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1. Introduction

A inspirational and popular talk presented by S.M Ulam [37] in 1940, refreshed the reading of
stability problems for various functional equations. He gave a wide range of talk before a Mathematical
Colloquium at the University of Wisconsin in which he presented a list of unsolved problems.

The first assertive answer to Ulam’s question concerning the problem of stability of functional
equations was given by D.H. Hyers [20] for the case of additive mappings in Banach spaces. In growth
of time, the theorem delivered by Hyers was generalized by T. Aoki [3], Th.M Rassias [30], ].M. Rassias
[28], P. Gavruta [19] for additive mappings and K. Ravi [32] for quadratic mappings.

The famous additive and quadratic functional equations are

F(wy + wy) = F(wy) + F(ws), 1)
and
]-'(wl +Zl)2) +.7:(ZU1 —ZUZ) 22]:(101) +2]:(ZU2). (2)

The general solution and generalized Ulam - Hyers stability of several types of functional equa-
tions in various normed spaces were discussed by many authors one can see [2,16,18,21,22,31] and
references there in.

Also, the general solution and Hyers-Ulam-Rassias stability of the several affine functional
equations are discussed by L. Lucht, C. Methfessel [23], L. Cadariu, L. Gavruta, P. Gavruta [15], Md.
Nasiruzzaman [26], M. Mursaleen, K]J. Ansari[25].

Infact, the general solution and generalized Hyers-Ulam stability of the several AQ functional
equations are established in [4-12,14,29].

In this paper, the we analyze the generalized Ulam-Hyers stability of affine type AQ Functional
Equation of the form

]:(3ZU1+ZU2+ZU3)+]:(ZU1 +3ZU2+ZU3)+]:(Z01 +ZU2—|—3YU3)
3 1 3 3 3 5
:6.7:<Z wlIJ) +2{]:<Z ZU¢> +.7:<— ZZU¢>}— Z{F(W¢)—2[.F(W¢)+.F(—W¢)}}

p=1 p=1 p=1 p=1
(3)

in various Banach Spaces using Direct and Fixed Methods .

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Lemma 1.1. [26] Let A and B be real vector spaces. Suppose F : A — B be an odd mapping satisfies (3) then
F is additive.

Lemma 1.2. [17] Let A and B be real vector spaces. Suppose F : A — B be an even mapping satisfies (3) then
F is quadratic.

Now, we present the result due to Margolis, Diaz [24] and Radu [27] for fixed point theory.

Theorem 1.3. [24,27] Suppose that for a complete generalized metric space (Q), 8) and a strictly contractive
mapping T : Q) — Q) with Lipschitz constant L. Then, for each given x € (), either

d(T"x, T" 'x) =0 ¥V n2>0,

or there exists a natural number ng such that

(FPC1) d(T"x, T""'x) < oo forall n > ny ;

(FPC2) The sequence (T"x) is convergent to a fixed point y* of T

(FPC3) y* is the unique fixed point of T in the set A = {y € Q : d(T™x,y) < oo};
(FPC4) d(y*,y) < 121d(y, Ty) forall y € A.

2. Stability In Banach Space of (3)

In this section, we explore the generalized Ulam - Hyers stability of the functional equation (3) in
Banach space. To prove stability results, let us take W be a normed space and WV, be a Banach space.
Suppose that F : Wi — W, and ¥ : W3 — [0, o) satisfying the following functional inequalities

H]—"(3wl + wy + ws3) + F (w1 + 3wy + w3) + F (w1 + wy + 3ws)

_6.F<llilw¢> - ;{F(ﬁlwlp) +F<_¢i1w¢>}
)

+ é{f(wl,, - g [Flwy) + F(—wy))] }H < ¥(wy, wy, ws), 1

and

H]:(?)ZU1 + wy + ws3) + F (w1 + 3wy + w3) + F(wy + wy + 3ws) —6.}-(2 w¢>
Pp=1

) A ) -t
5,

3
5 Y |wyl?,
Pp=1

5 Y, [y,
¢:1

3
6 T |wy
l/J:l

3 ¢
6 IT [wy|*,
g—1

3 3
o{ 2l + filul*},
$=1 p=1

¢ (2)

7

IN

for all w1, wop, w3 € Wy and ¢ be a positive constant.
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2.1. Oddness of F: Additive Case Stability Results : Direct Method

Theorem 2.1. Suppose that an odd function F : Wy — W, satisfying the functional inequality (1) where
Y : W3 — [0, 00) with the condition

¥ (5%;1, 5l 5%;3)

li =0; = +1 3
e 5¢u # )

for all wy, wo, w3 € W,. Then there exists a unique additive mapping A(wq) : Wi — W, which satisfying (3)
and the functional inequality

[ee]
||]:(w1> g 21 5,77"}!14 5’”’[7,01) (4)
=
1 &1
-z L o {{ 5’7Vw1,5’7”w1,5’7”w1)+3‘{’(5’7”w1,5’7"w1,—5’77‘w1)}} )
_1 I
==

and the mapping A(w- ) is obtained by
_ 1 1 lu
A(wn) = lim 57;(5 wl) ©6)
forall wy € Wi.

Proof. Using oddness of F in (1), we get

Hf(swl Wy + w3) + F(wy + 3w + w3) + F(wy +w) + 3ws) — 6F (é w¢> n é F(wy) H
< ¥ (wq, wp, w3), ¥ wy, wp, w3 € Wy. (7)
Interchanging (w1, wp, w3) by (wy, wq,wq) in (7), we obtain
H3I(5w1) — 6F (Bwy) + 3F (wy) H < ¥(wy,wy,wr), ¥ wy € Wi (8)
Again interchanging (wy, wp, w3) by (wy, w1, —wq) in (7), we have
HZ}'(Bwl) — 6.F(w1)H < ¥(wy, w1, —w)
= Hé]—"(Swl) - 18]—"(w1)H < 3% (wy, w1, —w1),Y wy € Wi 9)

Combining (8) and (9), we arrive
37 (5w1) = 15F (wn) | < [[3F (5w1) — 6F (3w01) +3F (wn) | + || 6F (3w0r) — 18F (wn) |
g‘I’(wl,wl,wl)+3‘I’(w1,w1,—w1),Vw1 € W. (10)
One can see from (10) that
1
H]—'(Swl) - 5]:(?/01) H < g{T(wl,wl,wl) + 3‘I’(w1,w1, —wl)} = IYA(wl),V wy € Wl. (11)

It follows from (11) that

|57 (501) — F(wn)]| < ¥ (), ¥ w1 € Wi, (12)
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Generalizing for a positive integer /, we get
1 .y 1 ¢ g
H7F 5 wl) — ]-"(wl H = Z — 5'7w1 ,Vw € Ws. (13)
5 5,550
Now, changing w; by 51w in (13), we obtain
1
gt - g7 - 5o - |
141
< Z n+6
=5 ’7;)517% *a <5 wl)
— 0 as ¢ — oo, Vw; €W (14)
Therefore, the sequence
1
{ SE ]-"(55w1)}
is a Cauchy sequence and it converges to A(w; ) in W;. So, we define
A(wy) = lim lf(#wl) Vw, €W, (15)
I—00 5¢ ’ ’
Taking limit £ — co in (13), we have
131
| A = Fw)| < 5 & 55 a0, ¥ e € Wi, (16)
n=0
Thus, (4) and (5) holds for y = 1. Interchanging
(w1, w2, w3) = (5gw1,5£w2,5€w3),
we arrive
Hf (5°(Bwy + wa + w3)) 4+ F (5 (wy + 3wy + ws3)) + F (5 (w; + wy + 3w3))
3 3
—6F 2 5wy | — s F Y 5fwy | +F | — Y 5wy
y=1 y=1
/ 5
+ 2 F5 w¢)—§{f(5 wy) + F(~5'wy)] H
y=1
Lg(st, st et
< ?‘I’(5 w1, 5w, 5 w3),Vw1,wz,W3 €W (17)

Taking limit £ — oo in (17), using (15) and (3), we get
ABwy + wy + w3) + A(wq + 3w, + w3) + A(wy + wop + 3ws)

_ 6A<i w¢> + ;{A@ ww) +A<éww> } - 3 At - [t + A}

$=1 $=1 p=1
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for all wy, wy, w3 € Wy. So, A(wq) satisfies (3). In order to confirm that A(w;) is unique, suppose
B(w1) be another mapping (3), (15) and (16), we obtain

e - o] = [ A(s) - 35(5)|

< glAG ) ~F ()| + [ F () - 55w
< é i 5171+£ ‘I’A(5’7+ew1) — 0 as £ — oo,
n=0

for all wy € Wj. Therefore A(w;) is unique. So, the Theorem holds for p = 1.
. wy .
Changing wq = 5 in (11), we have

-7 ()| < () rm e

Generalizing for a positive integer /, we get

w
H]—'(wl) —5#(571) H <= ,72 51 ‘I’A( ) Y w, € Wy (19)
The rest of the proof is similar to that of above case. So, the Theorem holds for = —1. Hence the

proof is complete [

Corollary 2.2. Suppose that an odd function F : Wi — W satisfying the functional inequality (2) for all
w1, W, w3 € Wy. Then there exists a unique additive mapping A(wy) : Wy — W, which satisfying (3) and
the functional inequality

J
i3l
w
|5751¢\ ’ o #1,
3 ¢
46 wy| "V
3 1/;21 |5_51p¢‘/ 91, P2, 93 7é 1,
48|wq |7,
|Fw) = Aw)| < § 355wy 0L 20)
L %
45|y V=1 3
%; Lo 71
3|5-5v=1 (F"’) =
168wy 37
3|57513¢| ’ 3¢ #1,

forall wy € Wi.

