk+p − xk, t

)
= 0

for all ρ > 0, and p = 1, 2 · · · .

Definition 3.7. [33] Let (X, µ, ν, ∗, ⋄) be an IFN-space. Then (X, µ, ν, ∗, ⋄) is said to be complete if every
intuitionistic fuzzy Cauchy sequence in (X, µ, ν, ∗, ⋄) is intuitionistic fuzzy convergent (X, µ, ν, ∗, ⋄).
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3.2. Oddness of F : Additive Case Stability Results : Direct Method
Theorem 3.8. Suppose that an odd function F : W1 → W2 satisfying the functional inequality (1) where
Ψ : W3

1 → [0, ∞) with the conditions

µ′
(

Ψ
(

5ℓµw1, 5ℓµw2, 5ℓµw3

)
, Λ
)
≥ µ′

(
IℓµΨ(w1, w2, w3), Λ

)
ν′
(

Ψ
(

5ℓµw1, 5ℓµw2, 5ℓµw3

)
, Λ
)
≤ ν′

(
IℓµΨ(w1, w2, w3), Λ

)  (3)

and

lim
ℓ→∞

µ′
(

Ψ
(

5ℓµw1, 5ℓµw2, 5ℓµw3

)
, 5ℓµΛ

)
= 1

lim
ℓ→∞

ν′
(

Ψ
(

5ℓµw1, 5ℓµw2, 5ℓµw3

)
, 5ℓµΛ

)
= 0

 (4)

for all w1, w2, w3 ∈ W1 and all Λ > 0 with µ = ±1 and 0 <
(

I
5

)µ
< 1 . Then there exists a unique additive

mapping A(w1) : W1 → W2 which satisfying (3) and the functional inequality

µ(A(w1)−F (w1), Λ) ≥ µ′
(

ΨA(w1),
3Λ
4

|5 − I|
)

= µ′
(

Ψ(w1, w1, w1),
3Λ
4

|5 − I|
)
∗ µ′

(
Ψ(w1, w1,−w1),

3Λ
4

|5 − I|
)

ν(A(w1)−F (w1), Λ) ≤ ν′
(

ΨA(w1),
3Λ
4

(5 − I)
)

= ν′
(

Ψ(w1, w1, w1),
3Λ
4

(5 − I)
)
⋄ ν′
(

Ψ(w1, w1,−w1),
3Λ
4

(5 − I)
)


(5)

and the mapping A(w1) is obtained by

lim
ℓ→∞

µ

(
1

5ℓµ
F
(

5ℓµw1

)
−A(w1), Λ

)
= 1

lim
ℓ→∞

ν

(
1

5ℓµ
F
(

5ℓµw1

)
−A(w1), Λ

)
= 0

 (6)

for all w1 ∈ W1 and all Λ > 0.

Proof. Using oddness of F in (1), we get

µ

(
F (3w1 + w2 + w3) +F (w1 + 3w2 + w3) +F (w1 + w2 + 3w3)− 6F

(
3

∑
ψ=1

wψ

)
+

3

∑
ψ=1

F (wψ), Λ

)
≥ µ′(Ψ(w1, w2, w3), Λ)

ν

(
F (3w1 + w2 + w3) +F (w1 + 3w2 + w3) +F (w1 + w2 + 3w3)− 6F

(
3

∑
ψ=1

wψ

)
+

3

∑
ψ=1

F (wψ), Λ

)
≤ ν′(Ψ(w1, w2, w3), Λ)


(7)

for all w1, w2, w3 ∈ W1 and all Λ > 0 . Interchanging (w1, w2, w3) by (w1, w1, w1) in (7), we obtain

µ(3F (5w1)− 6F (3w1) + 3F (w1), Λ) ≥ µ′(Ψ(w1, w1, w1), Λ)
ν(3F (5w1)− 6F (3w1) + 3F (w1), Λ) ≤ ν′(Ψ(w1, w1, w1), Λ)

}
(8)
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for all w1 ∈ W1 and all Λ > 0 . Again interchanging (w1, w2, w3) by (w1, w1,−w1) in (7) and using
(IFN4), (IFN10), we have

µ(2F (3w1)− 6F (w1), Λ) ≥ µ′(Ψ(w1, w1, w1), Λ)
ν(2F (3w1)− 6F (w1), Λ) ≤ ν′(Ψ(w1, w1,−w1), Λ)

}
⇒ µ(6F (3w1)− 18F (w1), 3Λ) ≥ µ′(Ψ(w1, w1, w1), Λ)

ν(6F (3w1)− 18F (w1), 3Λ) ≤ ν′(Ψ(w1, w1,−w1), Λ)

}
(9)

for all w1 ∈ W1 and all Λ > 0. Combining (8) and (9) using (IFN5), (IFN11), we arrive

µ(3F (5w1)− 15F (w1), 4Λ) ≥ µ(3F (5w1)− 6F (3w1) + 3F (w1), Λ) ∗ µ(6F (3w1)− 18F (w1), 3Λ)
≥ µ′(Ψ(w1, w1, w1), Λ) ∗ µ′(Ψ(w1, w1,−w1), Λ) = µ′(ΨA(w1), Λ)

ν(3F (5w1)− 15F (w1), 4Λ) ≤ ν(3F (5w1)− 6F (3w1) + 3F (w1), Λ) ⋄ ν(6F (3w1)− 18F (w1), 3Λ)
≤ ν′(Ψ(w1, w1, w1), Λ) ⋄ ν′(Ψ(w1, w1,−w1), Λ) = ν′(ΨA(w1), Λ)


(10)

for all w1 ∈ W1 and all Λ > 0. Using (IFN4), (IFN10), one can see from (10) that

µ

(
1
5
F (5w1)−F (w1),

4
3
· 1

5
Λ
)
≥ µ′(ΨA(w1), Λ)

ν

(
1
5
F (5w1)−F (w1),

4
3
· 1

5
Λ
)
≤ ν′(ΨA(w1), Λ)

 (11)

for all w1 ∈ W1 and all Λ > 0. Changing w1 by 5ℓw1 in (11), and using (IFN4), (IFN10), (3), we get

µ

(
1

5ℓ+1 F (5ℓ+1w1)−
1
5ℓ
F (5ℓw1),

4
3 · 5

· 1
5ℓ

Λ
)
≥ µ′

(
ΨA

(
5ℓw1

)
, Λ
)
≥ µ′

(
IℓΨA(w1), Λ

)
= µ′

(
ΨA(w1),

1
Iℓ

Λ
)

ν

(
1

5ℓ+1 F (5ℓ+1w1)−
1
5ℓ
F (5ℓw1),

4
3 · 5

· 1
5ℓ

Λ
)
≤ ν′

(
ΨA

(
5ℓw1

)
, Λ
)
≤ ν′

(
IℓΨA(w1), Λ

)
= ν′

(
ΨA(w1),

1
Iℓ

Λ
)


(12)

for all w1 ∈ W1 and all Λ > 0 also ℓ > 0. Changing Λ by IℓΛ in (12), we see

µ

(
1

5ℓ+1 F (5ℓ+1w1)−
1
5ℓ
F (5ℓw1),

4
3 · 5

·
( I

5

)ℓ
Λ
)
≥ µ′(ΨA(w1), Λ)

ν

(
1

5ℓ+1 F (5ℓ+1w1)−
1
5ℓ
F (5ℓw1),

4
3 · 5

·
( I

5

)ℓ
Λ
)
≤ ν′(ΨA(w1), Λ)

