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Abstract: Mobile Edge Computing (MEC) integrated with Wireless Power Transfer (WPT) is emerging
as a promising solution to reduce task delays and extend the battery life of Mobile Devices (MDs).
Cooperative user communication, or relay technology, enhances communication efficiency for users
located far from the base station by mitigating the double near-far effect caused by distance. This is
considered a key technology in Beyond 5G (B5G) and future communication systems. In this paper,
we focus on maximizing the long-term energy efficiency (EE) of a user-cooperation WPT-MEC system,
while taking into account the uncertain load dynamics at the edge MD and the time-varying state
of the wireless channel. The joint optimization of wireless charging time fraction, MD offloading
duration, helper node processing time, and transfer power decision presents significant challenges
due to the coupling of data offloading among cooperative users and a volatile system environment.
To address these challenges, we formulate the problem as a stochastic programming problem and
propose an online control algorithm, DOUCA, to solve it. Our approach utilizes Dinkelbach’s method
and Lyapunov optimization theory to decouple the sequential decision problem into a deterministic
sub-problem for each time slot. For the sub-problem, we use variable substitution to convert the
non-convex problem into a convex one, containing only a small number of variables, which can be
efficiently solved. Furthermore, we provide a mathematical analysis of our algorithm’s performance.
Extensive simulation results demonstrate the effectiveness of our proposed algorithm, as evidenced
by an impressive energy efficiency improvement of over 20% compared to benchmark methods. Our
algorithm also achieves a trade-off between EE and system stability.

Keywords: mobile edge computing (MEC); wireless power transfer (WPT); user cooperation;
lyapunov optimization; convex optimization

1. Introduction

As communication technologies and the Internet of Things (IoT) continue to evolve, we are
witnessing an expanding array of wireless device applications across diverse sectors. These include
autonomous navigation, virtual reality (VR), intelligent urban planning, and telemedicine procedures
[1]. Such applications demand substantial computational resources and are highly sensitive to latency
[2,3]. However, they are often constrained by the limited processing capabilities and finite battery
life of mobile devices [4]. Mobile Edge Computing (MEC) has emerged as a promising solution to
address these constraints, which is a distributed computing paradigm that enhances the computational
capabilities of networks. By decentralizing computational and storage resources to the edge of the
network, in close proximity to end-users, MEC facilitates the offloading of computation-intensive
tasks from wireless devices to nearby servers [5]. This approach not only conserves energy on mobile
devices but also significantly reduces execution latency, thereby enhancing the performance and user
experience of latency-sensitive applications[6].
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However, the constraint of limited battery capacity in mobile devices poses a substantial challenge,
particularly given the logistical difficulty of regularly replacing batteries in a vast number of devices.
To address this challenge, Wireless Power Transfer (WPT) has been proposed as a sustainable energy
solution [7]. In a Wireless Powered Mobile Edge Computing (WPT-MEC) network, a Hybrid Access
Point (HAP) serves as the conduit for broadcasting Radio Frequency (RF) energy to wireless devices.
Leveraging Energy Harvesting (EH) technology, edge devices can transduce the received RF signals
into usable energy to recharge their batteries [8]. This harvested energy then enables the devices to
accomplish computation tasks either locally or by offloading them to MEC servers. By exploiting WPT,
it is possible to simultaneously extend the battery lifespan of the devices and significantly enhance
their computational capabilities [9].

In a WPT-MEC network, Energy Efficiency (EE) is a critical performance indicator, defined as the
ratio of data processed to the energy consumed by the system [10,11]. For instance, the authors in [11]
introduced two iterative-based optimize algorithms aiming to maximize the computational efficiency
of MEC system, considering both partial and binary offloading modes. [10] addressed the EE-delay
tradeoff problem in a multi-user WPT-MEC network and proposed an online task offloading algorithm
based on Lyapunov optimization method and convex optimization theory. [12] leveraged stochastic
network optimization technique to design a task offloading scheme to optimize the network EE for in
the device-to-device (D2D)-aided WPT-MEC system. However, these studies have not considered the
double-near-far effect, which can significantly impact edge mobile nodes situated far from the HAP.
When a mobile device (MD) is placed at a considerable distance from the HAP, it can result in degraded
channel conditions due to the increased communication distance and reduced energy harvesting. This
degradation can subsequently cause inefficient data transmission due to signal interference between
MDs in close proximity and those further away.

Cooperative computing schemes have been introduced to mitigate the impact of the
double-near-far effect [4,7,13–15]. These schemes leverage relay technology, where devices closer
to the AP act as relays to transmit signals for devices situated further away, thereby enhancing
data rates under unfavorable channel conditions. For example, [13] proposed an iterative algorithm
to minimize the AP’s total transmit energy, subject to computational task constraints. [4] tackled
the user-cooperation problem for maximize the EE for a WPT-MEC integrated with Backscatter
communication. However, these works mainly focused on immediate network performance and
usually assume that a priori the load level at the edge node can be obtained, neglecting the dynamics of
task arrival, battery level rate, and time-varying wireless channel. In a volatile network environment,
the dynamic allocation of resources and task offloading for edge and auxiliary nodes become
significantly challenging.

This study focus on the problem of maximizing energy efficiency in a user-cooperation WPT-MEC
network by jointly considering stochastic task arrival and dynamic wireless channel variations.
Furthermore, we integrate a battery to store the harvested energy for both the MD and the helper
node. The problem presents significant challenges in two main aspects. First, the unpredictability
of task arrivals and the randomness of channel states on both the data transmission and wireless
charging channels result in a stochastic optimization problem. Second, the time coupling among
wireless charging duration, task offloading at edge node, and task processing at helper node poses
a great challenge in finding the optimal solution. To tackle this problem, we formulate it as a
stochastic programming problem. By leveraging Dinkelbach’s method [16] and Lyapunov optimization
technique[17] , we transform the stochastic optimization problem into a deterministic problem for
each slot. This problem, while non-convex, is then converted into a convex problem using variable
substitution and convex optimization techniques. We proposed an efficient online control algorithm,
the Dynamic Offloading for User Cooperation Algorithm (DOUCA) , which can be easily implemented
and operates without prior knowledge of future system information.
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1.1. Related Work