2.2. Evenness of F: Quadratic Case Stability Results : Direct Method

Theorem 2.3. Suppose that an even function F : Wi — W, satisfying the functional inequality (1) where
Y : W3 — [0, 00) with the condition

Y (5“‘ w1, 5€”ZU2, 5&4 ‘LU3)
lim =0, pu==1 (21)
(=00 2501
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for all wy, wy, w3 € Wy. Then there exists a unique quadratic mapping Q(wq) : Wy — W, which satisfying
(3) and the functional inequality

1 & 1
Flwy) — Q(w < — — Y,(5MTw 22
="z
1 & 1 1 7
= — — = s s H — H mH _ 5K
o 21—# T {3{?(5 wy, 5w, 5wy ) + (57 w1, 5wy, 5 wl)}}
=2
(23)
and the mapping Q(wy) is obtained by
— 1i 1 an
Qw) = lim - F (5w ) (24)
forallwy € Wy.
Proof. Using evenness of F in (1), we get
3 3
H]—"(3w1 + wy + ws3) + F (w1 + 3wy + ws3) + F(wy + wy + 3ws) —7F Z Wy —4 Z .F(wlp)H
p=1 p=1
< Y(wy, wa,w3),V wy, wy, w3 € Wh. (25)
Interchanging (w1, wp, w3) by (wy, wq, w1) in (25), we obtain
H3F(5w1) — 7F(Bwy) — 12]—"(w1)H < ¥(wy,wy,wi),Y wy € Wi (26)
Again interchanging (w1, wp, w3) by (wy, wy, —wq) in (25), we have
|27 (3w1) — 18F (w1) | < ¥(wr, w1, —w01)
7
- H7]—'(3wl) - 63]—'(w1)H < Z¥ (w1, w1, —w1), Y w1 € Wy, 27)
Combining (26) and (27), we arrive
H3]—"(5w1) — 75F (wy) H < H3]—"(5wl) — 7F(3w,) — 12F (w;) H + H7]—"(3wl) — 63F (w1) H
< Y¥(wq, w1, wr) + %‘I"(w1,w1, —w1),Ywy € W. (28)

One can see from (28) that
1 7
H}'(Swl) — 25]:(301) H < g{T(wl,wl,wl) + E‘{’(wl,wl, —wl)} = TQ(ZU1),V w1 € Wl. (29)
It follows from (29) that
1 1
| 357 00) = Flen)]| < g5 ¥ow). Y e i, (30)

The rest of the proof is similar to that of Theorem 2.1. Hence the proof is complete. [J
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Corollary 2.4. Suppose that an even function F : Wi — W satisfying the functional inequality (2) for all
w1, Wy, w3 € Wi. Then there exists a unique quadratic mapping Q(wq) : Wy — W, which satisfying (3) and
the functional inequality

36
.
276|w1|? .
6|257154’|’ ¢ 72
w y Jml 42
6 s ‘25_54)1/} ‘ ;P11 P2, 93 %
98|w1 37 3
5% ¢ #2,
| F(wy) — Qwy)|| < { 6125 534’3‘ (31)
= 3
(P =
6|25—5¢=1 w’
368 |w 3¢
T 3 2,
6]25 — 5% 97

forall wy € Wi.

2.3. Oddness and Evenness of F: Additive Quadratic Case Stability Results : Direct Method

Theorem 2.5. Suppose that a function F : Wi — W, satisfying the functional inequality (1) where ¥ :
Wf’ — [0, c0) with the conditions (3) and (21) for all wy,w,, w3 € Wy. Then there exists a unique additive
mapping A(wq) : Wy — W, and a unique quadratic mapping Q(wy) : Wy — W, which satisfying (3) and
the functional inequality

IF (w1) — A(ws) = Q(w1)||
1

)
<Ny i YA W) +¥ (—5*N‘w)}+i y ol {¥a(3"w1) + ¥o(-5"wn) }
<3215 L 5 A 1 A 1 2% Lo o5 0 1 Q 1
== nN=—7
1)1 ¢ 1 1 Uiz T iz H TH T
<1z L o 5{\If(s wr, 5wy, 5wy ) + 3% (5Mws, 5w, —5 wl)}
=1t
1
+3 {‘Y(—S’”‘wl, — 5y, —5M ) + 3% (— 5wy, —5Mwy, 51w, ) }}
1 & 1 (1 7
+5 ¥ 5 g{‘Y(Sle,Sle,Sle)+§‘I’(5’7"w1,5’7”w1,—5’7”w1)}
p=13t
1 7
+g{‘i’(—5’”‘w1, 5wy, —5Mwy) + S (~51wy, 5wy, 51w ) } }} (32)

and the mapping A(wy) and Q(wy) are given in (6) and (24) for all wy € Wy.

Proof. Consider a function F,;;(w1) by

Fodd(wy) = %{]’-(wl) - }-(_wl)}/v w; € Wy, (33)

which gives

Foad(0) =0;  Foga(—w1) = —Foga(wy),V wy € Wy. (34)
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By Theorem 2.1, it follows from (33), (1), (5) and (6), we arrive
| Foda(wr) — A(w)||

{®4(5"w01) + ¥ a(~5"a01) } (35)

<

(S0
gk
(J‘I‘H

|
-

NI~

< B
7 M

|
.

U

1
N =
Q1| —
gk
|

—

—-
|
=

1
{ - {\1!(5’7%1, 5wy, 51w, ) + 3F (5Mw;, 51w, —5’”‘w1)}

=
[
.

+% {‘i’(—5’”‘w1, 5y, —5My) + 3% (—5Mwy, —5Twy, 51w, ) } } (36)

for all wy, wy, w3 € W,. Consider a function Fepen (w1) by

Fooen(wy) = %{]—"(wl) + F(—wn)}, Yy € W, (37)
which gives
Feven(0) = 0; Feven(—w1) = Feven(w1),V w1 € Wy. (38)
By Theorem 2.3, it follows from (37), (1), (22) and (23), we see
| Feven (w1) — Q(w1) ||

bk £ {rotmen s valomen) o

1 7
{3{‘1f(5'7ﬂw1,5'7ﬂw1,5'7“w1) + S¥ (5w, 5wy, —5’7ﬂw1)}

1 7
+3 {‘P(—le, =5y, —5MMwy) + J¥ (~51wy, 5wy, 5w ) }} (40)

for all wy, wy, w3 € Wy. Assume a function F(w; ) by
F(w1) = Foqa(w1) + Feven(w1),V w1 € Wr. (41)
Now, it follows from (35), (36), (39), (40) and (41), we have

IF (wr) — A(w:) — Q(w1) |
< [ Foda(w1) = A(wr) || + [| Feven(wr) = Q(w1)]]

IN

N =
——

ull =

gk

3~

1 & 1
Fa(5Twr) + ¥a (5w} + = Y = {¥o(5MMw) +‘YQ(—5ww1)}}
_1-p

==z

© 1 (1
_— {3{‘P(5’7”w1,5'7”w1,5’7”w1) + 3% (5" wy, 51w, —5'7P‘w1)}
1

IN
N —
——
gl =
=
Il
N“l
=
=

{‘F(—5’7P‘w1, — 5wy, =5 wy) + 3¥ (=51 wy, —5 wy, 51w, }}

7
7{11!(5’7%1,5'7%1,5'7%1) + S ¥ (57w, 5wy, —5'Ww1)}

7
+f{‘1’(—5’7”w1, 5wy, —5wy) + 2 (=5, —5’7”w1,5’7”w1)}}}

for all wy, wy, w3 € Wy. O
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Corollary 2.6. Suppose that a function F : Wy — W, satisfying the functional inequality (2) for all
w1, wy, w3 € Wy. Then there exists a unique additive mapping A(wq) : Wy — W, and a unique quadratic
mapping Q(w1) : Wi — W, which satisfying (3) and the functional inequality

6 3
‘3|\ +| F2 |1 |
45 wq ¢ 276 w1 ¢ .
55¢] T 62557 9 #12
3 Py 3 Py
3 I,IJX::l ‘5_5%/;' 6 IPZ::l |25_5<P¢|/ P1, P2, 3 7& Iz
48lw P? | 98w [>7
| (1) = A(wr) = Q)| < {3557 * G551 7L (42)
X9 L
= P =%
48|wy|¥=1 96|wy V=" 3
L. 3 + ¢ 3 / Z G% ;é 1/2/
r (PL/J r ‘Plp lPZl
3|5-5¥=1 6(25-5%=1 ’
165|w1 37 | 366wy 37 |
3/5—5%¢ + 6]25—5%¢|” 3¢ # 1,2,

forall wy € Wi.