 (13)

for all w1 ∈ W1 and all Λ > 0. It is easy to check that

1
5ℓ
F (5ℓw1)−F (w1) =

ℓ−1

∑
η=0

1
5η+1 F (5η+1w1)−

1
5η F (5ηw1) (14)
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for all w1 ∈ W1. Using (IFN5), (IFN11), it follows from (13) and (14), we obtain

µ

(
1
5ℓ
F (5ℓw1)−F (w1),

ℓ−1

∑
η=0

4
3 · 5

·
( I

5

)η
Λ

)

= µ

(
ℓ−1

∑
η=0

1
5η+1 F (5η+1w1)−

1
5η F (5ηw1),

ℓ−1

∑
η=0

4
3 · 5

·
( I

5

)η
Λ

)

≥
ℓ−1

∏
η=0

µ

(
1

5η+1 F (5η+1w1)−
1
5η F (5ηw1),

4
3 · 5

·
( I

5

)η
Λ
)

≥ ∏ℓ−1
η=0 µ′(ΨA(w1), Λ) = µ′(ΨA(w1), Λ)

ν

(
1
5ℓ
F (5ℓw1)−F (w1),

ℓ−1

∑
η=0

4
3 · 5

·
( I

5

)η
Λ

)

= ν

(
ℓ−1

∑
η=0

1
5η+1 F (5η+1w1)−

1
5η F (5ηw1),

ℓ−1

∑
η=0

4
3 · 5

·
( I

5

)η
Λ

)

≤
ℓ−1

⨿
η=0

ν

(
1

5η+1 F (5η+1w1)−
1
5η F (5ηw1),

4
3 · 5

·
( I

5

)η
Λ
)

≤ ⨿ℓ−1
η=0 ν′(ΨA(w1), Λ) = ν′(ΨA(w1), Λ)



(15)

where
ℓ−1

∏
η=0

µ = µ ∗ µ ∗ µ ∗ ... and
ℓ−1

⨿
η=0

ν = ν ⋄ ν ⋄ ν ⋄ ...

for all w1 ∈ W1 and all Λ > 0. Again changing w1 by 5ℓ1 w1 in (15), and using (IFN4), (IFN10), (3) in
that changing Λ by Iℓ1 Λ, we have

µ

(
1

5ℓ+ℓ1
F (5ℓ+ℓ1 w1)−

1
5ℓ1

F (ℓ1w1),
ℓ−1

∑
η=0

4
3 · 5

·
( I

5

)η+ℓ1
Λ

)
≥ µ′(ΨA(w1), Λ)

ν

(
1

5ℓ+ℓ1
F (5ℓ+ℓ1 w1)−

1
5ℓ1

F (ℓ1w1),
ℓ−1

∑
η=0

4
3 · 5

·
( I

5

)η+ℓ1
Λ

)
≤ ν′(ΨA(w1), Λ)

 (16)

for all w1 ∈ W1 and all Λ > 0 also ℓ, ℓ1 > 0. It follows from (16) that

µ

(
1

5ℓ+ℓ1
F (5ℓ+ℓ1 w1)−

1
5ℓ1

F (ℓ1w1), Λ
)
≥ µ′

ΨA(w1),
Λ

∑ℓ−1
η=0

4
3·5 ·

(
I
5

)η+ℓ1


ν

(
1

5ℓ+ℓ1
F (5ℓ+ℓ1 w1)−

1
5ℓ1

F (ℓ1w1), Λ
)
≤ ν′

ΨA(w1),
Λ

∑ℓ−1
η=0

4
3·5 ·

(
I
5

)η+ℓ1




(17)

for all w1 ∈ W1 and all Λ > 0. By data, the Cauchy criterion for convergence in Intuitionistic Fuzzy
normed space gives that the sequence

{
1
5ℓ
F (5ℓw1)

}
, is Cauchy in (W2, µ′, ν′) and it is a complete

Intuitionistic Fuzzy normed space, this sequence converges to some point A(w1) in (W2, µ′, ν′) for all
w1 ∈ W1. So, by notation, we write

lim
ℓ→∞

µ

(
1
5ℓ
F
(

5ℓw1

)
−A(w1), Λ

)
= 1

lim
ℓ→∞

ν

(
1
5ℓ
F
(

5ℓw1

)
−A(w1), Λ

)
= 0

 (18)
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for all w1 ∈ W1 and all Λ > 0. Letting ℓ1 = 0 and ℓ → ∞ in (17) and using (18), we arrive

µ(A(w1)−F (w1), Λ) ≥ µ′
(

ΨA(w1),
3Λ
4

(5 − I)
)

= µ′
(

Ψ(w1, w1, w1),
3Λ
4

(5 − I)
)
∗ µ′

(
Ψ(w1, w1,−w1),

3Λ
4

(5 − I)
)

ν(A(w1)−F (w1), Λ) ≤ ν′
(

ΨA(w1),
3Λ
4

(5 − I)
)

= ν′
(

Ψ(w1, w1, w1),
3Λ
4

(5 − I)
)
⋄ ν′
(

Ψ(w1, w1,−w1),
3Λ
4

(5 − I)
)


(19)

for all w1 ∈ W1 and all Λ > 0. Thus, (5) and (6) holds for µ = 1. Interchanging

(w1, w2, w3) =
(

5ℓw1, 5ℓw2, 5ℓw3

)
,

in (1) and using (IFN4), (IFN10), we have

µ

(
1
5ℓ

{
F (5ℓ(3w1 + w2 + w3)) +F (5ℓ(w1 + 3w2 + w3)) +F (5ℓ(w1 + w2 + 3w3))− 6F

(
3
∑

ψ=1
5ℓwψ

)

− 1
2

{
F
(

3
∑

ψ=1
5ℓwψ

)
+F

(
−

3
∑

ψ=1
5ℓwψ

)}
+

3
∑

ψ=1

{
F (5ℓwψ)− 5

2

[
F (5ℓwψ) +F (−5ℓwψ)

]}}
, Λ

)
≥ µ′

(
Ψ
(

5ℓw1, 5ℓw2, 5ℓw3

)
, 5ℓ Λ

)
ν

(
1
5ℓ

{
F (5ℓ(3w1 + w2 + w3)) +F (5ℓ(w1 + 3w2 + w3)) +F (5ℓ(w1 + w2 + 3w3))− 6F

(
3
∑

ψ=1
5ℓwψ

)

− 1
2

{
F
(

3
∑

ψ=1
5ℓwψ

)
+F

(
−

3
∑

ψ=1
5ℓwψ

)}
+

3
∑

ψ=1

{
F (5ℓwψ)− 5

2

[
F (5ℓwψ) +F (−5ℓwψ)

]}}
, Λ

)
≤ ν′

(
Ψ
(

5ℓw1, 5ℓw2, 5ℓw3

)
, 5ℓ Λ

)


(20)

for all w1, w2, w3 ∈ W1 and all Λ > 0. Now,
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µ
(
A(3w1 + w2 + w3) +A(w1 + 3w2 + w3) +A(w1 + w2 + 3w3)− 6A

(
∑3

ψ=1 wψ

)
− 1

2

{
A
(

∑3
ψ=1 wψ

)
−A

(
−∑3

ψ=1 wψ

)}
+ ∑3

ψ=1

{
A(wψ)− 5

2

[
A(wψ) +A(−wψ)

]}
, Λ
)

