

Article

Not peer-reviewed version

Pan-Genome Analysis of TRM Gene Family and Their Expression Pattern under Abiotic and Biotic Stresses in Cucumber

[Li li Zhao](#) , Ke Wang , [Zi mo Wang](#) , Shun peng Chu , [Chun hua Chen](#) , [Li na Wang](#) , [Zhong hai Ren](#) *

Posted Date: 27 June 2024

doi: [10.20944/preprints202406.1949.v1](https://doi.org/10.20944/preprints202406.1949.v1)

Keywords: pan-genome; cucumber; TRM; fruit shape; abiotic stress response; biotic stress response

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Pan-Genome Analysis of TRM Gene Family and Their Expression Pattern under Abiotic and Biotic Stresses in Cucumber

Lili Zhao ^{1,†}, Ke Wang ^{1,†}, Zimo Wang ¹, Shunpeng Chu ¹, Chunhua Chen ¹, Lina Wang ¹ and Zhonghai Ren ^{1,*}

Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture and Soil Fertilization

* Correspondence: Correspondence: zhren@sdau.edu.cn

† These authors contributed equally to this work.

Abstract: Cucumber (*Cucumis sativus* L.) is a vital economic vegetable crop, and TRM (TONNEAU1 Recruiting Motif) gene plays a key role in cucumber organ growth. However, the pan-genomic characteristics of the TRM gene family and their expression patterns under different stresses have not been reported in cucumber. In this study, we identified 29 CsTRMs from the pan-genomes of 13 cucumber accessions, with *CsTRM29* existing only in PI183967. Most CsTRM proteins exhibited differences in sequence length, except five CsTRMs having consistent protein sequence lengths among the 13 accessions. All CsTRM proteins showed amino acid variations. Analysis of CsTRM gene expression patterns revealed that six CsTRM genes strongly changed in short-fruited lines compared with long-fruited lines. And four CsTRM genes strongly responded to salt and heat stress, while *CsTRM14* showed responses to salt stress, powdery mildew, gray mold and downy mildew. Some CsTRM genes were induced or suppressed at different treatment timepoint, suggesting that cucumber TRM genes may play different roles in responses to different stresses, with expression patterns varying with stress changes. Remarkably, the expression of *CsTRM21* showed considerable change between long and short fruit and in responses to abiotic stresses (salt stress, heat stress) as well as biotic stresses (powdery mildew, gray mold), suggesting a dual role of *CsTRM21* in both fruit shape determination and stress resistance. Collectively, this study provided a base for further functional identification of CsTRM genes in cucumber plant growth and stress resistance.

Keywords: pan-genome; cucumber; TRM; fruit shape; abiotic stress response; biotic stress response

1. Introduction

TRM (TONNEAU1 Recruiting Motif) family genes play important roles in the growth and development of plants, exerting significant functions in various plant species. In *Arabidopsis*, 34 TRM proteins were identified, and half of them are putative microtubule-associated proteins [1]. *AtTRM1* and *AtTRM2* regulate leaf morphology by positively promoting longitudinal polar cell elongation [2]. The *Attrm5* mutant causes slow leaf growth, delayed flowering, and shortened root length [3]. *AtTRM61*, has a conserved functional structure and possesses conserved binding motifs for cofactor S-adenosyl-L-methionine (AdoMet), affects embryo arrest and seed abortion [4]. Additionally, TRMs can interact with TON1(TONNEAU1) and PP2A (Protein Phosphatase 2A) through their M2 and M3 domains, respectively, forming the TTP (TON1-TRM-PP2A) protein complex. This complex is targeted to microtubules (MT) [5], regulating microtubule organization and preprophase band (PPB) formation, thus influencing cell division and/or growth. This regulation ultimately affects the size and shape of plant organs [5–10]. In tomatoes, TRMs can interact with OFPs through their M8 domain. The OFP-TRM protein complex undergoes relocalization between the cytoplasm and microtubules, maintaining dynamic balance to regulate cell division and organ growth, ultimately affecting fruit shape [11,12]. *SiTRM5* positively regulates fruit elongation by influencing cell division [13]. In the LA1589 background, although *SiTRM3/4* minimally influenced fruit shape, the absence of

SITRM5 led to a slight flattening of the fruit [14]. The fruit shape of the double mutant lacking both *SITRM3/4* and *SITRM5* closely resembles that of the single mutant lacking only *SITRM5* [14]. Introducing the non-functional versions of either *SITRM3/4* or *SITRM5* into *ovate/sov1* near-isogenic lines (NILs) partially restored the pear shape of the fruit. Moreover, when both non-functional alleles of *SITRM3/4* and *SITRM5* were combined in *ovate/sov1* NILs, the fruit shape index (FSI) was similar to that of wild-type (WT) fruits [14,15], indicating the additive effects of *SITRM3/4* and *SITRM5* in regulating fruit elongation. Fruit shape analyses of the null mutants of *SITRM17/20a*, *SITRM19*, or *SITRM26a* in the LA1589 background, generated using CRISPR/Cas9, revealed an interesting finding. It suggested that *SITRM17/20a* and *SITRM19* work together synergistically to regulate fruit elongation, while *SITRM26a* has a minor effect on fruit shape. The null alleles of *SITRM5* and *SITRM19*, whether in the LA1589 or *ovate/sov1* backgrounds, were observed to counterbalance each other in the regulation of fruit elongation. This suggests that *SITRM5* and *SITRM19* have opposing effects on fruit elongation [14]. In rice, the TRM homologous genes OsGW7/GL7/SLG7 interact with TON1 and PP2A through their M2 and M3 domains, respectively, and target them to the cortical microtubules. By influencing cell length and width, they regulate grain size and quality [16–18]. In cucumber, *CsTRM5* affects fruit shape by influencing the direction of cell division and cell expansion. Additionally, ABA participates in regulating cucumber fruit elongation through *CsTRM5*-mediated cell expansion [19].

TRM gene family members are often localized to microtubules [2,5,13]. Microtubules are crucial components of the plant cell skeleton, and they play vital roles in maintaining cell shape, adapting to growth, development, and environmental changes, as well as in processes such as cell division, intracellular transport, immune responses, and stress tolerance [20–29]. MICROTUBULE-DESTABILIZING PROTEIN 25 (MDP25) is a hydrophilic cation-binding protein of the plant-specific developmentally regulated plasma membrane polypeptide(DREPP) family [30]. It is postulated that *AtMDP25* similarly modulates stomatal closure, root hydrotropic response, and immune responses by influencing microtubule dynamics [31–33]. *OsDREPP2* exhibits an affinity for microtubules and, *in vitro*, it inhibits microtubule polymerization [34], and *MtDREPP* induces the fragmentation of microtubules within membrane nanodomains during rhizobial infections [35]. Ethylene signaling regulates microtubule reassembly by up-regulating microtubule-stabilizing protein WAVE-DAMPENED2-LIKE5 (WDL5) expression in response to salt stress [36]. Katanin1 (KTN1) acts as a microtubule-severing protein, aiding in the maintenance of the organized microtubule structure. Under hypersalinity, the microtubule-associated protein KTN1 regulates hypersalinity-induced microtubule disassembly/assembly, thereby enhancing salinity tolerance [37]. Microtubules under high temperature stress undergo depolymerization [38]. High temperature stress (35°C-37°C) primarily disrupts the formation of excessive microtubule-organizing centers, which bind to the minus end of microtubules, consequently regulating their elongation and the shortening of microtubule arrays [39]. The changes in microtubule dynamics impact vesicular transport, protein trafficking, and cell wall deposition [40–43]. Currently, there are no reports on the involvement of cucumber TRM family genes in biotic or abiotic stress.

Pangenomics seeks to capture the full spectrum of genetic variation within a species through the assembly and comparative analysis of genome sequences from multiple individuals and displayed powerful potential in discovering novel genes or gene novel function [44]. In cucumber, a graph-based pan-genome was constructed based on 12 accessions [45], which provided a resource for characterizing variations of TRM proteins. In this study, we identified a total of 29 *CsTRM* genes in the pan-genome of cucumber and found that most of them vary in protein length between the 13 accessions, and all *CsTRM* proteins showed amino acid variations. In addition, we analyzed the expression patterns of the *CsTRM* genes using transcriptomic data in fruit and under different stresses that may play roles in different stresses. Therefore, our study provides a reference for investigating the potential role of TRMs for fruit shape and stress resistance in cucumber.

2. Materials and Method

2.1. Identification of TRM Genes in Cucumber

To identify TRM genes in cucumber, download the cucumber pan-genome assembly and annotation files from <https://www.ncbi.nlm.nih.gov/>, and the 'PI183967' genome assembly from <http://www.cucurbitgenomics.org/>. Use TBtools to extract CDS sequences and translate them into protein sequences. Retrieve *AtTRM* family members from <https://www.arabidopsis.org/>, and employ these sequences as queries in TBtools to predict TRM family members in cucumber. Perform a conserved motif analysis using the online MEME tool (<https://www.omicsclass.com/article/432>). Visualize the results with TBtools and screen for the final *CsTRM* family members based on the conserved M2 motif.

2.2. Protein Length, Motif Composition and Gene Structure Analysis

The protein sequences of *CsTRMs* in different cucumber accessions were extracted and the proteins' lengths were counted using TBtools. The variation of amino acids was analyzed using DNAMAN program. The conserved motifs were identified using TBtools. The location information of CDSs and UTRs was extracted from the genomic annotation database and graphed using TBtools [46].

