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Abstract: In this work, we introduce a new and generalized concept (herein referred to as Caputo
fractional delta derivative and Caputo fractional delta dini derivative of order α ∈ (0, 1)) for Caputo
fractional derivatives on an arbitrary time domain T which is a closed subset of R. Combining
the continuous and discrete time domains, we create a unified framework for stability analysis on
time scales. Comparison results and stability criteria for the considered Caputo fractional dynamic
equations are presented based on a new definition for Caputo fractional delta derivative of a Lyapunov
function, contributing to the broader understanding of fractional calculus on time scales. The work
also incorporates an illustrative example to demonstrate the relevance, effectiveness and applicability
of the established stability results over that of the integer order.
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1. Introduction

In recent years, the study of fractional calculus has gained significant attention due to its ability to
capture complex dynamics and model real-world problems more accurately and efficiently. In-fact, it is
a generalization of the integer-order derivatives and integrals, it is also referred to as differentiation and
integration to an arbitrary order [28]. Numerous studies have utilized Lyapunov second method, also
known as the Lyapunov direct method, with remarkable outcomes in comprehending the qualitative
and quantitative characteristics of dynamical systems. One benefit of using the Lyapunov direct method
is that it does not require knowledge of the solution to the differential equation under study([30]).In
[1–3,6,8], several types of fractional derivatives of Lyapunov functions used in stability investigations
of differential equations, including Caputo fractional derivative, Dini fractional derivative, and Caputo
fractional Dini derivative were applied. However, the most preferred as pointed out by the authors is
the Caputo Fractional derivative

C
t0

Dα
t V(t, x(t)) =

1
Γ(1 − α)

∫ t

t0

(t − s)−α d
ds

(v(s, x(s)))ds, t ∈ [t0, T)

this is due to the fact that it is easier to handle and has a more realistic application. Still, the authors
noted that the function V(t, x(t)) need be continuously differentiable which posses another challenge.
This disadvantage does not affect the other Lyapunov function derivatives, so the authors obtained
sufficient conditions for these derivatives using a continuous Lyapunov function that needs not be
continuously differentiable. In [2] it was noted that the Dini fractional derivative

CDα
+V(t, x(t)) = lim sup

h→0+

1
hα

{V(t, x(t))−
[

t−t0
h ]

∑
r=1

(−1)r αCrV(t − rh, x(t)− hα f (t, x(t)))}
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maintains the idea of fractional derivatives since it depends not only on the present state but also on
the initial state. Yet, it doesnt depend on the initial state V(t0, x0). So a better definition

C
t0

Dα
+V(t, x(t)) (1)

= lim sup
h→0+

1
hα

V(t, x(t))− V(t0, x(t0))−
[

t−t0
h ]

∑
r=1

(−1)r+1 αCr [V(t − rh, x(t)− hα f (t, x(t)))− V(t0, x(t0))]


was considered as more suitable. (see[1])

The Caputo fractional Dini derivative (1) has been utilized to examine various types of stability
in Caputo fractional differential equations with continuous domain as seen in [1,4]. As explained
in [23] and [11], a more holistic and practicable examination of stability can be achieved if it can be
done across different time domains. The existing research considers a time domain of real numbers
which ignores discrete details while in [12,20,24,25], the domain considered are discrete domains
ignoring the continuous time domains. However, in practicability, some systems undergo smooth and
abrupt changes almost simultaneously while others could have more than one time scale or frequency.
Modeling such phenomenon is more realistically represented as a dynamic system that includes
continuous and discrete times, that is, time as an arbitrary closed subset of real numbers known as
the time scale or measure chain and denoted by T. Dynamic equations on time scale are defined
on discrete, continuous (connected) or combination of both. It is a bedrock for a broader analysis
of difference and differential systems [17].This work focuses on the Lyapunov stability analysis of
Caputo fractional dynamic equations on time scale using a new definition for the delta derivative of
a Lyapunov function known herein as the Caputo fractional delta derivative on a time scale, aiming
to provide a unified and comprehensive understanding as well as extending the stability properties
from the classical sense to the fractional-order sense. The inclusion of time scales in fractional calculus
will bridge the gap between continuous and discrete mathematical frameworks, offering a versatile
platform for modeling and analyzing dynamic systems.

The study of dynamic systems on time scales has seen significant development since the
foundational work by Hilger (see [15]). This pioneering work laid the ground work for subsequent
research including [7,11,18,19] which provided comprehensive introductions and analyzed several
qualitative properties of solutions of dynamic equations on time scales, such as existence and
uniqueness, stability, and instability. More recently, in [17], the boundaries were pushed even further
by analyzing the existence and uniqueness of solutions to dynamic equations on time scales via
generalized ordinary differential equations. These results were then extended from integer order to a
more generalized form (fractional order) in [8,9,13,29,31].

Building on the existence and uniqueness results for Caputo-type fractional dynamic equations
on time scales established in [8], we extend the stability results in [18] to fractional order and the
Lyapunov stability results for Caputo fractional differential equations in [1] to a more generalized
(unified) domain (time scale). This unification of continuous and discrete calculus gives rise to
fractional difference equations in discrete time, fractional differential equations in continuous time,
and fractional calculus on time scale in combined continuous and discrete time.

The investigation unfolds by delving into the basic definitions of some important terminologies,
remarks, and a basic theorem which sets the stage for our contributions. New definitions and vital
remarks were given which are important in establishing crucial comparison results and stability
criteria for Caputo fractional dynamic equations. These results contribute not only to the theoretical
advancements in fractional calculus but also extends the results on integer order dynamic equations
on time scales to fractional order. To emphasize the relevance and effectiveness of the derived stability
criteria, we present a detailed example, illustrating the importance and applicability of our results.
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2. Preliminaries, Definitions and Notations

The foundational principles of dynamic equations, encompassing derivatives and integrals, can
be extended to noninteger orders through the application of fractional calculus. This generalization to
noninteger orders becomes particularly relevant when exploring dynamic equations on a time scale,
allowing for a versatile and comprehensive analysis of system behavior across both continuous and
discrete time domains. See [9], [13], [22], [27],and [29]. In this section we shall set the foundation,
introduce notations and give definitions that will be used in the main results.

Definition 1. For t ∈ T, the forward jump operator σ : T → T is defined as

σ(t) = inf{s ∈ T : s > t}

while the backward jump operator ρ : T → T is defined as

ρ(t) = sup{s ∈ T : s < t}.

(i) if σ(t) > t, t is right scattered,
(ii) if ρ(t) < t, t is left scattered,

(iii) if t < maxT and σ(t) = t, then t is called right dense,
(iv) if t > minT and ρ(t) = t, then t is called left dense.