WPT-MEC has garnered significant attention from researchers since it helps alleviate energy
limitations of IoT nodes while ensuring real-time performance of mobile applications [18–20]. The
authors of [19] proposed an energy-saving scheme for a multi-user NOMA-assisted cooperative
terahertz single-input multiple-output (SIMO) MEC system that aims to maximize the total user
computation energy efficiency (CEE). In [20], an energy efficiency maximization algorithm based on
multi-agent deep reinforcement learning was introduced. This algorithm enhances the computation
offloading strategy to achieve maximum energy efficiency in MEC-supported vehicular networks. In
[7], the authors addressed the practical nonlinear energy harvesting (EH) model by jointly optimizing
various factors such as computation frequency, execution time of MEC servers and IoT devices,
offloading time, EH time, transmission power of each IoT device, and power beacons (PB). Additionally,
the authors of [21] proposed a distributed sleep control method, which autonomously decides whether
to enter sleep mode, thereby reducing energy consumption and improving energy efficiency.

To mitigate the double-near-far effect and fully utilize available resources, many researchers
focus on user cooperation-assisted WPT-MEC networks [4,9,22,23]. In [23], the authors proposed
an algorithm to maximize computational efficiency for a user cooperation (UC) and non-orthogonal
multiple access (NOMA) WPT-MEC network, taking into account a nonlinear energy harvesting model.
The authors in [4] propose an innovative UC scheme integrating BackCom and AC to maximize user
energy efficiency by leveraging a helper node as a relay between the source node and the HAP. In
[24], a user cooperation scheme for a WPT-assisted NOMA-MEC network is developed to minimize
the total energy consumption of the system using the Lagrangian method to convert the non-convex
optimization problem into a convex one. In [25], the authors propose a novel multi-user cooperation
scheme to maximize the weighted sum computation rate by considering partial task offloading and
orthogonal frequency-division multiple access (OFDMA) communication technology. Due to the
constraints of time-varying network environments, achieving a long-term stable optimal solution
remains a significant challenge.

In volatile network environments, more and more research focuses on achieving long-term
average system performance [1,15,26,27]. In [26], the authors proposed an online algorithm to
minimize energy consumption based on the Lyapunov optimization framework and meta-heuristic
methods. In [27], the authors introduced a deep reinforcement learning (DRL) algorithm to minimize
long-term energy consumption and employed a concave-convex procedure (CCCP) algorithm to solve
the computation and communication resource sub-problem for a MEC system with non-complete
overlapping non-orthogonal multiple access (NCO-NOMA) technology. In [28], the authors proposed
a dynamic optimization scheme based on queuing theory for a 5G MEC heterogeneous network with
multiple energy-harvesting MDs, aiming to minimize the average execution delay of the system. In [29],
the authors proposed a multi-agent reinforcement learning algorithm that combines federated learning
and adopts a fine-grained training strategy to accelerate convergence in a dynamic community-based
MEC environment. Unlike the aforementioned studies, this paper addresses the challenges of task
offloading and user cooperation in dynamic WPT-MEC network environments. We consider the
dynamic arrival of tasks, time-varying wireless channel conditions, and the time-slot coupling of
battery levels. Additionally, the time coupling between user cooperative communication and wireless
charging, as well as the data offloading coupling in cooperative communication, further complicate
the problem.

1.2. Motivations and Contributions

In this paper, we address the problem of long-term energy efficiency optimization in a
user-cooperation WPT-MEC network by taking into account the uncertain load dynamic at edge
node and time-varying wireless channel state, which has not been extensively investigated in the
literature. The main contributions of our work are summarized as follows:
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• We formulate the dynamic task offloading problem aiming to maximize the system energy
efficiency for a WPT-MEC network. This is achieved by leveraging user cooperation to mitigate
the double-near far effect. We extend the existing models in [4,13] to accommodate volatile
network environments, eliminating the need for prior knowledge of stochastic task arrival and
time-varying wireless channel states. Our model deftly balances the stability of the system
network with energy efficiency, thereby providing enhanced flexibility and better alignment with
real-world application scenarios.

• We propose DOUCA, a low-complexity online control algorithm designed to maximize long-term
UEE, based on Lyapunov optimization theory. Utilizing the drift-plus-penalty technique, we
decouple the stochastic programming problem into a non-convex deterministic optimization
sub-problem for each slot. Through the use of variable substitution and convex optimization
theory, we transform the sub-problem into a convex problem that contains a small number of
variables, enabling efficient solutions. Furthermore, we provide a rigorous theoretical analysis to
demonstrate its performance.

• We conduct extensive simulations to evaluate the effectiveness and practicality of our proposed
algorithm on the impact of control parameter V, network bandwidth, task arrival rate, and
geographical distance on energy efficiency and network stability. The results demonstrate that
our algorithm achieves 20% higher efficiency than baseline algorithms and can achieve an explicit
[O (1/V) , O (V)] EE-stability tradeoff.

The rest of the paper is organized as follows. Section II presents the system model of the
user-cooperation WPT-MEC network and formulates a stochastic programming problem. In Section
III, we employ the Lyapunonv optimizing technique to solve the problem and propose an efficient
online algorithm, accompanied by a theoretical performance analysis. In Section IV, simulation results
are presented to evaluate the proposed algorithm. Finally, Section V concludes our work and discusses
the future directions.

2. System Model

As illustrated in Figure 1, the WPT-MEC system comprises two MDs and a HAP. One MD, situated
at a considerable distance from the HAP, is burdened with a substantial computational workload. The
other MD, in proximity to the HAP and in an idle state, acts as a helper. Both MDs operate on the same
frequency band and are equipped with integrated batteries for energy storage. The HAP is fitted with
a RF energy transmitter and a MEC server, which provide wireless energy and computation offloading
services to edge nodes within the base station’s coverage. To mitigate mutual interference, each MD
employs a Time-Division Duplexing (TDD) approach to alternate between communication and energy
harvesting operations.
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Figure 1. Architecture of WPT-MEC network with user-assisted

We adopt a discrete time-slot model over a time horizon divided into T time blocks, each of
duration τ. At the commencement of each time slot, both nodes harvest energy from the RF signals
emitted by the HAP, which is then stored in their batteries to facilitate subsequent data transmission or
local task execution. A partial offloading strategy is implemented, allowing for the flexible offloading of
a portion or the entirety of the computational data to a remote device. Due to poor channel conditions
between the distant MD and the HAP, exacerbated by the double near-far effect, direct offloading to
the MEC server is infeasible. Consequently, the MD offloads computation data to the helper, which
then relays it to the HAP. The helper processes the offloaded tasks or further offloads a segment to the
HAP. Upon completion, the HAP returns the computation results to the MD, facilitated by the helper.
The key notation and definitions are list in Table 1.
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Table 1. Key notations and definitions.

