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Abstract: In this work, we introduce a new and generalized concept (herein referred to as Caputo
fractional delta derivative and Caputo fractional delta dini derivative of order « € (0,1)) for Caputo
fractional derivatives on an arbitrary time domain T which is a closed subset of R. Combining
the continuous and discrete time domains, we create a unified framework for stability analysis on
time scales. Comparison results and stability criteria for the considered Caputo fractional dynamic
equations are presented based on a new definition for Caputo fractional delta derivative of a Lyapunov
function, contributing to the broader understanding of fractional calculus on time scales. The work
also incorporates an illustrative example to demonstrate the relevance, effectiveness and applicability
of the established stability results over that of the integer order.
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1. Introduction

In recent years, the study of fractional calculus has gained significant attention due to its ability to
capture complex dynamics and model real-world problems more accurately and efficiently. In-fact, it is
a generalization of the integer-order derivatives and integrals, it is also referred to as differentiation and
integration to an arbitrary order [28]. Numerous studies have utilized Lyapunov second method, also
known as the Lyapunov direct method, with remarkable outcomes in comprehending the qualitative
and quantitative characteristics of dynamical systems. One benefit of using the Lyapunov direct method
is that it does not require knowledge of the solution to the differential equation under study([30]).In
[1-3,6,8], several types of fractional derivatives of Lyapunov functions used in stability investigations
of differential equations, including Caputo fractional derivative, Dini fractional derivative, and Caputo
fractional Dini derivative were applied. However, the most preferred as pointed out by the authors is
the Caputo Fractional derivative

t
%D;"V(t,x(t)) = I’(ll—a) ; (t— s)_‘"%(v(s,x(s)))ds, t € [ty, T)

this is due to the fact that it is easier to handle and has a more realistic application. Still, the authors

noted that the function V (¢, x(t)) need be continuously differentiable which posses another challenge.

This disadvantage does not affect the other Lyapunov function derivatives, so the authors obtained

sufficient conditions for these derivatives using a continuous Lyapunov function that needs not be

continuously differentiable. In [2] it was noted that the Dini fractional derivative

[
CDYV(t,x(t)) = limsup %{V(t,x(t)) — Y (C1) GVt rhx(t) — KEF (L x(8)))}
h—0+ r=1
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maintains the idea of fractional derivatives since it depends not only on the present state but also on
the initial state. Yet, it doesnt depend on the initial state V (o, xp). So a better definition

LDV (tx(1) 6
(50

S

(=) TV (¢t = rh,x(t) — K (£, x(1))) = V (o, X(to))]

D

— limsup hi“ VIt x(t)) - V(to, x(to)) —

h—0+ 1

‘
Il

was considered as more suitable. (see[1])

The Caputo fractional Dini derivative (1) has been utilized to examine various types of stability
in Caputo fractional differential equations with continuous domain as seen in [1,4]. As explained
in [23] and [11], a more holistic and practicable examination of stability can be achieved if it can be
done across different time domains. The existing research considers a time domain of real numbers
which ignores discrete details while in [12,20,24,25], the domain considered are discrete domains
ignoring the continuous time domains. However, in practicability, some systems undergo smooth and
abrupt changes almost simultaneously while others could have more than one time scale or frequency.
Modeling such phenomenon is more realistically represented as a dynamic system that includes
continuous and discrete times, that is, time as an arbitrary closed subset of real numbers known as
the time scale or measure chain and denoted by T. Dynamic equations on time scale are defined
on discrete, continuous (connected) or combination of both. It is a bedrock for a broader analysis
of difference and differential systems [17].This work focuses on the Lyapunov stability analysis of
Caputo fractional dynamic equations on time scale using a new definition for the delta derivative of
a Lyapunov function known herein as the Caputo fractional delta derivative on a time scale, aiming
to provide a unified and comprehensive understanding as well as extending the stability properties
from the classical sense to the fractional-order sense. The inclusion of time scales in fractional calculus
will bridge the gap between continuous and discrete mathematical frameworks, offering a versatile
platform for modeling and analyzing dynamic systems.

The study of dynamic systems on time scales has seen significant development since the
foundational work by Hilger (see [15]). This pioneering work laid the ground work for subsequent
research including [7,11,18,19] which provided comprehensive introductions and analyzed several
qualitative properties of solutions of dynamic equations on time scales, such as existence and
uniqueness, stability, and instability. More recently, in [17], the boundaries were pushed even further
by analyzing the existence and uniqueness of solutions to dynamic equations on time scales via
generalized ordinary differential equations. These results were then extended from integer order to a
more generalized form (fractional order) in [8,9,13,29,31].

Building on the existence and uniqueness results for Caputo-type fractional dynamic equations
on time scales established in [8], we extend the stability results in [18] to fractional order and the
Lyapunov stability results for Caputo fractional differential equations in [1] to a more generalized
(unified) domain (time scale). This unification of continuous and discrete calculus gives rise to
fractional difference equations in discrete time, fractional differential equations in continuous time,
and fractional calculus on time scale in combined continuous and discrete time.