Definition 2. The graininess function µ : T → T for t ∈ T is defined as

µ(t) = σ(t)− t

The derivative makes use of the set Tk, which is derived from the time scale T as follows.
If T has a left scattered maximum M, then Tk = T \ {M}. Otherwise Tk = T

Definition 3 (Delta Derivative). Let h : T → R and t ∈ Tk. We define the delta derivative h∆ also known as
the Hilger derivative as

h∆(t) = lim
s→t

h(σ(t))− h(s)
σ(t)− s

, s ̸= σ(t).

provided the limit exists.
The function h∆ : T → R is called the (Delta) derivative of h on Tk

If t is right dense, the delta derivative of h : T → R, becomes

h∆(t) = lim
s→t

h(t)− h(s)
t − s

and if t is right scattered, the Delta derivative becomes

h∆(t) =
hσ(t)− h(t)

µ(t)

For a function h : T → R, hσ denotes h(σ(t)).

Definition 4. A function h : T → R is right dense continuous if it is continuous at all right dense points of T
and its left sided limits exists and is finite at left dense points of T. The set of all right dense continuous function
is denoted by

Crd = Crd(T)
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Definition 5. Assume [a, b] is a closed and bounded interval in T. Then a function H : [a, b] → R is called
a delta antiderivative of h : [a, b] → R provided F is continuous on [a, b], delta differentiable on [a, b), and
H∆(t) = h(t) for all t ∈ [a, b). Then, we define the Delta integral by

∫ b

a
h(t) = H(b)− H(a) ∀a, b ∈ T

Remark 1. All right dense continuous functions are delta integrable.

Definition 6. A function ϕ : [0, r] → [0, ∞) is of class K if it is continuous, and strictly increasing on [0, r]
with ϕ(0) = 0.

Definition 7. A continuous function V : Rn → R with V(0) = 0 is called positive definite(negative definite)
on the domain D if there exists a function ϕ ∈ K such that ϕ(|x|) ≤ V(x) (ϕ(|x|) ≤ −V(x)) for x ∈ D.

Definition 8. A continuous function V : Rn → R with V(0) = 0 is called positive semidefinite (negative
semi-definite) on D if V(x) ≥ 0 (V(x) ≤ 0) for all x ∈ D and it can also vanish for some x ̸= 0.

Definition 9. Assume V ∈ Crd[T× Rn,R+] and µ(t) is the graininess function then we define the dini
derivative of V(t, x) as:

D−V∆(t, x) = lim inf
µ(t)→0

V(t, x)− V(t − µ(t), x − µ(t)h(t, x))
µ(t)

(2)

D+V∆(t, x) = lim sup
µ(t)→0

V(t + µ(t), x + µ(t)h(t, x))− V(t, x)
µ(t)

(3)

If V is differentiable, then D−V∆(t, x) = D+V∆(t, x) = V∆(t, x)

Definition 10. (Fractional Integral on Time Scales). Let α ∈ (0, 1), [a, b] be an interval on T and h an
integrable function on [a, b]. Then the fractional integral of order α of h is defined by

T
a Iα

t h∆(t) =
∫ t

a

(t − s)α−1

Γ(α)
h(s)∆s

Definition 11. (Riemann-Liouville Derivative on Tme Scale) Let T be a time scale, t ∈ T, 0 < α < 1,
and h : T → R. The Riemann-Liouville fractional derivative of order α of h is defined by

T
a Dα

t h∆(t) =
1

Γ(1 − α)

( ∫ t

a
(t − s)−αh(s)∆s

)∆

Definition 12. (Caputo Derivative on Time Scale) Let T be a time scale, t ∈ T, 0 < α < 1, and h : T → R.
The Caputo fractional derivative of order α of h is defined by

T
a Dα

t h∆(t) =
1

Γ(1 − α)

∫ t

a
(t − s)−αh∆(s)∆s

Theorem 1. [[19]] Let T be a time scale with minimal element t0 ≥ 0. Assume that for any t ∈ T, there is a
statement A(t) such that the following conditions are verified:

(i) S(t0) is true;
(ii) If t is right scattered and A(t) is true, then S(σ(t)) is also true;

(iii) For each right-dense t, there exists a neighbourhood U such that whenever S(t) is true, S(t∗) is also true
for all t∗ ∈ U , t∗ ≥ t
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Then the statement S(t) is true for all t ∈ T

Remark 2. When T = N, then Theorem 1 reduces to the well known principle of mathematical induction. That
is

1. S(t0) is true is equivalent to the statement is true for n = 1
2. S(t) is true then S(σ(t)) is true is equivalent to if the statement is true for n = k, then the statement is

true for n = k + 1

Definitions 1 to 12 are contained in [7,10,11,14,16,17,21,23,31]. We give the following definitions
and remarks.

Definition 13. Let T be a time scale. A point t0 ∈ T is said to be a minimal element of T if for any t ∈ T,
t > t0 whenever t ̸= t0.

Remark 3. The concept of minimal element is important in the study of dynamic equations because it establishes
a starting point, a reference time from which the dynamics of the system evolve. In the study of difference
equations (a discrete-time setting), t0 represents the initial time step. Similarly, in differential equations (a
continuous-time setting), t0 represents the initial time instant.

Definition 14. The Grunwald-Letnikov fractional delta derivative is given by

GLTDα
0 h∆(t) = lim

µ→0+

1
µα

[
(t−t0)

µ ]

∑
r=0

(−1)rαCr[h(σ(t)− rµ)] t ≥ t0 (4)

and the Grunwald-Letnikov fractional delta dini derivative is given by

GLTDα
0+h∆(t) = lim sup

µ→0+

1
µα

[
(t−t0)

µ ]

∑
r=0

(−1)rαCr[h(σ(t)− rµ)] t ≥ t0 (5)

where 0 < α < 1, αCr are the binomial coefficients and [ (t−t0)
µ ] denotes the integer part of the fraction (t−t0)

µ .
observe that if the domain is R, then (5) becomes

GLTDα
0+h∆(t) = lim sup

d→0+

1
dα

[
(t−t0)

d ]

∑
r=0

(−1)rαCr[h(t − rd)] t ≥ t0

Remark 4. It is necessary to note that the relationship between the Caputo fractional delta derivative and the
Grunwald-Letnikov fractional delta derivative is given by

CTDα
0 h∆(t) =GLT Dα

0 [h(t)− h(t0)]
∆ (6)

substituting (4) into (6) we have that the Caputo fractional delta derivative becomes

CTDα
0 h∆(t) = lim

µ→0+

1
µα

[
(t−t0)

µ ]

∑
r=0

(−1)rαCr[h(σ(t)− rµ)− h(t0)] t ≥ t0

CTDα
0 h∆(t) = lim

µ→0+

1
µα

{
h(σ(t))− h(t0) +

[
(t−t0)

µ ]

∑
r=1

(−1)rαCr[h(σ(t)− rµ)− h(t0)]

}
(7)
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and the Caputo fractional delta dini derivative becomes

CTDα
0+h∆(t) = lim sup

µ→0+

1
µα

[
(t−t0)

µ ]

∑
r=0

(−1)rαCr[h(σ(t)− rµ)− h(t0)] t ≥ t0 (8)

Which is equivalent to

CTDα
0+h∆(t) = lim sup

µ→0+

1
µα

{
h(σ(t))− h(t0) +

[
(t−t0)

µ ]

∑
r=1

(−1)rαCr[h(σ(t)− rµ)− h(t0)]

}
t ≥ t0 (9)

for notation simplicity, we shall represent the Caputo fractional delta derivative of order α as
CTDα and the Caputo fractional delta dini derivative of order α as CTDα

+.

