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Abstract: The Tonle Sap Lake (TSL) landscape is a region of vast natural resources and biological diversity in 
the heart of Southeast Asia. In addition to serving as the foundation for a highly productive fisheries system, 
this landscape is home to numerous globally threatened species. Despite recognition by several governmental 
and international agencies for decades, nine protected areas have been established within this region, natural 
landcover such as grasslands have experienced considerable declines since the turn of the century. This project 
used local expert knowledge to train and validate a random forest supervised classification of Landsat satellite 
imagery in Google Earth Engine. The time series of thematic maps was then used to quantify the conversion of 
grasslands to croplands between 2004 and 2023. The classification encompassed a 10-kilometer buffer 
surrounding the landscape, an area of nearly 3 million hectares. The average overall accuracy for these thematic 
maps was 82.5% (78.5%–87.9%), with grasslands averaging a 76.1% user’s accuracy. The change detection 
indicated that over 207,281 ha of grasslands were lost over this period (> 59.5% of the 2004 area), with approx. 
89.3% of this loss could be attributed to cropland expansion. The results of this project will inform conservation 
efforts focused on local scale planning and management of commercial agriculture. 

Keywords: Grasslands; Tonle Sap Lake; Land Use and Land Cover; Land Cover Change; Protected 
Areas; Google Earth Engine; Agriculture Expansion 
 

1. Introduction 

The Tonle Sap Lake (TSL) floodplains and surrounding landscape are a region globally 
recognized for biodiversity and natural productivity [1–4]. Millions of people throughout the Lower 
Mekong River Basin rely on the TSL fisheries, water resources, and natural vegetation for their 
livelihoods [5,6]. Recognizing the importance of this landscape, UNESCO created the Tonle Sap 
Biosphere Reserve (TSBR) in 1997 which was further established by governmental royal decree in 
2001 [3,5,7]. The TSBR is a major breeding area for at least a dozen globally threatened bird species 
[3,6,7]. These include the Lesser Adjutant (Leptoptilos javanicus), Painted Stork (Mycteria leucocephala), 
Asian Openbill (Anastomus oscitans), Black-headed Ibis (Threskiornis melanocephalus), Oriental Darter 
(Anhinga melanogaster), Sarus Crane (Grus antigone), and Bengal Florican (Houbaropsis bengalensis). 
These bird species, along with several environmental functions of this flood pulse ecosystem, are 
dependent on the mosaic of grasslands and other vegetation found throughout the floodplains. 
Despite the efforts of the Cambodian Ministry of Environment (MoE) and agencies such as the 
Wildlife Conservation Society (WCS) or BirdLife International this landscape and its grasslands are 
facing ongoing degradation due to commercial agricultural development [5,7–10]. Agricultural 
development threatens countless species, with the true extent of these impacts being uncertain due 
to limited ecosystem assessments. 

Grasslands throughout the TSL landscape provide a variety of ecosystem services. Among these 
services are carbon storage and sequestration [11–13], water nutrient regulation, livestock food 
provisioning [14], and serving as wildlife breeding grounds and habitat [2,3,9,13]. Long term 
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conservation efforts for these grasslands across the protected landscapes are aimed at the unique and 
globally threatened community of bird species found there. Historically, information on these bird 
populations have been gathered through assessments, made from field surveys, such as those 
documented by Seng et al., [15], van Zalinge [16], or Packman [6]. These surveys, however, are 
resource intensive and lack the ability to provide comprehensive information of the landscape on a 
time scale relevant to management action. Jointly, monitoring the expansion of croplands, such as 
rice, into these land cover could lead to vast increases in knowledge of the regional environmental 
status, food security and local socioeconomics [17,18]. The integration of remote sensing tools and 
geographic information systems (GIS) could lessen the resource requirements for conducting such 
surveys while at the same time providing accurate and up-to-date information on land cover 
dynamics. 