≥ µ
(
A(3w1 + w2 + w3)− 1

5ℓ
F (5ℓ(3w1 + w2 + w3)), Λ

7

)
∗

µ
(
A(w1 + 3w2 + w3)− 1

5ℓ
F (5ℓ(w1 + 3w2 + w3)), Λ

7

)
∗

µ
(
A(w1 + w2 + 3w3)− 1

5ℓ
F (5ℓ(w1 + w2 + 3w3)), Λ

7

)
∗

µ
(
−6A

(
∑3

ψ=1 wψ

)
+ 1

5ℓ
6F
(

∑3
ψ=1 5ℓwψ, Λ

7

))
∗

µ
(

1
2

{
A
(

∑3
ψ=1 wψ

)
+A

(
−∑3

ψ=1 wψ

)}
− 1

5ℓ
1
2

{
F
(

∑3
ψ=1 5ℓwψ

)
+F

(
−∑3

ψ=1 5ℓwψ

)}
, Λ

7

)
∗

µ
(

∑3
ψ=1

{
A(wψ)− 5

2

[
A(wψ) +A(−wψ)

]}
− 1

5ℓ ∑3
ψ=1

{
F (5ℓwψ)− 5

2

[
F (5ℓwψ) +F (−5ℓwψ)

]}
, Λ

7

)
∗

µ
(

1
5ℓ

{
F (5ℓ(3w1 + w2 + w3)) +F (5ℓ(w1 + 3w2 + w3)) +F (5ℓ(w1 + w2 + 3w3))

−6F
(

∑3
ψ=1 5ℓwψ

)
− 1

2

{
F
(

∑3
ψ=1 5ℓwψ

)
+F

(
−∑3

ψ=1 5ℓwψ

)}
+∑3

ψ=1

{
F (5ℓwψ)− 5

2

[
F (5ℓwψ) +F (−5ℓwψ)

]}}
, Λ

7

)
ν
(
A(3w1 + w2 + w3) +A(w1 + 3w2 + w3) +A(w1 + w2 + 3w3)− 6A

(
∑3

ψ=1 wψ

)
− 1

2

{
A
(

∑3
ψ=1 wψ

)
−A

(
−∑3

ψ=1 wψ

)}
+ ∑3

ψ=1

{
A(wψ)− 5

2

[
A(wψ) +A(−wψ)

]}
, Λ
)

≤ ν
(
A(3w1 + w2 + w3)− 1

5ℓ
F (5ℓ(3w1 + w2 + w3)), Λ

7

)
⋄

ν
(
A(w1 + 3w2 + w3)− 1

5ℓ
F (5ℓ(w1 + 3w2 + w3)), Λ

7

)
⋄

ν
(
A(w1 + w2 + 3w3)− 1

5ℓ
F (5ℓ(w1 + w2 + 3w3)), Λ

7

)
⋄

ν
(
−6A

(
∑3

ψ=1 wψ

)
+ 1

5ℓ
6F
(

∑3
ψ=1 5ℓwψ, Λ

7

))
⋄

ν
(

1
2

{
A
(

∑3
ψ=1 wψ

)
+A

(
−∑3

ψ=1 wψ

)}
− 1

5ℓ
1
2

{
F
(

∑3
ψ=1 5ℓwψ

)
+F

(
−∑3

ψ=1 5ℓwψ

)}
, Λ

7

)
⋄

ν
(

∑3
ψ=1

{
A(wψ)− 5

2

[
A(wψ) +A(−wψ)

]}
− 1

5ℓ ∑3
ψ=1

{
F (5ℓwψ)− 5

2

[
F (5ℓwψ) +F (−5ℓwψ)

]}
, Λ

7

)
⋄

ν
(

1
5ℓ

{
F (5ℓ(3w1 + w2 + w3)) +F (5ℓ(w1 + 3w2 + w3)) +F (5ℓ(w1 + w2 + 3w3))

−6F
(

∑3
ψ=1 5ℓwψ

)
− 1

2

{
F
(

∑3
ψ=1 5ℓwψ

)
+F

(
−∑3

ψ=1 5ℓwψ

)}
+∑3

ψ=1

{
F (5ℓwψ)− 5

2

[
F (5ℓwψ) +F (−5ℓwψ)

]}}
, Λ

7

)


(21)

for all w1, w2, w3 ∈ W1 and all Λ > 0. Taking limit ℓ → ∞ in (21), using (18) and (20), we get

µ
(
A(3w1 + w2 + w3) +A(w1 + 3w2 + w3) +A(w1 + w2 + 3w3)− 6A

(
∑3

ψ=1 wψ

)
− 1

2

{
A
(

∑3
ψ=1 wψ

)
+A

(
−∑3

ψ=1 wψ

)}
+ ∑3

ψ=1

{
A(wψ)− 5

2

[
A(wψ) +A(−wψ)

]}
, Λ
)
= 1

ν
(
A(3w1 + w2 + w3) +A(w1 + 3w2 + w3) +A(w1 + w2 + 3w3)− 6A

(
∑3

ψ=1 wψ

)
− 1

2

{
A
(

∑3
ψ=1 wψ

)
+A

(
−∑3

ψ=1 wψ

)}
+ ∑3

ψ=1

{
A(wψ)− 5

2

[
A(wψ) +A(−wψ)

]}
, Λ
)
= 0


(22)
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for all w1, w2, w3 ∈ W1 and all Λ > 0. Using (IFN3), (IFN9) in (22), we see, A(w1) satisfies (3). In order
to confirm that A(w1) is unique, suppose B(w1) be another mapping (3), (18) and (19), we obtain

µ(A(w1)−B(w1), 2Λ) = µ
(
A
(

5ℓw1

)
−B

(
5ℓw1

)
, 5ℓ 2Λ

)
≥ µ

(
A
(

5ℓw1

)
−F

(
5ℓw1

)
, 5ℓΛ

)
∗ µ
(
F
(

5ℓw1

)
−B

(
5ℓw1

)
, 5ℓΛ

)
≥ µ′

(
ΨA

(
5ℓw1

)
, 3Λ

4 5ℓ(5 − I)
)
∗ µ′

(
ΨA

(
5ℓw1

)
, 3Λ

4 5ℓ(5 − I)
)

≥ µ′
(

ΨA(w1), 3Λ
4

5ℓ
Iℓ (5 − I)

)
ν(A(w1)−B(w1), 2Λ) = ν

(
A
(

5ℓw1

)
−B

(
5ℓw1

)
, 5ℓ 2Λ

)
≤ ν

(
A
(

5ℓw1

)
−F

(
5ℓw1

)
, 5ℓΛ

)
⋄ ν
(
F
(

5ℓw1

)
−B

(
5ℓw1

)
, 5ℓΛ

)
≤ ν′

(
ΨA

(
5ℓw1

)
, 3Λ

4 5ℓ(5 − I)
)
⋄ ν′
(

ΨA

(
5ℓw1

)
, 3Λ

4 5ℓ(5 − I)
)

≤ ν′
(

ΨA(w1), 3Λ
4

5ℓ
Iℓ (5 − I)

)



(23)

for all w1 ∈ W1 and all Λ > 0. Taking limit ℓ → ∞ in (23), and using (IFN7), (IFN13), we arrive

µ(A(w1)−B(w1), 2Λ) = 1
ν(A(w1)−B(w1), 2Λ) = 0

}
(24)

for all w1 ∈ W1 and all Λ > 0. By (IFN4) and (IFN10), we get A(w1) is unique. So, the Theorem holds
for µ = 1.

