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Abstract: This paper aims to study and analyze the effect of the flow rate and amplitude of walling waves on

the peristaltic flow of Jeffrey’s fluid through an irregular channel. In addition, it analyses streamlined patterns

and their local and global bifurcation flow. The theory of dynamical systems is used to explore the position of

critical points and their bifurcation. Numerical and analytical methods are presented to display effective changes

in amplitude and rate of the flow on the transport of fluid. Three types of streamline patterns occur backward,

trapping and augmented flow in the channel through movement due to changes in the value rate parameters.

Keywords: jeffrey fluid; 2D Unsymmetric channel; peristaltic flow; hartmann-grobman theorem; bifurcation
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1. Introduction

Peristaltic is regarded as one of the main mechanisms of fluid moves in physiological systems
such as human and mammalian. Peristalsis occurs due to the expansion and contraction of sinusoidal
waves across the walls of channel. These mechanisms are important in physiology and industry, for
instance, the flow of blood in arterioles, movement of urine from the kidney to the bladder, venules
and capillaries, roller and finger pumps, waste management pumps in nuclear industry, hose and
domestic pumps. Also, the technique of this transport is used in devices like heart–lung machine to
pump blood.

The main researcher on this subject is Latham [1] who introduced an exhaustive analysis of
peristaltic transport in the context of mechanical pumping. The theoretical and experimental study
for peristalsis and the author derives The mathematical formulation between motion of fluid and the
amplitude ratio of the peristaltic transport has been done by [2]. Further extended by Shapiro et al. [3]
studied peristaltic movement under the conditions of large wavelength at tiny Reynolds number.

Raju and Devanathan [4] were the first who investigated the peristaltic phenomenon for non-
Newtonian fluids in a tube by considering the blood as a model. Many studies discussed different
features, such as the velocity and amplitude of the fluid, pumping characteristics, and the conditions for
which trapping happens. Trapping refers to the situation when a trapped bolus of fluid is transported
in the flow, with the wave speed, under particular values of the parameters [5–7].

Subsequently, many academics have presented studies about the mechanism of peristalsis due to
the influence analysis of peristaltic flows in engineering and biomedicine. Researchers get different
results about peristaltic flows in different types of fluids with varied types of flow channels [8–10,22–24].

In recent years, interest has begun in studying the bifurcations of stagnation points. Moreover, A
bifurcation in a flow refers to the changes in streamline topologies that occurs in the flow due to the
variation in involved parameters. Also, the bifurcation which allows inquiring about the state of fluid
flow in flow channels, [11–13]. We review some of the research in this regard where Jm´enez-Lozano
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and Sen were interested in analyzing the peristaltic transport of the Newtonian fluid in a symmetric
channel and tube. Inaddition, They concentrated on the theory of dynamical systems to analyze the
streamline topologies and their bifurcations [14–16].

Asghar and Ali both of them presented two separate studies [17,18], respectively. They analyzed
the topology of streamlined and bifurcations of the compressible peristaltic flow through asymmetric
channels. In addition, They investigated the nature and stability of equilibrium points along with
highlighted different streamlined topologies by employing the theory of the dynamical system. Later,
Ullah, et al [20] analyzed the stability status of critical points and streamline topologies of different
flow and investigated their bifurcations for peristaltic flow of a power-law fluid in an axisymmetric
channel. Ali, et al, [9], considered a two-dimensional to study a bifurcation analysis for the peristaltic
movement of power-law fluid through an asymmetric channel.

Also, Ullah and Ali [19], analyzed the bifurcation of stagnation points for a peristaltic transport
of micropolar fluids through symmetric channel with slip condition. The goal of this research is to
investigate the bifurcation analysis and global dynamics of a biomedical drug delivery model that has
been designed as an application for peristaltic flow of nanofluids through a two-dimensional channel.
Hosham and Sellami provide an effective study for characterizing peristaltic Peristaltic Flow Behavior
of thermal nanofluid systems and related phenomena in a biomedical drug delivery model. In addition,
it developed as an application for peristaltic flow of thermal nanofluids, based on bifurcation theory
[21].