The use of remote sensing for earth observation (EO) has expanded in recent decades to become 
an established and increasingly impactful method for obtaining information on land cover and land 
use (LCLU) [6,19–21]. Land cover acts as a key component for environmental monitoring and 
modelling for many projects [19,22,23]. Time series data, from programs such as Landsat, support 
landscape level analyses of land cover which would be cost prohibitive if conducted in the field (i.e., 
in situ). A widely used application of the land cover products derived from remotely sensed imagery 
are LCLU change detections [19,24,25]. Change detections provide crucial, site-specific information 
on the spatial distribution and abundance of land cover classes over time [21,26,27]. Such information 
can then be used to track the impacts of human development (such as cropland expansion), social 
pressures, or policy decisions by a wide range of stakeholders [28]. While these methods are 
increasingly available, they have not been applied ubiquitously [1]. Grasslands historically have been 
underrepresented in remote sensing analyses [6,12]. Few studies published over the last 20 years for 
this region specifically have reflected on changes in grassland abundance or distribution, which is a 
vital component for accurate and timely conservation action [9,24]. Sourn et al., [29] demonstrated a 
large change from forests to croplands in the nearby Battambang province between 1998 and 2018. 
The authors noted drives of this deforestation were likely policy, legal frameworks, and socio-
economic pressures [29]. Mahood et al., [13] detailed that rice cultivation was likely the cause of 
substantial grassland and shrubland loss between 1993 and 2018 within the TSL and surrounding 
floodplains. Other studies of the early 2000’s also portrayed large amounts of cropland expansion at 
the cost of natural vegetation cover throughout this region [5,10,30]. Conservation organizations 
working in the TSL landscape are facing limited resources and knowledge from which to base their 
decisions, due to the age of their data on remanent grasslands patches [2,4]. Measuring the current 
area and distribution of natural land cover types would aid management of this ecosystem [2]. Our 
study aims to inform local conservation efforts as well as provide an analytical framework for similar 
investigations of natural vegetation loss in neighboring regions. This research focuses on the full TSL 
landscape, including a 10km buffer from the WCS defined landscape (‘stronghold’) boundary. Within 
this area are nine protected areas, which face ongoing influence from a wide range of stakeholders 
[1,5,31,32]. This research also specifically addresses the losses of dry grasslands, which are a critical 
component of the local ecology. For these reasons, our objectives are to quantify losses in grasslands 
within the TSL landscape since the early 2000s. More specifically, this research aims to: 

1. Quantify trends in land cover change, leading to losses in grasslands throughout the Tonle Sap 
Lake (TSL) landscape. 

Evaluate these changes in the context of dry grasslands, a vital wildlife habitat within this region. 
This analysis will help conservation efforts to specifically address losses at the landscape and 

key protected area scales. 

2. Materials and Methods 

2.1. Study Area 
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The TSL and surrounding floodplains are a key component of the Lower Mekong River Basin 
[1,13]. The core area is defined by the TSBR, which is designated for protecting biodiversity, limiting 
habitat disturbance, and serving as a site for research [7,13]. The area of open water within this flood 
pulse system has been measured to expand as much as five times between the dry and wet seasons 
[3]. Intermixed with the flooded forests, spreading outwards from the open waters are a mosaic of 
grassland patches and scrub/shrublands [3,4,7], leading into croplands. To ensure that the entire 
landscape is considered in this analysis, a 10 km buffer was applied to the TSBR extent (Figure 1). 
This 2.99-million-hectare (ha) area, in black, represents the primary extent for this analysis. 

 

Figure 1. Tonle Sap Lake (TSL) landscape and protected areas. Protected areas include: A—Ang 
Trapeng Thmor, B—Bakan, C—Prek Toal, D—Kampong Thom, E—Phnom Neang Kong Rey- Phnom 
Touk Meas, F—Phnom Krang Dey Meas, G—Stung Sen Core Area (Ramsar Site), H—Angkor, I—
Boeng Chhmar Core Area (Ramsar Site). Those given in blue are regulated by the Royal Cambodian 
Government (RCG) Ministry of Environment (MoE). Those given in green are monitored and manged 
by the Wildlife Conservation Society (WCS). 