Changing w1 =
w1

5
in (10) and using (IFN4), (IFN10), (3), in that changing Λ by Λ

I , we have

µ

(
F (w1)− 5F

(w1

5

)
,

4
3 · I

Λ
)
≥ µ′(ΨA(w1), Λ)

ν

(
F (w1)− 5F

(w1

5

)
,

4
3 · I

Λ
)
≤ ν′(ΨA(w1), Λ)

 (25)

for all w1 ∈ W1 and all Λ > 0. Changing w1 by
w1

5ℓ
in (25), and using (IFN4), (IFN10), (3) in that

changing Λ by
Λ
Iℓ

, we get

µ

(
5ℓF

(w1

5ℓ

)
− 5ℓ+1F

( w1

5ℓ+1

)
,

4
3 · I

(5
I

)ℓ
Λ
)
≤ µ′(ΨA(w1), Λ)

ν

(
5ℓF

(w1

5ℓ

)
− 5ℓ+1F

( w1

5ℓ+1

)
,

4
3 · I

(5
I

)ℓ
Λ
)
≤ ν′(ΨA(w1), Λ)

 (26)

for all w1 ∈ W1 and all Λ > 0 also ℓ > 0. It is easy to check that

F (w1)− 5ℓF
(w1

5ℓ

)
=

ℓ−1

∑
η=0

5ηF
(w1

5η

)
− 5η+1F

(
w1

5η+1

)
(27)

for all w1 ∈ W1. The rest of the proof is similar to that of above case. So, the Theorem holds for µ = −1.
Hence the proof is complete
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Corollary 3.9. Suppose that an odd function F : W1 → W2 satisfying the functional inequality (2) for all
w1, w2, w3 ∈ W1. Then there exists a unique additive mapping A(w1) : W1 → W2 which satisfying (3) and
the functional inequality

µ(A(w1)−F (w1), Λ) ≥



µ′(δ, |3| Λ),
µ′
(

δ|w1|φ, Λ
4 |5 − 5φ|

)
, φ ̸= 1,

µ′
(

δ ∑3
ψ=1 |w1|

φψ , 3Λ
4 ∑3

ψ=1 |5 − 5φψ |
)

, φ1, φ2, φ3 ̸= 1,

µ′
(

δ|w1|3φ, 3Λ
4 |5 − 53φ|

)
, 3φ ̸= 1,

µ′

δ|wψ|
3
∑

ψ=1
φψ

, 3Λ
4

∣∣∣5 − 5

3
∑

ψ=1
φψ
∣∣∣
,

3
∑

ψ=1
φψ ̸= 1,

µ′
(

2δ|w1|3φ, 3Λ
4 |5 − 53φ|

)
, 3φ ̸= 1,

ν(A(w1)−F (w1), Λ) ≤



ν′(δ, |3| Λ),
ν′
(

δ|w1|φ, Λ
4 |5 − 5φ|

)
, φ ̸= 1,

ν′
(

δ ∑3
ψ=1 |w1|

φψ , 3Λ
4 ∑3

ψ=1 |5 − 5φψ |
)

, φ1, φ2, φ3 ̸= 1,

ν′
(

δ|w1|3φ, 3Λ
4 |5 − 53φ|

)
, 3φ ̸= 1,

ν′

δ|wψ|
3
∑

ψ=1
φψ

, 3Λ
4

∣∣∣5 − 5

3
∑

ψ=1
φψ
∣∣∣
,

3
∑

ψ=1
φψ ̸= 1,

ν′
(

2δ|w1|3φ, 3Λ
4 |5 − 53φ|

)
, 3φ ̸= 1,



(28)

for all w1 ∈ W1.

3.3. Evenness of F : Quadratic Case Stability Results : Direct Method
Theorem 3.10. Suppose that an even function F : W1 → W2 satisfying the functional inequality (1) where
Ψ : W3

1 → [0, ∞) with the conditions (3) and

lim
ℓ→∞

µ′
(

Ψ
(

5ℓµw1, 5ℓµw2, 5ℓµw3

)
, 25ℓµΛ

)
= 1

lim
ℓ→∞

ν′
(

Ψ
(

5ℓµw1, 5ℓµw2, 5ℓµw3

)
, 25ℓµΛ

)
= 0

 (29)

for all w1, w2, w3 ∈ W1 and all Λ > 0 with µ = ±1 and 0 <
(

I
25

)µ
< 1 . Then there exists a unique quadratic

mapping Q(w1) : W1 → W2 which satisfying (3) and the functional inequality

µ(Q(w1)−F (w1), Λ) ≥ µ′
(

ΨQ(w1),
7Λ
3

|25 − I|
)

= µ′
(

Ψ(w1, w1, w1),
7Λ
3

|25 − I|
)
∗ µ′

(
Ψ(w1, w1,−w1),

7Λ
3

|25 − I|
)

ν(Q(w1)−F (w1), Λ) ≤ ν′
(

ΨQ(w1),
7Λ
3

(25 − I)
)

= ν′
(

Ψ(w1, w1, w1),
7Λ
3

(25 − I)
)
⋄ ν′
(

Ψ(w1, w1,−w1),
7Λ
3

(25 − I)
)


(30)

and the mapping Q(w1) is obtained by

lim
ℓ→∞

µ

(
1

25ℓµ
F
(

5ℓµw1

)
−Q(w1), Λ

)
= 1

lim
ℓ→∞

ν

(
1

25ℓµ
F
(

5ℓµw1

)
−Q(w1), Λ

)
= 0

 (31)
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for all w1 ∈ W1 and all Λ > 0.

Proof. Using evenness of F in (1), we get

µ

(
F (3w1 + w2 + w3) +F (w1 + 3w2 + w3) +F (w1 + w2 + 3w3)− 7F

(
3

∑
ψ=1

wψ

)
− 4

3

∑
ψ=1

F (wψ), Λ

)
≥ µ′(Ψ(w1, w2, w3), Λ)

ν

(
F (3w1 + w2 + w3) +F (w1 + 3w2 + w3) +F (w1 + w2 + 3w3)− 7F

(
3

∑
ψ=1

wψ

)
− 4

3

∑
ψ=1

F (wψ), Λ

)
≤ ν′(Ψ(w1, w2, w3), Λ)


(32)

for all w1, w2, w3 ∈ W1 and all Λ > 0 . Interchanging (w1, w2, w3) by (w1, w1, w1) in (32), we obtain

µ(3F (5w1)− 7F (3w1)− 12F (w1), Λ) ≥ µ′(Ψ(w1, w1, w1), Λ)
ν(3F (5w1)− 7F (3w1)− 12F (w1), Λ) ≤ ν′(Ψ(w1, w1, w1), Λ)

}
(33)

for all w1 ∈ W1 and all Λ > 0 . Again interchanging (w1, w2, w3) by (w1, w1,−w1) in (32) and using
(IFN4), (IFN10), we have

µ(2F (3w1)− 18F (w1), Λ) ≥ µ′(Ψ(w1, w1, w1), Λ)
ν(2F (3w1)− 18F (w1), Λ) ≤ ν′(Ψ(w1, w1,−w1), Λ)

}
⇒ µ

(
7F (3w1)− 63F (w1), 2

7 Λ
)
≥ µ′(Ψ(w1, w1, w1), Λ)

ν
(
7F (3w1)− 63F (w1), 2

7 Λ
)
≤ ν′(Ψ(w1, w1,−w1), Λ)

}
(34)

for all w1 ∈ W1 and all Λ > 0. Combining (33) and (34) using (IFN5), (IFN11), we arrive

µ
(
3F (5w1)− 75F (w1), 9

7 Λ
)
≥ µ(3F (5w1)− 7F (3w1)− 12F (w1), Λ) ∗ µ

(
7F (3w1)− 63F (w1), 2

7 Λ
)

≥ µ′(Ψ(w1, w1, w1), Λ) ∗ µ′(Ψ(w1, w1,−w1), Λ) = µ′(ΨQ(w1), Λ
)