The investigation unfolds by delving into the basic definitions of some important terminologies,
remarks, and a basic theorem which sets the stage for our contributions. New definitions and vital
remarks were given which are important in establishing crucial comparison results and stability
criteria for Caputo fractional dynamic equations. These results contribute not only to the theoretical
advancements in fractional calculus but also extends the results on integer order dynamic equations
on time scales to fractional order. To emphasize the relevance and effectiveness of the derived stability
criteria, we present a detailed example, illustrating the importance and applicability of our results.
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2. Preliminaries, Definitions and Notations

The foundational principles of dynamic equations, encompassing derivatives and integrals, can
be extended to noninteger orders through the application of fractional calculus. This generalization to
noninteger orders becomes particularly relevant when exploring dynamic equations on a time scale,
allowing for a versatile and comprehensive analysis of system behavior across both continuous and
discrete time domains. See [9], [13], [22], [27],and [29]. In this section we shall set the foundation,
introduce notations and give definitions that will be used in the main results.

Definition 1. For t € T, the forward jump operator o : T — T is defined as
o(t) =inf{s € T:s >t}

while the backward jump operator p : T — T is defined as
o(t) =sup{s € T:s < t}.

(i) ifo(t) > t, tis right scattered,

(i) if p(t) < t, tis left scattered,
(iii)  ift < maxT and o(t) = t, then t is called right dense,
(iv) ift > minT and p(t) = t, then t is called left dense.

Definition 2. The graininess function y : T — T for t € T is defined as

The derivative makes use of the set T¥, which is derived from the time scale T as follows.
If T has a left scattered maximum M, then TX = T'\ {M}. Otherwise TX = T

Definition 3 (Delta Derivative). Let h: T — Rand t € Tk, We define the delta derivative h® also known as
the Hilger derivative as
h(o(t)) = h(s)
t) —s

(0 = i "

, s# o).

provided the limit exists.
The function h® : T — R is called the (Delta) derivative of h on T*

If t is right dense, the delta derivative of h : T — R, becomes

(1) = lim M 1)

s—t t—s

and if ¢ is right scattered, the Delta derivative becomes

he(t) — h(t)

A _
=

For a function h : T — R, h” denotes h(c(t)).

Definition 4. A function h : T — R is right dense continuous if it is continuous at all right dense points of T
and its left sided limits exists and is finite at left dense points of T. The set of all right dense continuous function
is denoted by

Cra = Crd(T)
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Definition 5. Assume [a,b] is a closed and bounded interval in T. Then a function H : [a,b] — R is called
a delta antiderivative of h : [a,b] — R provided F is continuous on [a,b], delta differentiable on [a,b), and
HA(t) = h(t) for all t € [a,b). Then, we define the Delta integral by

fMO:H@—H@ Va,beT

Remark 1. All right dense continuous functions are delta integrable.

Definition 6. A function ¢ : [0,r] — [0,00) is of class K if it is continuous, and strictly increasing on [0, r]
with ¢(0) = 0.

Definition 7. A continuous function ¥V : R" — R with V(0) = 0 is called positive definite(negative definite)
on the domain D if there exists a function ¢ € IC such that ¢(|x|) < V(x) (¢(|x]) < =V(x)) for x € D.

Definition 8. A continuous function V : R" — R with V(0) = 0 is called positive semidefinite (negative
semi-definite) on D if V(x) > 0 (V(x) < 0) forall x € D and it can also vanish for some x # 0.

Definition 9. Assume V € C4[T x R",R] and pu(t) is the graininess function then we define the dini
derivative of V (t, x) as:

A — timing V& X) = V(E—p(t), x — p(D)h(t, x))
D_VA2(t,x) —lﬂ(tHOf u(0) )

DU 1) — Timsup YA+ ROk D) ~ V()

3
()0 HH) o

If V is differentiable, then D_VA(t,x) = DT VA(t,x) = VA(t,x)

Definition 10. (Fractional Integral on Time Scales). Let & € (0,1), [a, ] be an interval on T and h an
integrable function on [a, b)]. Then the fractional integral of order « of h is defined by

o _ f (t — S)“71
%JNO_A—T@Tm@M

Definition 11. (Riemann-Liouville Derivative on Tme Scale) Let T be a time scale, t € T, 0 < &« < 1,
and h : T — R. The Riemann-Liouville fractional derivative of order « of h is defined by

1 t A
Trag,A _ e\«
JDERR () = Ti—a </{Z (t—s) h(s)As)
Definition 12. (Caputo Derivative on Time Scale) Let T bea time scale, t € T, 0 < a < 1,andh: T — R.

The Caputo fractional derivative of order a of h is defined by

r(ll_ zx) /ﬂt(t —S)fthA(S)As

Theorem 1. [[19]] Let T be a time scale with minimal element ty > 0. Assume that for any t € T, there is a
statement A(t) such that the following conditions are verified:

2 DA (t) =

(i) S(to) is true;
(ii)  If t is right scattered and A(t) is true, then S(o(t)) is also true;
(iii) ~ For each right-dense t, there exists a neighbourhood U such that whenever S(t) is true, S(t*) is also true
forallt* e U, t* >t
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Then the statement S(t) is true forall t € T

Remark 2. When T = N, then Theorem 1 reduces to the well known principle of mathematical induction. That
is

1. S(to) is true is equivalent to the statement is true for n = 1
2. S(t)is true then S(o(t)) is true is equivalent to if the statement is true for n = k, then the statement is
trueforn =k+1

Definitions 1 to 12 are contained in [7,10,11,14,16,17,21,23,31]. We give the following definitions
and remarks.