Notation Definition

τ The time block
τt

0 The time for WPT
τt

1 The time for offloading of MD
τt

2 The time for computation in helper
eeh

m (t), eeh
h (t) The energy harvested by MD and helper in slot t

ht
m,ht

h, The WPT channel gain between MD and HAP, helper and HAP
gt

m,gt
h The offloading channel gain between MD and helper, helper and HAP

P0,Pt
m,Pt

h The transmit power of HAP, MD and helper
dloc

m (t) The amount of tasks processed locally at MD in slot t
doff

m (t) The amount of tasks offloaded to helper at MD in slot t
dloc

h (t) The amount of tasks processed locally at helper in slot t
doff

h (t) The amount of tasks offloaded to HAP at helper in slot t
eloc

m (t) The energy consumed by processing tasks at MD in slot t
eoff

m (t) The energy consumed by offloading tasks at MD in slot t
eloc

h (t) The energy consumed by processing tasks at helper in slot t
eoff

h (t) The energy consumed by offloading tasks at helper in slot t
dm(t) The amount of tasks processed in slot t
em(t) The energy consumed at MD in slot t
eh(t) The energy consumed at helper in slot t
fm, fh The local CPU frequency at MD and helper
ϕm,ϕh The CPU cycles required to compute one bit task at MD and helper
bmax

m ,bmax
h The maximum battery capacity

µ The energy conversion efficiency
κ The computing energy efficiency
W The channel bandwidth
ε2 The additive white Gaussian noise

2.1. Wireless Powered Model

The HAP is equipped with a reliable power source and is responsible for transmitting RF energy
to the array of WDs dispersed within its service area. In the first part of each time slot, the HAP
broadcasts wireless energy to the MD and the helper for a τt

0 amount of time. Let eeh
m (t), eeh

h (t) denote
the harvested energy of MD and helper from HAP at time slot t respectively. So we have

eeh
m (t) = µht

mτt
0P0 (1)

and
eeh

h (t) = µht
hτt

0P0 (2)

where 0 < µ < 1 represents the energy conversion efficiency, and P0 denotes the RF energy transmit
power of the HAP. ht

m and ht
h denote the channel gain between the MD and HAP, between the helper

and HAP, respectively, which remain constant within the same time slot and vary across different time
frames.

2.2. Task Offloading Model

As depicted in Figure 1, the task data arrival at MD in tth time slot is denoted as A (t) ∈
[Amin,Amax], which is assumed that A(t) follows an independent and identically distributed (i.i.d.)
in different time slots with exponential distribution with mean λ, e.g. E [A (t)] = λ. The generated
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computation task at time slot t will be placed in the data queue Q at MD and waiting for process in a
First Come First Server(FCFS) manner. Let Q(t) denote the backlog of the data queue at slot t. Thus,
the data queue update can be denoted as:

Q(t + 1) = max [Q(t)− dm(t), 0] + A(t) (3)

where dm(t) = dloc
m + doff

m (t) denotes the total data process at MD at slot t. dloc
m represents the data

of task executed by the MD locally, and doff
m denotes the task offloaded to the helper by wireless

transmission.
Let fs denote local CPU frequency at MD, a constant value, and ϕs represent the CPU cycles

required to compute one bit task at MD. The raw data (in bits) processed locally on MD at slot t is

dloc
m (t) =

fmτ

ϕm
(4)

Note that here dloc
m (t) is a constant value, so we rewrite dloc

m (t) as dloc
m . Meanwhile, the

corresponding energy consumed for local computing at slot t is

eloc
m (t) = κ ( fm)

3 τ (5)

where κ > 0 denotes the computing energy efficiency parameter, which depends on the circuit structure.
Here we adopt the partial task offloading strategy, which means a portion of task data will be offloaded
the helper. Let Pt

m denote the transmit power of MD, which is constrained by the maximum power
Pt

m ≤ Pmax
m , and τ1 is the amount of offloading time for MD. Thus, according to Shannon’s theorem,

the offloading data to the helper can be expressed as

doff
m (t) = τt

1W log
(

1 +
Pt

mgt
m

σ2

)
(6)

where W denotes the channel bandwidth, gt
s denotes the channel gain from MD to helper at slot t, and

σ2 is additive white Gaussian noise. Here there is an upper bound of doff
m (t), that is doff

m (t) ≤ doff,max
m ,

The corresponding energy consumption for task offloading is

eoff
m (t) = Pt

mτt
1 (7)

The MD maintains an energy queue to store the harvested energy from HAP for local computation
and task offloading, the energy queue Bm evolved as follows:

Bm (t + 1) = min
{

max [Bm(t)− em(t), 0] + eeh
m (t) , bmax

m

}
(8)

where em(t) = eloc
m (t) + eoff

m (t), represents the total energy consumption of MD at slot t and bmax
m

represents the maximum battery capacity of MD.