2.3. Gene Duplication and Synteny Analysis

The genomic databases of cucumber, Arabidopsis, rice, tomato, and maize were downloaded from <http://cucurbitgenomics.org/organism/20> and <http://plants.ensembl.org/index.html>, and then, the gene duplication events and the syntenic relationships were obtained using the Multiple Collinearity Scan toolkit (MCScanX) [47] with the default parameters. The results were constructed using TBtools [46].

2.4. Transcriptome Analysis of *CsTRM* Genes in Fruit

The publicly available transcriptomic data of cucumber fruit carpel numbers (SPR182933) [48], long fruit 408 and short fruit 409(SPR045470) [49], WT and *CsFUL1^A-OX-29*(SPR117025) [50] were downloaded from NCBI (<https://www.ncbi.nlm.nih.gov/geo/browse>) to analyze the expression patterns of *CsTRMs* in fruit. The genome-wide expression of the *CsTRMs* gene was shown on a heatmap using TBtools [46]. For the transcriptome analysis of the *CsTRMs*, a threshold of FDR (or p-value) ≤ 0.05 and an absolute value of \log_2 (fold-change) ≥ 1 or \log_2 (fold-change) ≤ -1 were used to define DEGs.

2.5. Transcriptome Analysis of *CsTRMs* in Response to Abiotic and Biotic Stresses

The publicly available transcriptomic data of cucumber treated with salt (GSE116265) [51], heat (GSE151055) [52], PM (GSE81234) [53], GM (SRP062592) [54] and DM (SRP009350) [55] were downloaded from <https://www.ncbi.nlm.nih.gov/> to analyze the expression patterns of *CsTRMs* under different stresses. After aligning the gene IDs to the cucumber genome, the genome-wide expression of the *CsTRMs* gene was shown on a heatmap using TBtools [46]. For the transcriptome analysis of the *CsTRMs*, a threshold of FDR (or p-value) ≤ 0.05 and an absolute value of \log_2 (fold-change) ≥ 1 or \log_2 (fold-change) ≤ -1 were used to define DEGs.

3. Result

3.1. Identification of *CsTRM* Genes Based on the Cucumber Pan-Genome

To investigate the variation of the TRM genes across cucumber accessions, we identified *CsTRM* genes from the pan-genome including 13 cucumber accessions [45]. A total of 29 putative TRM genes were identified among the genomes of the 13 cucumber accessions (Table 1, Table S1). We renamed them *CsTRM01*-*CsTRM29* based on their order on the chromosomes to avoid confusion in this study (Table 1). Additionally, *CsTRM04* exhibits multiple copies in W4. There were 28 *CsTRM* genes identified from '9930', being consistent with the previous study [56], and from PI183967, lacking

CsTRM03 and possessing a unique *CsTRM29* (Table 1); 27 from 'Cu2', 'Cuc64', 'W4', 'Hx14', 'Hx17' 'Cuc37', 'Gy14' and '9110gt'; 26 from 'XTMC'; 25 from 'Cuc80' and 'W8' (Table 1). *CsTRM01, 02, 06, 07, 09, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 24, 25, 26, 27* and 28, all are present in the 13 cucumber accessions. *CsTRM3* is absent in Cuc80 and PI; *CsTRM04* is absent in Cuc80 and W8; *CsTRM05* is absent in XTMC and W8; *CsTRM08* is absent in XTMC; *CsTRM10* is absent in Cu2 and Cuc80; *CsTRM16* is absent in Cuc64, W4, W8, Hx14, Hx17 and Cuc37; *CsTRM20* is absent in Gy14; *CsTRM22* is absent in 9110gt. *CsTRM29* only existing in PI183967 is identified as a new member of the *CsTRM* gene family in the 13 cucumber accessions

Table 1. Identification of TRM genes in the 13 cucumber accessions.

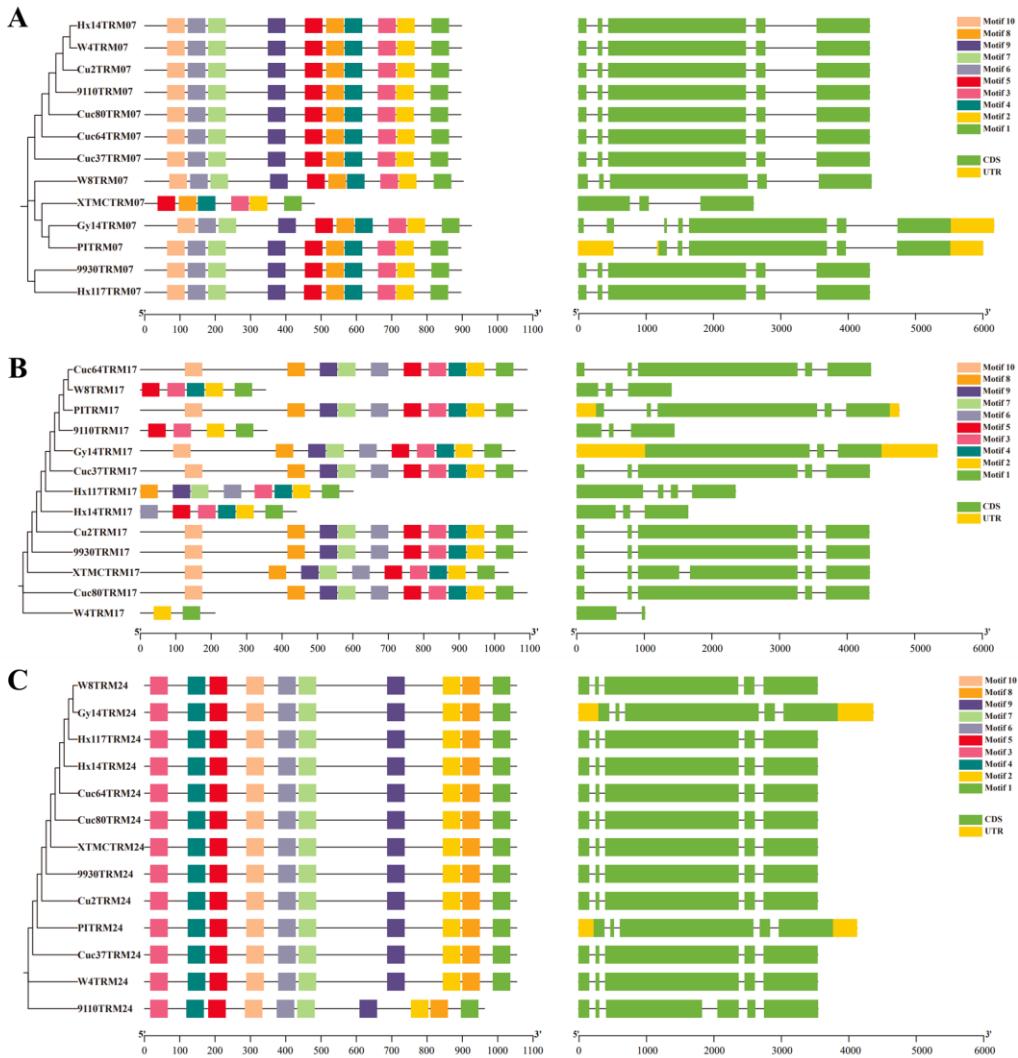
Gene name	9930	XTMC	Cu2	Cuc80	PI	Cuc64	W4	W8	Hx14	Hx17	Cuc37	Gy14	9110gt
<i>CsTRM01</i>	1G0030 00	1G002960	1G0031 90	1G0030 20	1G02950	1G0030 20	1G003020	1G0030 50	1G0081 50	1G003070	1G0030 50	1G0029 70	1G0031 50
<i>CsTRM02</i>	1G0060 80	1G006040	1G0062 30	1G0060 90	1G06220	1G0061 10	1G006160	1G0061 30	1G0122 80	1G009330	1G0061 30	1G0059 30	1G0063 90
<i>CsTRM03</i>	1G0243 90	1G023100	1G0193 80			1G0346 90	1G022250	1G0226 40	1G0333 80	1G035450	1G0258 70	1G0167 10	1G0214 60
<i>CsTRM04</i>	1G0362 40	1G038300	1G0316 70		1G23930	1G0452 00	1G039460 1G050980		1G0487 80	1G052690	1G0362 40	1G0234 10	1G0347 90
<i>CsTRM05</i>	2G0022 10		2G0011 30	2G0021 70	2G01120	2G0011 50	2G001150		2G0021 20	2G002150	2G0011 20	2G0011 20	2G0022 00
<i>CsTRM06</i>	2G0069 10	2G004780	2G0047 80	2G0056 80	2G04550	2G0046 90	2G004760	2G0056 90	2G0066 80	2G005730	2G0046 60	2G0046 80	2G0057 90
<i>CsTRM07</i>	2G0138 00	2G013420	2G0144 30	2G0161 50	2G11310	2G0122 20	2G015170	2G0222 90	2G0221 90	2G018160	2G0122 30	2G0113 50	2G0153 70
<i>CsTRM08</i>	3G0003 20		3G0002 90	3G0002 70	3G00310	3G0003 10	3G000300	3G0002 90	3G0003 10	3G000300	3G0003 10	3G0002 60	3G0003 00
<i>CsTRM09</i>	3G0089 00	3G014120	3G0113 30	3G0093 20	3G08770	3G0091 30	3G011320	3G0093 90	3G0130 30	3G018440	3G0092 80	3G0088 70	3G0112 30
<i>CsTRM10</i>	3G0093 20	3G014570			3G09200	3G0095 70	3G011790	3G0098 40	3G0134 70	3G018890	3G0097 40	3G0092 80	3G0116 60
<i>CsTRM11</i>	3G0166 40	3G023990	3G0191 20	3G0169 80	3G16440	3G0273 80	3G019160	3G0174 60	3G0238 10	3G029290	3G0170 50	3G0165 50	3G0189 60
<i>CsTRM12</i>	3G0202 50	3G028160	3G0243 00	3G0212 30	3G20290	3G0315 30	3G023320	3G0216 50	3G0309 10	3G038450	3G0210 80	3G0200 40	3G0251 20
<i>CsTRM13</i>	3G0285 90	3G044970	3G0344 90	3G0396 40	3G27110	3G0507 90	3G034230	3G0325 90	3G0497 30	3G053340	3G0433 10	3G0252 70	3G0347 90
<i>CsTRM14</i>	3G0336 90	3G052230	3G0397 60	3G0458 80	3G31210	3G0551 80	3G039400	3G0388 80	3G0570 40	3G059810	3G0496 00	3G0290 50	3G0411 70
<i>CsTRM15</i>	3G0351 60	3G053700	3G0411 60	3G0473 20	3G32570	3G0566 20	3G040870	3G0402 90	3G0584 90	3G061290	3G0509 90	3G0303 80	3G0426 80
<i>CsTRM16</i>	3G0369 50	3G056500	3G0439 50	3G0490 50	3G34290								3G0320 70
<i>CsTRM17</i>	3G0450 60	3G067760	3G0558 80	3G0572 70	3G42630	3G0666 80		3G0506 3G051990	3G0706 10	3G071560	3G0611 10	3G0401 50	3G0529 20
<i>CsTRM18</i>	4G0246 30	4G030170	4G0240 30	4G0788 40	4G14290	4G0278 40	4G018900	4G0219 30	4G0269 00	4G030090	4G0847 10	4G0138 00	4G0260 10
<i>CsTRM19</i>	4G0317 80	4G042910	4G0345 40	4G0905 10	4G21450	4G0440 30	4G027440	4G0335 70	4G0404 30	4G039790	4G0955 40	4G0200 00	4G0354 10
<i>CsTRM20</i>	5G0027 60	5G003630	5G0036 40	5G0026 10	5G05360	5G0036 50	5G002590	5G0054 90	5G0065 40	5G003570	5G0026 60		5G0037 70
<i>CsTRM21</i>	5G0032 60	5G004130	5G0041 40	5G0031 10	5G05880	5G0030 20	5G003100	5G0049 90	5G0070 40	5G004090	5G0031 70	5G0031 60	5G0043 10