3. Statement Of Problem

Let T be a time scale with t0 ≥ 0 as a minimal element.
Consider the Caputo fractional dynamic system of order α with 0 < α < 1

CTDαx∆ = f (t, x), t ∈ T,

x(t0) = x0, t0 ≥ 0
(10)

where f ∈ Crd[T×Rn,Rn], f (t, 0) ≡ 0 and CTDαx∆ is the Caputo fractional delta derivative of x ∈ Rn

of order α with respect to t ∈ T. Let x(t) = x(t, t0, x0) ∈ Cα
rd[T,Rn] be a solution of (10) and assume

the solution exists and is unique (results on existence and uniqueness of (10) are contained in [8,13,22]),
the aim of this work is to study the stability of the system (10).

To do this, we shall use the Caputo fractional dynamic system of the form

CTDαu∆ = g(t, u), u(t0) = u0 ≥ 0 (11)

where u ∈ R+, g : T× R+ → R+ and g(t, 0) ≡ 0. (11) is called the comparison system. for the
purpose of this work we will assume that the function g ∈ [T×R+,R+] is such that for any initial
data (t0, u0) ∈ T×R+, the system (11) with u(t0) = u0 has a unique solution u(t) = u(t; t0, u0) ∈
Cα

rd(T,R+) see [8].

Definition 15. The trivial solution x = 0 of (10) is called stable if given ϵ > 0 and t0 ∈ T there exists a
δ = δ(ϵ, t0) > 0 such that for any x0 ∈ Rn the inequality ∥x0∥ < δ implies ∥x(t; t0, x0)∥ < ϵ, for t ≥ t0.

Now, we introduce the derivative of the Lyapunov function using the Caputo fractional delta dini
derivative of h(t) given in (8).

Definition 16. We define the Caputo fractional delta dini derivative of the Lyapunov function V(t, x) ∈
Crd[T×Rn,R+] (which is locally Lipschitzian with respect to its second argument and V(t, 0) ≡ 0) along the
trajectories of solutions of the system (10) as:

CTDα
+V∆(t, x) = lim sup

µ→0+

1
µα

[ [
t−t0

µ ]

∑
r=0

(−1)r(αCr)[V(σ(t)− rµ, x(σ(t))− µα f (t, x(t))− V(t0, x0)]

]
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and can be expanded as

CTDα
+V∆(t, x) = lim sup

µ→0+

1
µα

{
V(σ(t), x(σ(t))− V(t0, x0) (12)

−
[

t−t0
µ ]

∑
r=1

(−1)r+1(αCr)[V(σ(t)− rµ, x(σ(t))− µα f (t, x(t))− V(t0, x0)]

}
where t ∈ T, x, x0 ∈ Rn, µ = σ(t)− t and x(σ(t))− µα f (t, x) ∈ Rn.

If T is discrete and V(t, x(t)) is continuous at t, we have that

CTDα
+V∆(t, x) =

1
µα

[ [
t−t0

µ ]

∑
r=0

(−1)r(αCr)(V(σ(t), x(σ(t)))− V(t0, x0))

]
(13)

and if T is Continuous that is T = R, and V(t, x(t)) is continuous at t, we have that

CTDα
+V∆(t, x) = lim sup

d→0+

1
dα

{
V(t, x(t))− V(t0, x0) (14)

−
[

t−t0
d ]

∑
r=1

(−1)r+1(αCr)[V(t − rd, x(t))− dα f (t, x(t))− V(t0, x0)]

}
Notice that (14) is the same in [1] where d > 0

Given that lim
N→∞

∑N
r=0(−1)rαCr = 0 where α ∈ (0, 1), and lim

µ→0+
[ (t−t0)

µ ] = ∞ then it is easy to see

that

lim
µ→0+

[
(t−t0)

µ ]

∑
r=1

(−1)rαCr = −1 (15)

Also from (8) and since the Caputo and Riemann-Liouville formulations coincide when h(t0) = 0, ([1])
then we have that

CTDα
+h∆(t) =RLT Dα

+h∆(t) = lim sup
µ→0+

1
µα

[
(t−t0)

µ ]

∑
r=0

(−1)rαCr[h(σ(t)− rµ)], t ≥ t0 (16)

setting h(σ(t)− rµ = 1 we obtain

CTDα
+h∆(t) = lim sup

µ→0+

1
µα

[
(t−t0)

µ ]

∑
r=0

(−1)rαCr =
RLT Dα(1) =

(t − t0)
−α

Γ(1 − α)
, t ≥ t0 (17)

4. Inequalities on Fractional Dynamic Equations on Time scale and Comparison results

Lemma 1. Assume h, m ∈ Crd(T,R), suppose there exists t1 > t0, t1 ∈ T such that h(t1) = m(t1) and
h(t) < m(t) for t0 ≤ t < t1. Then if the Caputo fractional delta dini derivatives of h and m exist at t1, then the
inequality CTDα

+h∆(t1) >
CT Dα

+m∆(t1) holds.

Proof. Applying (8), we have

CTDα
+(h(t)− m(t))∆ = lim sup

µ→0+

1
µα

{ [
t−t0

µ ]

∑
r=0

(−1)rαCr[h(σ(t)− rµ)− m(σ(t)− rµ)]− [h(t0)− m(t0)]

}
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CTDα
+h∆(t)−CT Dα

+m∆(t) = lim sup
µ→0+

1
µα

{ [
t−t0

µ ]

∑
r=0

(−1)rqCr[h(σ(t)− rµ)−m(σ(t)− rµ)]− [h(t0)−m(t0)]

}
at t1, we have that

CTDα
+h∆(t1) = − lim sup

µ→0+

1
µα

{ [
t−t0

µ ]

∑
r=0

(−1)rαCr[h(t0)− m(t0)]

}
+CT Dα

+m∆(t1) (18)

Applying (17) to (18), we have

CTDα
+h∆(t1) = − (t − t0)

−α

Γ(1 − α)
[h(t0)− m(t0)] +

CT Dα
+m∆(t1)

but from the statement of the lemma, we have that

h(t) < m(t) for t0 ≤ t < t1

=⇒ h(t)− m(t) < 0, for t0 ≤ t < t1

And so it follows that

− (t − t0)
−α

Γ(1 − α)
[h(t0)− m(t0)] > 0

implying that

CTDα
+h∆(t1) >

CT Dα
+m∆(t1)

Theorem 2. Assume that

(i) g ∈ Crd[T×R+,R+] and g(t, u)µ is non-decreasing in u.