2.3. User Helper Model

We assume that the helper also adopts the partial offloading mode, which means the helper can
process the offloading task from MD, while offloading computation task to the edge server. After
the initial (τt

0 + τt
1) time, offloading task have arrived the helper, the helper should determine the

transmission power Ph to offloading data to edge server. Similar to the MD, the amount of local
computing task data and the corresponding energy consumption at helper at slot t can be derived as

dloc
h (t) =

fhτt
2

ϕh
(9)
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eloc
h (t) = κ ( fh)

3 τt
2 (10)

where fh denote local CPU frequency at helper, and ϕh represent the CPU cycles required to compute
one bit task at helper. The amount of offloading data to edge server and the corresponding energy is

doff
h (t) = τt

2W log

(
1 +

Pt
hgt

h
σ2

)
(11)

eoff
m (t) = Pt

hτt
2 (12)

where Pt
h ≤ Pmax

h denotes the transmit power of helper and gt
h represents the channel gain from helper

and HAP at slot t. Note that here the helper must process the total offloading task data from MD at at
each slot t, so there is not a data queue at the helper, and we have the following constraint

doff
h (t) + dloc

h (t) ≥ doff
m (13)

Similar to the MD, the helper also maintains an energy queue Bh to store the harvested energy
from HAP to support the local computing and task offloading, the battery level of helper updates as

Bh (t + 1) = min
{

max [Bh (t)− eh(t), 0] + eeh
h (t) , bmax

h

}
(14)

where eh(t) = eloc
h (t) + eoff

h (t), represents the amount of energy consumption of helper at slot t and
bmax

h represents the maximum energy can be stored in the battery of helper.

2.4. Network stability and Utility

Definition 1. (Queue Stability): The task data queue is strong stable if it satisfies

lim
T→∞

1
T

T−1

∑
t=0

E {Q (t)} < ∞

The network utility here is defined as the ratio of the total achieved computation data to the total
energy consumption, The total accomplished computation data and the total energy consumption of
user-assisted network at slot t can be expressed as, respectively

Dtot(t) = doff
m (t) + dloc

m (t) (15)

Etot(t) = em(t) + eh(t) (16)

The EE of the network is defined as the time-average achieved computation data by using a unit
energy consumption, which is define as the ration of the long term processed data to the total energy
consumption as follows:

ηEE =

lim
T→∞

1
T

T−1

∑
t=0

E {Dtot(t)}

lim
T→∞

1
T

T−1

∑
t=0

E {Etot(t)}
=

D(t)
E(t)

(17)

2.5. Problem Formulation

In this paper, our objective is to design a dynamic control algorithm that maximizes the
time-average network EE for a user-assisted WPT-MEC system, all under the constraint of network
stability. For each time slot, we make decisions regarding the time allocation for WPT, task offloading
time to the helper, task processing time at the helper, and transmit power at MD and helper, without
knowing the future channels and data arrivals. Let−→τ (t) =

[
τt

0, τt
1, τt

2
]

denote the time allocation at slot
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t and
−→
P (t) =

[
Pt

m, Pt
h
]

denote the transmit power of MD and helper. The problem can be formulated a
multi-stage stochastic optimization problem as follows:

P0 : max
−→τ (t),

−→
P (t)

ηEE(t) (18a)

s.t. τt
0 + τt

1 + τt
2 ≤ τ, (18b)

Bm(t)− em(t) + eeh
m (t) ≥ 0, (18c)

Bh(t)− eh(t) + eeh
h (t) ≥ 0, (18d)

lim
T→∞

1
T

T−1

∑
t=0

E {Q (t)} < ∞, (18e)

dm(t) ≤ Q(t), (18f)

doff
h (t) + dloc

h (t) ≥ doff
m (t), (18g)

τt
0, τt

1, τt
2 ≥ 0, (18h)

0 ≤ pt
m ≤ Pmax

m , 0 ≤ pt
h ≤ Pmax

h , (18i)

Constraint (18b) represents the time allocation constraint. Constraints (18c) and (18d) correspond
to the battery energy constraints for MD and helper, respectively, indicating that the energy level in the
battery must be greater than zero. Constraint (18e) ensures the network stability of the system. (18f)
defines the upper bound of the data processed at slot t, meaning that the amount of data processed
will not exceed the length of the current data queue Q. Constraint (18g) ensures that the data offloaded
to the helper should be completely processed within the current time slot.

Problem P0 is a fractional optimization problem, which is typically non-convex. To handle this,
we first utilize the Dinkelbach method [30] to transform P0 into a more manageable problem, similar
to [31]. We denote the optimal value of η

opt
EE as ηEE and obtain the following Theorem 1.

Theorem 1. The optimal η
opt
EE is achieved if and only if

max
−→τ (t),

−→
P (t)

D(t)− η
opt
EE E(t) = 0 (19)

Proof. For brevity, here we omit the proof details. See Proposition 3.1 of [32].

Since η
opt
EE is unknown during the solution process, (18) is still infeasible to tackle. In accordance

with the methodology employed in [33], we introduce a new parameter u(t) and define it as

u(t) =
1
t

t

∑
i=1

Dtot(i)
Etot(i)

(20)

We set u(0) = 0 at the beginning of the problem. Replacing ηEE(t) in (18), the problem P1 can be
transformed into

P1 : max
−→τ (t),

−→
P (t)

D(t)− u(t)E(t) (21a)

s.t. (18b)− (18i) (21b)

where u(t) is a given parameter that should be updated through the resolution process. It should
be noted that u(t) obtained by (20) will get closer to η

opt
EE as time goes by [12]. Therefore, this

transformation is reasonable and has the same optimal solution with P0.
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3. Algorithm Design

To decouple the battery energy level across time slots and ensure the stability of task queue , we
leverage the Lyapunov network optimization technique to transform the long-term average problem
in to a deterministic optimization problem for each time slot.

3.1. Lyapunov Optimization Formulation

To simply the battery energy queue at MD and helper, we introduce two virtual queues B̂m(t) =
Bm(t)− bmax

m and B̂h (t) = Bh(t)− bmax
h . Following the Lyapunov optimization framework, we define

a combined queue vector Θ (t) ≜
[
Q (t) , B̂m(t), B̂h(t)

]
and the quadratic Lyapunov function as:

L (Θ (t)) ≜
1
2

(
Q2 (t) + B̂2

m(t) + B̂2
h(t)

)
(22)

Then, we obtain the one-period conditional Lyapunov drift [34] as follows:

∆ (Θ (t)) ≜ E {L (t + 1)− L (t) | Θ (t)} (23)

Note that L (Θ (t)) represents the congestion of all queues Q (t),B̂m(t) and B̂h(t). According to
the Lyapunov optimization theory [34], we derive the one slot drift-plus-penalty expression as

∆V (Θ (t)) = ∆ (Θ (t))−VE {Dtot(t)− u(t)Etot (t) | Θ (t)} (24)

where control parameter V is a positive value, used to balance the trade-off between network EE and
network stability. Actually, V acts as a weighting factor of the cost optimality in the drift-plus-penalty
expression. Increasing the value of V implies algorithm pay more attention to the network EE , that
also means resulting in a larger backlog of task queue Q. We derive an upper bound of ∆V (Θ (t)) as
Lemma 1.