CsTRM22	5G0055 90	5G007580 30	5G0075 60	5G0055 50	5G08200 50	5G0006 50	5G006510 20	5G0016 00	5G0094 00	5G009680 30	5G0056 80	5G0055 30	5G0055 80
CsTRM23	5G0261 90	5G042130 90	5G0411 80	5G0506 70	5G17200 70	5G0214 20	5G028290 90	5G0241 10	5G0429 10	5G054980 20	5G0436 00	5G0169 00	5G0342 20
CsTRM24	5G0385 40	5G060730 10	5G0546 70	5G0630 20	5G29400 20	5G0439 40	5G040890 40	5G0493 80	5G0631 80	5G067580 20	5G0568 60	5G0288 40	5G0467 20
CsTRM25	6G0168 70	6G024320 60	6G0180 20	6G0253 50	6G14470 50	6G0154 60	6G015250 90	6G0193 00	6G0252 00	6G018200 00	6G0153 40	6G0143 80	6G0172 80
CsTRM26	6G0225 50	6G035270 50	6G0238 60	6G0535 00	6G17180 00	6G0221 6G019950	6G0231 90	6G0328 60	6G030040 6G0195	6G0166 40	6G0239 50	6G0195 80	6G0239 80
CsTRM27	6G0404 50	6G052040 30	6G0354 50	6G0794 00	6G25260 6G0351	6G0351 6G032700	6G0330 70	6G0524 00	6G045570 6G0368	6G0246 10	6G0359 90	6G0368 70	6G0359 70
CsTRM28	7G0254 30	7G031600 50	7G0242 70	7G0354 90	7G13640 7G0258	7G0258 7G021920	7G0349 50	7G0316 00	7G031470 7G0370	7G0124 50	7G0233 70	7G0370 40	7G0233 40
<i>UnG005</i>													
CsTRM29	30												

3.2. Analysis of Protein Length and Amino Acid Variations in the CsTRM Proteins

To further understand protein length variation of CsTRMs among the cucumber accessions, we showed the length of the identified CsTRM proteins in Table 2. There were 5 CsTRMs with the same protein length among 13 cucumber accessions, namely, CsTRM04, 11, 14, 15 and 21. The length of CsTRM01, 02, 05, 06, 13, 18, 22, 24 and 26 differed in only one of the accessions. And others showed differences in protein length among multiple accessions. Length difference data are marked in red in Table 2.

Table 2. The predicted lengths of TRM proteins (amino acid residues) in the 13 cucumber accessions.


Protein number	9930	XTMC	Cu2	Cuc80	PI	Cuc64	W4	W8	Hx14	Hx117	Cuc37	Gy14	9110gt
CsTRM01	1048	1048	1048	1048	1048	1048	1043	1048	1048	1048	1048	1063	1048
CsTRM02	1040	1067	1067	1067	1067	1067	1067	1067	1067	1067	1067	1067	1067
CsTRM03	780	788	788			788	781	781	781	781	781	788	781
CsTRM04	402	402	402		402	402	402/402		402	402	402	402	402
CsTRM05	776	803	803	803	803	803	803	803	803	803	803	803	803
CsTRM06	722		722	722	722	722	722		722	750	722	722	722
CsTRM07	893	478	893	891	891	893	893	899	893	891	891	922	891
CsTRM08	893	879	879	893	879	879	879	879	893	879	879	904	879
CsTRM09	930	933	933	933	932	933	933	933	933	933	933	932	933
CsTRM10	346	346			344	344	344	344	346	344	346	305	346
CsTRM11	616	616	616	616	616	616	616	616	616	616	616	616	616
CsTRM12	953	953	954	954	953	953	953	953	953	952	953	954	953
CsTRM13	963	963	963	963	963	963	963	963	963	963	963	927	963
CsTRM14	353	353	353	353	353	353	353	353	353	353	353	353	353
CsTRM15	888	888	888	888	888	888	888	888	888	888	888	888	888
CsTRM16	472	472	550	550	472							472	550
CsTRM17	1091	1038	1091	1091	1091	1091	210	353	440	600	1091	1058	357
CsTRM18	961	961	961	961	961	922	961	961	961	961	961	961	961
CsTRM19	903	903	987	987	906	987	906	906	906	906	906	906	906
CsTRM20	785	785	785	785	781	781	781	781	785	785	745		785
CsTRM21	476	476	476	476	476	476	476	476	476	476	476	476	476
CsTRM22	495	495	495	495	495	495	495	495	495	495	495	449	
CsTRM23	794	794	794	848	795	795	794	795	794	795	794	794	736
CsTRM24	1049	1049	1049	1049	1049	1049	1049	1049	1049	1049	1049	958	
CsTRM25	1011	1011	1011	1011	902	959	1009	1011	1022	1009	1011	940	1011

CsTRM26	936	936	936	936	936	936	938	936	936	936	936	936	936	936
CsTRM27	505	505	505	505	505	505	505	736	505	473	505	505	505	505
CsTRM28	960	960	960	959	959	994	995	1047	895	995	995	976	976	978
CsTRM29							788							

Among the proteins with different lengths, CsTRM01 in 'W4'; CsTRM02 in '9930'; CsTRM03 in '9930'; CsTRM05 in '9930'; CsTRM07 in 'XTMC'; CsTRM09 in '9930'; CsTRM13 in 'Gy14'; CsTRM18 in 'Cuc64'; CsTRM19 in '9930' and 'XTMC'; CsTRM20 in 'Cuc37'; CsTRM22 in 'Gy14'; CsTRM23 and CsTRM24 in '9110gt'; CsTRM25 in 'PI183967'; CsTRM27 in 'Hx117' and CsTRM28 in 'Hx14' had shorter lengths compared to those in other accessions, while CsTRM16 in 'Cu2', 'Cuc80' and 'Gy14'; CsTRM19 in 'Cu2', 'Cuc80' and 'Cuc64' and CsTRM26 in 'W4' were longer than those in other accessions. In addition, the lengths of some proteins showed multiple polymorphism. For example, the protein length of CsTRM17 was the same in '9930', 'Cu2', 'Cuc80', 'PI', 'Cuc64' and 'Cuc37', but totally different in other accessions, furthermore, dramatically shortened in 'W4', 'W8', 'Hx14', 'Hx117' and '9110gt' (Table 2).

Besides protein length, amino acid substitution also can change a protein's function [57]. The amino acid variations of CsTRMs in different cucumber accessions was analyzed (Table S1). Amino acid variations were annotated using CsTRMs protein sequence of 9930 as reference, and all CsTRM proteins exhibit amino acid variations. CsTRM04, 11, 14, 15 and 21 have 6, 5, 3, 7 and 2 amino acid variations, respectively, but these do not lead to changes in protein length (Table 2). Some CsTRMs exhibit amino acid insertions leading to an increase in protein length. For example, CsTRM02 has 27 amino acid insertions in accessions other than 9930. In CsTRM06, 17, 26, 27 and 28, there are frame shift leading to amino acid variations. Some amino acid variations are quite significant, such as CsTRM07, 17, and 24.