Definition 13. Let T be a time scale. A point ty € T is said to be a minimal element of T if for any t € T,
t > tg whenever t # ty.

Remark 3. The concept of minimal element is important in the study of dynamic equations because it establishes
a starting point, a reference time from which the dynamics of the system evolve. In the study of difference
equations (a discrete-time setting), to represents the initial time step. Similarly, in differential equations (a
continuous-time setting), to represents the initial time instant.

Definition 14. The Grunwald-Letnikov fractional delta derivative is given by

[(tfto)]

: 1 . re
GLTDShA(t):Vlg&_W r;) (=1)"“Cylh(o(t) —ru)] t>to (4)

and the Grunwald-Letnikov fractional delta dini derivative is given by

[l

. 1 &
GLTD8‘+hA(t) =limsup — Y (=1)"“C/[h(c(t) —rpu)] t>to )
u—0+ U r=0
where 0 < « < 1, *C, are the binomial coefficients and [(tftO)
observe that if the domain is R, then (5) becomes

i ion =t
| denotes the integer part of the fraction o

[(f—fo)}
1 d
GLTD8‘+hA(t) = limsup T Y. (—D)"Ch(t—rd)] t>tg
d—0+ r=0
Remark 4. It is necessary to note that the relationship between the Caputo fractional delta derivative and the
Grunwald-Letnikov fractional delta derivative is given by

“ED§n® (1) =C Df[h(t) — hto)]® ©6)
substituting (4) into (6) we have that the Caputo fractional delta derivative becomes

[(t—ro)]
. 1 &
DR = lim e L (1) Gl ) b £2 1o

(

(i)
CTDRIA() = lim 1{h<a<t>>—h<to>+ Y (‘UmCr[h(‘T(ﬂ—rﬂ)—h(fo)]} )
r=1
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and the Caputo fractional delta dini derivative becomes
[ (tfto) ]
P
“TDg. hA(t) = limsup 1 Y. (—D)™Crlh(o(t) —ru) —h(ty)] t>to (8)

14
u—0+ H r=0

Which is equivalent to

CTDsthAu)—h;gsoipﬂ{h(a(t»—h(tow x (-U”‘Cr[h((f(t)—TV)—h(to)]} t2t )

for notation simplicity, we shall represent the Caputo fractional delta derivative of order a as
CTD® and the Caputo fractional delta dini derivative of order a as “*D%..

3. Statement Of Problem

Let T be a time scale with ty > 0 as a minimal element.
Consider the Caputo fractional dynamic system of order a with 0 < a <1

CTpra,A __

D*x® = f(t,x), t €T, 10)

x(to) = xo, to > 0
where f € Cy[T x R",R"], f(t,0) = 0and “TD*x? is the Caputo fractional delta derivative of x € R"
of order a with respect to t € T. Let x(t) = x(t,to, x9) € C%[T,R"] be a solution of (10) and assume
the solution exists and is unique (results on existence and uniqueness of (10) are contained in [8,13,22]),

the aim of this work is to study the stability of the system (10).

To do this, we shall use the Caputo fractional dynamic system of the form

TD*u? = g(t,u), u(ty) = ug >0 (11)

where u € Ry, ¢: Tx Ry — Ry and g(,0) = 0. (11) is called the comparison system. for the
purpose of this work we will assume that the function g € [T x Ry, R] is such that for any initial
data (tp,up) € T x R4, the system (11) with u(ty) = up has a unique solution u(t) = u(t;ty, ug) €
C(T,Ry) see [8].

Definition 15. The trivial solution x = 0 of (10) is called stable if given € > 0 and ty € T there exists a
0 = 0(e, tg) > 0 such that for any xo € R" the inequality ||xo|| < & implies ||x(t; to, xo)|| < €, for t > to.

Now, we introduce the derivative of the Lyapunov function using the Caputo fractional delta dini
derivative of h(t) given in (8).

Definition 16. We define the Caputo fractional delta dini derivative of the Lyapunov function V (t,x) €
Coa|[T x R", R ] (which is locally Lipschitzian with respect to its second arqument and V (t,0) = 0) along the
trajectories of solutions of the system (10) as:

[50]

DLV x) = fim sup yl“ ZO (D" CIV(e(t) = ru, x(o(t)) — p* £ (8, x(t)) = Vto, x0)]
p—0~ r=

do0i:10.20944/preprints202406.2042.v1
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and can be expanded as
CTDE VA(t, x) = limsup — {V(U(t), (o(8)) = V(to, xo) (12)
u—0+ H
[0
= Y (CO)THECHV (o) = rp, x(o(8) = pt f(tx(8) = V(k, XO)]}
r=1
wheret € T,x,xg € R", y =0 (t) — tand x(c(t)) — u*f(t,x) € R™.
If T is discrete and V (¢, x(t)) is continuous at t, we have that
=
1 7
TDVAL 1) = | L (<1 CCVIole) (o) - Vit x0)| 13
r=0
and if T is Continuous that is T = R, and V (t, x(t)) is continuous at t, we have that
CTD% VA (t,x) = limsup ;X{V(t,x(t)) — V(to, x0) (14)
d—0t