(ii) V ∈ Crd[T×RN ,R+] be locally Lipschitzian in the second variable such that

CTDα
+V∆(t, x) ≤ g(t, V(t, x)), (t, x) ∈ T×RN (19)

(iii) z(t) = z(t; t0, u0) is the maximal solution of (11) existing on T.
Then

V(t, x(t)) ≤ z(t), t ≥ t0 (20)

provided that
V(t0, x0) ≤ u0 (21)

where x(t) = x(t; t0, x0) is any solution of (10), t ∈ T, t ≥ t0

Proof. Apply the principle of induction as stated in Theorem 1 to the statement

S(t) : V(t, x(t)) ≤ z(t), t ∈ T, t ≥ t0

(i) S(t0) is true since V(t0, x0) ≤ u0
(ii) Let t be right-scattered and S(t) be true. We need to show that S(œ(t)) is true; that is

V(σ(t), x(σ(t))) ≤ z(σ(t)) (22)
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set h(t) = V(t, x(t)) then h(σ(t)) = V(σ(t), x(σ(t))) but from (8), we have that

CTDα
+h∆(t) = lim sup

µ→0+

1
µα

[
(t−t0)

µ ]

∑
r=0

(−1)rαCr[h(σ(t)− rµ)− h(t0)] t ≥ t0

also

CTDα
+z∆(t) = lim sup

µ→0+

1
µα

[
(t−t0)

µ ]

∑
r=0

(−1)rαCr[z(σ(t)− rµ)− z(t0)] t ≥ t0

so that
CTDα

+z∆(t)−CT Dα
+h∆(t)

= lim sup
µ→0+

1
µα

[
(t−t0)

µ ]

∑
r=0

(−1)rαCr [z(σ(t)− rµ)− z(t0)]− lim sup
µ→0+

1
µα

[
(t−t0)

µ ]

∑
r=0

(−1)rαCr [h(σ(t)− rµ)− h(t0)]

CTDα
+z∆(t)−CT Dα

+h∆(t) = lim sup
µ→0+

1
µα

[
(t−t0)

µ ]

∑
r=0

(−1)r αCr

[
[z(σ(t)− rµ)− z(t0)]− [h(σ(t)− rµ)− h(t0)]

]
(

CTDα
+z∆(t)−CT Dα

+h∆(t)
)

µα = lim sup
µ→0+

[
(t−t0)

µ ]

∑
r=0

(−1)r αCr

[
[z(σ(t)− rµ)− z(t0)]− [h(σ(t)− rµ)− h(t0)]

]
(

CTDα
+z∆(t)−CT Dα

+h∆(t)
)

µα ≤ [z(σ(t))− z(t0)]− [h(σ(t))− h(t0)](
CTDα

+z∆(t)−CT Dα
+h∆(t)

)
µα ≤ [z(σ(t))− h(σ(t))]− [z(t0)− h(t0)]

[z(σ(t))− h(σ(t))] ≥
(

CTDα
+z∆(t)−CT Dα

+h∆(t)
)

µα + [z(t0)− h(t0)]

[h(σ(t))− z(σ(t))] ≤
(

CTDα
+h∆(t)−CT Dα

+z∆(t)
)

µα + [h(t0)− z(t0)] ≤
(

g(t, h(t))− g(t, z(t))
)

µα + [h(t0)− z(t0)]

Since g(t, u)µ is non decreasing in u and S(t) is true, then h(σ(t))− z(σ(t)) ≤ 0 so (22) holds.
(iii) Let t be right dense and N be a right neighborhood of t ∈ T. We need to show that S(t∗) is true

for t∗ ∈ N . This follows from the comparison theorem for Caputo fractional differential equations
since at every right dense point t∗ ∈ N , σ(t∗) = t∗. See [1].

Let ω be a small enough arbitrary positive number such that ω ≤ BT(where BT is a small enough
number on the time scale T) and consider the initial value problem

CTDαu∆ = g(t∗, u) + ω, u(t0) = u0 + ω (23)

for t∗ ∈ N .
The function uω(t∗) = u(t∗) + ω is a solution of (23) if and only if it satisfies the delta Integral
equation

uω(t∗) = u0 + ω +
1

Γ(α)

∫ t∗

t0

(t∗ − s)α−1(g(s, uω(s)) + ω)∆s, t∗, s ∈ N (24)

Let h(t∗) ∈ Crd(T,R+) be such that h(t∗) = V(t∗, x∗(t∗)), where x∗(t∗) is any other solution of
(10). We show that

h(t∗) < uω(t∗), for t∗ ∈ N (25)

the inequality (25) holds for t∗ = t0 since

h(t0) = V(t0, x0) ≤ u0 < uα(t0)
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Assume that the inequality (25) is not true, then there exist a point t∗1 > t0 such that

h(t∗1) = uω(t∗1) and h(t∗) < uω(t∗) for t0 ≤ t∗ < t∗1 , t∗, t∗1 ∈ N

From lemma (1) it follows that

CTDα
+h∆(t∗1) >

CT Dα
+u∆

ω(t
∗
1)

So that
CTDα

+V∆(t∗1 , x∗(t∗1)) >
CT Dα

+u∆
ω(t

∗
1)

and using (23) we arrive at

CTDα
+V∆(t∗1 , x∗(t∗1)) > g(t∗1 , uω(t∗1)) + ω) > g(t∗1 , h(t∗1))

Therefore,
CTDα

+h∆(t∗1) > g(t∗1 , h(t∗1)) (26)
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Now,

CTDα
+h∆(t∗)

= lim sup
µ→0+

1
µα

{
h(t∗)− h(t0)−

[
t∗−t0

µ ]

∑
r=1

(−1)r+1(αCr)[h(t∗ − rµ)− h(t0)]

}
, f or t∗ ∈ N

= lim sup
µ→0+

1
µα

{V(t∗, x∗(t∗))− V(t0, x0)

−
[

t∗−t0
µ ]