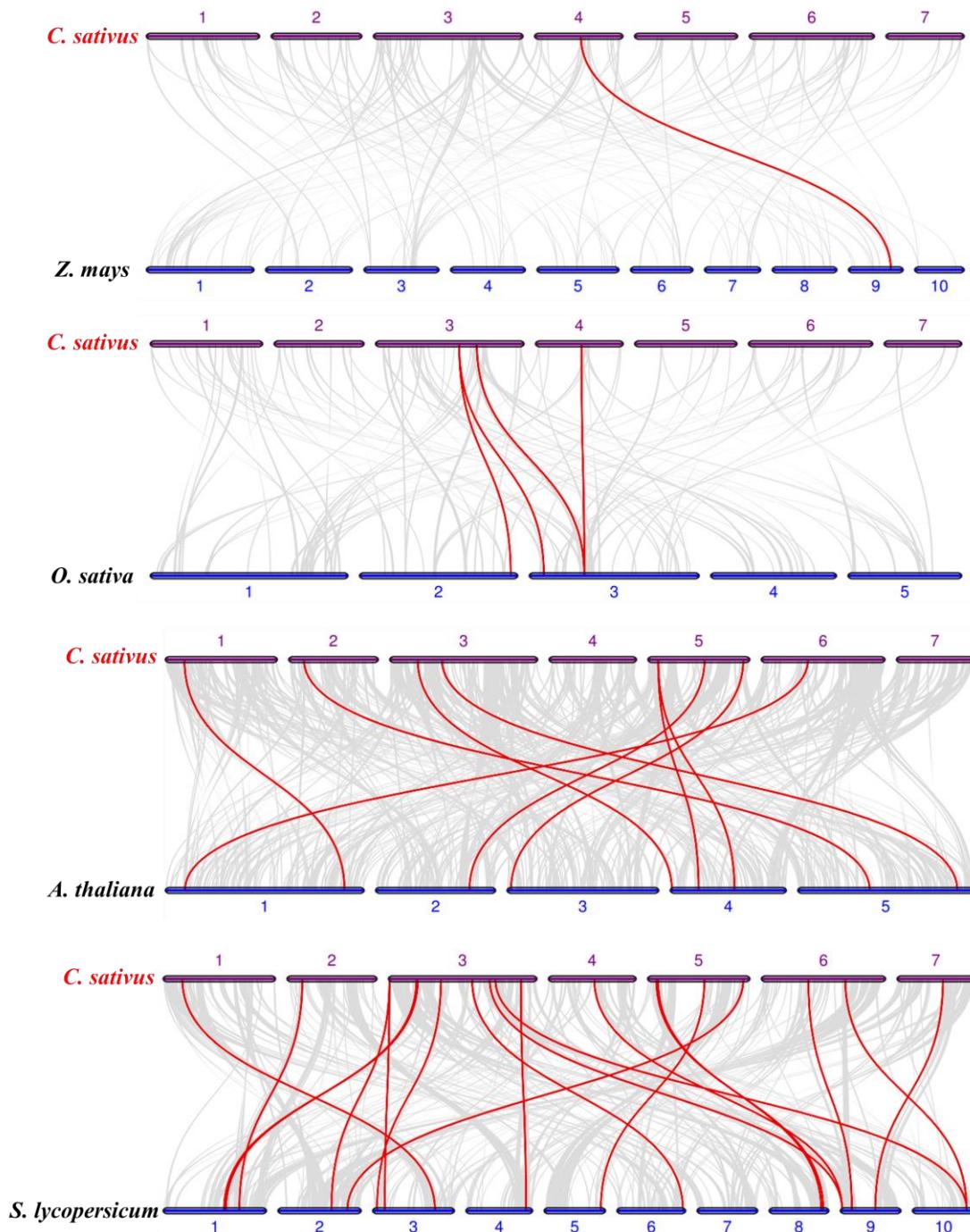

Some amino acid variations are quite significant, such as CsTRM07, 17, and 24 (Table 2). Further comparisons of CsTRM07, 17, and 24 gene structures and gene conservative motifs (Figure 1). CsTRM07 in XTMC has only 478 amino acids, which is significantly shorter than that in the other 12 accessions (Table 2), and its gene structure underwent changes along with alterations in some conserved motifs, experiencing an increase in gene length, but not leading to the loss of conserved motifs in Gy14 and PI183967 (Figure 1A). For CsTRM17, the protein length varied from 210 amino acids to 1091 amino acids across the 13 accessions (Table 2), with corresponding changes in gene structure and some conserved motifs, especially in W4, there are only two conserved motifs (Figure 1B). In CsTRM24 of 9110gt, alterations in gene structure caused the decreased protein length, but without a reduction in conserved motifs.

Figure 1. Comparison of the conserved motifs and gene structures of *CsTRM07* (A), *CsTRM17* (B) and *CsTRM24* (C) in the 13 cucumber accessions.

3.3. Synteny Analysis of *CsTRM* Genes

The phylogenetic relationship of the cucumber TRM family were further explored by constructing comparative synteny maps of cucumber associated with four representative species, including two monocots (rice and maize) and two dicots (Arabidopsis and tomato) (Figure 2). 1, 3, 8, and 19 *CsTRM* genes showed syntenic relationships with those in the other four species: maize, rice, Arabidopsis, and tomato, respectively (Figure 2). Only 1 TRM collinear gene pairs between cucumber and maize were identified, followed by cucumber and rice (4), cucumber and Arabidopsis (9), and cucumber and tomato (20) (Table S2). It is evident that dicotyledonous plants exhibit a notably higher number of homologous genes compared to those shared between dicotyledonous and monocotyledonous plants. This observation aligns with the patterns expected in biological evolution. *CsTRM18* and its collinear gene pairs with maize are observed in rice and tomato, but not in Arabidopsis, indicating differences in the evolutionary process of *CsTRM18*. Additionally, collinear gene pairs between cucumber and rice, maize, and Arabidopsis are observed in cucumber and tomato, suggesting that cucumber and tomato may have undergone a common evolutionary history.

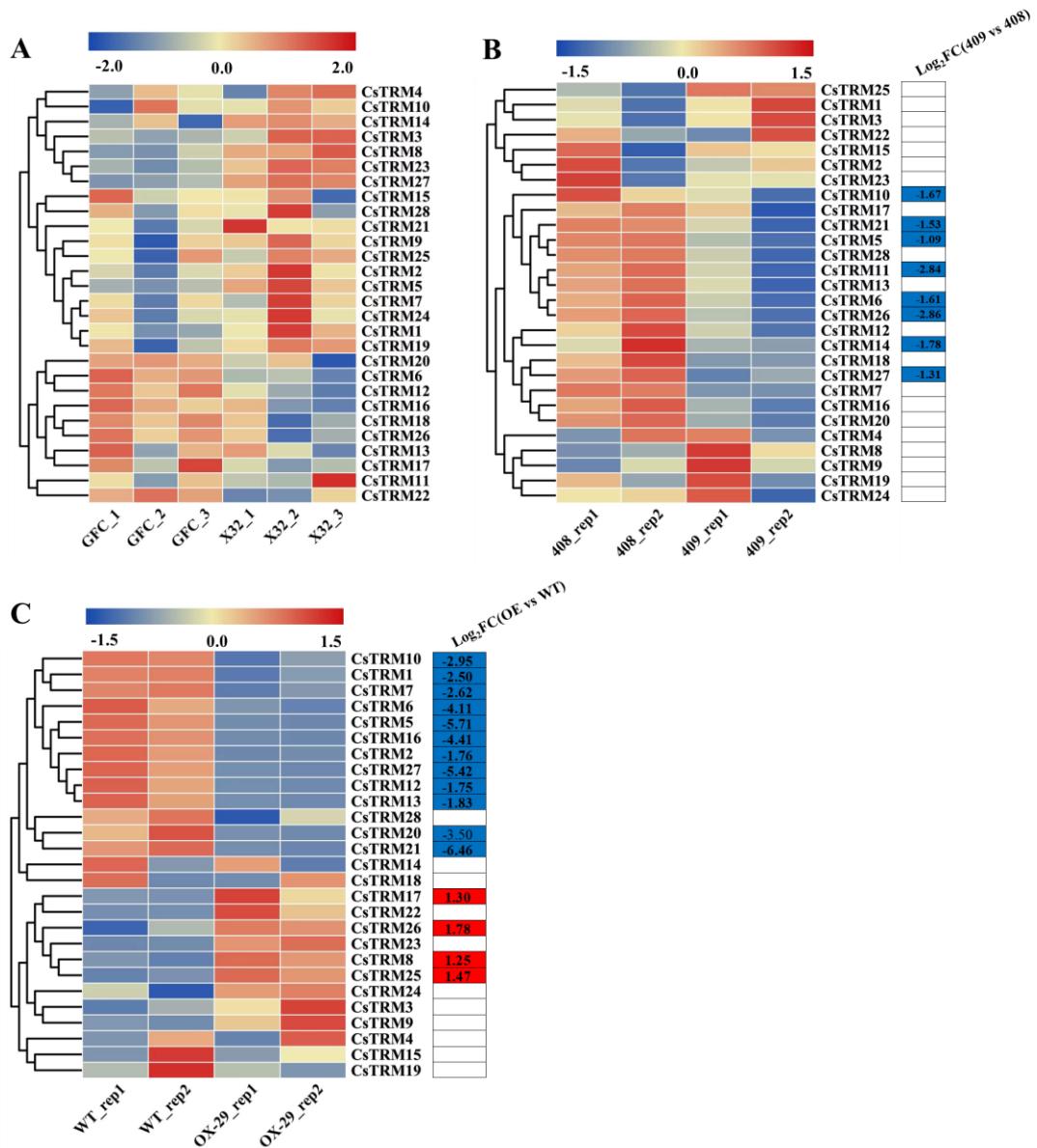
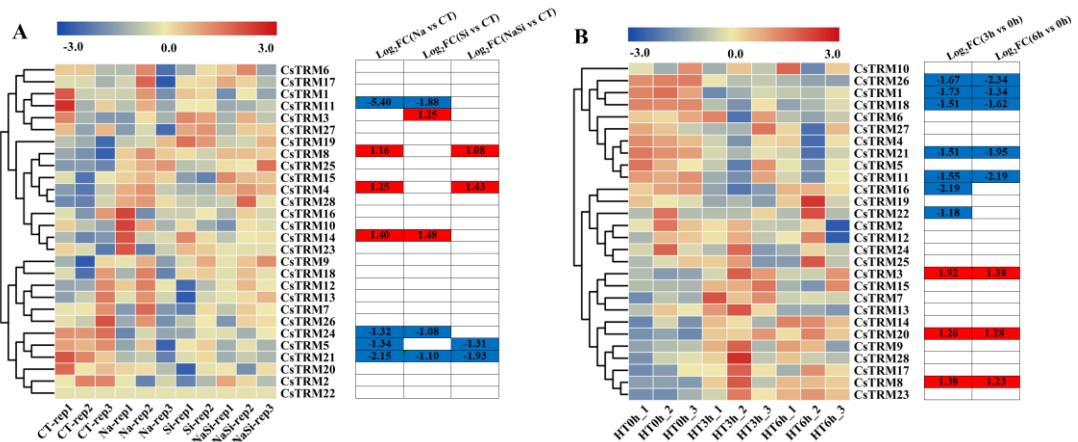