Nine protected areas are located throughout the TSBR (Figure 2). These protected areas make 
up approximately 170,056 ha within the study region (~5% of the total area) [33]. The protected areas 
range in size from 288 ha (Phnom Krang Dey Meas) to over 38,000 ha (Bakan). These areas have each 
been established for the conservation of critically endangered species, such as the Bengal Florican, 
Sarus Crane, or the vulnerable Manchurian Reed Warbler (Acrocephalus tangorum) [9,34,35]. The 
updated boundary files for these protected landscapes were downloaded from Protected Planet [33]. 
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Figure 2. European Union (EU) Joint Research Centre (JRC) surface water occurrence ≥ 20% layer used 
to define corresponding grassland areas as wet grasslands. Grassland areas located outside of this 
polygon were defined as dry grasslands. 

2.2. Satellite Imagery 

A combination of Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager 
(OLI) Level 2 (surface reflectance corrected) imagery were used to generate landcover maps of this 
region throughout the study period. Landsat images are widely established for land cover mapping 
and time series analyses, even for grassland areas [11,14,19,28]. Google Earth Engine (GEE) 
(Mountain View CA, USA) was used to compile Landsat imagery and perform the classification. This 
cloud-based GIS greatly reduced the burden of computational complexity for this analysis [18,28,36]. 
Imagery were queried of the dry seasons from 2004, 2008, 2013, 2018, and 2023. Dry season imagery 
were defined as those taken between November of the previous year and early April of the defined 
year. For example, the 2004 dry season would be defined as November 1st, 2003 through April 1st, 
2004. This period was selectively sampled due to the consistent cloud and shadow coverage 
throughout the rest of the year [29]. A more consistent 5-year time step was desired for this analysis, 
however, imagery from the 2003 dry season were of poor quality and considerable cloud coverage. 

For each of the five years mapped in this study, the image collections were comprised of roughly 
30-40 individual Landsat images (i.e., scenes). A pixel-based composite was made from each 
collection of images. These composites are a common technique for creating a singular image, with 
reduced noise, across the study region from which image analysis and classification could be 
performed [19,37–40]. The specific technique for creating these composites was based on the median 
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pixel algorithm. This algorithm finds the median value for each band across an image stack and has 
been found to generate a more radiometrically consistent result [41–43]. 

2.3. Reference Data 

Three sources of reference data were used to support the training and validation of the 2004, 
2008, 2014, 2018, and 2023 thematic maps. These sources of reference data were integrated because 
they most closely matched the land cover dynamics of the studied years, were based on reliable 
methods, and ensured that the earliest maps (2004 and 2008) were comparable to historic surveys of 
grasslands within this geography. First, historic habitat data from the early 2000’s was used to guide 
the 2004 and 2008 classifications. This habitat data consisted of 1,250 grassland samples, 1,240 
shrubland/forest samples, and 780 cropland samples generated through the interpretation of high-
resolution imagery [44]. These data were also used to established estimates of grassland habitat by 
earlier surveys [6]. Second, the WCS Cambodia GIS team provided maps of the landscape digitized 
from high-resolution 2021 and 2022 imagery. These maps were used to generate samples from 
homogeneous areas of shrublands (n = 1,200), forests (n = 700), grasslands (n = 1,200), and rice 
croplands (n = 1,000). These samples were used to guide the classification of the 2014, 2018, and 2023 
imagery. Lastly, the WCS Cambodia team independently conducgted an analysis of change in 
grasslands within the Bakan and Ang Trapeng Thmor (ATT) protected areas. From this analysis, 75 
reference samples per class were integrated into the classification of the larger landscape. Samples 
for the class ‘water’ were generated through interpretation of both the high-resolution basemap 
imagery and the respective Landsat composite. 

The previously established sources of reference data were used by a trained image interpreter 
as a guide for manually entering reference samples using the GEE geometry tools. For each of the 
five classifications, 600 to 800 reference samples were entered. These samples were geographically 
distributed, with a minimum of 100 samples per class per map, and were based on a higher level of 
detail than the Landsat imagery provided [27,45]. 