∑
r=1

(−1)r+1(αCr)[V(t∗ − rµ, x∗(t∗ − rµ)− V(t0, x0)]}

= lim sup
µ→0+

1
µα

{
V(t∗, x∗(t))− V(t0, x0)

−
[

t∗−t0
µ ]

∑
r=1

(−1)r+1(αCr)

[
[V(t∗ − rµ, x∗(t∗)− µα f (t∗, x∗(t∗)))− V(t0, x0)]

−[V(t∗ − rµ, x∗(t∗)− µα f (t∗, x∗(t∗)))− V(t0, x0)]

+[V(t∗ − rµ, x∗(t∗ − rµ))− V(t0, x0)]

]}
= lim sup

µ→0+

1
µα

{
V(t∗, x∗(t∗))− V(t0, x0)

−
[

t∗−t0
µ ]

∑
r=1

(−1)r+1(αCr)

[
[V(t∗ − rµ, x∗(t∗)− µα f (t∗, x∗(t∗)))− V(t0, x0)]

−V[(t∗ − rµ, x∗(t∗)− µα f (t∗, x∗(t∗)))] + V(t∗ − rµ, x∗(t∗ − rµ))

]}
= lim sup

µ→0+

1
µα

{
V(t∗, x∗(t∗))− V(t0, x0)

−
[

t∗−t0
µ ]

∑
r=1

(−1)r+1(αCr)

[
[V(t∗ − rµ, x∗(t∗)− µα f (t∗, x∗(t∗)))− V(t0, x0)]

+[V(t∗ − rµ, x∗(t∗ − rµ))− [V(t∗ − rµ, x∗(t∗)− µα f (t∗, x∗(t∗)))]
]}

= lim sup
µ→0+

1
µα

{
V(t∗, x∗(t∗))− V(t0, x0)

−
[

t∗−t0
µ ]

∑
r=1

(−1)r+1(αCr[V(t∗ − rµ, x∗(t∗ − µα f (t∗, x∗(t∗))− V(t0, x0)]

}

− lim sup
µ→0+

1
µα

{ [
t∗−t0

µ ]

∑
r=1

(−1)r+1(αCr)[V(t∗ − rµ, x∗(t∗ − rµ))

−V(t∗ − rµ, x∗(t∗)− µα f (t∗, x∗(t∗)))]
}
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Since V(t∗, x) is locally Lipschtzian in the second variable, we have

CTDα
+h∆(t∗) ≤ CTDα

+V∆(t∗, x∗(t∗)) + L lim sup
µ→0+

1
µα

[
t∗−t0

µ ]

∑
r=1

(−1)r(αCr)

∥x∗(t∗ − rµ)− (x∗(t∗)− µα f (t∗, x∗(t∗)))∥

Where L > 0 is a Lipschitz constant.

As µ → 0, ∥x∗(t∗ − rµ)− (x∗(t∗)− µα f (t∗, x∗(t∗)))∥ → 0, so that from (19) we have

CTDα
+h∆(t∗) =CT Dα

+V∆(t∗, x∗(t∗)) ≤ g(t∗, V(t∗, x∗(t∗))) = g(t∗, h(t∗)) (27)

Now (27) with t∗ = t∗1 contradicts (26), hence (25) is true. For t∗ ∈ N , we now show that whenever
ω1 < ω2, then

uω1(t
∗) < uω2(t

∗) (28)

Notice that (28) holds for t∗ = t0 since u(t0) + ω1 < u(t0) + ω2 =⇒ ω1 < ω2. Assume
the inequality (28) is not true. Then there exist a point t∗1 such that uω1(t

∗
1) = uω2(t

∗
1) and

uω1(t
∗) < uω2(t

∗) for t0 ≤ t∗ < t∗1 t∗ ∈ N .
By Lemma (1), we have that

CTDα
+u∆

ω1
(t∗1) >

CT Dα
+u∆

ω2
(t∗1)

However,

CTDα
+u∆

ω1
(t∗1)−CT Dα

+u∆
ω2
(t∗1) = g(t∗1 , uω1(t

∗
1)) + ω1 − [g(t∗1 , uω2(t

∗
1)) + ω2]

= ω1 − ω2 < 0

which is a contradiction and so (28) is true. Now from (28) and since ω ≤ BT, we deduce that

uω1(t
∗) < uω2(t

∗) < ... < u(t∗) + ωi ≤ |u(t∗) + BT| ≤ M

and therefore we can say that the family of solutions {uωi (t
∗)} is uniformly bounded with bound

M > 0 on T. This means that |uωi (t
∗)| ≤ M for t∗ ∈ N and ω ∈ (0, BT]

We now show that the family {uωi (t
∗)} is equicontinuous on T. Assume S = sup{|g(t∗, x∗)| :

(t∗, x∗) ∈ N × [−M, M]}. Now let us take {ωi}∞
i=1(t

∗), as a decreasing sequence, such that
lim
i→∞

ωi = 0 and consider a sequence of functions uωi (t
∗) and take t∗1 , t∗2 ∈ N with t∗1 < t∗2 , then

we have the following estimate

|uωi (t
∗
2)− uωi (t

∗
1)| =

∣∣∣∣u0 + ωi +
1

Γ(α)

∫ t∗2

t0

(t∗2 − s)α−1(g(s, uωi (s)) + αi)∆s

−(u0 + ωi +
1

Γ(α)

∫ t∗1

t0

(t∗1 − s)α−1(g(s, uωi (s)) + ωi))∆s
∣∣∣∣

=
1

Γ(α)

∣∣∣∣ ∫ t∗2

t0

(t∗2 − s)α−1(g(s, uωi (s)))∆s

−
∫ t∗1

t0

(t∗1 − s)α−1(g(s, uωi (s)))∆s
∣∣∣∣
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≤ 1
Γ(α)

[ ∣∣∣∣∫ t∗2

t0

(t∗2 − s)α−1
∣∣∣∣ ∆s

∣∣∣∣(g(s, uωi (s)))
∣∣∣∣

+

∣∣∣∣∫ t∗1

t0

(t∗1 − s)α−1∆s
∣∣∣∣ ∣∣∣∣(g(s, uωi (s)))

∣∣∣∣]

≤ S
Γ(α)

[ ∣∣∣∣∫ t∗2

t0

(t∗2 − s)α−1∆s
∣∣∣∣+ ∣∣∣∣ ∫ t∗1

t0

(t∗1 − s)α−1∆s
∣∣∣∣ ]

=
S

Γ(α)

[∣∣∣∣∫ t∗1

t0

(t∗2 − s)α−1∆s +
∫ t∗2

t∗1
(t∗2 − s)α−1∆s

∣∣∣∣+ ∣∣∣∣ ∫ t∗1

t0

(t∗1 − s)α−1∆s
∣∣∣∣]