Figure 2. Synteny analysis of TRMs between cucumber and other plant species: The collinear blocks are marked by gray lines, while the collinear gene pairs with TRM genes are highlighted by red lines. '*C. sativus*', '*Z. mays*', '*O. sativa*', '*A. thaliana*', and '*S. lycopersicum*' indicate *Cucumis sativus*, *Zea mays*, *Oryza sativa*, *Arabidopsis thaliana*, and *Solanum lycopersicum*, respectively.

3.4. Expression Profiles of CsTRM Genes in the Fruit

In cucumber and tomato, some TRM genes can regulate fruit shape [14,15,20]. To investigate the function of CsTRMs in fruit shape, we conducted expression analysis of CsTRMs using published RNA-seq data on fruits with different carpel numbers and lengths [48–50]. Relative to the South China type cucumber 32X (carpel number=3), the transcription levels of CsTRMs in the mutant Gui Fei Cui (GFC, carpel number=5) from 32X showed no significant changes (Figure 3A, Table S3), indicating that CsTRMs might not play a crucial role in regulating cucumber fruit carpel number. Compared to long fruit 408, there were 8 genes down-regulated in short fruit 409, namely CsTRM5, 6, 10, 11, 14, 21, 26 and 27 (Figure 3B). Compared to empty vector/control transgenic plants WT,

CsFUL1^A-OX-29 had a total of 12 genes down-regulated, namely *CsTRM1, 2, 5, 6, 7, 10, 12, 13, 16, 20, 21* and *27*; and 4 genes up-regulated, namely *CsTRM8, 17, 25, 26* (Figure 3C). In *CsFUL1^A-OX-29* versus empty vector/control plants and 409 versus 408, *CsTRM5, 6, 10, 21*, and *27* were significantly down-regulated (Figure 3B, 3C), indicating that these genes play a crucial role in regulating fruit shape. However, the expression trend of *CsTRM26* in the two groups of long and short fruit materials is opposite (Figure 3B, 3C), which may be due to different genetic backgrounds of the materials.


Figure 3. Expression analysis of *CsTRMs* in the fruit: The transcriptional levels of *CsTRM* genes in GFC (carpel number=5) and 32X (carpel number=3) (A), 408 (long fruit) and 409 (short fruit) (B), and WT and *CsFUL1^A-OX* (C) are shown on the heatmaps. A range of -2.0 to 2.0 and -1.5 to 1.5 was artificially set with the color scale limits according to the normalized values. The color scale shows increasing expression levels from blue to red. GFC, mutant Gui Fei Cui (GFC) from South China type cucumber 32X. The carpel number changed from 3 in 32X to 5 in GFC, despite the number of other floral organs, such as sepal, petal and stamen remain unchanged. WT, empty vector/control transgenic plants. FC, fold-change.

3.5. Expression Profiles of *CsTRM* Genes under Abiotic and Biotic Stresses

TRM gene family members are often localized to microtubules, microtubules are involved in immune responses and stress tolerance. We analyzed the comprehensive expression patterns of

CsTRM genes under different stresses, including salt, heat, downy mildew (DM, *Pseudoperonospora cubensis*), gray mold (GM, *Botrytis cinerea*) and powdery mildew (PM, *Podosphaera fusca*) based on public transcriptome information [51–55], to further explore the roles of *CsTRM* genes under different stresses.

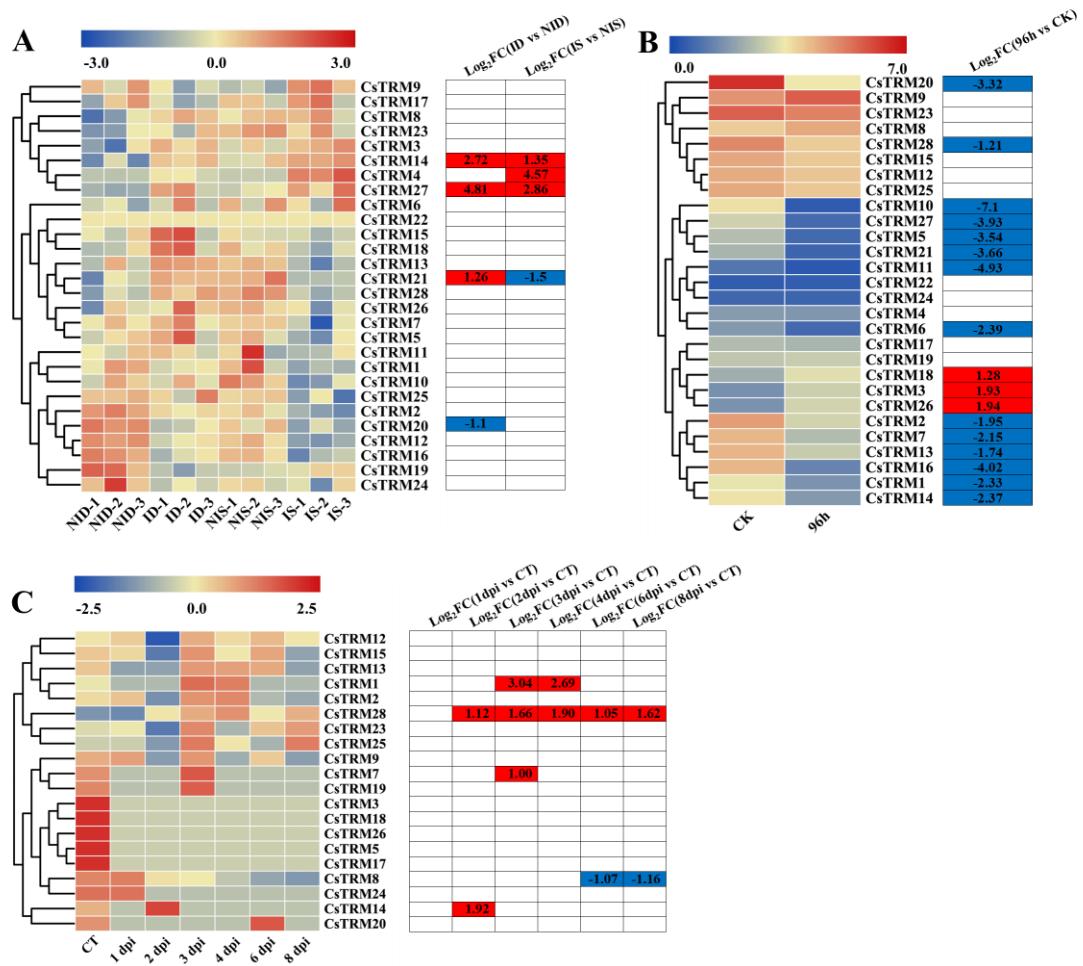

First, we analyzed the roles of *CsTRM* genes under salt stress (Table S4). The transcriptomic data were presented as a heatmap (Figure 4A). We observed that the expression levels of *CsTRM4*, 8 and 14 considerably increased in response to NaCl stress, and four genes exhibited the opposite trend with exposure to NaCl stress, they are *CsTRM5*, 11, 21 and 24 (Figure 4A). Under the conditions treated with Silicon (Si) only, the expression of *CsTRM3* and *CsTRM14* was upregulated, whereas the expression of *CsTRM11*, 21 and 24 was downregulated. The expression of *CsTRM14* was upregulated under both individual NaCl treatment and individual Si treatment, while the expression of *CsTRM11*, 21 and 24 was downregulated. Previous research has demonstrated that the application of Silicon (Si) can enhance plant growth when subjected to salt stress. After treatment with Si, the gene expression levels of *CsTRM11*, 14 and 24, which exhibited significant changes under salt stress, returned to normal levels; *CsTRM5*, 8 and 21 showed only slight regression, while the expression level of upregulated *CsTRM4* showed a slight increase. We also analyzed the responses of *CsTRM* genes to heat stress (Figure 4B, Table S4). At three hours after high-temperature treatment, *CsTRM1*, 11, 16, 18, 21, 22 and 26 were downregulated, while *CsTRM3*, 8 and 20 were upregulated. At six hours after heat stress, the expression of *CsTRM16* and *CsTRM22* showed no significant difference compared to the 0 hour heat treatment, while the changes in other differentially expressed genes were consistent with the 3 hour heat treatment. Specifically, the genes upregulated at three and six hours after heat stress were nearly identical (Figure 4B), indicating their potential significant roles in conferring thermostolerance. Additionally, *CsTRM3*, 8, 11 and 21 were differentially expressed in responding to the treatments of heat and NaCl, with consistent trends.