2.4. Oddness of F: Additive Case Stability Results : Fixed Method

Theorem 2.7. Suppose that an odd function F : Wy — W, satisfying the functional inequality (1) where
Y : W3 — [0, 00) with the condition

‘I’(wal, hwo, wag) 5.y =0
lim 7 =0, = { 1’ ,V w1y, Wy, w3 € Wi. (43)
{—o0 T, 5V = 1
If there exists L = L(v) be a function have the property
w1 1
Faw) =¥a(F) and  —¥a(nwn) =L¥a(wr), Vo €W (44)
v
Then there exists a unique additive mapping A(wq) : Wi — W, which satisfying (3) and the functional
inequality
[1-v
IF(w1) = Alwn)|| = 7= Ya(wr) (45)
L' (1
=1-1 {S{T(wllwllwl) +3‘F(w1/w1/—w1)}} (46)
and the mapping A(wy ) is obtained by
—hm L (ot
Afwn) = Jim = (jwn) @7)
forallwy € Wi.
Proof. Assume a set
G={F/F: Wy =W, F(0)=0} (48)

and introduce the generalized metric on the above set G as
d(]:,.Fl) = il’lf{K c (O, OO) : ||]-"(w1) — ]:1 (wl) || <K ‘I’(wl, w1, wl),wl € Wl} (49)

It is easy to see that (G, d) is complete. Define a function / : G — G by

HF(wy ) = Tl]-'(r,, wy ), for all wy € W. (50)

v
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Now F, F1 € G and wy € W, we see
d(]:,.Fl) <K= || ]-"(wl) — Fl(wl) ||§ K‘Y(wl,wl,wl),

1 1
—F(tywq) — ?fl(val) < ?K Y (twy, w, Twr),
v v

= || HF (w1) —HF1(wr) [|< LKY (wy, wy, wr),
=d(HF,HF) <LK,

i.e., H is a strictly contractive mapping on G with Lipschitz constant L (see [24]).
For the case v = 0, it follows from (12) and with the help of (44), (50), (49), we get

H%}"(Swl) - Flwy)| < %\PA(wl),:» d(HF,F) <L=L"" Yw €W, (51)

For the case v = 1, it follows from (18) and with the help of (44), (50), (49), we obtain

HF wy) 5J—"( )H < ¥4 ()= d(FHF) <1=11Y, YV e, 52)

5
Combining (51) and (52), we have

d(F,HF) <1=1L"". (53)

Therefore (FPC1) of Theorem 1.3 holds. The rest of the proof follows by Theorem 1.3. Hence the proof
is complete. [

Corollary 2.8. Suppose that an odd function F : Wi — W satisfying the functional inequality (2) for all
w1, wy, w3 € Wy. Then there exists a unique additive mapping A(wy) : Wy — W, which satisfying (3) and
the functional inequality (20) for all w1 € W;.

Proof. If we take

-1
—1’“’#}’%
Y(wy, wo, w3) = 5H zl‘ww ’
5H¢:l‘w¢‘%}’
6{ T [l + T [y |},

(54)

in Theorem 2.7 and changing (w1, wp, w3) by (wal, thw,, wag,) and dividing by 7 in (54), one can

see
T%/ — 0 as ¢ to oo,

T%Z?/;:l Tiwy qj, —0as ¢ to o,

1 ; . %Z?p:l watp‘%, — 0 as ¢ to oo,

?5 ‘F(val,rvwz,rvwe,) = T% 13!]:1 walp 41’ 20 as £ to oo,
T%H?p:l watp‘%, — 0 as £ to oo,

_;}{23;—1 valp‘ 4)4‘1—11/,:1 walp‘qo}, — 0 as { to co.



https://doi.org/10.20944/preprints202407.0401.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 July 2024 doi:10.20944/preprints202407.0401.v1

11 of 30
Therefore (43) holds for all wq, wy, w3 € Wy. Now, from (44), we have
46
3/
12|73
3 7
45 3 ¢
w 1 wy wp w w, w w §ZI¢3:1|%|‘”
- Y1y - g1 Wi w1 Wi ) 4P
Tato) =4 (5) = 3{¥(5- 5 5) +3¥ (5 5 —F)} . 5)
w0y = P
054!
3 7
160 2 >¢
3 ’
1‘P(Tw)—11{‘Y(Tw twi, ww) + 3¥ (twy, w TZU)}
,L_VAvl—TV3 vWi, ly, Ly v, i, vWi
46
TR T Ya(wr), -
W 1
jsrvs;*f . o ‘YA(ZU%)/ LT?%S
P Py~
= Tyw fr— _ pr—
T,,-’s‘l 3’ TS(P 11FA(DU1), L‘PAgwlg
To1® 3 - LY4(w
48|ty | Y=1"Y Yy—1 9y 1 AW
%, T% -1 " Ya(w), LY 4(w1)
716“;%1‘ ", o Y a(w),
for all w, € Wh.
For the case v = 0, we have L = 1, I'— 5-1 and from (46), we arrive

IF(o0) ~ Al < £ ¥atwn) = £ { {0 + 3%, 0, -0} )

T1-1L
_ (5—1)1—0 @ _é
T 1-5"1 13/ 3

For the casev =1, wehave L = 7, ! = (%)’1 = 5 and from (46), we obtain

Ll—v Ll—v 1
Y a(wr) 1 Y(wy, wy, wy) + 3Y (wy, wy, —wy)
1-L —L |3

7 () = AGwn)]| < =
_ G {4‘5} _ 4

1-5 |3 -3

For the case v = 0, we have L = 97! = 5¢-1 and from (46), we arrive

[ F(w1) — A(wy)]| < L Ya(w) = L {1{T(w1/w1,w1) +3‘Y(w1/w1,—w1)}}

1-L 1-L |3
_ (6O [0 7| 46
1-5¢-1 3 5—5%

For the case v =1, we have L = ¥ ! = (1)#~1 = 5179 and from (46), we get

Llfv Llfl/ 1
I (or) = AGwn) | £ T Fatwn) = = { 3{¥(wn w0, 00) + 3% wr, 01, —o0) }

G {125|”g1|¢} 48

~ 1-5l-¢ 3 ~ 59 -5
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For the case v = 0, we have L = Tg 9~1 = 5%¢-1 and from (46), we arrive

Ll—v Ll—v 1
[F (@) = Alw)|| < 7= Yalw) = 7—F {3{‘i’(w1,w1,w1) —|—3"F(w1,w1,—w1)}}

(530110 45|%|3(P _ AS|wy 3
N - 3(5-5%)°

1— 531 3

For the case v =1, we have L = T134)71 = (%)34”1 = 5!73¢ and from (46), we obtain

1 F(wr) — Awn)]] < 2 W a(w) = £ {1{‘1’(w1,w1,w1)+3‘1’(w1,w1,wl)}}

1-L 1-L |3
_ ()t 45|% 3o _ w7
1—51-3¢ 3 3(5%¢ —5)

Similarly, we can prove for rest of the cases. [

2.5. Evenness of F: Quadratic Case Stability Results : Fixed Method

Theorem 2.9. Suppose that an even function F : Wy — W satisfying the functional inequality (1) where
¥ : W2 — [0, 00) with the condition

_ ‘I’(wal,rfwz, Tfu@,) 51 =0
le_)]fl;lo T,;g =0, = { %,‘1/:1 SV wy, wy, wz € W (57)
If there exists L = L(v) be a function have the property
w1 1
Yo(wi) =Yg (?> and ?‘I’Q(val) =LY¥o(wy), Yw; € W. (58)
v

for all wy, wy, w3 € Wy. Then there exists a unique quadratic mapping Q(wq) : Wy — W, which satisfying
(3) and the functional inequality

Ll—l/
|7 (1) - Q)] < T— Yolwn) 59)
L' (1 7
= 11 {3{‘1’(w1,w1,w1)+2‘{’(w1,w1,w1)}} (60)
and the mapping Q(wy) is obtained by
— im L 0
Q(wr) = lim @}"(val) (61)

forallwy € Wy.