=
S

Γ(α)

[∣∣∣∣−[
(t∗2 − t∗1)

α

α
− (t∗2 − t0)

α

α

]
+

(t∗2 − t∗1)
q

α

∣∣∣∣+ ∣∣∣∣ (t∗1 − t0)
α

α

∣∣∣∣]

=
S

Γ(α)

[∣∣∣∣− (t∗2 − t∗1)
α

α
+

(t∗2 − t0)
α

α
+

(t∗2 − t∗1)
α

α

∣∣∣∣+ ∣∣∣∣ (t∗1 − t0)
α

α

∣∣∣∣]

=
S

Γ(α)

[∣∣∣∣ (t∗2 − t0)
α

α

∣∣∣∣+ ∣∣∣∣ (t∗1 − t0)
α

α

∣∣∣∣]

=
S

Γ(α + 1)

[
(t∗2 − t0)

α + (t∗1 − t0)
α

]

≤ 2S
Γ(α + 1)

[
(t∗2 − t0)

α

]

A family of solutions {uωi (t
∗)} is said to be equicontinuous if given ϵ > 0, we can find δ > 0 such

that |uωi (t
∗
2)− uωi (t

∗
1)| < ϵ whenever |t∗2 − t∗1 | < δ.

implying that |uωi (t
∗
2)− uωi (t

∗
1)| ≤

2S
Γ(α+1)

[
(t∗2 − t0)

α

]
< ϵ provided |t∗2 − t∗1 | < δ

Now, we choose δ =
(

ϵΓ(α+1)
2S

) 1
α ,

(
ϵΓ(α+1)

2S

) 1
α

>
(

2S(t∗2−t0)
α

Γ(α+1) × Γ(α+1)
2S

) 1
α

= (t∗2 − t0) but
(t∗2 − t0) > |t∗2 − t∗1 | so since (t∗2 − t0) < δ, then |t∗2 − t∗1 | < δ. Proving that the family of solutions
{uω(t∗)} is equi-continuous. By the Arzela-Ascoli theorem, {uωi (t

∗)}has a sub-sequence
{uωij

(t∗)} which converges uniformly to a function z(t∗) on T. We then show that z(t∗) is a
solution of (11). Equation (24) becomes

uωij
(t∗) = u0 + ωij +

1
Γ(α)

∫ t∗

t0

(t∗ − s)α−1(g(s, uωij
(s)) + ωij)∆s (29)

Taking the limit as ij → ∞, then uωij
(t∗) → z(t∗) on T. Now (29) yields

z(t∗) = u0 +
1

Γ(α)

∫ t∗

t0

(t∗ − s)α−1(g(s, z(t∗)))∆s (30)
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Thus, z(t∗) is a solution of (11) on T. Since lim
j→∞

uωij
(t∗) = z(t) exists, then for any uωi that satisfies

the dynamic equation (11), uω(t∗) ≤ z(t∗). So from (25), we have that h(t∗) < uω(t∗) ≤ z(t∗) on
T.

Therefore by induction principle, the statement S(t) is true, and this completes the proof

Theorem 3. Assume the following conditions are satisfied:

1. the function V(t, x(t)) ∈ Crd[T×RN ,R+], V(t, x(t)) is locally Lipschitzian with respect to x, V(t, 0) ≡
0 and the inequality

ϕ(∥x∥) ≤ V(t, x(t)) (31)

holds for all (t, x) ∈ T×R and ϕ ∈ K
2. g ∈ Crd[T×R+,R+] is nondecreasing with respect to u at all t ∈ T, g(t, 0) ≡ 0, and

CTDα
+V∆(t, x(t)) ≤ g(t, V(t, x(t)))

3. the zero solution of the comparison equation (11) is stable.

Then the zero solution of the system (10) is stable.

Proof. By condition (3) of Theorem 3, we have that the zero solution of (11) is stable, so let ϵ > 0 be
given, and for ϕ(ϵ) and t0 ∈ T, let there exists λ = λ(t0, ϵ) > 0 such that

z(t) < ϕ(ϵ) at all t ≥ t0 (32)

whenever u0 < λ, where z(t) = z(t, t0, u0) is the maximal solution of the comparison system (11).
Now, V(t, 0) = 0 and V ∈ Crd this implies that V is continuous at the origin, then given λ > 0,

we can find a δ = δ(t0, λ) > 0 such that for x0 ∈ Rn, we have that, ∥x0∥ < δ implies V(t0, x0) < λ.
Claim that ∥x0∥ < δ implies ∥x(t)∥ < ϵ at all t ∈ T where x(t) = x(t, t0, x0) is any solution of the

system (10). If this is not true, then there would exists a time t1 ∈ T, t1 > t0 such that the solution
x(t) of the dynamic system (10) at the instant time t1 leaves the ϵ − neighborhood of the zero solution.
That is ∥x(t)∥ < ϵ at t0 ≤ t < t1 and

∥x(t1)∥ ≥ ϵ (33)

but from Theorem 2, we have that

V(t, x(t)) ≤ z(t), t0 ≤ t ≤ t1 (34)

provided V(t0, x0) ≤ u0, where z(t) is maximal solution of the comparison system (11).
Combining (31),(32), (34), and (33) for t = t1 we obtain

ϕ(∥x(t1)∥) ≤ V(t1, x(t1)) ≤ z(t1) < ϕ(ϵ) ≤ ϕ(∥x(t1))∥

=⇒ ϕ(∥x(t1)∥) < ϕ(∥x(t1))∥ (35)

The contradiction (35) shows that t1 /∈ T and therefore ∥x(t)∥ < ϵ at all t ∈ T whenever ∥x0∥ < δ and
such the zero solution (10) is stable.

5. application

Consider the system of dynamic equations

x∆
1 (t) = x1 sec2 t − tan2 t(x2 + x1) + x2 cot2 t

x∆
2 (t) = 2(x1 − x2) + x2 cosh2 t − 2x1 cos2 t

(36)
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for t ≥ t0, with initial conditions

x1(t0) = x10 and x2(t0) = x20

where x1, x2 ∈ R2 f = ( f1, f2)

Consider V(t, x1, x2) = |x1|+ |x2|, for t ∈ T and x1, x2 ∈ R2, where x ∈ S(ρ), ρ > 0. Then we
compute the dini derivative for V(t, x1, x2) = |x1|+ |x2| as follows from (3) we have that

D+V∆(t, x) = lim sup
µ(t)→0

V(t + µ(t), x + µ(t) f (t, x))− V(t, x)
µ(t)

= lim sup
µ(t)→0

|x1 + µ(t) f1(t, x)|+ |x2 + µ(t) f2(t, x)| − [|x1|+ |x2|]
µ(t)