Figure 4. Expression profiles of *CsTRM* genes in response to various abiotic stress treatments: The transcriptional levels of *CsTRM* genes in response to salt (A) and heat (B) stresses are shown on the heatmap. A range of -3.0 to 3.0 was artificially set with the color scale limits according to the normalized values. The color scale shows increasing expression levels from blue to red. CT, control treatment; HT, heat treatment; HT0h, heat treatment for 0 h (hours); HT3h, heat treatment for 3 h; HT6h, heat treatment for 6 h; FC, fold-change.

To explore the potential functions of *CsTRMs* in the resistance to biotic stresses, we performed expression analyses of *CsTRMs* using the published RNA-Seq data of cucumber seedlings inoculated with PM for 48 h, GM for 96 h and with DM for 8 days [53–55]. After inoculation with PM, a total of 4 genes were differentially expressed in the susceptible cucumber line D8 leaves compared with the control, the expression of *CsTRM14*, 21 and 27 were upregulated, while *CsTRM20* were downregulated; and a total of 4 genes were differentially expressed in the resistant cucumber line SSL508-28 leaves compared with the control, the expression of *CsTRM4*, 14 and 27 were upregulated, while *CsTRM21* were downregulated (Figure 5A). In the susceptible and the resistant cucumber line

affected by PM, *CsTRM14* and *CsTRM27* had similar expression trends, while *CsTRM21* had opposite expression trends (Figure 5A). After 96 hours of GM inoculation, cucumber seedlings showed significant downregulation of 14 *CsTRM* genes compared to the uninoculated control, namely *CsTRM1, 2, 5, 6, 7, 10, 11, 13, 14, 16, 20, 21, 27* and *28*, and significant upregulation of 3 genes, namely *CsTRM3, 18* and *26* (Figure 5B). In the transcriptomic data from cucumber seedlings inoculated with DM, only 5 TRMs genes exhibited significant changes in expression (Figure 5C). *CsTRM1, 7, 14* and *28* were upregulated at a minimum of one treatment timepoint, while *CsTRM 8* were downregulated at 6 days post inoculation (dpi) and 8 dpi. *CsTRM28* were upregulated at 2 dpi, 3 dpi, 4 dpi, 6 dpi and 8 dpi (Figure 5C), indicating its significant role in responding to the DM. In summary, the expression of *CsTRM14* was significantly upregulated in cucumber seedlings inoculated with PM, BC, and DM, indicating its broad-spectrum role in responding to biotic stress.

Figure 5. Expression analysis of *CsTRMs* under biotic stresses: The transcriptional levels of *CsTRM* genes after infection with powdery mildew (PM) for 48 h (A), gray mold (GM) for 96 h (B), and with downy mildew (DM) for 1-8 days post-inoculation (C) are shown on the heatmaps. A range of -3.0 to 3.0, -2.5 to 2.5 and 0.0 to 7.0 was artificially set with the color scale limits according to the normalized values. The color scale shows increasing expression levels from blue to red. ID, PM-inoculated susceptible cucumber line D8 leaves; NID, non-inoculated D8 leaves; IS, PM-inoculated resistant cucumber line SSL508-28 leaves; NIS, non-inoculated SSL508-28 leaves; CT, without inoculation; DPI, days post inoculation; FC, fold-change.

4. Discussion

Researches demonstrated that a single reference genome is inadequate for capturing the diversity within a species [58]. Hence, we conducted a comprehensive analysis to identify and characterize the TRM family in 13 different cucumber varieties. Although in the previous study, 28

TRM family were identified [56], in this study, a novel member, *CsTRM29* which is only present in PI183967, was discovered (Table 1). Moreover, only 5 *CsTRMs* have the same protein length among 13 cucumber accessions, and all the identified TRM proteins have amino acid variations including insertions, deletions, single amino acid changes and frame shifts (Table S1). Some *CsTRMs* underwent changes not only in gene structure but also in conserved motifs (Figure 1). Therefore, in this study, we found rich variations occurred in *CsTRMs* from the pan-genomes of 13 cucumber accessions, and these variations will provide a base for discovering TRM genes with novel functions, which will accelerate the breeding of new cucumber varieties, just as the things are performed with pan-genomics [44].

It is widely recognized that there exists a correlation between gene expression and gene function. The cucumber fruit typically have three fused carpels [59], the carpel number is an important fruit trait that affects fruit shape, size and internal quality [48]. In the lines with different carpel numbers, there were no significant differences observed in the expression of *CsTRMs* (Figure 3A), suggesting that *CsTRMs* might not play a critical role in regulating the number of carpels in cucumber fruits. However, in the short-fruited lines (409 and *CsFUL1A*-OX-29), *CsTRM5*, 6, 10, 21, and 27 were significantly down-regulated (Figure 3B, 3C), indicating that these genes might play crucial roles in regulating cucumber fruit length. Interestingly, the expression of *CsTRM26* is lower in the short-fruited line 409 than in the long-fruited line 408, but higher in the short-fruited line *CsFUL1A*-OX-29 than in the wild type. This could be due to differing genetic backgrounds or the possibility that *CsTRM26* does not regulate cucumber fruit length.

So far, TRMs have been reported to be functional in plant organ growth, but not in plant response to stresses. But an increasing number of researches suggested that apart from their crucial roles in mechanical architecture and cell division, microtubules are also implicated in plants adaptation to severe environmental conditions [60]. Since some TRMs are microtubule-binding proteins, they might participate in stress responses. Therefore, in this study, we analyzed the expression patterns of *CsTRMs* under certain stress conditions. Many *CsTRM* genes showed expression changes at varying degrees under different stress conditions (Figures 4 and 5). Under salt and heat stress conditions, the expression of *CsTRM3* and *CsTRM8* was significantly upregulated, while *CsTRM11* and *CsTRM21* were significantly downregulated (Figure 4), however, under inoculation with PM, BC, or DM, the expression of *CsTRM14* was significantly increased, while the expression of *CsTRM21* showed significant changes after inoculation with PM and BC (Figure 5). These results might indicate that different *CsTRMs* respond to abiotic or biotic stresses. Remarkably, *CsTRM21* plays a crucial role in regulating fruit shape (Figure 3B,C) and in responding to biotic stresses (Figures 4 and 5). Therefore, this study provided not only a base for the function of *CsTRMs* in stress tolerance, but also a cross talk point between organ growth and biotic stresses.

5. Conclusions

In this study, we performed pan-genome-wide identification of the TRM gene family in cucumber. In total, 29 members were identified, including a novel member, *CsTRM29* which is only present in PI183967. Only 5 of the *CsTRMs* have consistent protein lengths among the 13 accessions. All *CsTRM* proteins showed amino acid variations. Furthermore, Transcriptomic data of fruits with different shapes indicate that *CsTRMs* play a significant role in regulating fruit length but not in controlling carpel number. And transcriptomic data under different stress conditions revealed the differences and similarities in the stress-induced expression of *CsTRMs* in response to abiotic and biotic stresses, and *CsTRM14* was found to response to salt stress, powdery mildew, gray mold and downy mildew. Notably, *CsTRM21* plays a role in regulating both fruit shape and resistance. In conclusion, this study provides a reference for investigating the potential role of TRMs for fruit shape and stress resistance in cucumber.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper posted on Preprints.org.

Author Contributions: Conceptualization, Z.R., L.W. and C.C.; methodology, L.Z. and K.W.; validation, L.Z.; software, L.Z., K.W., Z.W. and S.C.; formal analysis, L.Z. and K.W.; investigation, L.Z. and K.W.; data curation, L.Z. and K.W.; writing-original draft preparation, L.Z.; writing-review and editing, Z.R.; supervision, L.W. and Z.R.; project administration, Z.R., L.W. and C.C.; funding acquisition, Z.R. and L.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by fundings from the National Natural Science Foundation of China (32172605 and 31972419) and the 'Taishan Scholar' Foundation of the People's Government of Shandong Province (ts20130932).

Data Availability Statement: The data presented in this study are available in this article and Supplementary Materials.