2.4. Land Cover Classes 

Land cover classes within the TSL landscape were distinguished based on definitions adapted 
from the European Space Agency (ESA) WorldCover project classification scheme [46]. The classes 
defined here included grasslands, forest/shrub, croplands, water, and village/road. The full definition 
for each class is provided below in Table 1. Additional attention was given when defining the 
characteristics of grasslands, croplands, and village/road classes due to their influence on the 
analysis. The definition for grasslands, which is also consistent with Sourn et al., [29], is marked by 
the absence (minimal coverage) of trees or shrubs [12]. Croplands were understood to be one of the 
most abundant land cover types throughout Cambodia [31]. While many crop types could exist 
within this region, previous studies reported that paddy rice make up more than 70% of the croplands 
within the TSL floodplains [13,31]. Lastly, village/road was important to distinguish due to its 
considerable distribution throughout the study region. The scattered buildings and unpaved roads 
however were difficult to distinguish from barren areas or dry season croplands due to the limited 
spatial resolution found with the Landsat imagery [47]. For this reason, we used a Cambodia roads 
layer (updated in 2013) as a mask to serve as these areas, rather than including this class within the 
supervised classification [48]. The roads layer lines were buffered 10 meters (m) to cover the average 
road diameter. The roads layer mask was integrated after the GEE classification. 

Table 1. Land cover class definitions. Adapted from European Space Agency (ESA) WorldCover 
project classification scheme [46]. 

Land Cover Class Definition 
Grasslands Any area dominated by > 10% herbaceous plants (i.e., those with a 

persistent stem but lacking woody/firm structure). These may include 
grasslands, prairies, pastures, or savannahs. Woody plants, such as 
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trees and shrubs may be present with coverages < 10%. Abandoned 
croplands are also included in the class if herbaceous coverage is > 10%.  
 

Forest/Shrub Any area dominated by trees or shrubs with a combined coverage > 
10%. Other land cover classes such as grasslands, croplands, or water 
may be present beneath the tree canopy. Areas planted for commercial 
agriculture (including rubber plantations) are not included in this 
class. This class does include seasonally flooded areas.  
 

Croplands Any area covered by planted/sowed crops. These croplands may 
consist of herbaceous or woody crops including paddy rice, rubber, 
cashew, cassava, or a mixture of other crops. Croplands may be 
irrigated or rainfed within this region.  
 

Water Any area dominated by open water during the majority of the dry and 
wet seasons. These may include lakes, reservoirs, or rivers.  
 

Village/Road Any area covered by buildings, roads, or other artificial (i.e., built-up) 
structures.  

To further define dry from wet grassland communities across the floodplains, the European 
Union Joint Research Centre (JRC) Global Surface Water layer (v4) was used [49]. Specifically, the 
(monthly) occurrence frequency estimated from 1984–2021 surface water presence was used to define 
a threshold between these vegetation communities. An occurrence value greater than or equal to 20% 
(≥ 20%) defined wetland areas (Figure 2). Grassland areas outside of this polygon were defined as 
dry grasslands. 

2.5. Land Cover Classification and Change Analysis 

The image mosaics for the full study region, Bakan, and ATT were independently classified in 
GEE using a random forest supervised classification [14,50]. These classifications resulted in three 
separate land cover maps for 2004, 2008, 2014, 2018, and 2023. The random forest algorithm, like other 
machine learning methods, is documented to handle complex classes and high dimensionality of 
input data better than conventional classifiers [19,51]. The random forest algorithm is also commonly 
used for paddy rice mapping which is known to be in high abundance throughout this region [17]. 
In addition to the original Landsat bands, seven spectral indices and Shuttle Radar Topography 
Mission (SRTM) slope data were used in the classification [52]. The goal of this combination of data 
was to maximize the spectral uniqueness of each land cover class [20,21,36]. The spectral indices 
included: Normalized Difference Vegetation Index (NDVI) [12,21,53], Soil Adjusted Vegetation Index 
(SAVI) [14,54], Enhanced Vegetation Index (EVI) [36,53], Greenness Index (GI), Moisture Stress Index 
(MSI) [55], Normalized Difference Water Index (NDWI) [55], and Normalized Burn Ratio (NBR) 
[56,57]. The SRTM elevation layer was used to improve the differentiation of flat croplands and 
upland forests [52,58]. 