ν
(
3F (5w1)− 15F (w1), 9

7 Λ
)
≤ ν(3F (5w1)− 7F (3w1)− 12F (w1), Λ) ⋄ ν

(
7F (3w1)− 63F (w1), 2

7 Λ
)

≤ ν′(Ψ(w1, w1, w1), Λ) ⋄ ν′(Ψ(w1, w1,−w1), Λ) = ν′
(
ΨQ(w1), Λ

)


(35)

for all w1 ∈ W1 and all Λ > 0. Using (IFN4), (IFN10), one can see from (35) that

µ

(
1

25
F (5w1)−F (w1),

9
7 · 3

· 1
25

Λ
)
≥ µ′(ΨQ(w1), Λ

)
ν

(
1

25
F (5w1)−F (w1),

9
7 · 3

· 1
25

Λ
)
≤ ν′

(
ΨQ(w1), Λ

)
 (36)

for all w1 ∈ W1 and all Λ > 0. The rest of the proof is similar to that of Theorem 3.8. Hence the proof
is complete.
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Corollary 3.11. Suppose that an even function F : W1 → W2 satisfying the functional inequality (2) for all
w1, w2, w3 ∈ W1 and all Λ > 0. Then there exists a unique quadratic mapping Q(w1) : W1 → W2 which
satisfying (3) and the functional inequality

µ(Q(w1)−F (w1), Λ) ≥



µ′(δ, |8| 7Λ),
µ′
(

δ|w1|φ, 7Λ
9 |25 − 5φ|

)
, φ ̸= 2,

µ′
(

δ ∑3
ψ=1 |w1|

φψ , 7Λ
3 ∑3

ψ=1 |25 − 5φψ |
)

, φ1, φ2, φ3 ̸= 2,

µ′
(

δ|w1|3φ, 7Λ
3 |25 − 53φ|

)
, 3φ ̸= 2,

µ′

δ|wψ|
3
∑

ψ=1
φψ

,
7Λ
3

∣∣∣25 − 5

3
∑

ψ=1
φψ
∣∣∣
,

3
∑

ψ=1
φψ ̸= 2,

µ′
(

2δ|w1|3φ, 7Λ
3 |25 − 53φ|

)
, 3φ ̸= 2,

ν(Q(w1)−F (w1), Λ) ≤



ν′(δ, |8| 7Λ),
ν′
(

δ|w1|φ, 7Λ
9 |25 − 5φ|

)
, φ ̸= 2,

ν′
(

δ ∑3
ψ=1 |w1|

φψ , 7Λ
3 ∑3

ψ=1 |25 − 5φψ |
)

, φ1, φ2, φ3 ̸= 2,

ν′
(

δ|w1|3φ, 7Λ
3 |25 − 53φ|

)
, 3φ ̸= 2,

ν′

δ|wψ|
3
∑

ψ=1
φψ

, 7Λ
3

∣∣∣25 − 5

3
∑

ψ=1
φψ
∣∣∣
,

3
∑

ψ=1
φψ ̸= 2,

ν′
(

2δ|w1|3φ, 7Λ
3 |25 − 53φ|

)
, 3φ ̸= 2,



(37)

for all w1 ∈ W1 and all Λ > 0.

3.4. Oddness and Evenness of F : Additive Quadratic Case Stability Results : Direct Method
Theorem 3.12. Suppose that a function F : W1 → W2 satisfying the functional inequality (1) where
Ψ : W3

1 → [0, ∞) with the conditions (3), (4), and (29) for all w1, w2, w3 ∈ W1 and all Λ > 0 with µ = ±1

and 0 <
(

I
5

)µ
< 1, 0 <

(
I

25

)µ
< 1 . Then there exists a unique additive mapping A(w1) : W1 → W2 and a

unique quadratic mapping Q(w1) : W1 → W2 which satisfying (3) and the functional inequality

µ(F (w1)−A(w1)−Q(w1), 4Λ)

≥ µ′
(

ΨA(w1), 3Λ
4 |5 − I|

)
∗ µ′

(
ΨA(−w1), 3Λ

4 |5 − I|
)
∗

µ′
(

ΨQ(w1), 7Λ
3 |25 − I|

)
∗ µ′

(
ΨQ(−w1), 7Λ

3 |25 − I|
)

= µ′
(

Ψ(w1, w1, w1), 3Λ
4 |5 − I|

)
∗ µ′

(
Ψ(w1, w1,−w1), 3Λ

4 |5 − I|
)
∗

µ′
(

Ψ(−w1,−w1,−w1), 3Λ
4 |5 − I|

)
∗ µ′

(
Ψ(−w1,−w1, w1), 3Λ

4 |5 − I|
)
∗

µ′
(

Ψ(w1, w1, w1), 7Λ
3 |5 − I|

)
∗ µ′

(
Ψ(w1, w1,−w1), 7Λ

3 |5 − I|
)
∗

µ′
(

Ψ(−w1,−w1,−w1), 7Λ
3 |5 − I|

)
∗ µ′

(
Ψ(−w1,−w1, w1), 7Λ

3 |5 − I|
)

ν(F (w1)−A(w1)−Q(w1), 4Λ)

≤ ν′
(

ΨA(w1), 3Λ
4 |5 − I|

)
⋄ ν′
(

ΨA(−w1), 3Λ
4 |5 − I|

)
⋄

ν′
(

ΨQ(w1), 7Λ
3 |25 − I|

)
⋄ ν′
(

ΨQ(−w1), 7Λ
3 |25 − I|

)
= ν′

(
Ψ(w1, w1, w1), 3Λ

4 |5 − I|
)
⋄ ν′
(

Ψ(w1, w1,−w1), 3Λ
4 |5 − I|

)
⋄

ν′
(

Ψ(−w1,−w1,−w1), 3Λ
4 |5 − I|

)
⋄ ν′
(

Ψ(−w1,−w1, w1), 3Λ
4 |5 − I|

)
⋄

ν′
(

Ψ(w1, w1, w1), 7Λ
3 |5 − I|

)
⋄ ν′
(

Ψ(w1, w1,−w1), 7Λ
3 |5 − I|

)
⋄

ν′
(

Ψ(−w1,−w1,−w1), 7Λ
3 |5 − I|

)
⋄ ν′
(

Ψ(−w1,−w1, w1), 7Λ
3 |5 − I|

)



(38)

and the mapping A(w1) and Q(w1) are given in (6) and (31) for all w1 ∈ W1.
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Proof. By Theorem 3.8, it follows from (33), (1) and (5), we arrive

µ(A(w1)−Fodd(w1), 2Λ) ≥ µ′
(

ΨA(w1),
3Λ
4

|5 − I|
)
∗ µ′

(
ΨA(−w1),

3Λ
4

|5 − I|
)

ν(A(w1)−Fodd(w1), 2Λ) ≤ ν′
(

ΨA(w1),
3Λ
4

|5 − I|
)
⋄ ν′
(

ΨA(−w1),
3Λ
4

|5 − I|
)
 (39)

for all w1 ∈ W1 and all Λ > 0. By Theorem 3.10, it follows from (37), (1), and (30), we see

µ(Q(w1)−Feven(w1), 2Λ) ≥ µ′
(

ΨQ(w1),
7Λ
3

|25 − I|
)
∗ µ′

(
ΨQ(−w1),

7Λ
3

|25 − I|
)

ν(Q(w1)−Feven(w1), 2Λ) ≤ ν′
(

ΨQ(w1),
7Λ
3

|25 − I|
)
⋄ ν′
(

ΨQ(−w1),
7Λ
3

|25 − I|
)
 (40)

for all w1 ∈ W1 and all Λ > 0. Now, it follows from (39), (40) and (40), we have

µ(F (w1)−A(w1)−Q(w1), 4Λ)
≥ µ(A(w1)−Fodd(w1), 2Λ) ∗ µ(Q(w1)−Feven(w1), 2Λ)