Proof. By Theorem 2.7, define a function H : G — G by

HF (wy ) = %}—(TU wy ), for all wy € Wy. (62)

14

d0i:10.20944/preprints202407.0401.v1
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Now F, F1 € G and wy € W, we see
d(]:,]:l) <K= H ]-'(wl) —fl(wl) ||§ K‘I’(wl,wl,wl),

1 1
p]:l(val) —KY¥(nwy, nwy, ww),

= H HF(ZUl) Hfl w1 ) ||< LK‘F(wllwl/wl)
—d(HF,HF) < LK,

F(val) -

i.e., H is a strictly contractive mapping on G with Lipschitz constant L (see [24]). The rest of the proof
is similar to that of Theorem 2.7. Hence the proof is complete. [

Corollary 2.10. Suppose that an even function F : Wy — W, satisfying the functional inequality (2) for all
w1, Wy, w3 € W. Then there exists a unique quadratic mapping Q(wq) : Wy — Wh which satisfying (3) and
the functional inequality (31) for all wy € Wj.

2.6. Oddness and Evenness of F: Additive Quadratic Case Stability Results : Fixed Method

Theorem 2.11. Suppose that a function F : Wy — W, satisfying the functional inequality (1) where
Y : WP — [0, 00) with the conditions (43) and (57) for all wy,wp, w3 € W;. If there exists L = L(v) be
function have the properties (44) and (58) Then there exists a unique additive mapping A(wq) : Wi — W and
a unique quadratic mapping Q(wq) : Wy — Wh which satisfying (3) and the functional inequality

IF (w1) — A(wr) — Q(wy)]|
1 L Y Y Y Y 63
< 5 T { ¥alw) + ¥a(-w) + ¥olwr) + ¥o(—w) | (63)
1 L'V (1
=511 {3{‘1’(w1,w1,w1) + 3Y (wy, w1, —w1) + ¥ (—wy, —wy, —wy) + 3¥ (—wy, —wy, wy)

7 7
+Y¥ (wy, wy,wq) + ET(wl,wl, —wy) + ¥ (—wy, —wy, —wq) + E‘I’(—wl, —wl,wl)}}
(64)

and the mapping A(w1) and Q(wq) are given in (47) and (61) for all wy € W).
Proof. The proof is similar ideas to that of Theorem 2.5. [

Corollary 2.12. Suppose that a function F : Wy — W, satisfying the functional inequality (2) for all
w1, wy, w3 € Wy. Then there exists a unique additive mapping A(wq) : Wy — W, and a unique quadratic
mapping Q(wy) : Wy — W, which satisfying (3) and the functional inequality (42) for all wq € Wh.

3. Stability In Intuitionistic Fuzzy Banach Space of (3)

In this section, we explore the generalized Ulam - Hyers stability of the functional equations (3) in
Intuitionistic Fuzzy Banach Space.
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In order to prove stability results, assume (W, i, v) and (Wa, u',v') are Intuitionistic Fuzzy
normed space and Intuitionistic Fuzzy Banach space respectively. Suppose that F : W; — W, and
¥ : W3 — [0, 00) satisfying the following functional inequalities

3
;4(]-'(3%01 + wy + w3) + F(wy + 3wy + ws) + F(wy + wy + 3ws) — (Z w¢>
p=1

)
{ <3lww>+ ( >}+Z{ (wy) —g[f(ww)Jrf(—wtp)]},A)

W (¥ (wy, wo, ws3), A)

3
v(]-'(3w1+w2~|-w3)+]-‘(w1 + 3wy + w3) + F(wy +wz+3w3)—6]-'< Y w¢>
=1

(B (B} B S s}l

S V/ (‘F(wll wy, w3)/ A)

and

3
y(f(3w1 ~|—wZ—|—Zl)3)—|—.7:(ZU1—|—3ZU2+ZU3)+.7:(ZU1+ZU2+3Z03)—6.7:< Y w¢>
-1

g o) Bl )

W, N), >

3
W o X Jwy
$=1
3
AERY !wwl(p‘PfA)r
$=1

> li
A (emra).
3
W oIl !wwl(p‘PfA)r
p=1
/ > 3, ¢
o (of Ll B} ).
= v ()
3
v(f(3w1+wz+w3)+]-'(w1+3w2+w3)+]—'(w1+w2+3w3)—6.F<Z w¢>
=1
1 3 3 5 '
_2{]:(2 w¢> + ( 2 >}+ Z{ wt/} —Z[f(w¢)+}"(—w¢)]},A>
p=1 p=1
v'(5,N),
(52 )
Vs X |w¢|¢¢,A>
p=1
< /
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for all wy, wp, w3 € Wy and all A > 0 with J be a positive constant.

3.1. Definitions and Notations of Intuitionistic Fuzzy Banach Space

Now, we recall the basic definitions and notations in the setting of intuitionistic fuzzy normed
space given in [33].

Definition 3.1. [33] A binary operation * : [0,1] x [0,1] — [0,1] is said to be continuous t-norm if *
satisfies the following conditions:

(x%1) x is commutative and associative;

(x%2) % is continuous;

(x3) ax1=uaforalla € [0,1);

(%4) axb < cxdwhenevera < candb <d foralla,b,c,d € [0,1].

Definition 3.2. [33] A binary operation o : [0,1] x [0,1] — [0, 1] is said to be continuous t-conorm if ¢
satisfies the following conditions:

(¢1) © is commutative and associative;

(¢2) ¢ is continuous;

(¢3) a0 =aforalla € [0,1];

(04) aob < codwhenevera < candb < dforalla,b,c,d € [0,1].

Definition 3.3. [33] The five-tuple (X, u, v, *, ) is said to be an intuitionistic fuzzy normed space (for short,
IFNS) if X is a vector space, x is a continuous t-norm, < is a continuous t— conorm, and y, v are fuzzy sets on
X x (0, o) satisfying the following conditions. For every x,y € X and s, t > 0

(IFN1) u x,t +v(x,t) <1;
(IFN2) u > 0
(IFN3) u . :
(IFN4) p(dx, t) =
(IFN5) u x,t * g y, )_ (x+y,t+s);
(IFN6) p(x,-) : (0,00) — |0, 1] is continuous;
(IFN7) hm y(x, t) =1and }in&y(x,t) =0
—

(IFNS) 1/ x <1

(IFN9) v(x,t) =0

(IFN10) v(dx,t) =

(IFN11) v(x,t) o (x+y,t+s)

(IFN12) v(x, (O,oo) — [0, 1] is continuous;

(IFN13) }Lm v(x,t) = 0and }in% v(x, t) =1
[e] —

1, ifand only if x = 0;
f )foryeiz(chd;«éO

i andonlylfx—O
foreach d # 0;

A~
3<
\/f“_,

In this case, (u,v) is called an intuitionistic fuzzy norm.

Example 3.4. [33] Let (X, ||-||) be a normed space. Let axb = ab and acod = min{a+b,1} for all
a,b € [0,1]. Forall x € X and every t > 0, consider

t if >0 Ixl .
u(x, t) =< i lf - and  v(x,t) =< Hl if £>0;
0 if t<0; 0 if t<0.

Then (X, u, v, *,©) is an IFN-space.
Definition 3.5. [33] Let (X, u, v, *,¢) be an IFNS. Then, a sequence x = {x;} is said to be intuitionistic fuzzy
convergent to a point L € X if

im p(xx—Lt)=1 and lm v(xx—L,t)=0

forall p > 0. In this case, we write
IF
xp — L as k — o

Definition 3.6. [33] Let (X, i, v, *,©) be an IFN-space. Then, x = {x;} is said to be intuitionistic fuzzy
Cauchy sequence if

y(xk+p—xk,t>:l and v(xk+p—xk,t>:0
forallp >0,andp=1,2---.

Definition 3.7. [33] Let (X, jt,v, *,9) be an IFN-space. Then (X, u,v,*,©) is said to be complete if every
intuitionistic fuzzy Cauchy sequence in (X, u, v, x, ) is intuitionistic fuzzy convergent (X, i, v, *, o).
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3.2. Oddness of F: Additive Case Stability Results : Direct Method

Theorem 3.8. Suppose that an odd function F : Wy — W, satisfying the functional inequality (1) where
Y : W3 — [0, 00) with the conditions

W (‘Y (5€Vw1,5£?‘w2, 5€Vw3>,A) > y’(lei“}’(wl,wz, wg),A)
v (‘I’ (54Vw1,5€“w2,5£1‘w3),1\) < (I@“I’(wl,wz, ZU3),A) ®)
and
lim y’(‘}’ (55ﬂw1,5f%w2, 5fﬂw3),5€#A) -1
lim v/ (‘I’ (5%;1,5fﬂwz,5f%w3),5fm) —0 } @
{—00

Z
forall wy, wy, w3 € Wy and all A > 0 with y = £1and 0 < (é) < 1. Then there exists a unique additive
mapping A(w1) : Wy — Wh which satisfying (3) and the functional inequality

H(AGon) = Fon), A) 2 o (Faleon), 5 15 11)

— y’ Y(wq, wr, w), % |5— I|> * y’ (‘I’(wl,wl, —w1), % |5— I|) -
V(A1) — Flwy), A) < v/ (mmn, (5 I>)

= (‘I’(wl,wl,wl), % (5— I)> o <‘I’(w1,w1, —w1), % (5— I))

and the mapping A(wn ) is obtained by

: L (st 1

KIL)ooV<5 M (5 w1) N (w1)l > 1 (6)
. 1 u _

ehnolov<54ﬂ F (5 wl) - A(wl),A> =0

forallwy € Wyandall A > 0.