Several hyperparameters of the random forest classification algorithm were tuned during initial 
testing of the results. These hyperparameters included the number of decision trees, the proportion 
of training and validation data, and the total selection of input features. The number of decision trees 
was kept at 500, which is documented to be a basic minimum for increasing the consistency of the 
results [50]. The reference data were split with a random 55% of the samples per class being used for 
training and 45% being used for validation (i.e., testing). These proportions ensured that a minimum 
valid sample size for each class was available for independently conducting the accuracy assessments 
[45]. Lastly, the selection of input features was determined through a relative feature importance 
calculation [36,59]. The feature importance test. The results of the relative feature importance test, in 
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combination with the impacts on the overall accuracy when removing specific features, were used to 
achieve the best classification performance [36,60–62]. 

Following the land cover classifications in GEE, each map was exported using Google Drive and 
opened using ArcGIS Pro (v3.1, Redlands CA, USA). Minor editing of misclassified areas was 
performed on each map by local experts to improve the quality of the results and subsequent change 
detection analysis [27]. The maps were converted to shapefiles to perform these edits. These edits 
included first running the eliminate tool on each map. The eliminate tool was used to dissolve any 
isolated singular pixel sized polygon into the neighboring polygon of the largest size. For example, 
isolated polygons less than 0.02 ha in size classified as water but located in the middle of a large 
cropland area were dissolved into the surrounding croplands. Running the eliminate tool reduced 
the noise commonly found when using pixel-based classifications [63,64]. Secondly, while reviewing 
the land cover maps, minor manual revisions were made when areas were recognized as being 
misclassified and the correct class could be confirmed by a combination of interpretation of the 
corresponding image mosaic and available reference data. 

The final land cover maps for each of the three sites were then merged and used to conduct a 
post-classification change detection. Post classification change detections have historically been 
among the most applied change detection methods, providing a straightforward approach to changes 
over time [24,26,53]. The ArcGIS Pro categorical change detection tool (‘compute change detection’) 
was used so that the spatial distribution and specific types of categorical change could be evaluated 
[21,24]. We specifically selected changes from grasslands to croplands for each of the four time steps: 
(1) 2004 to 2008, (2) 2008 to 2014, (3) 2014 to 2018, and (4) 2018 to 2023. Changes from forest/shrub to 
croplands were independently assessed to compare our models results with those of previous studies 
[5,13]. 

2.6. Accuracy Assessment 

The accuracy of each land cover map was independently assessed in GEE using a thematic map 
accuracy assessment error matrix [45,65]. In total, 15 error matrices were produced, which provided 
quantifications of the overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA) for 
each map. The final map depicting changes from grasslands to croplands over time (2004 to 2023) 
was assessed using a change detection error matrix calculated from an ArcGIS Pro accuracy 
assessment [24,26,45,66,67]. For this assessment, there was one ‘change’ class (‘grasslands to 
croplands’) and two ‘no change’ classes (‘grasslands’ and ‘croplands’). One hundred samples were 
randomly distributed within each strata (i.e., class) to perform this assessment. The validation of these 
samples was performed using through the 2004 Landsat image mosaic, 2023 Landsat image mosaic, 
and ArcGIS Pro high-resolution basemap imagery for image interpretation. 

The map and accuracy assessment produced from the change detection analysis were also 
subsequently evaluated based on the recommendations of Olofsson et al. [27,68]. Using the sample-
based accuracy assessment performed in ArcGIS Pro, the area-weighted accuracy and uncertainty 
were used to generate an area-based error matrix and corresponding confidence intervals for an 
adjusted estimate for the amount of changed and unchanged area. Confidence intervals (95%) were 
calculated for these adjusted areas [27,68]. 

3. Results 

3.1. Land Cover Classification and Change Detection Analysis 

The five thematic maps produced for the full study region achieved an average overall accuracy 
of 83.5%. The average class-specific user’s accuracies were 88.5% for forests, 76.1% for grasslands, 
82.5% for croplands, and 90.8% for water. The overall accuracy, user’s accuracy (UA), and producer’s 
accuracy (PA) for the primary classes of interest (grasslands and croplands) are reported in Table 2. 
Confusion between the forest and croplands classes outside of the floodplain decreased the accuracy 
for both classes for the 2023 classification. 
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Table 2. Accuracy for mapping grasslands and croplands throughout the TSL landscape for each of 
the five thematic maps. Reported are the overall accuracy of the maps, the user’s accuracy (UA), and 
the producer’s accuracy (PA) for the grasslands and croplands classes. 