Acknowledgments: We extend our appreciation to the anonymous reviewers for their valuable suggestions to help improve this article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Drevensek, S.; Goussot, M.; Duroc, Y.; Christodoulidou, A.; Steyaert, S.; Schaefer, E.; Duvernois, E.; Grandjean, O.; Vantard, M.; Bouchez, D.; Pastuglia, M. The *Arabidopsis* TRM1-TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes. *The Plant Cell*. 2012, 24, 178-91.
2. Lee, Y. K.; Kim, G. T.; Kim, I. J.; Park, J.; Kwak, S. S.; Choi, G.; Chung, W. I. LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in *Arabidopsis*. *Development*. 2006, 133, 4305-14.
3. Guo, Q.Q.; Ng, P.Q.; Shi, S.S.; Fan, D.; Li, J.; Zhao, J.; Wang, H.; David, R.; Mittal, P.; Do, T.; Bock, R.; Zhao, M.; Zhou, W.B.; Searle I. *Arabidopsis* TRM5 encodes a nuclear-localised bifunctional tRNA guanine and inosine-N1- methyltransferase that is important for growth. *PLoS ONE*. 2019, 14, e0225064.
4. Tang, J.; Jia, P.; Xin, P.; Chu, J.; Shi, D.Q.; Yang, W.C. The *Arabidopsis* TRM61/TRM6 complex is a bona fide tRNA N1-methyladenosine methyltransferase. *Journal of experimental botany*. 2020, 71, 3024-3036.
5. Drevensek, S.; Goussot, M.; Duroc, Y.; Christodoulidou, A.; Steyaert, S.; Schaefer, E.; Duvernois, E.; Grandjean, O.; Vantard, M.; Bouchez, D.; Pastuglia, M. The *Arabidopsis* TRM1-TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes. *The Plant Cell*. 2012, 24, 178-191.
6. Camilleri, C.; Azimzadeh, J.; Pastuglia, M.; Bellini, C.; Grandjean, O.; Bouchez, D. The *Arabidopsis* TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. *The Plant Cell*. 2002, 14, 833-845.
7. Azimzadeh, J.; Nacry, P.; Christodoulidou, A.; Drevensek, S.; Camilleri, C.; Amiour, N.; Parcy, F.; Pastuglia, M.; Bouchez, D. *Arabidopsis* TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. *The Plant Cell*. 2008, 20, 2146-2159.
8. Spinner, L.; Gadeyne, A.; Belcram, K.; Goussot, M.; Moison, M.; Duroc, Y.; Eeckhout, D.; De, Winne. N.; Schaefer, E.; Van De Slijke, E.; Persiau, G.; Witters, E.; Gevaert, K.; Jaeger, G. D.; Bouchez, D.; Van Damme, D.; Pastuglia, M. A protein phosphatase 2A complex spatially controls plant cell division. *Nature Communications*. 2013, 4, 1863.
9. Schaefer, E.; Belcram, K.; Uyttewaal, M.; Duroc, Y.; Goussot, M.; Legland, D.; Laruelle, E.; Tauzia-Moreau, M. D.; Pastuglia, M.; Bouchez, D. The preprophase band of microtubules controls the robustness of division orientation in plants. *Science*. 2017, 356, 186-189.
10. Yang Y. Q.; Chen B. Q.; Dang X.; Zhu L. L.; Rao J. Q.; Ren H. B.; Lin C. T.; Qin Y.; Lin D. S.. *Arabidopsis* IPGA1 is a microtubule-associated protein essential for cell expansion during petal morphogenesis. *Journal of Experimental Botany*. 2019, 70, 5231-5243.
11. Van der Knaap, E.; Chakrabarti, M.; Chu, Y. H.; Clevenger, J. P.; Illa-Berenguer, E.; Huang, Z. J.; Keyhaninejad, N.; Mu, Q.; Sun, L.; Wang, Y. P.; Wu, S. What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. *Frontiers in Plant Science*. 2014, 5, 227.
12. Wu, S.; Zhang, B.Y.; Keyhaninejad, N.; Rodriguez, G.R.; Kim, H.J.; Chakrabarti, M.; Illa-Berenguer, E.; Taitano, N.K.; Gonzalo, M.J.; Diaz, A.; Pan, Y.P.; Leisner, C.P.; Halterman, D.; Buell, C.R.; Weng, Y.Q.; Jansky, S.H.; van, Eck.H.; Willemsen, J.; Monforte, A. J.; Meulia, T.; van der Knaap, E. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. *Nature Communications*. 2018, 9, 4734.

13. Lazzaro, M.D.; Wu, S.; Snouffer, A.; Wang, Y.P.; Van der Knaap, E. Plant organ shapes are regulated by protein interactions and associations with microtubules. *Front Plant Science*. 2018, 9, 1766.
14. Zhang, B.; Li, Q.; Keyhaninejad, N.; Taitano, N.; Sapkota, M.; Snouffer, A.; van der Knaap, E. A combinatorial TRM-OFP module bilaterally fine-tunes tomato fruit shape. *New Phytologist*. 2023, 238, 2393-409.
15. Wu, S.; Zhang, B.; Keyhaninejad, N.; Rodríguez, G. R.; Kim, H. J.; Chakrabarti, M.; Illa-Berenguer, E.; Taitano, N.K.; Gonzalo, M.J.; Díaz, A.; Pan, Y.; Leisner, C. P.; Halterman, D.; Buell, C. R.; Weng, Y.; Jansky, S.H.; van Eck, H.; Willemse, J.; Monforte, A.J.; Meulia, T.; van der Knaap, E. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. *Nature communications*. 2018, 9, 4734.
16. Wang, S.K.; Li, S.; Liu, Q.; Wu, K.; Zhang, J.Q.; Wang, S.S.; Wang, Y.; Chen, X.B.; Zhang, Y.; Gao, C.X.; Wang, F.; Huang, H.X.; Fu, X.D.. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. *Nature Genetics*. 2015, 47, 949-54.
17. Wang, Y.X.; Xiong, G.S.; Hu, J.; Jiang, L.; Yu, H.; Xu, J.; Fang, Y. X.; Zeng, L. J.; Xu, E.; Xu, J.; Ye, W. J.; Meng, X. B.; Liu, R. F.; Chen, H. Q.; Jing, Y. H.; Wang, Y. H.; Zhu, X. D.; Li, J. Y.; Qian, Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. *Nature Genetics*. 2015, 47, 944-8.
18. Zhou, Y.; Miao, J.; Gu, H. Y.; Peng, X. R.; Leburu, M.; Yuan, F. H.; Gu, H. W.; Gao, Y.; Tao, Y. J.; Zhu, J. Y.; Gong, Z. Y.; Yi, C. D.; Gu, M. H.; Yang, Z. F.; Liang, G. H. Natural Variations in SLC7 Regulate Grain Shape in Rice. *Genetics*. 2015, 201, 1591-1599.
19. Xie, Y.; Liu, X. F.; Sun, C.Z.; Song, X.F.; Li, X. L.; Cui, H. N.; Guo, J. Y.; Liu, L.; Ying, A.; Zhang, Z. Q.; Zhu, X. Y.; Yan, L. Y.; Zhang, X. L. CsTRM5 regulates fruit shape via mediating cell division direction and cell expansion in cucumber. *Horticulture Research*. 2023, 10, uhad007.
20. Wade, R.H. On and around microtubules: an overview. *Mol Biotechnol*. 2009, 43, 177-191.
21. Landrein, B.; Hamant, O. How mechanical stress controls microtubule behavior and morphogenesis in plants: history; experiments and revisited theories. *Plant Journal*. 2013, 75, 324-338.
22. Nick, P. Microtubules, signalling and abiotic stress. *Plant Journal*. 2013, 75, 309-323.
23. Sampathkumar, A.; Yan, A.; Krupinski, P; Meyerowitz, E.M. Physical forces regulate plant development and morphogenesis. *Curr Biol*. 2014, 24, R475-R483.
24. Zhang, Q.; Zhang, W. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells. *Protein Cell*. 2016, 7, 81-88.
25. Zhou, S.; Chen, Q.; Sun, Y.; Li, Y. Histone H2B monoubiquitination regulates salt stress-induced microtubule depolymerization in Arabidopsis. *Plant Cell Environ*. 2017, 40, 1512-1530.
26. Yang, P.Z.; Jin, J.W.; Zhang, J.R.; Wang, D.; Bai, X.C.; Xie, W.F.; Hu, T.M.; Zhao, X.; Mao, T.L.; Qin, T. MDP25 mediates the fine-tuning of microtubule organization in response to salt stress. *Journal of integrative plant biology*. 2022, 64, 1181-1195.
27. McNally, F.J.; Roll-Mecak, A. Microtubule-severing enzymes: From cellular functions to molecular mechanism. *Journal of Cell Biology*. 2018, 217, 4057-4069.
28. Bao, Z. R.; Xu, Z. J.; Zang, J. Z.; Bürstenbinder, K.; Wang, P. W. The morphological diversity of plant organs: manipulating the organization of microtubules may do the trick. *Frontiers in Cell and Developmental Biology*. 2021, 9, 691.
29. Bao, Z.R.; Guo, Y.; Deng, Y.L.; Zang, J.Z.; Zhang, J.H.; Deng, Y.T.; Ouyang, B.; Qu, X.L.; Bürstenbinder, K.; Wang, P.W. Microtubule-associated protein SIMAP70 interacts with IQ67-domain protein SIIQD21a to regulate fruit shape in tomato. *The Plant Cell*. 2023, 35, 4266-4283.
30. Gantet, P.; Masson, F.; Domergue, O.; Marquis-Mention, M.; Bauw, G.; Inze, D.; Rossignol, M.; de la Serve, B.T. et al. Cloning of a cDNA encoding a developmentally regulated 22 kDa polypeptide from tobacco leaf plasma membrane. *Biochemistry and molecular biology international*. 1996, 40, 469-477.
31. Nagasaki-Takeuchi, N.; Miyano, M.; Maeshima, M. A plasma membrane-associated protein of Arabidopsis thaliana AtPCaP1 binds copper ions and changes its higher order structure. *J Biochem*. 2008, 144, 487-497.
32. Tanaka-Takada, N.; Kobayashi, A.; Takahashi, H.; Kamiya, T.; Kinoshita, T.; Maeshima, M. Plasma Membrane-Associated Ca²⁺-Binding Protein PCaP1 is Involved in Root Hydrotropism of Arabidopsis thaliana. *Plant Cell Physiol*. 2019, 60, 1331-1341.
33. Giovannoni, M.; Marti, L.; Ferrari, S.; Tanaka-Takada, N.; Maeshima, M.; Ott, T.; De Lorenzo, G.; Mattei, B. The plasma membrane-associated Ca²⁺ -binding protein, PCaP1, is required for oligogalacturonide and flagellin-induced priming and immunity. *Plant Cell Environment*. 2021, 44, 3078-3093.
34. Yamada, N.; Theerawitaya, C.; Kageyama, H.; Cha-Um, S.; Takabe, T. Expression of developmentally regulated plasma membrane polypeptide (DREPP2) in rice root tip and interaction with Ca⁽²⁺⁾/CaM complex and microtubule. *Protoplasma*. 2015, 252, 1519-1527.
35. Su, C.; Klein, M.L.; Hernández-Reyes, C.; Batzenschlager, M.; Ditengou, F. A.; Lace, B.; Keller, J.; Delaux, P. M.; Ott, T. The *Medicago truncatula* DREPP Protein Triggers Microtubule Fragmentation in Membrane Nanodomains during Symbiotic Infections. *The Plant Cell*. 2020, 32, 1689-1702.
36. Dou, L.; He, K.; Higaki, T.; Wang, X.; Mao, T. Ethylene Signaling Modulates Cortical Microtubule Reassembly in Response to Salt Stress. *Plant Physiol*. 2018, 176, 2071-2081.