Proof. Using oddness of F in (1), we get

3 3
y(f(3w1+wz+w3)+]:(w1 + 3wy + w3) + F(wq +wz+3w3)—6]:<z w¢> + ) F(w¢),A>
> W (¥ (wq, wa, w3), A)

3 3
v(]—"(Bwl + wy + ws3) + F(wy +3w2+W3)+F(w1+wz+3W3)—6]-"(2 wy | + Z]—"(wﬂ,A)

< v (T(wll wa, wS)/ A)

for all wy, wy, w3 € W and all A > 0. Interchanging (w1, w», w3) by (wy, w1, wy) in (7), we obtain

p(3F (Swy) — 6F (3w ) +3F (wy), A) > V/’(‘F(whwhwl)//\) } ®)

V(3F (5wr) — 6F (3wy) + 3F (w1), A) < v/ (¥ (wr, wr,w1), A)
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for all wy € Wi and all A > 0. Again interchanging (wy, ws, w3) by (wy, w1, —wq) in (7) and using
(IFN4), (IFN10), we have

#(2]:(37'01) —6..7:(7/()1) ) > F’l ( (wllwllwl)'A) }
v(2]~'(3w1) — 6]:(ZU1) A) <v (‘I’(wl,wl, —w1),A)
p(6F (Bwr) — 18F (wr),3A) = p' (¥ (w1, w1, w1 ), A) } )
(6.7:(3 ) — 18.7:(301),3/\) S v’(‘I’(wl,wl, —wl), A)

for all w; € W and all A > 0. Combining (8) and (9) using (IFN5), (IFN11), we arrive

]/1(3.7:(5101) —15F (wy),4 A) > (3.7:(5101) — 6F (3wy) + 3}-(w1),A) * y(6]-"(3w1) — 18F(wy),3A)
> ' (F(wy, wy,wy), A) * f (Y(wy, wy, —wy), A) = w' (Fa(wr), A)

v(3F (5wq) — 15F (w1),4A) < v(3F (5wy) — 6F (Bwy) + 3F (w1), A) o v(6F (3wy) — 18F (wq),3A)
<V (¥(wy, wy,wy), A) oV (¥ (wy, wy, —wy), A) =V (¥a(wr),A)

(10)
for all w; € Wi and all A > 0. Using (IFN4), (IFN10), one can see from (10) that
1 1 ,
p( zF (5wr) — F(wr), A) = (Ya(w), A)
5 '5 (11)

UJHBUJ\»P

v(;f@wl) - Fwn) 5 s A) < (¥ alwr), A)

for all w; € Wy and all A > 0. Changing wq by 5wy in (11), and using (IFN4), (IFN10), (3), we get

1 4 1
- €+1 - l o > 4 Y4 > 4 Y
y<5ﬁ+1}"(5 R A) > (‘{’A<5 w1>,A> > (1 ‘I’A(wl),A>
1
gy — L 75t 4 1 ' ¢ (e 12
i S < <
<5MF(5 D)= g F 6w, 5 A> <v (‘{’A (5 w1>,A> <v (1 ‘YA(wl),A)
1
= U,(TA<w1), IZA)
forall w; € Wy and all A > 0 also £ > 0. Changing A by I‘A in (12), we see
1 4 INY
(7@ e - g FE e s (5) A) 2 0 (Fatwn, ) 0
1 4 IN?
(5“1;(5“1 - 5 F6w), 5= (5) A) <V (¥a(wr), A)
forall w; € Wy and all A > 0. It is easy to check that
1 &1 1
ﬁ]:(Sewl 2 5— F(5" hwy) — o F(5"wn) (14)
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for all w; € W. Using (IFN5), (IFN11), it follows from (13) and (14), we obtain
1f(5£ _ )5*14 INT
#5760 —Fe), 3 ()
(-1 —
1 1
=p| L g PO wn) - 5 F(5Tw), Z ( ) A)
n=0 7=0
(-1
1 4 I
ZHV<5W+1f(5”+1w1)— F(5"w), 75 (5) )
n=0
> [T—o 1 (Ya(w1),A) = ' (¥a(w1),A)
1 4 Iy 15
4 _ 2 (Z
V(SZ]:(S wl) f(wl),”;()?) 5 (5) A)
(-1 -1
1 4 INT
= 1/( =T ]:(5’7+1w1) — —F(5"wy), Z 3.5 (5> A)
7=0 n=0
oo/ - . I
=0
<ILZp v (Ya(wr), A) = v/ (¥a(wi), A)
where ,
_ ~1
[[pr=wuxpxp*.. and JJv=vovovo..
=0 n=0

forall w; € Wy and all A > 0. Again changing w; by 54w, in (15), and using (IFN4), (IFN10), (3) in
that changing A by 1 4 A, we have

1 o4 b
;4<5M1 F(5"*wy) — o F(lwy), 155 (f) A) > 1/ (¥ a(w1),A)
1 1 = 4 6 (e
U<5Z+£1}—(5€H1w1) = F(lywy), ; 5 (*) A) <V (¥a(wr), A)
for all w; € Wy and all A > 0 also £, 41 > 0. It follows from (16) that
1 (0 1 / A
V<5z+£1 F(5 7 wy) — 0 }-(élwl)//\> > | Ya(wr), oy (I)q+el
n=035"\5 (17)
1 (40 1 / A
U<5€+51]:(5 lwl)—5£1]-'(€1w1),[\> <v "IIA(ZU1), 4 . 0
Ly=035" (5)

for all w; € W; and all A > 0. By data, the Cauchy criterion for convergence in Intuitionistic Fuzzy
normed space gives that the sequence {5%]-' (5'w) }, is Cauchy in (W, 3/, v’) and it is a complete

Intuitionistic Fuzzy normed space, this sequence converges to some point A(wq) in (Wh, p/,v') for all
w1 € Wj. So, by notation, we write

lim y( ! .7-"(5%01) - A(wl),A> =1
{—o0
lim 1/(51[.7-"(56701) - A(wl),A) =0

{—o0

(18)
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for allw; € Wy and all A > 0. Letting ¢; = 0 and ¢ — oo in (17) and using (18), we arrive
, 3A
u(AQwr) = F(wi), A) 2 p{ Ya(wr), -~ (5-1)
3A 3A
=y ¥(wr,wi,wi), —- G=1) ) ' ¥(wy, w1, —w1), =~ (5-1)
4 4 (19)

V(A(wr) — F(wr), A) < v/ (wwn, M- 1))
A (5 1)) o1 (T(wl,wl, _wy), % (5- 1))

= 1// (‘F(wl,wl,wl), T
for all w; € W; and all A > 0. Thus, (5) and (6) holds for # = 1. Interchanging
(w1, W, w3) = (5 wi, 5'ws, 5 w3)

in (1) and using (IFN4), (IFN10), we have

3
p{ 3 {F (6" B + 1wz + ws)) + F(5 (wr + 3wz + w3)) + F(5 (wr + 1w+ 3w3)) — 6F | & 5%1/})
p=1

)
_1{F<é15fw¢>+5f< 5w >}+¢Z{ (5 ww)—3[f(5gww)+f(_5€w¢>}}}’/\>

>u ( (5%01 5ZZU2, 5%03) 5¢ A)
3
v{ g {f(5f(3w1 +wz +w3)) + F(5 (wy 43wz + w3)) + F(5 (wy + wy +3w3)) — 6]-'( )y 5%1,,)

p=1
1 3 4
(o) (-2,
p=1

>}+ )» { (5wy) — §[F(5"wy) + F(~5Lawy)] }}A>
for all wq, wy, w3 € Wy and all A > 0. Now,

N

‘ﬁMw

5¢

u Mw

w
( (5%1,5%2,5%3),54’ A)
(20)


https://doi.org/10.20944/preprints202407.0401.v1

d0i:10.20944/preprints202407.0401.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 July 2024