 2004 2008 2014 2018 2023 
Overall Accuracy 88.5% 86.7% 87.9% 78.5% 79.8% 
Grasslands UA 84.6% 88.2% 78% 84.6% 90% 
Grasslands PA 83.9% 68.2% 72.2% 59.5% 78.3% 
Croplands UA 92.2% 71.9% 93.3% 84.6% 31.7% 
Croplands PA 87.7% 86.8% 87.4% 84.6% 48.1% 

The change detection analysis reported that throughout the 2004 to 2023 study period, a total of 
207,281.4 ha of grasslands (both wet and dry types) were lost. This loss reflects a 59.5% decrease in 
grassland area since 2004 (approximately 3.13% annual decline). This rate, however, was not 
consistent. Between 2014 and 2018 the rate of decline was 6.7%, while between 2008 and 2014 the rate 
of decline was 22.0%. The average 4-to-5-year loss was 14.9%. 

 In 2004, the dry grasslands represented 297,004.7 ha out of the 348,300 ha of total grasslands 
present within the study area (85.3% of the total area). The estimated loss of dry grasslands over the 
study period was 174,400.2 ha (Figure 3). This is an estimated decline in area of 58.7% since 2004, a 
rate of 3.09% annually (Table 3). 

 
Figure 3. Grasslands loss (dry only) between 2004 and 2023. Grasslands loss is symbolized based on 
four distinct time periods: yellow (grasslands lost between 2004 and 2008), orange (2009-2014 losses), 
dark orange (2015-2018), and red (2019-present). 
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Table 3. Annual grassland cover estimates for the study area based on the classified land cover 
maps. 

Dry Grasslands Loss 
Year Hectares Percent decrease 

2004 297,004.71 Baseline 
2008 253,596.98 15% 
2014 192,452.50 20.59% 
2018 171,072.58 7.20% 
2023 122,604.53 16.32% 

Total Decrease (2004-
2023) 174,400.18 58.7% 

Within the nine protected areas, the cropland area increased by 37.1% over the study period 
(approx. 36,400 ha to 49,900 ha). Dry grasslands within these same areas experienced a decline in area 
of 45.4% between 2004 and 2023. Within the largest protected area, Bakan, the estimated loss of dry 
grassland was 26.6% (approx. 2,806.1 ha of the of the 10,531.7 ha of dry grasslands present in 2004). 
This same protected area experienced an increase in cropland land cover of 137.3% since 2004. 

The total increase in cropland land cover within the study region was 347,059 ha, a 27.3% 
increase in area since 2004. The increase in cropland area accounts for 55.7% of the losses in natural 
vegetation (grasslands, forests, and shrubs) from 2004 to 2023. For the dry grasslands specifically, 
89.3% of the decline in land area can be accounted for by expansions in croplands (155,725.8 ha of the 
total 174,400.18 loss). 

3.2. Accuracy Assessment 

An area-weighted and error adjusted assessment of the change detection analysis is reported in 
Table 4. This analysis of error and uncertainty for the change (dry grasslands converted to croplands) 
and no change (unchanged dry grasslands and unchanged croplands) classes shows that the total 
amount of grasslands lost between 2004 and 2023 as reported by the maps may be underrepresented. 
Instead of 174,400 ha of loss, the error-adjusted area depicts a total loss of 216,965.7 ha of loss (24.4% 
higher estimate). The 95% confidence interval for this estimated loss is 196,900 ha to 237,100 ha 
(216,965.7 ha ± 20,103 ha). This area-based accuracy assessment achieved an overall accuracy of 
82.89%. 

Table 4. Area-weighted accuracy assessment and error adjusted land cover area estimates for the 
change detection analysis based on Olofsson et al., [27,68]. 