Lemma 1. For any control strategy
{−→τ (t),

−→
P (t)

}
at each time slot t, the one slot Lyapunov

drift-plus-penalty ∆V (Θ (t)) is bounded by the following inequality:

∆V (Θ (t)) ≤ B−VE {Dtot(t)− u(t)Etot(t) | Θ (t)}+ Q(t)E {A(t)− dm(t) | Θ(t)}

+ B̂m(t)E
{

eeh
m (t)− em(t) | Θ(t)

}
+ B̂h(t)E

{
eeh

h (t)− eh(t) | Θ(t)
}

(25)

where B is a constant that satisfies the following ∀t:

B ≥ 1
2
E
{

dm(t)2 + A2(t) | Θ(t)
}
+

1
2
E
{

eeh
m (t)2 + em(t)2 | Θ(t)

}
+

1
2
E
{

eeh
h (t)2 + eh(t)2 | Θ(t)

}
(26)

Proof. By using the inequality (max[a− b, 0] + c)2 ≤ a2 + b2 + c2 + 2a (c− b) , ∀a, b, c ≥ 0 and
combining Eq. (3), we have

∆Q(t) =
1
2

(
Q(t + 1)2 −Q(t)2

)
≤ dm(t)2 + A2(t)

2
+ Q (t) (A(t)− dm(t)) (27)

Based on the definition of battery energy queue B̂m(t) and B̂h(t), we have

∆B̂m(t) =
1
2

(
B̂m(t + 1)2 − B̂m(t)2

)
≤ 1

2

[
eeh

m (t)2 + em(t)2
]
+ B̂m(t)

(
eeh

m (t)− em(t)
)

(28)
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∆B̂h(t) =
1
2

(
B̂h(t + 1)2 − B̂h(t)2

)
≤ 1

2

[
eeh

h (t)2 + eh(t)2
]
+ B̂h(t)

(
eeh

h (t)− eh(t)
)

(29)

Combining the above inequalities (27), (28) and (29), we obtain the upper bound of the Lyapunov
drift-plus-penalty.

According to the drift-plus-penalty technique in Lyapunov optimization theory [34], we seek
to greedily minimize the upper bound of ∆V (Θ (t)) at each time slot t, then we can obtain a
close-to-optimal solution of problem P2. Therefore, we transform problem P2 to a minimization
problem of the RHS (right hand side) of (25). Note that we can observe the value of A(t), Q(t), B̂m(t)
and B̂h(t) at the beginning of each slot t, so we can solve the optimizing problem at each slot. Then the
one time slot problem can be represented as

P2.1 : min
−→τ (t),

−→
P (t)

Q(t)
[

A(t)− dloc
m + doff

m (t)
]
+ B̂m(t)

[
eeh

m (t)− em(t)
]

+ B̂h(t)
[
eeh

h (t)− eh(t)
]
−V [Dtot(t)− u(t)Etot(t)] (30a)

s.t. (18b)− (18d), (18 f )− (18i) (30b)

The proposed problem P2.1 is a non-convex problem and can not be easily solved by classic
convex optimization methods. To address this issue, we first introduce auxiliary variables φ1 = pt

mτt
1

and φ2 = pt
hτt

2. Then the problem P2.1 can be simplified as:

P2.2 : min−→τ (t),−→φ (t)
c1Wτt

1 log

(
1 +

φ1

τt
1

s1

)
+ c2τt

0 + c3 φ1 + c4 φ2 + kt2 (31a)

s.t. τt
0 + τt

1 + τt
2 ≤ τ (31b)

a1 − φ1 + τt
0h1 ≥ 0 (31c)

a2 − kτt
2 − φ2 + τt

0h2 ≥ 0 (31d)

τt
1W log

(
1 +

φ1

τt
1

s1

)
≤ Qt − a3 (31e)

a4τt
2 + τt

2W log
(

1 +
φ2

τt
2

s2

)
≥ τt

1W log

(
1 +

φ1

τt
1

s1

)
(31f)

τt
0, τt

1, τt
2 ≥ 0 (31g)

0 ≤ φ1 ≤ τPmax
m , 0 ≤ φ2 ≤ τPmax

h (31h)

where a1 = B̂m(t) − κ( fm)3τ, a2 = B̂h(t) − κ ( fh)
3 τ, a3 =

fmτ

ϕm
, a4, c1 = − [Q(t) + V],c2 =

B̂m(t)µht
mτt

0P0 + B̂h(t)µht
hτt

0P0, c3 = Vu − B̂m(t), c4 = Vu(t) − B̂h(t), k = c3κ ( fm)
3, h1 = µht

mP0,

h2 = µht
hP0, s1 = gt

m
σ2 , s2 =

gt
h

σ2 . The problem P2.2 is still a non-convex problem due to the
non-convex constraint (31f). In (31f), both sides of the equation is concave that do not satisfy the the
conditions for convex constraints. We introduce auxiliary variable ψ to replace the concave function

τ1W log

(
1 +

φ1

τt
1

s1

)
. ψ satisfies

ψ ≤ τ1W log

(
1 +

φ1

τt
1

s1

)
(32)
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Bring in ψ and constraint (32), the problem P2.2 can be transformed into

P3 : min−→τ (t),−→φ (t)
c1ψ + c2τt

0 + c3 φ1 + c4 φ2 + kt2 (33a)

s.t. τt
0 + τt

1 + τt
2 ≤ τ (33b)

a1 − φ1 + τt
0µht

mP0 ≥ 0 (33c)

a2 − kτt
2 − φ2 + τt

0µht
hP0 ≥ 0 (33d)

a4τt
2 + τt

2W log
(

1 +
φ2

τt
2

s2

)
≥ ψ (33e)

ψ ≤ τ1W log

(
1 +

φ1

τt
1

s1

)
(33f)

ψ ≤ Qt − a3 (33g)

τt
0, τt

1, τt
2 ≥ 0 (33h)

0 ≤ φ1 ≤ τPmax
m , 0 ≤ φ2 ≤ τPmax

h , (33i)

Lemma 2. ψ = τ1W log

(
1 +

φ1

τt
1

s1

)
when the problem P3 reaches the optimal solution, which is consistent

with P2. P3 is a convex optimization problem, which can be efficiently solved by convex optimization tools, such
as CVX[35].