20 of 30

( (3w; + w) + w3) + A(w; + 3w) + w3) + A(w; + w) + 3ws) — 6A(2§,:1 w¢)
—H{A(D o wp) — A(= T wg) }+ S5 {Alwy) — 3 [Alwy) + Al—wy)] ], A)
> y( (Bwy + wy + w3) — l.7-"(55(371)1 +wy +ws3)), 5
(A wy + 3wy + w3) — %}'(SK(M + 3wy + w3)), %)*
pt(.A(wl +wy + 3w3) — 2 F (5" (wy + wy + 3w3)) %)
w(—6A(T 1wy ) + 267 (251 5wy, 4 ) )+
n(HA(Spa ) + A(=Tjer vy ) }
W{f(zf;, 150wy + F (= D5y ) b4 )+
(S5 { Awy) = 5[ Alwy) + A(—wy) |}
— & T 1 {F(5wy) — § [ F(5'wy) + F(—5'wy) |}, 4 )+
(5 (3wy + wy +w3)) + F (5! (wy + 3wy + w3)) + F(5' (wy + wy + 3w3))
—6F (Tj1 5wy ) — 1H{ F (D51 5wy ) + F (— Djoy 5y ) |
+ 51 { F(5hwy) — [ F(5'wy) + F(=5wy) | } }.4)
v(AQBwy + ws + ws) + A(wy + 3ws + ws) + A(wy + wa + 3ws) — 64 (thfl w¢)
—HA(S o wy) — AT wp) o+ B {Alwy) - 3 [Awy) + A(—wyp)] ), A)
< V(A(3w1 +wy +ws) — i]—'(5f(3w1 +wy +ws)), 5 )
( (w1 + 3wy + w3) — }'(5£(w1+3w2+w3 %)
v(A(wl +wy + 3w3) — 3 F(5' (wy + wy + 3w3)), 5 ) o
v(=6A(Thorwy) + H6F (Th 5wy, 4 ) o
v(3{A(a ) + AT my)
5,2{I(Z?P 150wy) + F (= D)o 5wy ) b4 )o
v(zl,,,l{mww) 3| AGwy) + A(—wy)] }
2 FGwy) - §[F 6 wy) + F(-5'wy)] ], 4 )0
v( g F (5 (Bwy 4wy + w3)) + F (5 (w1 + 3wz + w3)) + F (5" (wy + w; + 3w3))
—6F (2515w ) — J{F (2515, ) + F(— 5515wy ) }
+ S5 {F(5wy) - § [F5'wy) + F(=5'wy)| } . 4)

n(@# {7

)e

(21)
for all wy, wp, w3 € Wy and all A > 0. Taking limit £ — oo in (21), using (18) and (20), we get
#(A(Bw1 + w3+ w3) + A(wy +3ws + w3) + A(wy + w5+ 3ws) — 6A( L, ZUw)
~HA(D o) + A= D wy) b+ Do {Alwy) - 3 [Ay) + A(-wy) | },A) =1 o)

}
wy + wy + 3wz) — 6.4 (le 1 wlp)
}

A
v(A(3w1 +wy +w3) + A(wy + 3wa +w3) + A(
{ [ (wy) + A( wq,)} A)

—%{A(Zazlwtp)*A(*Efﬁzlww)}Jrz"’ AW
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for all wy, wp, w3 € Wi and all A > 0. Using (IFN3), (IFN9) in (22), we see, A(w ) satisfies (3). In order
to confirm that A(w) is unique, suppose B(w, ) be another mapping (3), (18) and (19), we obtain
H(A(wr) = B(wn),2A) = p(A(5%1 ) = B(5%w1 ), 5" 2A)
> V(A(wal) - f<56w1),5f/\) " y(]—' 50w, ) — B(wal),SfA)
> ' (¥, (5%1), 3A 5((5 — 1)) * y’(‘{’A 5w, ), 3 5(5 — 1))
> (¥a(wr), 35 65-1)
v(A(wr) - B(wn),2A) = v(A(5'w1 ) — B(5'w1),5 24
< V(A <5€w1) — ]-"(SZwl),SéA) <>1/(]: 50w, ) — B(Szwl),SZA)
<v (¥, (5%1),% 5005 — 1)) ov/ (‘YA 5wy ), 38 5¢(5 — 1))
‘
Fa(w), 3% (5-1)

(23)

<v
for all w; € W; and all A > 0. Taking limit £ — oo in (23), and using (IFN7), (IFN13), we arrive

A(wy) — B(w;),2A) =1
;;((A((w;) - B(wll),ZA)) =0 } (24)

forall w; € Wy and all A > 0. By (IFN4) and (IFN10), we get A(w7) is unique. So, the Theorem holds
foruy =1.
Changing wy = % in (10) and using (IFN4), (IFN10), (3), in that changing A by %, we have

(P =57 (L), 554) 2 (Hawn) )

Wi\ 4 / (25)
v <]—'(w1) -57 (), “A> <V'(¥a(wr), A)
for all w; € Wy and all A > 0. Changing w; by % in (25), and using (IFN4), (IFN10), (3) in that

A

changing A by T

we get

u(‘r’ef(z;fl) _5Z+lf($)'fw(?)éA> < W (¥a(wi), A)

(W1 i W1 4 5\ (26)
(57 (5) -5 7 (5r) 53 (3) ) <V (atwn) )
forall w; € Wy and all A > O also £ > 0. It is easy to check that
-1
(- (W1 _ wy +1 w1
F(wy) —5 }'<?) = ﬂzosﬂf(m) 5 f(w> 27)

for all w; € W);. The rest of the proof is similar to that of above case. So, the Theorem holds for y = —1.
Hence the proof is complete [
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Corollary 3.9. Suppose that an odd function F : Wi — W satisfying the functional inequality (2) for all
w1, wy, w3 € Wy. Then there exists a unique additive mapping A(wy) : Wy — W, which satisfying (3) and
the functional inequality

(6,13 ),
5|w1|¢ 3550, 0#1,
]"Z'Ul|q)tplM Z 1|5_5(P¢‘>, 4)114)214)3#1/
3A
n(A(wy) — Flwy),A) > §|w1|34’, |5 53¢|) 3¢ #1,
3
9 3
ﬂ(élw 73 s 5w1¢1), Log, £ 1,
p=1
W (207w 0,3 15— 5%7)), 39 A1,
(28)
1/’ 5, 13| A),
o‘|w1|¢,A 5-51), 9 #1,
V(6 Tj lwnl™, 3 551 15-5%1), 1203 1,
3A
Awy) — Fan), 4) < { V(O3 5 - ) 941,
3
2 3
'\ 81wy |¢1“’M‘5 5¢1"”), Y9, #1,
p=1
v’(25|w1|3¢,% 5-5]), 39 #1,

forallwy € Wy.

3.3. Evenness of F: Quadratic Case Stability Results : Direct Method

Theorem 3.10. Suppose that an even function F : Wi — W satisfying the functional inequality (1) where
Y : W3 — [0, 00) with the conditions (3) and

iy 0 (o 5, ) 508)
}Lrglo v (‘Y (5€F‘w1, 5£VW2, 55}4w3> , 255;4/\) -0 } (29)

forallwy, wy, w3 € Wyandall A > Qwithy = £1and 0 < (%) g < 1. Then there exists a unique quadratic
mapping Q(w1) : Wi — W, which satisfying (3) and the functional inequality

1(Qawn) — Flwy), A) > (%(wl) |zs—1|)
,’l/l/(‘f[/ wl,wl,wl 7A |25I|) *y’(‘lf(wl,wl,wl),z\ |25I|)

v(Qlawn) <v'(Yotw), 5 @25-1)

=/ (‘I’(wl,wl,wl), % (25 — I)) ov (‘Y(w1,w1, —wq), % (25 — I))
(30)
and the mapping Q(w ) is obtained by
lim y(f(#f*wl) Q(wﬂ,/\) =1
{—o00 (31)

f—00

1
lim 1/(25]-'(5@?1)1) Q(w1),A) =0
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forallwy € Wyandall A > 0.