—t

=

(=]

gy

(=) HECHIV (= rd, x(8)) — d* £ (£, x(1)) = V(to, xO)]}

‘
Il
—

Notice that (14) is the same in [1] where d > 0

Given that lim YN ((~1)"*C, = 0where « € (0,1), and lim [M] = oo then it is easy to see
N—o0 pu—ot- H

that
[l

lim f (-1)*C, = —1 (15)
r=1

u—0+

Also from (8) and since the Caputo and Riemann-Liouville formulations coincide when h(ty) = 0, ([1])
then we have that

M
CTpa pA (1) =RLT Df;hA(t):nmsupia Y (—1)"Clh(o(t) — )], >t (16)
u—0+ H r=0

setting h(o(t) — ru = 1 we obtain

(5] .
C'I[‘Da hA =i i : —1)eC _RLT D%(1) = (t_tO) N > 17
TA() =limsup L Y (<1)°C KT o) = G e (17)
u—0 r=0

4. Inequalities on Fractional Dynamic Equations on Time scale and Comparison results

Lemma 1. Assume h,m € C,4(T,R), suppose there exists t; > to,t1 € T such that h(t;) = m(t) and
h(t) < m(t) for tg <t < t1. Then if the Caputo fractional delta dini derivatives of h and m exist at ty, then the
inequality €T D% h®(t;) >CT D% m®(t;) holds.

Proof. Applying (8), we have

=

CTDR (h(t) — m())® = lim sup 1“{ Y (1) G [h(o(8) — rye) — m(o () — )] — (o) — m(fo)]}

u—0+ r=0
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T
SO () = Db (1) = timsup {3 (<1)gClh(o(0) =) = m(o(t) =] = (o) = m(t)] |
u—0+ r=0
at t1, we have that
[t to]
TD% A (t) = —limsup { Z ) aCr[h(to) — m(to)]} +CT D% mb (1) (18)
u—0+ 7/‘ =
Applying (17) to (18), we have
CTa 1A (k=)™ B CT My ,, A
Diht(h) = ——mq— 5 [h(t) —m(to)] +=" Dim®(t1)
I'(l—«)
but from the statement of the lemma, we have that
h(f) < m(t) forty <t <t
= h(t) —m(t) <0, fortg <t <t
And so it follows that
(t—to)™"
m[h(fo) m(to)] >0
implying that
CTDihA(tl) >CT D‘imA(tl)
O
Theorem 2. Assume that
(i) g € Cy[T x Ry, Ry | and g(t, u)p is non-decreasing in u.
(ii) V € Cy[T x RN, R ] be locally Lipschitzian in the second variable such that
“IDLVA(Lx) <g(tV(t ), (t,x) € Tx RY (19)
(iii) z(t) = z(t;to, ug) is the maximal solution of (11) existing on T.
Then
V(t,x(t)) <z(t), t>t (20)
provided that
V(to, x0) < uo 1)

where x(t) = x(t;ty, x0) is any solution of (10),t € T, t >t
Proof. Apply the principle of induction as stated in Theorem 1 to the statement
S(t): V(t,x(t) <z(t), teT, t>t

(i)  S(to) is true since V (o, xg) < 1y
(i) Let f be right-scattered and S(t) be true. We need to show that S(ee(t)) is true; that is

V(e(t),x(a(t))) < z(e(t)) (22)
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set h(t) = V(t,x(t)) then h(c(t)) = V(o (t), x(c(t))) but from (8), we have that
(5]
"
TDY 1A (t) = limsup ilx Y (—1)“Clh(o(t) —ru) —h(to)] t >t
‘uﬁO+ V r=0
also
[(t;to)]
CTDE 28(4) = limsup — Y (~1)*Cy[z((t) — rpr) — 2(k)] ¢ > to
]/l—)O-'r :u r=0
so that
“ID1zA(H) T DEnt ()
[M] [(f*fo)]
1 ! 1 !
= lim sup — Z (=1)"*Cy[z(o(t) — ru) — z(to)] — limsup — Z (=1)"*Cy[n(o(t) — ru) — h(to)]
u—0+ M 3 u—o+ B30

(=il
D224 (1) T DI (1) = limsup = IEEIE [[z(o(t) — 1) — 2(t0)] — (o (t) — i) — h(ton}
n— r=

[(t—”to)]
(C“TDizA(t) et Dih%))u“ =timsup 3 (-1)°°C, [[z(a(t) — v — 2(t0)] — [h(o(£) — i) — h(fo)]]
= r—

(D120 = D))t < [2(0(6) —2(00)] = B0 (0) ~ hit)]
(D82 7 DA 0 ) < [alett) — W)~ [2() ~ (o]
[2(o(8)) — k(o (1))] > (CTDizAa) et DihA(t))M“ T [z(to) — h(to)