≤ lim sup
µ(t)→0

|x1|+ |µ(t) f1(t, x)|+ |x2|+ |µ(t) f2(t, x)| − |x1| − |x2|
µ(t)

= lim sup
µ(t)→0

|µ(t) f1(t, x)|+ |µ(t) f2(t, x)|
µ(t)

= lim sup
µ(t)→0

µ(t)[| f1(t, x)|+ | f2(t, x)|]
µ(t)

≤ | f1(t, x)|+ | f2(t, x)|

= |x1 sec2 t − tan2 t(x2 + x1) + x2 cot2 t|+ |2(x1 − x2) + x2 cosh2 t − 2x1 cos2 t|

= |x1 sec2 t − x2 tan2 t − x1 tan2 t + x2 cot2 t|+ |2x1 − 2x2 + x2 cosh2 t − 2x1 cos2 t|

= |x1(sec2 t − tan2 t)− x2(tan2 t − cot2 t)|+ |2x1(1 − cos2 t)− x2(2 − cosh2 t)|

=

∣∣∣∣∣x1

(
1

cos2 t
− sin2 t

cos2 t

)
− x2

(
sin2 t
cos2 t

− cos2 t
sin2 t

)∣∣∣∣∣+
∣∣∣∣2x1(sin2 t)− x2

(
2 − 1

cos2 t

)∣∣∣∣

≤
∣∣∣∣∣x1

(
1 − sin2 t

cos2 t

)
− x2

(
sin4 t − cos4 t

cos2 t sin2 t

)∣∣∣∣∣+ |2x1|| sin2 t|+ |x2|
(
|2|+

∣∣∣∣ 1
cos2 t

∣∣∣∣ )

≤
∣∣∣∣∣x1

(
cos2 t
cos2 t

)
− x2

(
sin2 t − cos2 t)(sin2 t + cos2 t)

cos2 t sin2 t

)∣∣∣∣∣+ 2|x1|+ 3|x2|

≤ |x1|+ |x2|
∣∣∣∣( sin2 t − cos2 t

cos2 t sin2 t

)∣∣∣∣+ 2|x1|+ 3|x2|
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= |x1|+ |x2|
∣∣∣∣( 1

cos2 t
− 1

sin2 t

)∣∣∣∣+ 2|x1|+ 3|x2|

≤ 3|x1|+ |x2|
(∣∣∣∣ 1

cos2 t

∣∣∣∣+ ∣∣∣∣ 1
sin2 t

∣∣∣∣)+ 3|x2|

≤ 3|x1|+ 5|x2| ≤ 5[|x1|+ |x2|]

D+V∆(t, x) ≤ 5V(t, x1, x2) = g(t, V)

Now consider the consider the comparison equation

D+u∆ = 5u > 0, u(0) = u0 (37)

with solution
u(t) = u0e5t (38)

Even though conditions (i)-(iii) of [18] are satisfied that is V ∈ Crd[T× Rn,R+], D+V∆(t, x1, x2) ≤
g(t, V(t, x)) and

√
x2

1 + x2
2 ≤ |x1|+ |x2| ≤ 2(x2

1 + x2
2), for b(∥x∥) = r and a(∥x∥) = 2r2, it is obvious to

see that the solution (38)of the comparison system (37) is not stable, so we can not deduce the stability
properties of the system (36) by applying the basic definition of the Dini-derivative of a Lyapunov
function of dynamic equation on time scale to the Lyapunov function V(t, x1, x2) = |x1|+ |x2|.
.

Now, we will apply our new definition on the same system but as a Caputo fractional dynamic
system

CTDαx∆
1 (t) = x1 sec2 t − tan2 t(x2 + x1) + x2 cot2 t

CTDαx∆
2 (t) = 2(x1 − x2) + x2 cosh2 t − 2x1 cos2 t

(39)

for t ≥ t0, with initial conditions

x1(t0) = x10 and x2(t0) = x20

where x1, x2 ∈ R2 f = ( f1, f2)

Consider V(t, x1, x2) = |x1| + |x2|, for t ∈ T and x1, x2 ∈ R2, where x ∈ S(ρ), ρ > 0. Then
condition 1 of Theorem (3) is satisfied, for ϕ = 1

2 r, where ϕ ∈ K with x = (x1, x2) ∈ R2, so that the

associated norm ∥x∥ =
√

x2
1 + x2

2.
Since

V(t, x1, x2) = |x1|+ |x2|

then ϕ(∥x∥) ≤ V(t, x1, x2). From (12), we compute the Caputo fractional Dini derivative for
V(t, x1, x2) = |x1|+ |x2| as follows

CTDα
+V∆(t, x)

= lim sup
µ→0+

1
µα

{
V(σ(t), x(σ(t))− V(t0, x0)

−
[

t−t0
µ ]

∑
r=1

(−1)r+1(αCr)[V(σ(t)− rµ, x(σ(t))− µα f (t, x(t)))− V(t0, x0)]

}

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 June 2024                   doi:10.20944/preprints202406.2042.v1

https://doi.org/10.20944/preprints202406.2042.v1


17 of 22

= lim sup
µ→0+

1
µα

{
(|x1(σ(t))|+ |x2(σ(t))|)− (|x10|+ |x20|) +

[
t−t0

µ ]

∑
r=1

(−1)r(αCr)

[|x1(σ(t))− µα f1(t, x1)|+ |x2(σ(t))− µα f2(t, x2)| − (|x10|+ |x10|)]
}

≤ lim sup
µ→0+

1
µα

{
(|x1(σ(t))|+ |x2(σ(t))|)− (|x10|+ |x20|) +

[
t−t0

µ ]

∑
r=1

(−1)r(αCr)

[|x1(σ(t))|+ |µα f1(t; x1)|+ |x2(σ(t))|+ |µα f2(t; x2)| − (|x10|+ |x10|)]
}

≤ lim sup
µ→0+

1
µα

{
(|x1(σ(t))|+ |x2(σ(t))|)− (|x10|+ |x20|)

+

[
t−t0

µ ]

∑
r=1

(−1)r(αCr)

[
|x1(σ(t))|+ |x2(σ(t))|

]

+

[
t−t0

µ ]

∑
r=1

(−1)r(αCr)|
[
|µα f1(t; x1)|+ |µα f2(t; x2)|

]

−
[

t−t0
µ ]

∑
r=1

(−1)r(αCr)

[
|x10|+ |x10|

]}

= lim sup
µ→0+

1
µα

{
(|x1(σ(t))|+ |x2(σ(t))|) +

[
t−t0

µ ]

∑
r=1

(−1)r(αCr)

[
|x1(σ(t))|+ |x2(σ(t))|

]

−(|x10|+ |x20|)−
[

t−t0
µ ]