Proof. Using evenness of F in (1), we get

3 3
y<.7-"(3w1+w2+w3)+}"(w1 + 3wy + w3) + F(wy +ZU2+3IU3)7./—"<Z w¢> —4 Z]—"(w@,A)
$=1

Z ,u/(‘f(wlr wy, w3)/ A)

3 3
(./—"(37/01 + wy + ws3) + F(wy + 3wy + w3) + F (w1 + wy + 3ws) — (Z w¢> Z]-'(w@,A)
$=1

< V(¥ (wq, wo, w3), A)
(32)

for all wy, wy, w3 € Wi and all A > 0. Interchanging (w1, wy, w3) by (w1, w1, w1 ) in (32), we obtain

U(3F (5wy) — 7F (Bwy) — 12F (w1), A) > ¢/ (¥ (wy, wy, w1), A) } (33)
v(3F (5wy) — 7F (Bwy) — 12F (wq), A) < V' (¥ (wy, w1, wy), A)

for all w; € Wy and all A > 0. Again interchanging (w1, w», w3) by (wy, w1, —w1) in (32) and using
(IFN4), (IFN10), we have

H(2F (Bwy) — 18F (w1), A) > p' (¥ (wq, wq, wr), A) }
1/(2]-'(3&)1) — 18.7:(?,01) ) <v (‘{’(wl, w1, —wl) A)

N u(7F (3wy) — 63F (wr), 3A) > p' (¥ (wy, wy, w1), A) (34)
v(7F (Bw) — 63F (w1), 5A) < v/ (¥ (wq, w1, —wy), A)
for all w; € W; and all A > 0. Combining (33) and (34) using (IFN5), (IFN11), we arrive

u(3F(5wy) — 75.7-"(w1) A) > u(3F (5wy) — 7F Bwy) — 12F (wy), A) % u(7F (Bwy) — 63F (wy),

>u(3 1
> W (¥ (wy, w1, w01), A) x p!' (F(wy, wy, —wr), A) = 1 (Fo(wr), A)
v(3F (5wy) — 15F (wy), 3A) < 1/(3.7-"(5w1) 7F Bwy) — 12F (wy), A) o v(7F (3wy) — 63F (wr), 3A)
<V (¥ (wy, w1, wr), A) oV (¥ (wy, wy, —w1), A) = v (Fo(wr),A)
(35)
for all w; € W and all A > 0. Using (IFN4), (IFN10), one can see from (35) that
l.7:(5w ) — F(wq) 2 1A "(Fo(wr), A)
H\257 0™ Vrzgias ) = HiFelw) 36)

1/<215.7:(5w1) = Flwi), 7 % A) < v'(¥g(wr), A)

for all w; € Wy and all A > 0. The rest of the proof is similar to that of Theorem 3.8. Hence the proof
is complete. [
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Corollary 3.11. Suppose that an even function F : Wy — W, satisfying the functional inequality (2) for all
wy, wy, w3 € Wy and all A > 0. Then there exists a unique quadratic mapping Q(wy) : Wy — W, which
satisfying (3) and the functional inequality

1W'(5,18| 7A),
5|w1|¢ 7 25— 5<”|) 9#2,
1\wl|q)4’,m Z 1|25—5(P4’|)/ P1, P2, 93 # 2,
1(Q(wy) — F(wi),A) > §|w1|34’ 7A |25 — 53‘P|> 3¢ #2,
3
% 3
iz (5|w¢|"’ Y, A ‘25 5w ! “’\) zp;l% #2,
W (20w 0, % 25 - 5°7)), 3¢ £2,
(37)
1/’ 5,18 7A),
v'(Slwi]?, % 125 - 59]), 9#2
v(or- 1|wl|‘”¢,7A £5-1125-5%1), o1,0295 #2,
W(Q(eor) ~ Flwn), A) < { V(a7 125 - 53"’|) 39 #£2,
3
Yo 3
" Slwy |¢1 " s \25 5u=1 “’\) Lo, #2
p=1
v’(25|w1|3¢,% |25—53¢|), 39 #2,

forallwy € Wyandall A > 0.

3.4. Oddness and Evenness of F: Additive Quadratic Case Stability Results : Direct Method

Theorem 3.12. Suppose that a function F : Wy — W, satisfying the functional inequality (1) where
Y Wf’ — [0, 00) with the conditions (3), (4), and (29) for all wy,w,, w3 € Wy and all A > 0 with y = £1

and 0 < (%)H <10< <%)y < 1. Then there exists a unique additive mapping A(w1) : Wi — Wh and a
unique quadratic mapping Q(wy) : Wy — W, which satisfying (3) and the functional inequality
p(F(w1) — A(wr) — Q(wi),4A)
ZH (‘FA(wl) > |5—I\> *V'( al=wr), % |5—I|>
W (Folwr), % |25—1|) w1 (Fo(—wr), B 25— 1])
= y’(‘l’(wl,wl,wl),% |5—1 |) * U (‘P(wl,wl,—wl),T 15— I|)>x<
W (‘Y(—wl, —wy, —wi), 3 |5 - I|) s« (‘I’(—wl, —wy,wy), % |5 - I|)*
W (‘P(wl/wl/wl)/% |5— I\) ' (‘P(wllwl/_wl)/% 5— 1|)*
W (‘I’(—wl, —wy, —wy), 45— I|) s u! (‘I’(—wl, —wy,wy), 4[5 — I|)
— A(wr) — Q(w1),4A)
(11! wy), 38 |5—1|) ov (‘I’A( 1), 34 |5—1|)<>
(‘PQ(wl), 7A |25 — 1|) <>1/’(‘I"Q(—w1), 7A |25 — 1|)
=v (‘I’(wl,w1,w1 35— I|> ov’(‘I’(wl,wl,—wl), 35— I|)<>
V(¥ (—wy, —wy, — ) 35— I]) ov’(‘I’(—wl,—wl,wl),% |5— I\><>
v (‘I’(wl,wl,wl & A5 — I|> o (‘P(wl,wl, —wy), % 15— I|)<>
v (‘P —wy, —wy, —w), 2 |5 — I|) oV (‘I’(—wl,—wl,wl), % |5— I\)

(38)

and the mapping A(w, ) and Q(w, ) are given in (6) and (31) for all wy € W;.


https://doi.org/10.20944/preprints202407.0401.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 July 2024 doi:10.20944/preprints202407.0401.v1

25 of 30
Proof. By Theorem 3.8, it follows from (33), (1) and (5), we arrive
3A 3A
HAG) = Foaalwn), 20) = ' (¥aton), ° 5= 1) < (Yal=0), 5 15 1])
, 3A , 3A (39)
v(A(w1) — Foaa(wr),2A) <v <'T’A(w1)/ e 5— I|) oV (TA(_wl)/ e 5— I|>
for all w; € W and all A > 0. By Theorem 3.10, it follows from (37), (1), and (30), we see
7A 7N\
H(Qwr) = Faenlw00),28) = o (Folaon) 5 125~ 11 )+ ((Fo(-wn), 5 25 1
7A 7A (40)
v(Q(w1) — Feven(wy),2A) <V (‘YQ(wl), 3 |25 — I|) o1/ (‘I’Q(—wl), 5 |25 — I|>
for all wq; € Wy and all A > 0. Now, it follows from (39), (40) and (40), we have
u(F (w1) — A(wr) — Q(w1),4A)
> p(A(wr) — Foaa(wr), 2A) x pu(Q(w1) — Feven(w1),24A)
3A 3A
> y'(‘{’A(wl), T |5 — I|> * ! (‘YA(—wl), T I5—1I| )
7N\ 7N\
W (ot 5 125 11) < (Yal-wn), 75 125 1))
(41)

v(F(w1) — A(wy) — Q(wq),4A)
< V(A(wl) — J-"Odd(wl),ZA) <>1/(Q(w1) — feven(wl),ZA)

3A 3A
< 1// (‘"I'rA(ZUl),4 |5 — I|) OU,(TA(ZUl),4 |5 — I|><>
7N\ 7A

forallw; € Wyandall A > 0. O

Corollary 3.13. Suppose that a function F : Wy — W, satisfying the functional inequality (2) for all
wy, wy, w3 € Wy and all A > 0. Then there exists a unique additive mapping A(wq) : Wi — Wh and a
unique quadratic mapping Q(wq) : Wi — W, which satisfying (3) and the functional inequality

p(F(w1) = A(wy) — Q(wy),4A)
w(20,(13[+71[8))A)

i 25|wl|<ﬂ,A{}I 559+ 7 |25—5<P|}), 0 £1,2,
W 25Zi:1|wtp|‘”‘”,{%2?p:1 5-5% ]+ {5 |25—5‘P4’|}), 91, 92,93 # 1,2,
> i (26]w; 2, A{3|5 5% + % |25 - 5%7[}), 3¢ #1,2,
3 3 3
L9, L 9, L9, 3
W | 40fwy ™ 280 §l5 -5 [+ G |25 — 57| Y 9, #1,2,
p=1
' (46]w: 3%, A{3|5 — 5%¢| + ]25 — 5°7|}) 3¢ #1,2,

v(F(w1) — A(wy) — Q(wy),4A) (42)

v'(26, (13| +7|8])A)

v (20wi]?, A{} 15— 59|+ F [25 - 59} ), ¢ #£1,2
V(20T gl {3551 1557 |+ T 551 1255 }), g1 9295 £ 12,
< { V(28w 3%, A{3]5 - 53| + §[25 — 5°7|}), 3¢9 #1,2,
3 3 3
L 9, L9, L9y 3
v | 40lwygl = 288 35— 5| + Ffas 5| Y g, #1,2,
y=1
v (46]w1 3¢, A{3]5 — 53¢| + §|25 — 537}) 3¢ #1,2,

forallwy € Wy.
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3.5. Oddness of F: Additive Case Stability Results : Fixed Method
Theorem 3.14. Suppose that an odd function F : Wy — W satisfying the functional inequality (1) where