≥ µ′
(

ΨA(w1),
3Λ
4

|5 − I|
)
∗ µ′

(
ΨA(−w1),

3Λ
4

|5 − I|
)
∗

µ′
(

ΨQ(w1),
7Λ
3

|25 − I|
)
∗ µ′

(
ΨQ(−w1),

7Λ
3

|25 − I|
)

ν(F (w1)−A(w1)−Q(w1), 4Λ)
≤ ν(A(w1)−Fodd(w1), 2Λ) ⋄ ν(Q(w1)−Feven(w1), 2Λ)

≤ ν′
(

ΨA(w1),
3Λ
4

|5 − I|
)
⋄ ν′
(

ΨA(−w1),
3Λ
4

|5 − I|
)
⋄

ν′
(

ΨQ(w1),
7Λ
3

|25 − I|
)
⋄ ν′
(

ΨQ(−w1),
7Λ
3

|25 − I|
)



(41)

for all w1 ∈ W1 and all Λ > 0.

Corollary 3.13. Suppose that a function F : W1 → W2 satisfying the functional inequality (2) for all
w1, w2, w3 ∈ W1 and all Λ > 0. Then there exists a unique additive mapping A(w1) : W1 → W2 and a
unique quadratic mapping Q(w1) : W1 → W2 which satisfying (3) and the functional inequality

µ(F (w1)−A(w1)−Q(w1), 4Λ)

≥



µ′(2δ, (|3|+ 7 |8|)Λ)

µ′
(

2δ|w1|φ, Λ
{

1
4 |5 − 5φ|+ 7

9 |25 − 5φ|
})

, φ ̸= 1, 2,

µ′
(

2δ ∑3
ψ=1 |wψ|

φψ ,
{

3
4 ∑3

ψ=1 |5 − 5φψ |+ 7
3 ∑3

ψ=1 |25 − 5φψ |
})

, φ1, φ2, φ3 ̸= 1, 2,

µ′(2δ|w1|3φ, Λ
{ 3

4 |5 − 53φ|+ 7
3 |25 − 53φ|

})
, 3φ ̸= 1, 2,

µ′

4δ|wψ|
3
∑

ψ=1
φψ

, 2Λ

 3
4

∣∣∣5 − 5

3
∑

ψ=1
φψ
∣∣∣+ 7

3

∣∣∣25 − 5

3
∑

ψ=1
φψ
∣∣∣

 3

∑
ψ=1

φψ ̸= 1, 2,

µ′(4δ|w1|3φ, Λ
{ 3

4 |5 − 53φ|+ 7
3 |25 − 53φ|

})
3φ ̸= 1, 2,

ν(F (w1)−A(w1)−Q(w1), 4Λ)

≤



ν′(2δ, (|3|+ 7 |8|)Λ)

ν′
(

2δ|w1|φ, Λ
{

1
4 |5 − 5φ|+ 7

9 |25 − 5φ|
})

, φ ̸= 1, 2,

ν′
(

2δ ∑3
ψ=1 |wψ|

φψ ,
{

3
4 ∑3

ψ=1 |5 − 5φψ |+ 7
3 ∑3

ψ=1 |25 − 5φψ |
})

, φ1, φ2, φ3 ̸= 1, 2,

ν′
(
2δ|w1|3φ, Λ

{ 3
4 |5 − 53φ|+ 7

3 |25 − 53φ|
})

, 3φ ̸= 1, 2,

ν′

4δ|wψ|
3
∑

ψ=1
φψ

, 2Λ

 3
4

∣∣∣5 − 5

3
∑

ψ=1
φψ
∣∣∣+ 7

3

∣∣∣25 − 5

3
∑

ψ=1
φψ
∣∣∣

 3

∑
ψ=1

φψ ̸= 1, 2,

ν′
(
4δ|w1|3φ, Λ

{ 3
4 |5 − 53φ|+ 7

3 |25 − 53φ|
})

3φ ̸= 1, 2,



(42)

for all w1 ∈ W1.
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3.5. Oddness of F : Additive Case Stability Results : Fixed Method
Theorem 3.14. Suppose that an odd function F : W1 → W2 satisfying the functional inequality (1) where
Ψ : W3

1 → [0, ∞) with the condition

lim
ℓ→∞

µ′
(

Ψ
(

τℓ
ν w1, τℓ

ν w2, τℓ
ν w3

)
, τℓ

ν Λ
)
= 1

lim
ℓ→∞

ν′
(

Ψ
(

τℓ
ν w1, τℓ

ν w2, τℓ
ν w3

)
, τℓ

ν Λ
)
= 0

; τν =

{
5; ν = 0
1
5 ; ν = 1

(43)

for all w1, w2, w3 ∈ W1 and all Λ > 0 If there exists L = L(ν) be a function have the property

µ(ΨA(w1), Λ) = µ
(
ΨA
(w1

5
)
, Λ
)

ν(ΨA(w1), Λ) = ν
(
ΨA
(w1

5
)
, Λ
) } and

µ
(

1
τν

ΨA(τνw1), Λ
)
= µ(L ΨA(w1), Λ)

ν
(

1
τν

ΨA(τνw1), Λ
)
= ν(L ΨA(w1), Λ)

, (44)

for all w1 ∈ W1 and all Λ > 0. Then there exists a unique additive mapping A(w1) : W1 → W2 which
satisfying (3) and the functional inequality

µ(A(w1)−F (w1), Λ) ≥ µ′
(

L1−ν

1 − L
ΨA(w1),

3Λ
4

)
= µ′

(
L1−ν

1 − L
Ψ(w1, w1, w1),

3Λ
4

)
∗ µ′

(
L1−ν

1 − L
Ψ(w1, w1,−w1),

3Λ
4

)
ν(A(w1)−F (w1), Λ) ≤ ν′

(
L1−ν

1 − L
ΨA(w1),

3Λ
4

)
= ν′

(
L1−ν

1 − L
Ψ(w1, w1, w1),

3Λ
4

)
⋄ ν′
(

L1−ν

1 − L
Ψ(w1, w1,−w1),

3Λ
4

)


(45)

and the mapping A(w1) is obtained by

lim
ℓ→∞

µ

(
1
τℓ

ν

F
(

τℓ
ν w1

)
−A(w1), Λ

)
= 1

lim
ℓ→∞

ν

(
1
τℓ

ν

F
(

τℓ
ν w1

)
−A(w1), Λ

)
= 0

 (46)

for all w1 ∈ W1 and all Λ > 0.