Proof. step 1. Assuming that ψ < τ1W log

(
1 +

φ1

τt
1

s1

)
, we can reduce the objective function by simply

increasing ψ to τ1W log

(
1 +

φ1

τt
1

s1

)
. Thus, a better solution is found.

step 2. In problem P3, the objective function (33a) is linear with respect to all variables.
Constraints (33b)-(33d) and (33g) are all linear inequality constraints. What’s more, for constraint (33e),

τt
2W log

(
1 +

φ2

τt
2

s2

)
is the perspective of W log(1 + φ2s2), which is a concave function of φ2. Since

the perspective operation preserves convexity [36], τt
2W log

(
1 +

φ2

τt
2

s2

)
is concave with respect to φ2

and τt
2. It is obvious that a4τt

2 and ψ are linear functions. Thus, the (33e) is a convex constraint. For the

same reason, τ1W log

(
1 +

φ1

τt
1

s1

)
in (33f) is concave with respect to φ1 and τt

1 so that (33f) is a convex

constraint. Thus P3 is proved to be convex.

According to Lemma 2, at each time slot, we only need to solve a convex problem, P3, which
contains a small number of variables. By doing so, we can achieve optimal long-term average EE, even
without knowledge of future system information. Our proposed algorithm, the Dynamic Offloading
for User Cooperation Algorithm (DOUCA), is summarized as Algorithm 1.
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Algorithm 1: Dynamic Offloading for User Cooperation Algorithm (DOUCA)

Input: the task arrical queue A(t); the channel gain {ht
m, ht

h, gt
m, gt

h}.
1 Initialize t← 0, Q(0), B̂m(0), B̂h(0), u(0); for t = 1 : T do
2 obtain the environmental parameters A(t), ht

m, ht
h, gt

m, gt
h

3 cvx_begin
4 Minimize P3
5 Subject to (33b)-(33i)
6 cvx_end
7 Update the data queue Q(t)
8 Update the battery queue B̂m(t) and B̂h(t)
9 Update the energy efficiency u(t)

Output: −→τ (t),−→φ (t)

3.2. Algorithm Complexity Analysis

At each time slot, we are required to solve a simple convex optimization problem, P3, which
contains only five decision variables. This can be efficiently solved using mature methods such as
the interior point method, which has a computational complexity of approximately O(n3.5 log(1/ϵ)),
where n is the number of decision variables. In our case, we efficiently solve P3 using CVX.

3.3. Algorithm Performance Analysis

In this section, we analyze that the proposed scheme can achieve the optimal long-term
time-average solution. First, we give some assumptions as follows:

lim
T→∞

1
T

T−1

∑
t=0

Dtot(t) = dave (34)

lim
T→∞

1
T

T−1

∑
t=0

Etot(t) = eave (35)

lim
T→∞

u(t) =

1
T

T−1

∑
t=0

Dtot(t)

1
T

T−1

∑
t=0

Etot(t)

= uave (36)

then, we can obtain that the expectation can also converge the same solutions

lim
T→∞

1
T

T−1

∑
t=0

E [Dtot(t)] = dave (37)

lim
T→∞

1
T

T−1

∑
t=0

E [Etot(t)] = eave (38)

lim
T→∞

E [u(t)] = uave (39)

Lemma 3. Based on (35)–(37), we have

lim
T→∞

1
T

T−1

∑
t=0

E [u(t)Etot(t)] = D(t) (40)
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lim
T→∞

1
T

T−1

∑
t=0

E [u(t)] ≤ u (41)

To start with, we give the existence of the optimal solution based on the current queue status.

Lemma 4. If the problem (P1) is feasible, there exists a policy {−→τ (t),
−→
P (t)}∗ that satisfies the following

conditions ∀t, ε > 0:
E [D∗tot] ≤ (u∗ − ε)E [E∗tot] (42)

E
[
e∗m(t)− eeh,∗

m (t)
]
≤ ε (43)

Ev
[
e∗h(t)− eeh,∗

h (t)
]
≤ ε (44)

E [A(t)− d∗m(t)] ≤ ε (45)

where ∗ represents the value under optimal solution.

Proof. See the parts 4 and 5 of [17].

Theorem 2. The optimal long-average utility function obtained by P1 is limited by a lower bound that is
independent with the time space. The following solutions can be achieved by the algorithm,

1. u(t) ≥ u∗ − B/(Veave),
2. All queues Q(t), B̂m(t), B̂h(t) are mean rate stable, and thus the constraints are satisfied

Proof. For any ε > 0, let us consider the policy and queue state in (42)–(44). Since the result values Em
dm are independent of queue status Θ(t), we have

E [D∗tot | Θ(t)] ≤ (u∗ − ε)E [E∗tot | Θ(t)] (46)

E
[
e∗m(t)− eeh,∗

m (t) | Θ(t)
]
≤ ε (47)

E
[

A(t)− dloc
m − do f f ,∗

m (t) | Θ(t)
]
≤ ε (48)

E
[
−dmec(t) + do f f ,∗

m (t) | Θ(t)
]
≤ ε (49)

By integrating these results to (25) and making ε→ 0, we have

∆V (Θ (t)) ≤ B−VE {D∗tot(t)− u∗E∗tot(t)}+ Q(t)E
{

A(t)− dloc
m − do f f ,∗

m (t)
}

+ B̂m(t)E
{

eeh,∗
m (t)− eloc,∗

m (t)− eo f f ,∗
m (t)

}
+ B̂h(t)E

{
eeh,∗

h (t)− eloc,∗
h (t)− eo f f ,∗

h (t)
}

≤ B−VE {D∗tot(t)}+ Vu∗E {E∗tot(t)}

Note that u(t) is a constant value, which is independent of the current queue status Θ(t). Utilizing the
iterated expectation and obtaining the sum of the above inequality over time t ∈ {0, 1, ..., T− 1}, we
have