[h(o(8)) = z(o(£))] < <CTDihA(t) - DiZA(f)>H“ + [1(to) — z(to)] < (g(t/h(t)) - g(t/Z(t))> p* + [h(to) — z(to)]
Since g(t, u)u is non decreasing in u and S(t) is true, then h(o(t)) — z(o(t)) < 0so (22) holds.
(iii) Lett be right dense and NV be a right neighborhood of t € T. We need to show that S(t*) is true
for t* € N. This follows from the comparison theorem for Caputo fractional differential equations
since at every right dense point t* € N, o(t*) = t*. See [1].
Let w be a small enough arbitrary positive number such that w < By(where By is a small enough
number on the time scale T) and consider the initial value problem

IS = g(t',u) + w, u(ty) = ug+w (23)
fort* € N.
The function u,, (*) = u(t*) + w is a solution of (23) if and only if it satisfies the delta Integral
equation
1 t
u(t) =up+w+ W/t (t* —8)* Hg(s,uw(s)) +w)As, t,seN (24)
0

Let h(t*) € C,y(T, R ) be such that h(t*) = V(t*,x*(+*)), where x*(t*) is any other solution of
(10). We show that
h(t) < ue(t*), fort* e N (25)

the inequality (25) holds for t* = f since

h(to) = V(to, x0) < ug < uq(to)
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Assume that the inequality (25) is not true, then there exist a point t] > ¢y such that
h(t]) = uw(t]) and h(t*) < ue(t*) for to <t" <tj, t',t] e N
From lemma (1) it follows that
CTDLIA(t) > Dud (F)

So that
TDL VA, x* (1)) > DLuly(t)

and using (23) we arrive at
CIDLVA(H, (1)) > gt uw(H)) +w) > gt (1))

Therefore,
IDYLKA(H) > g, h(H)) (26)
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Now,
CTDﬂC_hA(t*)
. [0]
= limsup —“{h(t*) —h(to)) = Y (1) TN EC) It —rp) — h(to)]}, fort* e N
u—0+ I =1

r
— limsup — {V(*, x* (")) — V(to, x0)

u—0+
Pt
(2]

_ Z D EC) [V (F = rp, x* (= 1) — V(to, x0)]}

= limsup %{V(t*,x*(t)) — V(to,x0)

u—0+
[t to]
- Z 1y >PWﬁ—wm%m—y%mw%m»—vme
IV 1 () — B 5E))) — V(0 30)
Hwﬁﬂ%ﬁw—m»—WMmﬂ}

= limsupi{ (£, x*(t")) — V(to, x0)

u—0+

[t #to]
X (TG | VI = ()~ i1 () = Vit )

r=1

VI - (5) — A 2 ()] 4 VE — 2 —w))”

= limsup %{V(t*,x*(t*)) — V(to, x0)

u—0+

[t*;to]
- ) (=G [[V(t*—mx*(t*)—y“f(ttx*(t*)))—v<to,xo>]

r=1

LV — (8 — 1) — [V(E = (#) u“f(ttx*(t*)))]} }

— limsup %{V(t*,x*(t*)) — V(to,x0)

u—0+
Pt
(2

- Z (D)ECAV(E = (= f(f*rx*(t*))—V(foer)]}

=
— limsup — { Z DY EC) [V (= rp, x* (t° — 1))
u—0+ pue r=1

V(" =, x5 (8) - V“f(f*IX*(t*)))]}
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Since V (t*, x) is locally Lipschtzian in the second variable, we have
[t*;to]
1
CTDf‘JzA(t*) < qu‘Df‘FVA(t"‘,x*(t*)) + Llimsup — Z (=1)"(*Cy)
u—0+ | —
[l (8 = rp) = (27 (87) = " f (£, 27 () |
Where L > 0is a Lipschitz constant.
Aspu — 0, ||x*(t* —rp) — (x*(t*) — u*f(+*,x*(*)))|| — 0, so that from (19) we have
CTDf"JlA(if*) =CT DﬁVA(t*,x*(t*)) < g(t*, V(£ x*(t7))) = g(t*, h(t")) (27)

Now (27) with t* = t] contradicts (26), hence (25) is true. For t* € A/, we now show that whenever
wq < wy, then
U, (1) < U, (17) (28)

Notice that (28) holds for t* = # since u(ty) + w1 < u(ty) + wa» = w; < wy. Assume
the inequality (28) is not true. Then there exist a point t; such that ue, (#]) = uw,(t;) and
Uy (F°) < s, (F°) for tg < t° < #5 5 € N
By Lemma (1), we have that

IDYug, (#) > DYug, (1)

However,

IDLug, (1) = Dhug, () = (1, e, (1)) + w1 — [§(F, ey (£)) + 2]

= w—wy <0
which is a contradiction and so (28) is true. Now from (28) and since w < B, we deduce that
U, (1) < e, () < o <u(t’) +w; < |u(t*)+Bp| <M
and therefore we can say that the family of solutions {u, (t*)} is uniformly bounded with bound

M > 0 on T. This means that |u, (t*)| < M for t* € N and w € (0, B]