∑
r=1

(−1)r(αCr)

[
|x10|+ |x10|

]

+µα

[
t−t0

µ ]

∑
r=1

(−1)r(αCr)|
[
| f1(t; x1)|+ | f2(t; x2)|

]}

≤ lim sup
µ→0+

1
µα

{ [
t−t0

µ ]

∑
r=0

(−1)r(αCr)

[
|x1(σ(t))|+ |x2(σ(t))|

]
−

[
t−t0

µ ]

∑
r=0

(−1)r(αCr)

[
|x10|+ |x10|

]}

+ lim sup
µ→0+

[
t−t0

µ ]

∑
r=1

(−1)r(αCr)|
[
| f1(t; x1)|+ | f2(t; x2)|

]

Applying (15) and (17) we have

=
(t − t0)

−α

Γ(1 − α)
(|x1(σ(t))|+ |x2(σ(t))|)−

(t − t0)
−α

Γ(1 − α)
(|x10|+ |x10|)−

[
| f1(t; x1)|+ | f2(t; x2)|

]

≤ (t − t0)
−α

Γ(1 − α)
(|x1(σ(t))|+ |x2(σ(t))|)−

[
| f1(t; x1)|+ | f2(t; x2)|

]
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As t → ∞, (t−t0)
−α

Γ(1−α)
(|x1(σ(t))|+ |x2(σ(t))|) → 0, then

CTDα
+V∆(t; x1, x2) ≤ −

[
| f1(t; x1)|+ | f2(t; x2)|

]

= −
[
|x1 sec2 t − tan2 t(x2 + x1) + x2 cot2 t|+ |2(x1 − x2) + x2 cosh2 t − 2x1 cos2 t|

]

= −
[
|x1 sec2 t − x2 tan2 t − x1 tan2 t + x2 cot2 t|+ |2x1 − 2x2 + x2 cosh2 t − 2x1 cos2 t|

]

= −
[
|x1(sec2 t − tan2 t)− x2(tan2 t − cot2 t)|+ |2x1(1 − cos2 t)− x2(2 − cosh2 t)|

]

= −
[∣∣∣∣∣x1

(
1

cos2 t
− sin2 t

cos2 t

)
− x2

(
sin2 t
cos2 t

− cos2 t
sin2 t

)∣∣∣∣∣+
∣∣∣∣2x1(sin2 t)− x2

(
2 − 1

cos2 t

)∣∣∣∣
]

≤ −
[∣∣∣∣∣x1

(
1 − sin2 t

cos2 t

)
− x2

(
sin4 t − cos4 t

cos2 t sin2 t

)∣∣∣∣∣+ |2x1|| sin2 t|+ |x2|
(
|2|+

∣∣∣∣ 1
cos2 t

∣∣∣∣ )
]

≤ −
[∣∣∣∣∣x1

(
cos2 t
cos2 t

)
− x2

(
sin2 t − cos2 t)(sin2 t + cos2 t)

cos2 t sin2 t

)∣∣∣∣∣+ 2|x1|+ 3|x2|
]

≤ −
[
|x1|+ |x2|

∣∣∣∣( sin2 t − cos2 t
cos2 t sin2 t

)∣∣∣∣+ 2|x1|+ 3|x2|
]

= −
[
|x1|+ |x2|

∣∣∣∣( 1
cos2 t

− 1
sin2 t

)∣∣∣∣+ 2|x1|+ 3|x2|
]

≤ −
[

3|x1|+ |x2|
(∣∣∣∣ 1

cos2 t

∣∣∣∣+ ∣∣∣∣ 1
sin2 t

∣∣∣∣)+ 3|x2|
]

≤ −3|x1| − 5|x2| ≤ −3[|x1|+ |x2|]

Therefore
CTDα

+V∆(t; x1, x2) ≤ −3V(t, x1, x2) (40)

Consider the comparison system
CTDα

+u∆ = g(t, u) ≤ −3u (41)

using the Laplace transform method
CTDα

+3u∆ + u = 0
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L{CTDα
+u∆}+ 3L{u} = 0

=⇒ SαU(s)− Sα−1u0 + 3U(s) = 0

U(s)(sα + 3) = u0Sα−1U(s) =
u0Sα−1

Sα + 3

taking the inverse Laplace transform we have

u(t) = u0L−1
{

Sα−1

Sα + 3

}
(42)

Recall that

L−1
{

Sα−β

Sα − λ

}
= tβ−1Eα,β(λtα) (43)

Comparing (43) and (42), we have q − β, =⇒ β = 1 Sα − λ = Sα + 3 =⇒ λ = −3
so we have,

u(t) = u0Eα,1(−3tα), for α ∈ (0, 1), (44)

where Eα(z) is the Mittag-Leffler functions of one-varriable which can be approximated as:

Eα,1(−tα) =
∞

∑
n=0

(−1)n tnα

Γ(αk + 1)
= 1 − tα

Γ(1 + α)
+ ... ≈ exp

[
− tα

Γ(1 + α)

]

Now, let |u0| < δ, then from (44), we have |u(t)| = |3u0Eα,1(−tα)| =
∣∣∣3u0 exp

[
− tα

Γ(1+α)

]∣∣∣ <

3
∣∣∣exp

[
− tα

Γ(1+α)

]∣∣∣ δ < ϵ whenever |u0 < δ = ϵ

3
∣∣∣exp

[
− tα

Γ(1+α)

]∣∣∣
Therefore given ϵ > 0, we can find a δ > 0 such that |u(t)| < ϵ whenever |u0| < δ

Since all the conditions of Theorem 3 are satisfied, and trivial solution of the comparison system
(41) is stable, then we conclude that the trivial solution of system (39) is stable.

Figure 1 below is the graphical representation of Eα,1(−3tα) which was then approximated in

Figure 2 as exp
[
− tα

Γ(1+α)

]
and the behaviour of the curve shows stability over time.

20 40 60 80 100
t

0.001

0.002

0.003

0.004

0.005

0.006

Mittag Leffler

Figure 1. Graph of Eα,1(−3tα) against t
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Figure 2. Graph of exp
[
− 3tα

Γ(1+α)

]
against t

6. Conclusion

In conclusion, our study significantly advances the understanding of Lyapunov stability for
Caputo fractional dynamic equations on time scale. The new concept developed in this work
successfully contributes to the advancement of the Fractional Calculus in general and stability theory
in particular from a continuous domain to a unified continuous and discrete domain which is a
breakthrough for modeling and other practical application. Through the establishment of a comparison
results and stability criteria, we have provided a solid theoretical foundation for analyzing the stability
properties of these equations across different time scales. The inclusion of an application further
showcases the applicability and effectiveness of our results over existing results in integer order and
continuous domain.
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