E{L [Θ(T)]} −E{L [Θ(0)]} −V
T−1

∑
t=0

E {Dtot(t)}+ V
T−1

∑
t=0

E {u(t)Etot(t)}

≤ T [B−Vu∗E {E∗tot(t)}] + V

[
T−1

∑
t=0

E {u∗} E∗tot(t)

]
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Dividing both sides of (63) by VT, utilizing the Jensens inequality and the fact that
E{L[Θ(T)]} ≥ 0, we have

−
[

1
T

T−1

∑
t=0

E {Dtot(t)}
]
+

[
1
T

T−1

∑
t=0

E {uEtot(t)}
]
≤ B

V
− u∗E {E∗tot(t)}+

(
1
T

T−1

∑
t=0

E {u(t)}
)

E∗tot(t) (50)

Furthermore, letting T → ∞, we have

− lim
T→∞

1
T

T−1

∑
t=0

E {Dtot(t)}+ lim
T→∞

1
T

T−1

∑
t=0

E {u(t)Etot(t)}

≤ B
V
− u∗E {E∗tot(t)}+

(
lim
T→∞

1
T

T−1

∑
t=0

E {u(t)}
)

E∗tot(t)

(51)

considering lim
T→∞

1
T

T−1

∑
t=0

E {u(t)} ≤ u, we have

0 ≤ B
V
− u∗E {E∗tot(t)}+ uE {E∗tot(t)}) (52)

Furthermore we obtain
u ≥ u∗ − B

Vdave
(53)

Theorem 3. Let eupper
m be the upper bound of em(t), the time-average sum rate of queue length is bounded by

Q ≤ B
ε
+

ueupper
m
ε

(54)

Proof. By taking iterated expectation and using telescoping sums over t ∈ {0, 1, ..., T − 1}, we have

E {L[Θ(T)]} −E {L[Θ(0)]} −VE {Dtot(t)− u(t)Etot(t) | Θ(t)}

≤ TB− ε
T−1

∑
t=0

E
{

Q(t) + B̂m(t) + B̂h(t)
}
+ VE {u(t)Etot(t)}

(55)

Dividing both sides of (69) by Tε, taking T → ∞, rearranging terms yield

B
ε
− lim

T→∞

1
T

T−1

∑
t=0

E
{

Q(t) + B̂m(t) + B̂h(t)
}
+ VuEupper

tot ≥ 0 (56)

lim
T→∞

1
T

T−1

∑
t=0

E
{

Q(t) + B̂m(t) + B̂h(t)
}
≤ B

ε
+ V

uEupper
tot
ε

(57)

Theorems 2 and 3 provide a rigorous mathematical performance analysis for our proposed
algorithm. They demonstrate that the time-average ηEE increases at a rate of O(1/V), while the queue
length increases at a rate of O(V). The WPT-MEC system EE ηEE can be improved by adjusting the
value of V.However, the time-average task queue Q will increases with V. Therefore, we can tune V
to achieve a [O(1/V), O(V)] trade-off between ηEE network EE and task queue length. According to
Little’s low [33], the latency is proportional to the time-average task queue length. This also implies
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that our proposed algorithm can achieve a EE-latency trade-off. This balance is critical in many
real-world applications where both efficiency and response time are important.

4. Simulation Results

In this section, we conduct numerical simulation to evaluate the performance of our proposed
algorithm. The simulation experiments were executed on a platform equipped with an Intel(R) Xeon(R)
Silver 4116 CPU operating at 2.10 GHz, featuring 48 cores, and supplemented by four GeForce RTX
2080 Ti GPUs. We employed a free-space path-loss channel model, and the averaged channel gain h is
denoted as

h = Ad(
3× 108

4π fcdi
)de , (58)

where Ad = 3 denotes the antenna gain, fc = 915 MHz denotes the carrier frequency, de = 3 denotes
the path loss exponent, and di in meters denotes the distance between two nodes. The time-varying
WPT channel gain and task offloading channel gain ht =

[
at

1ht
m, at

2ht
h, at

3gt
m, at

4gt
h
]

follows Reyleigh
fading channel model, where ai are the random channel fading factor following an exponential
distribution with unit mean. Let at represents

[
at

1, at
2, at

3, at
4
]
. For simplicity here, we assume that

at = [1.0, 1.0, 1.0, 1.0] and the channel gains remain the same in a single slot. The interval between task
arrivals follows an exponential distribution with a constant average rate λ. The other parameters are
set similar to [37] and listed in Table 2.

Table 2. Simulation parameters.

Symbol Value

Time slot length 1 s
Transmit power of the AP P0 4 W
Noise power σ2 10−4 W
Distance between the AP and the MD dma 230 m
Distance between the MD and the Helper dmh 140 m
Distance between the AP and the Helper dhs 200 m
CPU frequency of SN fs 160MHz
CPU frequency of Helper fh 220 MHz
CPU cycles to compute 1 bit task of SN ϕs 180 cycles/bit
CPU cycles to compute 1 bit task of Helper ϕh 200 cycles/bit
Equal computing efficiency parameter κs 10−8

Max battery capacity 15 J

4.1. Impact of System Parameters on Algorithm Performance

Figure 2, illustrates the variation curves of EE and average task queue length Q over the 5000 time
slots under different control parameters V = 30, 50 and the task arrival rate λ = 2.2Mbps. As shown
in Figure 2, the EE exhibits significant fluctuations during the initial phase, but as time goes on, the
curve gradually stabilizes and rapid convergence. Meanwhile, the task queue length Q decreases with
time slot t increasing and becomes stable over time, demonstrating the effectiveness of our proposed
algorithm. Furthermore, we observe that larger control parameter V result in higher EE. However, the
average queue length also increases accordingly, which is consistent with the theoretical analysis of
algorithm.
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Figure 2. Convergence performance of energy efficiency EE and task queue Q over time slots