We now show that the family {u,(t*)} is equicontinuous on T. Assume S = sup{|g(*, x*)| :
(t*,x*) € N x [-M, M]}. Now let us take {w;},(t*), as a decreasing sequence, such that
lim w; = 0 and consider a sequence of functions u, (t*) and take t;,t; € N with t] < t5, then
1— 00

we have the following estimate

|uwi<t;> - uwi(tT)|



https://doi.org/10.20944/preprints202406.2042.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 June 2024 d0i:10.20944/preprints202406.2042.v1

13 of 22

< | 09 e st )
A TRGEDe | e
< o[ |[F a4 | [T —sra|
~ g [ = ae [P e s | [ -
- S [ ) o G

- [ G 5o

+ ' (] —lxtO)“

|

A family of solutions {u, (t*)} is said to be equicontinuous if given € > 0, we can find § > 0 such
that |u, (t5) — tw, (t])| < € whenever [t — 5| < 4.

implying that |u, (t5) — e, (t])]| < F(iil) [(t‘ik - to)"‘] < e provided |t5 — t7| < &

1

1 1
T 1)\ « T(a+1) ) « 28 (th—tp)~ T(a+1)\ «
Now, we choose § = (e (2“; )> , (6 (2“8 )> > ( r((§+1(;) X (gs )) = (t; —to) but

(t5 —tg) > |t5 — t]| so since (t3 — ty) < &, then |t; — t]| < J. Proving that the family of solutions
{uw(t*)} is equi-continuous. By the Arzela-Ascoli theorem, {u,(t*)}has a sub-sequence
{uw, (t*)} which converges uniformly to a function z(t*) on T. We then show that z(t*) is a
solution of (11). Equation (24) becomes

.
() = g + wy, + F(la) [ = 9 (55t (5)) + i ) 29)

to
Taking the limit as i; — oo, then u, (t*) — z(t*) on T. Now (29) yields
j

z(t*) = ug + 1"(104) /tt*(t* — s)zx—l(g(s,z(t*)))As (30)

0
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Thus, z(t*) is a solution of (11) on T. Since lim u,,, (t*) = z(t) exists, then for any u,,, that satisfies
j—oo ]

the dynamic equation (11), ., (t*) < z(#*). So from (25), we have that h(t*) < u,(t*) < z(t*) on
T.

Therefore by induction principle, the statement S(t) is true, and this completes the proof

O

Theorem 3. Assume the following conditions are satisfied:

1. the function V(t,x(t)) € C,g[T x RN, R ], V(t,x(t)) is locally Lipschitzian with respect to x, V (t,0) =
0 and the inequality

¢(llx[]) < V(t x(t)) (31)
holds for all (t,x) € T x Rand ¢ € K
2. g€ Cy|T x Ry, Ry ] is nondecreasing with respect tou at all t € T, g(t,0) = 0, and
DLVA(L (1) < g(4 V(L x(1))
3. the zero solution of the comparison equation (11) is stable.

Then the zero solution of the system (10) is stable.

Proof. By condition (3) of Theorem 3, we have that the zero solution of (11) is stable, so let € > 0 be
given, and for ¢(e) and ty € T, let there exists A = A(tp,€) > 0 such that

z(t) < ¢(e) atallt >t (32)

whenever 1y < A, where z(t) = z(t, t, up) is the maximal solution of the comparison system (11).
Now, V(t,0) = 0and V € C,; this implies that V is continuous at the origin, then given A > 0,
we can find a § = §(tp, A) > 0 such that for xy € R", we have that, ||xg|| < § implies V(ty, xp) < A.
Claim that ||xo|| < J implies ||x(#)|| < e atall t € T where x(t) = x(t, fo, o) is any solution of the
system (10). If this is not true, then there would exists a time ¢t; € T, t; > ty such that the solution
x(t) of the dynamic system (10) at the instant time #; leaves the € — neighborhood of the zero solution.
Thatis ||x(t)|| < eatty <t < t; and
(k)] > e (33)

but from Theorem 2, we have that
V(t,x(t) <z(t), to<t<h (34)

provided V (tg, xp) < up, where z(t) is maximal solution of the comparison system (11).
Combining (31),(32), (34), and (33) for ¢t = t; we obtain

¢(llx(t)]]) <V, x(t1)) < z(t1) < @le) < ¢([lx(tr))]

= ¢(llx(t)I) < ollx(t)] (35)
The contradiction (35) shows that #; ¢ T and therefore ||x(t)|| < € atall t € T whenever | x|l < J and
such the zero solution (10) is stable. O
5. application

Consider the system of dynamic equations

()= x1 sec? t — tan? H(xo + x1) + x2 cot? t 6)

A

1
x3(t) = 2(x; — x3) + xp cosh? t — 2x; cos? t
2 1— X2 2 1
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for t > ty, with initial conditions

x1(to) = x10 and  x2(tp) = x20

where x1,x, € R? f = (f1, f2)
Consider V(t,x1,x3) = |x1| + |x2|, for t € T and x1,x; € R?, where x € S(p), p > 0. Then we
compute the dini derivative for V (¢, x1,x3) = |x1| + |x2| as follows from (3) we have that