Y : W3 — [0, 00) with the condition

Zlgrc}oy ( <T wl,’rfwz, TKZU3) EA) =1 5.1 =0
lim v (‘P(wal,waz,wag),TfA) =0 }; W= { %;U =1 (43)

l—00
for all wy, wy, w3 € Wy and all A > 0 If there exists L = L(v) be a function have the property

u(¥a(wr), A) =u(¥a(3), A) } and H(%TA(val)'A) = H(L¥a(w) A) (44)
A)=v v(%‘PA(val),A> =v(LY¥a(wr),A) [

forall wy € Wy and all A > 0. Then there exists a unique additive mapping A(wy) : Wi — W, which
satisfying (3) and the functional inequality
L'V 3A
W(AGon) = Fon), A) 2 o (1= Falwon) 5
L=V 3A L~V 3A
=W\ 7 ¥(wywy,w), 4) * y’(l [ F(wyw, —w), 4)
1 B 45)
(LY 3A (
V(Awn) = Flon), ) <0 (1 Yalon), °F )
L' 3A L= 3A
= (1 — Y (wy, wy, wy), 4> o (1—L Y (wy, wy, —wy), 4>
and the mapping A(wn ) is obtained by
1
lim ‘ll<€]:(T£ZU1) — A(ZU1),A> =1
{—00 ’gv (46)
. L ¢ _ _
Kl;rilov(Tff(va1> .A(wl),A) 0

forall wy € Wy andall A > 0.
Proof. Assume a set G as in Theorem 2.7 of (48) and introduce the generalized metric on the above set

G as
i J w(F(wr) = Fr(wr), A) = p(K ¥ (w, wy, 1), A)

AT, F) = mf{K € (0,00): { (Flwy) — Fy(wy), A) < v(K ¥y, wp,w1),A) [ [ @)
forall w; € Wy and all A > 0. It is easy to see that (G, d) is complete. Define a function H : G — G as
by Theorem 2.7 of (50) and for F, F; € G and w1 € Wj and all A > 0, we see

Fi(wy), A) > u(K¥(wy, wy,wr),A)
d(F, F) < K= HI () - !
FR) <K ) Rl ) 2 Uk ¥ oo A
{ 14( F(rwr) — & Fi(ww) A) > V(TVK ‘I’(iwl,nwl,nw1),/\) }
=

%F(Tywl) - T—V}"l(”r,,wl) ,A) < v(rvK Y(L 11, TyW, Tyw), A)

:>{ U(HF (wy) — HF (wr), A) > u(L K¥(wy, wy,w1),A) }
V(HF (w1) — HF1(wy),A) <v(LK¥(wy,wy,wy),A)

=d(HF, HF) <LK,
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i.e., H is a strictly contractive mapping on G with Lipschitz constant L (see [24]).
For the case v = 0, it follows from (11) and with the help of (44), (50), (47), we get

iz 1]‘-(510 ) — F(w ),éA > 1y (w1), A
v<<§]:(5w11) - }'(wll), g A>) < gf\y:(w;),/&)) = d(HF,F)<L=L"", (48)

forall w; € Wy and all A > 0.
For the case v = 1, it follows from (17) and with the help of (44), (50), (47), we obtain

(Pl =57 (). 50 2 (44 (2).0)
(P =57(2).5470) =¥ (¥a(%).)

for all w; € Wi and all A > 0. Combining (48) and (49), we have

= d(F,HF)<1=L"", (49)

d(F,HF) <1=1L"". (50)

Therefore (FPC1) of Theorem 1.3 holds. The rest of the proof follows by Theorem 1.3. Hence the proof
is complete. [

Corollary 3.15. Suppose that an odd function F : Wy — W, satisfying the functional inequality (2) for all
w1, wy, w3 € Wy. Then there exists a a unique additive mapping A(wy) : Wi — W, which satisfying (3) and
the functional inequality (20) for all w1 € W;.

3.6. Evenness of F: Quadratic Case Stability Results : Fixed Method

Theorem 3.16. Suppose that an even function F : Wi — W satisfying the functional inequality (1) where
Y : W2 — [0, 00) with the condition

li 'y 4 , v ITZ ,TZEA =1 )
el—{?oy< (T"wl i Vm) ! ) ; Tvz{ yv=0 (51)

X 1.,
[11_>m v/ (‘{’(wal,rfwz, T£w3),7351\) =0 sv=1
4 o

for all wy, wy, w3 € Wy and all A > 0. If there exists L = L(v) be function have the property

) ZHERE N u(F¥alnon, A) =u(b¥olen,n) | -
v V(T%‘PQ(Tywl),A> = V(L ‘PQ(w1>IA ’

forall wy € Wy and all A > 0. Then there exists a unique quadratic mapping Q(w1) : Wi — W, which
satisfying (3) and the functional inequality

1—v
1(Q(w1) — Flay), A) > y’(L Yo () 7A)

1-L "3
L'V 7A Li-v 7A
= ‘u/ ‘P(wllwl/wl)ri *]/ll 71?(7,01,'601, —wl),—
1-L 3 1-L 3 -
v 7A (53)
U(Q(wl) - ]:(wl)/A) < v 1-L ‘I’Q(wl), 3

L'~V 7A LtV 7A
= v’(l — ‘I’(wl,wl,wl),s) <>1/’<1 — Y (wy, wy, —wy), 3>


https://doi.org/10.20944/preprints202407.0401.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 July 2024 doi:10.20944/preprints202407.0401.v1

28 of 30
and the mapping Q(wy) is obtained by
lim ;4( ]-"(va1> — Q(wl),A) =1
{—o0 (54)

1
?
. 1 ;
611_{10101/(%2@]:(@?01) - Q(wﬂ,/\) =0
forallwy € Wyandall A > 0.

Proof. Define a function H : G — G as by Theorem 2.9 of (62) and for F, F; € G and w; € W and all
A > 0, we see

d(F,F) <K :,{ H(F () ‘fl((wl) A

-L 4

. { () - HE (o). A

) = u(K¥ (wy, wy,wr),A) }
) < v(K ¥ (wy, w1, w1),A)

A) > u(wKY¥(nwy, wwy, wwy ), A)
,A) <v(2K ¥ (nwy, twy, wr), A)

(L KY¥(wy, w1, w1),A) }
K‘I”(wl,wl,wl) A)

—d(HF,HF) <LK

i.e., H is a strictly contractive mapping on G with Lipschitz constant L (see [24]). The rest of the proof
is similar to that of Theorem 3.14. Hence the proof is complete. [

Corollary 3.17. Suppose that an even function F : Wy — W, satisfying the functional inequality (2) for all
w1, Wy, w3 € W. Then there exists a unique quadratic mapping Q(wq) : Wy — W, which satisfying (3) and
the functional inequality (37) for all wy € W;.

3.7. Oddness and Evenness of F: Additive Quadratic Case Stability Results : Fixed Method

Theorem 3.18. Suppose that a function F : Wi — W, satisfying the functional inequality (1) where
Y : W3 — [0,00) with the conditions (43) and (51) for all wy, wp, w3 € Wy and all A > 0. If there exists
L = L(v) be function have the properties (44) and (52) for all w; € Wi and all A > 0. Then there exists a
unique additive mapping A(w1) : Wi — Wh and a unique quadratic mapping Q(w-) : Wy — Wh which
satisfying (3) and the functional inequality

p(F (wr) ~ A(wr) ~ Q( 1),48)
o) o )
#( r ¥o(w), X )*‘u’(Ll ‘YQ( 1),%)
(5 P, ) o (1 Hn ), )+
W ?:LV Y(—wy, —wy, —w1), 4)*y(] ‘Y( wy, — w1,w1),%>*
#/(%T(wl’wl’wl) )*V (% T ¥ (w1, w1, — wl)'%)*
S T o0 8) (o m2)
v(F(wr) = A(wr) — Q(wr), 4A)
o Fat ) o (w2,
(5 Yoten, ) ov/ (15 ol 1), )
/(5 X ) o (5 i), 2o
( —wy, —wy, ~wy), 3?)01/(% ‘P(_wl,—wLZUl)r%)o
(% (e, 01,1, %) o0/ (K ¥(ewn, =), 2o

r( L1V 7A L-v 7A
v (ﬁ Y (—wy, —wy, —w1), 3 ) oV (1,L ‘P(—wl,—wl,wo,T)

(55)

and the mapping A(wy ) and Q(wy ) are given in (45) and (54) for all wy € Wy and all A > 0.
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Proof. The proof is similar ideas to that of Theorem 3.12. [

Corollary 3.19. Suppose that a function F : Wy — W, satisfying the functional inequality (2) for all
w1, wy, w3 € Wy. Then there exists a unique additive mapping A(wq) : Wy — W, and a unique quadratic
mapping Q(wy) : Wy — W, which satisfying (3) and the functional inequality (42) for all wq € Wh.
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