Class Map Area  
(hectares) 

Adjusted Area 
(hectares) 

95% CI 
(hectares) 

User’
s  

Accu
racy 

Produ
cer’s 

Accur
acy 

Over
all  

Accu
racy 

Change 174,400.18 
              

216,965.70  
                         

20,102.80  69.0% 55.5% 

83.89
% 

Dry 
Grasslan
ds 

              
122,604.53  

              
248,575.82  

                         
18,989.90  64.0% 31.6% 

Cropland
s 

           
1,618,810.00  

           
1,450,273.18  

                         
18,308.45  87.0% 97.1% 

4. Discussion 

The results of this analysis, like earlier studies, demonstrate a drastic decline in natural 
landcover throughout the TSL landscape due to cropland expansion. Kummu et al., [2] made a call 
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for improving knowledge of this ecosystem, through surveys of the natural land cover types and 
resources nearly 20 years ago, yet such knowledge is still critically limited. Reliable information 
specifically on grassland ecosystems, such as their distribution and quality is important for successful 
conservation [6,14,36]. To address the study objectives and support the management of critically 
endangered wildlife habitat within the TSL landscape, losses of both grassland and dry grassland 
were evaluated between 2004 and 2023. The post-classification change detection analysis reported 
declines in grasslands and dry grassland of 207,281 ha (59.5%) and 174,400.2 ha (58.7%) respectively. 
The five thematic maps used for this analysis, which achieved an average overall accuracy of 83.5%, 
depicted a 3.09% annual decline in dry grassland area. A quantification of the area-weighted and 
error-adjusted change detection analysis reports that the actual decline in dry grassland area would 
be closer to 216,965.7 ha. The 95% confidence interval on this calculation shows a decline of 66% to 
80% between 2004 and 2023 [27,68]. Within the nine protected areas, 45.4% of the dry grasslands were 
lost between 2004 and 2023. Based on these estimates, the 5% of land currently designated as 
protected areas within this region showed a 13.3% lower decline in dry grasslands than the study 
area average. This 13.3% lower rate of decline is notable but demonstrates that further conservation 
action is needed within the TSL landscape, even within the protected areas. 

The loss of grasslands, especially tropical grasslands is substantial across Southeast Asia, and 
represents the loss of a highly valuable ecosystem [6]. Land cover change has a long-recognized 
influence on ecological systems [27,69,70]. Packman et al. [10] predicted in 2014 that if rates of 
grassland decline (habitat loss) for the Bengal Florican continued for the following decade (2012-2022) 
then the critically endangered Bustard would become extinct. Our estimate show that 122,604 ha 
(41.3%) of the 2004 grassland area still remains within this landscape. This estimate, however, does 
not take into account the number of patches meeting the minimum habitat requirement for this 
species. Studies by Niu et al., [31] and Senevirathne et al., [30] marked historic trends in the expansion 
of agriculture. In agreement with these findings, this study estimates an increase in cropland area of 
27.3% (347,059 ha) within the TSL landscape. Chen et al., [5] found a substantial decline in forest 
cover in their study of the TSL landscape between 1992 and 2019 (2.3% annual decline). Our analysis 
of the 2004 to 2023 forest cover trends found identical rates of decline for this land cover class (2.3% 
annually). Regarding the influence of croplands on the loss of grasslands, Packman et al., [6,10,71] 
quantified that 95% of the grassland losses in the south-eastern region of the Tonle Sap floodplain 
were attributable to rice cultivation. Our analysis across the entire landscape suggests that 89.3% of 
the loss in dry grasslands can be accounted for by increases in cropland area. The difference in these 
estimates could be contributed to either the differences in study area or the differences in the 
definition of grasslands. The 2011 study defined grasslands based on soil types while this study used 
the frequency of water occurrence [6]. 