Proof. Assume a set G as in Theorem 2.7 of (48) and introduce the generalized metric on the above set
G as

d(F ,F1) = inf
{

K ∈ (0, ∞) :
{

µ(F (w1)−F1(w1), Λ) ≥ µ(K Ψ(w1, w1, w1), Λ)
ν(F (w1)−F1(w1), Λ) ≤ ν(K Ψ(w1, w1, w1), Λ)

}}
. (47)

for all w1 ∈ W1 and all Λ > 0. It is easy to see that (G, d) is complete. Define a function H : G → G as
by Theorem 2.7 of (50) and for F ,F1 ∈ G and w1 ∈ W1 and all Λ > 0, we see

d(F ,F1) ≤ K ⇒
{

µ(F (w1)−F1(w1), Λ) ≥ µ(K Ψ(w1, w1, w1), Λ)
ν(F (w1)−F1(w1), Λ) ≤ ν(K Ψ(w1, w1, w1), Λ)

}

⇒

 µ
(∥∥∥ 1

τν
F (τνw1)− 1

τν
F1(τνw1)

∥∥∥, Λ
)
≥ µ

(
τνK Ψ( 1

τν
w1, τνw1, τνw1), Λ

)
ν
(∥∥∥ 1

τν
F (τνw1)− 1

τν
F1(τνw1)

∥∥∥, Λ
)
≤ ν

(
τνK Ψ( 1

τν
w1, τνw1, τνw1), Λ

) 
⇒
{

µ(HF (w1)−HF1(w1), Λ) ≥ µ(L K Ψ(w1, w1, w1), Λ)
ν(HF (w1)−HF1(w1), Λ) ≤ ν(L K Ψ(w1, w1, w1), Λ)

}
⇒d(HF ,HF1) ≤ L K,
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i.e., H is a strictly contractive mapping on G with Lipschitz constant L (see [24]).
For the case ν = 0, it follows from (11) and with the help of (44), (50), (47), we get

µ

(
1
5
F (5w1)−F (w1),

4
3

Λ
)
≥ µ′

(
1
5

ΨA(w1), Λ
)

ν

(
1
5
F (5w1)−F (w1),

4
3

Λ
)
≤ ν′

(
1
5

ΨA(w1), Λ
)
⇒ d(HF ,F ) ≤ L = L1−ν, (48)

for all w1 ∈ W1 and all Λ > 0.
For the case ν = 1, it follows from (17) and with the help of (44), (50), (47), we obtain

µ

(
F (w1)− 5F

(w1

5

)
,

4
3 · I

Λ
)
≥ µ′

(
ΨA

(w1

5

)
, Λ
)

ν

(
F (w1)− 5F

(w1

5

)
,

4
3 · I

Λ
)
≤ ν′

(
ΨA

(w1

5

)
, Λ
)
⇒ d(F ,HF ) ≤ 1 = L1−ν, (49)

for all w1 ∈ W1 and all Λ > 0. Combining (48) and (49), we have

d(F ,HF ) ≤ 1 = L1−ν. (50)

Therefore (FPC1) of Theorem 1.3 holds. The rest of the proof follows by Theorem 1.3. Hence the proof
is complete.

Corollary 3.15. Suppose that an odd function F : W1 → W2 satisfying the functional inequality (2) for all
w1, w2, w3 ∈ W1. Then there exists a a unique additive mapping A(w1) : W1 → W2 which satisfying (3) and
the functional inequality (20) for all w1 ∈ W1.

3.6. Evenness of F : Quadratic Case Stability Results : Fixed Method
Theorem 3.16. Suppose that an even function F : W1 → W2 satisfying the functional inequality (1) where
Ψ : W3

1 → [0, ∞) with the condition

lim
ℓ→∞

µ′
(

Ψ
(

τℓ
ν w1, τℓ

ν w2, τℓ
ν w3

)
, τ2ℓ

ν Λ
)
= 1

lim
ℓ→∞

ν′
(

Ψ
(

τℓ
ν w1, τℓ

ν w2, τℓ
ν w3

)
, τ2ℓ

ν Λ
)
= 0

; τν =

{
5; ν = 0
1
5 ; ν = 1

(51)

for all w1, w2, w3 ∈ W1 and all Λ > 0. If there exists L = L(ν) be function have the property

µ
(
ΨQ(w1), Λ

)
= µ

(
ΨQ
(w1

5
)
, Λ
)

ν
(
ΨQ(w1), Λ

)
= ν

(
ΨQ
(w1

5
)
, Λ
) } and

µ
(

1
τ2

ν
ΨQ(τνw1), Λ

)
= µ

(
L ΨQ(w1), Λ

)
ν
(

1
τ2

ν
ΨQ(τνw1), Λ

)
= ν

(
L ΨQ(w1), Λ

)
, (52)

for all w1 ∈ W1 and all Λ > 0. Then there exists a unique quadratic mapping Q(w1) : W1 → W2 which
satisfying (3) and the functional inequality

µ(Q(w1)−F (w1), Λ) ≥ µ′
(

L1−ν

1 − L
ΨQ(w1),

7Λ
3

)
= µ′

(
L1−ν

1 − L
Ψ(w1, w1, w1),

7Λ
3

)
∗ µ′

(
L1−ν

1 − L
Ψ(w1, w1,−w1),

7Λ
3

)
ν(Q(w1)−F (w1), Λ) ≤ ν′

(
L1−ν

1 − L
ΨQ(w1),

7Λ
3

)
= ν′

(
L1−ν

1 − L
Ψ(w1, w1, w1),

7Λ
3

)
⋄ ν′
(

L1−ν

1 − L
Ψ(w1, w1,−w1),

7Λ
3

)


(53)
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and the mapping Q(w1) is obtained by

lim
ℓ→∞

µ

(
1

τ2ℓ
ν

F
(

τℓ
ν w1

)
−Q(w1), Λ

)
= 1

lim
ℓ→∞

ν

(
1

τ2ℓ
ν

F
(

τℓ
ν w1

)
−Q(w1), Λ

)
= 0

 (54)

for all w1 ∈ W1 and all Λ > 0.

Proof. Define a function H : G → G as by Theorem 2.9 of (62) and for F ,F1 ∈ G and w1 ∈ W1 and all
Λ > 0, we see

d(F ,F1) ≤ K ⇒
{

µ(F (w1)−F1(w1), Λ) ≥ µ(K Ψ(w1, w1, w1), Λ)
ν(F (w1)−F1(w1), Λ) ≤ ν(K Ψ(w1, w1, w1), Λ)

}

⇒

 µ
(∥∥∥ 1

τ2
ν
F (τνw1)− 1

τ2
ν
F1(τνw1)

∥∥∥, Λ
)
≥ µ(τνK Ψ(τνw1, τνw1, τνw1), Λ)

ν
(∥∥∥ 1

τ2
ν
F (τνw1)− 1

τ2
ν
F1(τνw1)

∥∥∥, Λ
)
≤ ν

(
τ2

ν K Ψ(τνw1, τνw1, τνw1), Λ
)


⇒
{

µ(HF (w1)−HF1(w1), Λ) ≥ µ(L K Ψ(w1, w1, w1), Λ)
ν(HF (w1)−HF1(w1), Λ) ≤ ν(L K Ψ(w1, w1, w1), Λ)

}
⇒d(HF ,HF1) ≤ L K,

i.e., H is a strictly contractive mapping on G with Lipschitz constant L (see [24]). The rest of the proof
is similar to that of Theorem 3.14. Hence the proof is complete.

Corollary 3.17. Suppose that an even function F : W1 → W2 satisfying the functional inequality (2) for all
w1, w2, w3 ∈ W1. Then there exists a unique quadratic mapping Q(w1) : W1 → W2 which satisfying (3) and
the functional inequality (37) for all w1 ∈ W1.