37. Yang, J.; An, B.; Lu, H.; He, C.; Wang, Q. AtKATANIN1 Modulates Microtubule Depolymerization and Reorganization in Response to Salt Stress in Arabidopsis. *Int J Mol Sci.* 2019, 21, 138.

38. Kumar, S.; Jeevaraj, T.; Yunus, M.H.; Chakraborty, S.; Chakraborty, N. The plant cytoskeleton takes center stage in abiotic stress responses and resilience. *Plant Cell Environ.* 2023, 46, 5-22.

39. Smirnova, E.A.; Bajer, A.S. Microtubule converging centers and reorganization of the interphase cytoskeleton and the mitotic spindle in higher plant Haemanthus. *Cell Motility and the Cytoskeleton.* 1994, 27, 219-233.

40. Parrotta, L.; Faleri, C.; Cresti, M.; Cai, G. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes. *Planta.* 2016, 243, 43-63.

41. Parveen, S. Rahman, A. Actin isovariant ACT7 modulates root thermomorphogenesis by altering intracellular auxin homeostasis. *International Journal of Molecular Sciences.* 2021, 22, 7749.

42. Pressman, E.; Harel, D.; Zamski, E.; Shaked, R.; Althan, L.; Rosenfeld, K.; Firon, N. The effect of high temperatures on the expression and activity of sucrose-cleaving enzymes during tomato (Lycopersicon esculentum) anther development. *The Journal of Horticultural Science and Biotechnology.* 2006, 81, 341-348.

43. Zheng, Y.; Anderson, S.; Zhang, Y.; Garavito, R.M. The structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications. *Journal of Biological Chemistry.* 2011, 286, 36108-36118.

44. Schreiber, M.; Jayakodi, M.; Stein, N.; Mascher, M. Plant pangenomes for crop improvement; biodiversity and evolution. *Nature reviews. Genetics.* 2024, 10, 1038

45. Wang, C.; Han, J.; Wang, T.; Chen, C.; Liu, J.; Xu, Z.; Zhang, Q.; Wang, L.; Ren, Z. Pan-Genome-Wide Identification and Transcriptome-Wide Analysis of DREB Genes That Respond to Biotic and Abiotic Stresses in Cucumber. *Agriculture.* 2022, 12, 1879.

46. Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. *Mol. Plant.* 2020, 13, 1194-1202.

47. Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; Kissinger, J.C.; Paterson, A.H. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. *Nucleic Acids Res.* 2012, 40, e49.

48. Che, G.; Gu, R.; Zhao, J.; Liu, X.; Song, X.; Zi, H.; Cheng, Z.; Shen, J.; Wang, Z.; Liu, R.; Yan, L.; Weng, Y.; Zhang, X. Gene regulatory network controlling carpel number variation in cucumber. *Development.* 2020, 147, dev184788.

49. Jing, L.; Yan, S.; Yang, W.; Li, Y.; Xia, M.; Chen, Z.; Wang, Q.; Yan, L.; Song, X.; Liu, R.; Zhang, X. Transcriptomic analysis reveals the roles of microtubule-related genes and transcription factors in fruit length regulation in cucumber (*Cucumis sativus* L.). *Sci. Rep.* 2015, 5, 8031.

50. Zhao, J.; Jiang, L.; Che, G.; Pan, Y.; Li, Y.; Hou, Y.; Zhao, W.; Zhong, Y.; Ding, L.; Yan, S.; Sun, C.; Liu, R.; Yan, L.; Wu, T.; Li, X.; Weng, Y.; & Zhang, X. A Functional Allele of *CsFUL1* Regulates Fruit Length through Repressing *CsSUP* and Inhibiting Auxin Transport in Cucumber. *The Plant cell.* 2019, 31, 1289-1307.

51. Zhu, Y.; Yin, J.; Liang, Y.; Liu, J.; Jia, J. Transcriptomic dynamics provide an insight into the mechanism for silicon-mediated alleviation of salt stress in cucumber plants. *Ecotoxicol Environ Saf.* 2019, 174, 245-54.

52. Chen, X.; Wang, Z.; Tang, R.; Wang, L.; Chen, C.; Ren, Z. Genome-Wide identification and expression analysis of Hsf and Hsp gene families in cucumber (*Cucumis sativus* L.). *Plant Growth Regul.* 2021, 95, 223-239.

53. Xu, Q.; Xu, X.; Shi, Y.; Qi, X.; Chen, X. Elucidation of the molecular responses of a cucumber segment substitution line carrying *Pm5.1* and its recurrent parent triggered by powdery mildew by comparative transcriptome profiling. *BMC Genom.* 2017, 18, 21.

54. Kong, W.; Chen, N.; Liu, T.; Zhu, J.; Wang, J.; He, X.; Jin, Y. Large-Scale Transcriptome Analysis of Cucumber and *Botrytis cinerea* during Infection. *PLoS One.* 2015, 10, e0142221.

55. Adhikari, B.N.; Savory, E.A.; Vaillancourt, B.; Childs, K.L.; Hamilton, J.P.; Day, B.; Buell, C.R. Expression Profiling of *Cucumis sativus* in Response to Infection by *Pseudoperonospora cubensis*. *PLoS ONE.* 2012, 7, e34954.

56. Li, H.; Wang, S.; Chai, S.; Yang, Z.; Zhang, Q.; Xin, H.; Xu, Y.; Lin, S.; Chen, X.; Yao, Z.; Yang, Q.; Fei, Z.; Huang, S.; Zhang, Z. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. *Nat Commun.* 2022, 13, 682.

57. Li, H.; Hu, Y.J.; Zhang, Q.X.; Wang, L.N.; Ren, Z.H. Identification and Analysis on TRM Family in Cucumber. *Journal of Shandong Agricultural University.* 2021, 52, 358-363.

58. Yin, S.; Zhao, L.; Liu, J.; Sun, Y.; Li, B.; Wang, L.; Ren, Z.; Chen, C. Pan-genome Analysis of WOX Gene Family and Function Exploration of *CsWOX9* in Cucumber. *Int. J. Mol. Sci.* 2023, 24, 17568.

59. Bai, S.L.; Peng, Y.-B.; Cui, J.X.; Gu, H.T.; Xu, L.Y.; Li, Y.Q.; Xu, Z.H.; Bai, S.N. Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (*Cucumis sativus* L.). *Planta.* 2004, 220, 230-240.

60. Ma, H.; Liu, M. The microtubule cytoskeleton acts as a sensor for stress response signaling in plants. *Mol Biol Rep.* 2019, 46, 5603-5608.

61. Liu, L.; Chen, J.; Gu, C.; Wang, S.; Xue, Y.; Wang, Z.; Han, L.; Song, W.; Liu, X.; Zhang, J.; Li, M.; Li, C.; Wang, L.; Zhang, X.; Zhou, Z. The exocyst subunit *CsExo70B* promotes both fruit length and disease resistance via regulating receptor kinase abundance at plasma membrane in cucumber. *Plant Biotechnol J.* 2024, 22, 347-362.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.