The use of machine learning classification and regression methods for grasslands monitoring is 
increasing yet still underrepresented in current remote sensing applications [12,14]. Like other 
studies investigating complex land cover and land use change dynamics over large areas, this project 
faced several challenges. First, change detections accuracy assessments are particularly difficult due 
to the availability and reliability of historic reference data, especially over large areas [19,24,53]. This 
study relied on reference data generated from the interpretation of historic and more recent high-
resolution imagery. While a large number of reference data samples for each land cover class were 
generated, they were not specific to each of the five years classified during this study. Compounding 
the challenge of adapting the available reference data to this study was the diverse mixture of 
vegetation found within the floodplains. Image analysis of areas with diverse vegetation mixtures 
can be difficult with moderate resolution imagery such as Landsat [20]. The flooded forests, 
shrublands, and grasslands in many areas are a patchwork mosaic of emergent vegetation [3]. Due 
to this challenge, reference samples with limited certainty when compared to the Landsat image 
mosaics were removed from the analysis. A second potential source of uncertainty in this analysis 
was the use of a post-classification change detection. No single change detection method can be 
optimal for all cases [19,24,53]. This study used the given approach due to its ease of implementation 
and established reliability [24,26,53]. Future studies should leverage the potential of more advanced 
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land cover trend analyses such as Continuous Change Detection and Classification (CCDC) or 
LandTrendr to generate more precise estimates of land cover change [72–76]. Lastly, the 
classifications in this study relied on a combination of optical imagery and elevation data. While 
Landsat imagery provided a stable data source, optical imagery collections for each mapping period 
were limited in this region to only the dry seasons [14,18,28]. Imagery queried from May to October 
of each year contained considerable amounts of clouds, shadows, and noise, degrading the quality of 
the median pixel mosaics. The obstruction of clouds throughout the wet season also meant that 
seasonal image composites, a stack containing bands from two or more seasons within a year, were 
unfeasible [21,37,77,78]. A combination of optical and Synthetic Aperture Radar (SAR) remotely 
sensed data has shown promise in paddy rice mapping, due to the change in growth stage across 
seasons, but was not approached in this study [17,18]. A supplemental goal of this analysis was to 
provide a methodology which could be easily trained and adapted to neighboring regions. 

The results of this study are not unique to the TSL landscape and should be used to inform 
broader conservation policy and monitoring efforts. Agricultural expansion into areas of natural 
vegetation are a global issue [29]. Rice cultivation has existed in this region for over 1,000 years [9]. It 
has only been for the last 20 to 30 years that industrial-scale rice production has been a major threat 
to grasslands habitat [10]. The onset and escalation of this disturbance was caused by a mixture of 
social, economic, and political challenges [13]. Many of the villages within the TSL landscape are 
reliant on agriculture [79,80]. Studies have shown that simply increasing the land in production by 
each farmer does not cause a net increase in their income [80]. The rate of population growth, coupled 
with the high population density in the TSL landscape will further burden these efforts in the coming 
decades [4,5]. The results of this conflict between social and ecological needs will result in the further 
decline, and potential extinction, of grassland dependent species such as the Bengal florican [9,13]. 
To avoid this potential outcome, locally integrated conservation organizations must continue to 
increase their engagement with local farmers and commercial stakeholders [6,13,79]. Management 
decisions must also be supported and enriched by the most capable cloud computing and EO 
methods [36,81]. 

5. Conclusions 

The Tonle Sap Lake (TSL) landscape supports a rich diversity habitat and ecosystem services 
utilized by over a million people in the Lower Mekong River Basin and numerous critically 
endangered species. To support the local biodiversity, nine protected areas totaling more than 170,000 
ha have been established throughout this region. Despite the ongoing conservation efforts, historic 
studies and local experts have reported drastic declines in grasslands over the last two decades. This 
analysis surveyed land cover changes from 2004 to 2023 within the TSL landscape and surrounding 
10km buffer area to generate current and reliable estimates of the declines in grasslands and dry 
grasslands. Five thematic maps, achieving an average overall accuracy of 83.5%, were used to 
perform a change detection analysis. From 2004 to 2023 the estimated decline in dry grasslands was 
174,400.2 ha (58.7% of the area in 2004). Within the areas no longer containing dry grasslands, 89.3% 
were classified as croplands in 2023. An analysis of the protected landscapes estimated that 45.4% of 
the dry grasslands present in 2004 were lost by 2023. Future conservation efforts should build on the 
methods and results used here as a pathway to local scale management and outreach. Without an 
increase in current, reliable, and comprehensive data on the trends and distribution of land cover 
such as dry grasslands within this region, the conservation efforts aimed at protecting the numerous 
critically endangered and threatened species would be restricted in their potential. 
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