Figure 3 demonstrates the influence of control parameter V on EE and average task queue
length. We find that as V increases from 10 to 100, the EE escalates from 1.95 × 107bits/joule to
2.28× 107bits/joule, while the backlog of queue Q expands from 0.5× 108bits to 2× 108bits. This
trend signifies that both EE and queue length augment with an increasing V. This is because with
the increasing of the value of V, our algorithm will focus towards to optimize EE, and paying less
attention to the network queue stability. Here, V acts as a knob to balance the trade-off between EE
and network queue stability.
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Figure 3. Energy efficiency EE and task queue Q with different control parameter V
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In Figure 4, we evaluate the the impact of network bandwidth W on system performance under
V = 50. As the network bandwidth W increases from 0.85× 107Hz to 1.35× 106Hz, the EE rises from
1.7× 107bits/joule to 2.8× 107bits/joule, while the task queue length Q decreases from 3.6× 108bits
to 0.25× 108bits. This is because the increase in network bandwidth improves the speed of task data
upload, enabling more tasks to be offloaded to the helper and HAP. Consequently, the amount of
tasks processed at MD also increases, leading to a rise in energy efficiency. Additionally, the increased
network bandwidth enhances the MD’s data processing rate, contributing to the reduction in task
queue length. Moreover, Figure 4 shows that when the network bandwidth is below 1, the variation in
bandwidth has a more significant impact on the task queue length than on EE. Conversely, when the
bandwidth exceeds 1, its variation has a greater impact on EE. This analysis indicates that appropriately
increasing the network bandwidth can significantly enhance system performance.
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Figure 4. Energy efficiency EE and task queue Q with different bandwidth W

In Figure 5, we evaluate the impact of task arrival rate λ on system performance when V = 50.
As observed in Figure 5, an increase in task load corresponds to a decrease in EE while the task queue
length Q exhibits an increasing trend, which is consistent with real-world expectations. The reason
is that as the task arrival load increases, the processing efficiency of both MD and helper remains
unchanged, causing an accumulation of task data in the MD’s task queue. Furthermore, Figure 5
indicates that when λ exceeds 2.3× 106bits/s, the queue length Q increases rapidly, while energy
efficiency continues to decrease linearly. This analysis implies that an excessive load can negatively
impact system performance. Consequently, it is crucial to either expand the bandwidth or improve the
processing capacity of the MD to address this issue.
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Figure 5. Energy efficiency EE and task queue Q with different data arrival rate λ

4.2. Comparing with Baseline Algorithms

To evaluate the performance of our algorithm we consider the following three representative
benchmarks:

1. Edge computing scheme: The MD does not perform local computation and offloading all task to
the helper and HAP.

2. Random offloading scheme: The MD randomly selects part of tasks to offload to the helper and
HAP.

3. Equalized time allocation scheme: Allocate task offloading time equally to the MD and helper,
which means τ1 = τ2 in our model.

For fairness, it is essential to maintain network queue stability across all methods. Therefore, the
three baseline approaches mentioned above are implemented based on the Lyapunov optimization
framework.

In Figure 6, we evaluate the performance of our algorithm and the three baseline algorithms with
the whole time period 3000 time slots under V = 50. All algorithm converge after 1000 time slots. Our
algorithm achieves the best EE, followed by the random offloading approach, with the equalized time
allocation scheme ranking third, and the edge computing method performing the worst. Our algorithm
outperforms the other three by 10%, 10%, and 20% respectively. This superior performance can be
attributed to our algorithm’s consideration of the relationship among charging time, offloading time,
and the helper’s cooperative time. It also leverages both the local computing resources of MD and the
computing resources of the edge server. The edge computing method, which offloads all tasks to the
edge server, only considers edge computing resources and overlooks the computing resources of the
MD endpoint, resulting in inferior performance. The random offloading algorithm, which can utilize
both edge server and local resources, ranks second in performance.Furthermore, the equalized time
allocation method ignores priority of MD and Helper when offloading tasks, leading to an inefficient
offloading process, and thus reducing the overall system performance.
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Figure 6. Energy efficiency EE in different schemes over time slots

Figure 7 shows the impact of network bandwidth changes, ranging from 0.85× 106Hz to 1.35×
106Hz, on network performance across different algorithms. As can be seen from the figure, the EE
achieved by all schemes increases with the growth of network bandwidth. This is because all schemes
utilize edge computing resources for task computation, and an increase in bandwidth means more
tasks can be uploaded to the edge server. This demonstrates the significant influence of network
bandwidth on mobile edge networks. Furthermore, our algorithm consistently achieves the best EE
across different bandwidths, demonstrating its superiority. Also, it can be seen from the figure that
when the network bandwidth is around 1.0Mbps, the superiority of our algorithm is most evident, far
exceeding that of other baseline algorithms.
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Figure 7. Energy efficiency EE in different schemes with different bandwidth W
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In Figure 8, we evaluate the system performance under different distance between MD and helper
for all different algorithms, where the distance varies in [130, 148]. We find that the EE of all algorithms
decreases as the distance increases. Across all distances, our algorithm achieves the best EE. When
the distance d = 148m, our algorithm’s performance improves by 17%, 17%, and 31% compared to
the other three algorithms, demonstrating that our algorithm can more effectively utilize network
resources and edge computing resources. Additionally, it can be seen from Figure 8 that as the distance
increases, the advantages of EE achieved by our algorithm tends to decline. This suggests that in
practical environments, the distance between edge node devices and relays should not be too large, as
it could lead to a rapid decline in network performance.
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Figure 8. Energy efficiency EE in different schemes with different distances between MD and helper

5. Conclusions

The joint optimization of computation offloading and resource allocation in WPT-MEC systems
poses a significant challenge due to the time-varying network environments and the time-coupling
nature of battery charging and discharging. In this study, we concentrate on maximizing the long-term
EE of a WPT-MEC system through user collaboration. We formulated an EE maximization problem
that takes into account the uncertainty of load dynamics and the time-varying wireless channel. This
problem presents substantial difficulties due to the coupling of multiple parameters. To address this
issue, we propose an efficient online control algorithm, termed DOUCA. This algorithm employs
Dinkelbach’s method and Lyapunov optimization theory to decouple the sequential decision problem
into a deterministic optimization problem for each time slot. Extensive simulation results validate
the effectiveness of our proposed algorithm, which achieves a remarkable improvement in energy
efficiency compared to benchmark methods, striking a balance between EE and system stability. An
intriguing direction for future research is to investigate scenarios with multiple MDs, which could
further enhance the practicality and applicability of the system in real-world settings.
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