3.7. Oddness and Evenness of F : Additive Quadratic Case Stability Results : Fixed Method
Theorem 3.18. Suppose that a function F : W1 → W2 satisfying the functional inequality (1) where
Ψ : W3

1 → [0, ∞) with the conditions (43) and (51) for all w1, w2, w3 ∈ W1 and all Λ > 0. If there exists
L = L(ν) be function have the properties (44) and (52) for all w1 ∈ W1 and all Λ > 0. Then there exists a
unique additive mapping A(w1) : W1 → W2 and a unique quadratic mapping Q(w1) : W1 → W2 which
satisfying (3) and the functional inequality

µ(F (w1)−A(w1)−Q(w1), 4Λ)

≥ µ′
(

L1−ν

1−L ΨA(w1), 3Λ
4

)
∗ µ′

(
L1−ν

1−L ΨA(−w1), 3Λ
4

)
∗

µ′
(

L1−ν

1−L ΨQ(w1), 7Λ
3

)
∗ µ′

(
L1−ν

1−L ΨQ(−w1), 7Λ
3

)
= µ′

(
L1−ν

1−L Ψ(w1, w1, w1), 3Λ
4

)
∗ µ′

(
L1−ν

1−L Ψ(w1, w1,−w1), 3Λ
4

)
∗

µ′
(

L1−ν

1−L Ψ(−w1,−w1,−w1), 3Λ
4

)
∗ µ′

(
L1−ν

1−L Ψ(−w1,−w1, w1), 3Λ
4

)
∗

µ′
(

L1−ν

1−L Ψ(w1, w1, w1), 7Λ
3

)
∗ µ′

(
L1−ν

1−L Ψ(w1, w1,−w1), 7Λ
3

)
∗

µ′
(

L1−ν

1−L Ψ(−w1,−w1,−w1), 7Λ
3

)
∗ µ′

(
L1−ν

1−L Ψ(−w1,−w1, w1), 7Λ
3

)
ν(F (w1)−A(w1)−Q(w1), 4Λ)

≤ ν′
(

L1−ν

1−L ΨA(w1), 3Λ
4

)
⋄ ν′
(

L1−ν

1−L ΨA(−w1), 3Λ
4

)
⋄

ν′
(

L1−ν

1−L ΨQ(w1), 7Λ
3

)
⋄ ν′
(

L1−ν

1−L ΨQ(−w1), 7Λ
3

)
= ν′

(
L1−ν

1−L Ψ(w1, w1, w1), 3Λ
4

)
⋄ ν′
(

L1−ν

1−L Ψ(w1, w1,−w1), 3Λ
4

)
⋄

ν′
(

L1−ν

1−L Ψ(−w1,−w1,−w1), 3Λ
4

)
⋄ ν′
(

L1−ν

1−L Ψ(−w1,−w1, w1), 3Λ
4

)
⋄

ν′
(

L1−ν

1−L Ψ(w1, w1, w1), 7Λ
3

)
⋄ ν′
(

L1−ν

1−L Ψ(w1, w1,−w1), 7Λ
3

)
⋄

ν′
(

L1−ν

1−L Ψ(−w1,−w1,−w1), 7Λ
3

)
⋄ ν′
(

L1−ν

1−L Ψ(−w1,−w1, w1), 7Λ
3

)



(55)

and the mapping A(w1) and Q(w1) are given in (45) and (54) for all w1 ∈ W1 and all Λ > 0.
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Proof. The proof is similar ideas to that of Theorem 3.12.

Corollary 3.19. Suppose that a function F : W1 → W2 satisfying the functional inequality (2) for all
w1, w2, w3 ∈ W1. Then there exists a unique additive mapping A(w1) : W1 → W2 and a unique quadratic
mapping Q(w1) : W1 → W2 which satisfying (3) and the functional inequality (42) for all w1 ∈ W1.

Acknowledgment
Supported by The Center for Research and Development in Mathematics and Applications

(CIDMA) through the Portuguese Foundation for Science and Technology (FCT - Fundação para a
Ciência e a Tecnologia), references UIDB/04106/2020 and UIDP/04106/2020. https://doi.org/10.544
99/UIDB/04106/2020 and https://doi.org/10.54499/UIDP/04106/2020.

References

1. J. ACZEL Lectures on Functional Equations and Their Applications, Academic Press, New York (1966).
MR:348020 (1967).

2. J. ACZEL, J. DHOMBRES, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.
3. T. AOKI, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66.
4. M. ARUNKUMAR, C. DEVI SHYAMALA MARY, G. SHOBANA, Simple AQ And Simple CQ Functional Equa-

tions, Journal Of Concrete And Applicable Mathematics (JCAAM), 13, Issue 1/2 , Jan - Apr 2015, 120 - 151.
5. M.ARUNKUMAR, E.SATHYA, C. DEVI SHYAMALA MARY, S. HEMA LATHA, AQ and CQ Functional Equations,

Malaya Journal of Matematik, 6, Issue 1, 2018, 182-205.
6. M. ARUNKUMAR, E.SATHYA, C.POOJA, Single Variable Generalized Additive - Quadratic And Generalized

Cubic- Quartic Functional Equations In Various Banach Spaces, International Journal of Mathematics And its
Applications, 8 (3) (2020), 1-42.

7. M. ARUNKUMAR, JOHN M. RASSIAS, On the generalized Ulam-Hyers stability of an AQ-mixed type
functional equation with counter examples, Far East Journal of Applied Mathematics, 71, No. 2, (2012), 279-305.

8. M. ARUNKUMAR, G. GANAPATHY, S. MURTHY, S. KARTHIKEYAN, Stability of the generalized Arun-additive
functional equation in Instutionistic fuzzy normed spaces, International Journal Mathematical Sciences and
Engineering Applications, 4, No. V, December 2010, 135-146.

9. M. ARUNKUMAR, P. AGILAN, Additive functional equation and inequality are Stable in Banach space and its
applications, Malaya Journal of Matematik (MJM), 1, Issue 1, (2013), 10-17.

10. M. ARUNKUMAR, E.SATHYA, S. RAMAMOORTHI, General Solution And Generalized Ulam ?Hyers Stability
Of A Additive Functional Equation Originating From N Observations Of An Arithmetic Mean In Banach
Spaces Using Various Substitutions In Two Different Approaches, Malaya Journal of Matematik, 5 (1) (2017),
4-18.

11. M. ARUNKUMAR, E.SATHYA, S. RAMAMOORTHI, P.AGILAN, Ulam - Hyers Stability of Euler - Lagrange
Additive Functional Equation in Intuitionistic Fuzzy Banach Spaces: Direct and Fixed Point Methods, Malaya
Journal of Matematik, 6, Issue 1, 2018, 276-285.

12. M.ARUNKUMAR, E. SATHYA, T. NAMACHIVAYAM, Ulam - Hyers Stability of Euler - Lagrange Quadratic
Functional Equation in Intuitionistic Fuzzy Banach Spaces: Direct and Fixed Point Methods, International
Journal of Current Advance Research , 7, Issue 1 (2018), 99- 108.

13. K.T. ATANASSOV, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
14. A. BODAGHI, M. ARUNKUMAR, E.SATHYA, T. NAMACHIVAYAM, A new type of the additive functional

equations on Intuitionistic fuzzy normed spaces, Commun. Korean Math. Soc., 32 (2017), No. 4, pp. 915 - 932.
15. L. CADARIU, L. GAVRUTA, P. GAVRUTA, On the stability of an affine functional equation, J. Nonlinear Sci.

Appl., 6 (2013), 60-67.
16. E. CASTILLO, A. IGLESIAS AND R. RUIZ-COHO, Functional Equations in Applied Sciences, Elsevier, B.V.Amslerdam,

2005.
17. I.S. CHANG, AND H.M. KIM, On the Hyers-Ulam stability of quadratic functional equations, Journal of

Inequalities in Pure and Applied Mathematics, Volume 3, Issue 3, Article 33, 2002.
18. S. CZERWIK, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ,

2002.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 July 2024                   doi:10.20944/preprints202407.0401.v1

https://doi.org/10.54499/UIDB/04106/2020
https://doi.org/10.54499/UIDB/04106/2020
https://doi.org/10.54499/UIDP/04106/2020
https://doi.org/10.20944/preprints202407.0401.v1


30 of 30
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