D) — timsap L HH0, T HOF(,) = V(1,2
T o u(t)

i lx1 +p(t) fi(t,x)] + [ + p(t) fa(t, %) | = [|x1] + [x2]]
imsup
u(t)—50 H(t)

< timsup LB 2]+ ol + (100, )] = 1] -
H(t)>0 40

~ e o)
s EOIAGD + (0]
1(H)—0 u(t)

< Al )]+ | f2(t x)]
= |x1 sec® t — tan? £(xp + x1) + X2 cot? £ + |2(x1 — Xx2) + x5 cosh? t — 2x; cos? t|
= |xysec? t — xp tan t — x tan® t + xp cot? | 4 [2x1 — 2xp 4 xp cosh? t — 2x cos? £
= |x1(sec? t — tan® t) — xp(tan? t — cot? )| + |2x1 (1 — cos? t) — x2(2 — cosh? t)|

N 1 sin? ¢t X sin?t  cos?t
1\ cos2t  cos?t 2\ cos?t  sin’t

+

2x1(sin2t)—x2(2— ! >‘

cos? t

1—sin?t sin* t — cos* t 5 1
< ||\ ——— ) — x| ————— 2x in~ t X 2
- 1( cos? t ) 2( cos? tsin? t ) 23| sin” ] + | 2|(| |+ cos? t )
2 2 2 22 2
cos-t sin“t — cos- t)(sin“ t + cos“ t
x1< 2 >_x2( 2)( ) )> +2|x]|+3|XQ|
cos- t cos~ tsin“t

(sim2 t—cos?t

< |x1|+ |x
< lal + x| cos? tsin? t

>‘ + 2|x1] + 3|x2]
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— 1) + ol | ( g — — )| + 201+ 3l2]
— T cos?t T sin? ! 2
1 1
<3 3
< |x1|—|—x2|( prevsrd Bl ey ) +3|x]
< 3lx1] + 5| xa| < 5[|xa| + [x2]]
DYVA(t,x) <5V (t,x1,x) = g(t, V)
Now consider the consider the comparison equation
DY u® =5u >0, u(0) = ug (37)
with solution
u(t) = uge™ (38)

Even though conditions (i)-(iii) of [18] are satisfied that is V € C,y[T x R",R], D*VA(t,x1,x0) <
g(t, V(t,x))and \/x2 + x3 < |x1| + |xp| < 2(x% 4 x3), for b(||x||) = r and a(||x||) = 2r?, it is obvious to
see that the solution (38)of the comparison system (37) is not stable, so we can not deduce the stability
properties of the system (36) by applying the basic definition of the Dini-derivative of a Lyapunov
function of dynamic equation on time scale to the Lyapunov function V(t, x1,x2) = |x1| + |x2].

Now, we will apply our new definition on the same system but as a Caputo fractional dynamic
system

CTDxB (1) =  xpsec®t — tan® t(xy 4 x1) + xp cot® t

(39)
T (t) = 2(x1 — x2) + Xxp cosh? t — 2x; cos? t

for t > t(, with initial conditions

x1(tg) = x10 and  xp(ty) = x20
where X1,Xp € ]Rz f = (fl,fz)
Consider V(t,x1,x2) = |x1| + |xa|, for t € T and x1,x, € R?, where x € S(p), p > 0. Then
condition 1 of Theorem (3) is satisfied, for ¢ = %r, where ¢ € K with x = (x1,x2) € R2, so that the

associated norm ||x|| = m

Since

V(t, x1,x2) = [x1] + |22
then ¢(||x]]) < V(tx1,x2). From (12), we compute the Caputo fractional Dini derivative for
V(t, x1,x2) = |x1| + |x2| as follows

TDYVA(t, x)

~ timsup yla{V(cr(t), (o(8)) = V(to, x0)
[t;

-

il
> (=1)ECHV(o(t) =, x((£) = p* £(1,x(£))) = V(bo, xO)]}

-
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. [=2)
— limsup a{<|x1<a<t>>| (o) — (xol + ) + Y (~1)7(*C,)
u—0* M r=1
Hxl(‘f(f))—Vafl(t/x1)|+|x2((7(f))—#“fz(f/x2)|—(|x10+|x10)]}
. [=9)
< limsup a{<|x1<a<t>>| (o)) — (xol + ) + Y (~1)7(C)
u—0* M r=1
(0 ()] + 11 fr (s x0)] + [xa(o ()] + [ Falts x2)] — (Jxao] + \xlom}
snmsupﬂ{<|x1<a<t>>|+|xz<a<t>>|>—<|xm|+|xzo|>
u—0t M
[0
+ 1 (160 (o)) + beale(®)|
[=0)
£ 3 (1700 [Wﬁ(t; )|+ 1 fals xz>|]
(=10
— —1)"(*Cy) | |x X
ORERY >[| ol + m]}
1 [t to]
=hmsupa{<|x1< )]+ (e (D)) + z [rx1<a<t>>|+|xz< )
u—0t H
2
—(|x10] + |x20]) — 2 [|x10|+|x10|]
r=1
[t to]
e 2 I[Ifl(t )|+ s xz>|]}
(5] (5]
<11£%gpy{ e (£ | (e ) + rale ()] - ¥ (1) 0]+ bl }
(0]
Flimsup ) (<1)°(“C,)| [m(t; )|+ falt xz>|]
u—0t  r=1

Applying (15) and (17) we have

— L (e )+ (o)) — 2 (ol + o) [ Lf630) + fa(sie)|

< (1t_<_1 t_o)a‘)“ ([x1 (e ()] + [x2(c(1))]) — [|f1(t; x|+ |fa(t; x2)|]
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Ast — 00, LY (|21 ((1))] + [x2(0(1))]) = O, then
IDLVA(Ex,x2) < — ||l x)] + [ falt %)
= - [|x1 sec? t — tan? t(xp + x1) + X2 cot® t| + |2(x1 — x2) + xp cosh? t — 2x1 cos? t|}
=— [|x1 sec? t — xptan® t — xq tan? t 4 xp cot? t| + |2x; — 2x2 + X2 cosh? t — 2x; cos? t|}
=— [|x1(sec2 t —tan?t) — xp(tan’ t — cot? t)| + |2x1 (1 — cos? t) — x»(2 — cosh? t)|]
1 sin? t sint  cos?t 5 1
S L LA I (L 231 (sin? ) — 22 (2 —
lxl(coszt cos2t) xz(COSZf sin2t> + |2 (sin”t) 2( C052f>’
1—sint sin* t — cos* ¢ 2 1
< - ST (TS PN L oy || sin? 2
B x1< cos?t ) x2< cos2 tsin? t ) (25| sin |+|x2|<| I+ cos? t )
2 .2 2 4\ (cin2 2
cos” t sin” t — cos” t)(sin” t + cos* t)
< _ il R
- ‘x1<coszt) x2< cos? tsin? t ) + 2P —|—3|x2|]
L2 2
sin“t — cos” t
<~ bl + 1 (2.2)\+2|x1|+3|x2|]
cos- tsin“ t
1 1
== |l + vl ooy - o +2[x1| + 3Jxz]
1 1
<-13 3|x
< { |x1|+|x2|(‘cos2t oy > + 3| 2@
< =3[x1] = 5[xz| < =3[|x1[ + |x2]
Therefore
IDYVA(L 21, x0) < —3V(t,x1,x2) (40)
Consider the comparison system
CTD?‘IFMA =g(tu) < —-3u 41)

using the Laplace transform method
ITp*3u® +u=0
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L{TDYulY +3L{u} =0
= S*U(s) —S* lug+3U(s) =0
_ -1 _ upS*!
U(s)(s* +3) = upS* "U(s) = 13
taking the inverse Laplace transform we have
. StX*l
u(t) =ugl {S“ +3} (42)
Recall that
L f $F p-1 «
L ) = tP7 Ey g(AtY) (43)
Comparing (43) and (42), wehaveqg—f, = B=15*-A=85+3 = A =-3
so we have,
u(t) = upEy1(—3t%), fora € (0,1), (44)
where E,(z) is the Mittag-Leffler functions of one-varriable which can be approximated as:
o tmx tzx th
Epq(—t*) = Y (=1)" =1- A .
(=1 = 3 (D" e fita) e"P[ 1"(1—1—04)]
Now, let |ug| < J, then from (44), we have |u(t)| = [BugEy1(—t%)| = ’3u0 exp [_r(ltijm)” <
3|exp |~ | |6 < € whenever |uy < § = ———
‘ [ F(H“")] ‘ 3‘exp[—@”

Therefore given € > 0, we can find a § > 0 such that |u(f)| < e whenever |up| < ¢

Since all the conditions of Theorem 3 are satisfied, and trivial solution of the comparison system
(41) is stable, then we conclude that the trivial solution of system (39) is stable.

Figure 1 below is the graphical representation of E, 1 (—3t*) which was then approximated in

Figure 2 as exp [ } and the behaviour of the curve shows stability over time.

tl’t
T T(1+a)

Mittag Leffler
0.006 -

0.005 -
0.004 -
0.003 -

0.002 -

0.001+

L | L L L | L L L | L L L T I t
20 40 60 80 100

Figure 1. Graph of E, 1 (—3t") against ¢

do0i:10.20944/preprints202406.2042.v1
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Plot of Exp[-(3 t10.2)/Gamma[1 + 0.2]]
lt, q=0.2)

0.005

0.004

0.003

0.002

0.001

I I I I I
20 40 60 80 100

0.000+

3t
1

Figure 2. Graph of exp [— T(11a)

] against t
6. Conclusion

In conclusion, our study significantly advances the understanding of Lyapunov stability for
Caputo fractional dynamic equations on time scale. The new concept developed in this work
successfully contributes to the advancement of the Fractional Calculus in general and stability theory
in particular from a continuous domain to a unified continuous and discrete domain which is a
breakthrough for modeling and other practical application. Through the establishment of a comparison
results and stability criteria, we have provided a solid theoretical foundation for analyzing the stability
properties of these equations across different time scales. The inclusion of an application further
showcases the applicability and effectiveness of our results over existing results in integer order and
continuous domain.
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