Inspired by previous works and others that we have not listed, we present a mathematical model
whose purpose is to study and analyze the effect of flow rate and amplitude of wall waves on the
peristaltic flow of Jeffrey fluid. Furthermore, we analyze the streamlined topologies and flow of local
and global bifurcations in a 2D asymmetric channel. In the literature, such an analysis of the peristaltic
transport of Jeffrey fluid through the asymmetric conduit has not been performed. The research was
divided into seven sections, the first was a simple overview of previous work, and the second was the
creation of a mathematical model based on the shape of the channel and the type of fluid. The third
part includes the solution method using non-dimensional parameters while calculating the flow rate is
located in the fourth part of the research. The fifth part includes solving the problem by determining
the formula for functions (velocity, stream function, shear stress, and pressure gradient). The main
part of the work is located in the sixth section through the use of dynamic systems theory to explore
the position of critical points and their ramifications. The last section includes the conclusions.

2. Mathematical Formulations

A peristaltic flow of Jeffrey fluid is considered to through in a two-dimensional channel with an
irregular wall. In a Cartesian coordinate system (X∗, Y∗), the channel walls are shown in Figure 1.
Which has the upper and lower cosine wave equation Hl(x̄, t̄) and −Hl(x̄, t̄) respectively, and given by

Hl(x̄, t̄) = l1 − d cos2(
π

σ
(X̄ − αt∗)).

Figure 1. The graphical representation of geometry of wall surface.
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In the above equation, l1 is the average radius of the tube, d is the amplitude of a peristaltic wave,
σ is a wavelength, α is a wave propagation speed, and t∗ is a time.

The equations of motion (conservation of mass and momentum) are

∇.Ū = 0 (continuity equation),

ρ(Ū.∇)Ū = −∇P̄ + div S̄ ( momentum equation), (1)

where U ≡ (U1(X, Y, t), U2(X, Y, t), 0) is a velocity field, ρ is a density, P̄ is a pressure, S̄ is an extra
stress tensor. The constitutive equation of the extra stress tensor for Jeffrey fluid is given by

S̄ =
κ

1 + λ1
( ¯̇γ + λ2 ¯̈γ), (2)

where κ is a fluid viscosity, λ1 is the ratio of relaxation to retardation times, λ2 is the retardation time,
¯̇γ is the shear rate (tensor form).

Peristaltic motion is a normally unsteady phenomenon and has the test form (X̄, Ȳ). It is possible
to transfer it to the steady-state by reference assumption of wave frame (x̄, ȳ) (by converting constant
formulas) with the relations;

X̄ = x̄ + αt̄,

Ȳ = ȳ,

Ū1 = ū1 + α,

Ū2 = ū2,

P̄ = p̄. (3)

where (ū1, ū2) and (Ū1, Ū2) are a velocity elements of the moving and stationary structures respectively.
As a sequence for these transformations, the equations of continuity and momentum (1) become,

∂(ū1 + α)

∂x̄
+

∂ū2

∂ȳ
= 0, (4)

ρ(ū1 + α)
∂(ū1 + α)

∂x̄
+ ρū2

∂ū2

∂ȳ
− ∂δ̄x̄x

∂x̄
−

∂δ̄x̄y

∂ȳ
+

∂ p̄
∂x̄

= 0,

ρ(ū1 + α)
∂ū2

∂x̄
+ ρū2

∂ū2

∂ȳ
−

∂δ̄x̄y

∂x̄
−

∂δ̄ȳy

∂ȳ
+

∂ p̄
∂ȳ

= 0. (5)

The boundary conditions are as follows:

ū1 = −α at ȳ = ∓Hl(x̄) = ∓(l1 − d̄ cos2(
π

σ
(x̄))),

ū2 = −α at ȳ = Hl(x̄) = l1 − d̄ cos2(
π

σ
(x̄)). (6)

The stress component are :

S̄x̄x̄ = (
2κ

1 + λ1
)(1 + λ2[(ū1 + α)

∂

∂x̄
+ ū2

∂

∂ȳ
])(

∂ū1

∂x̄
),

S̄ȳȳ = (
2κ

1 + λ1
)(1 + λ2[(ū1 + α)

∂

∂x̄
+ ū2

∂

∂ȳ
])(

∂ū2

∂ȳ
),

S̄x̄ȳ = S̄ȳx̄ = (
κ

1 + λ1
)(1 + λ2[(ū1 + α)

∂

∂x̄
+ ū2

∂

∂ȳ
])(

∂ū1

∂ȳ
+

∂ū2

∂x̄
). (7)
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That corresponding stream functions is ū1 = ∂Ψ̄
∂y and ū2 = − ∂Ψ̄

∂x

3. Solution Method

In order to simplify the governing equations of the problem, we may introduce the following
dimensionless transformations as follows:

x =
x̄
σ

, y =
ȳ
l1

, ζ =
l1
σ

, u1 =
ū1

α
, u2 =

σū2

αl1
, p =

l2
1 p̄

κσα
, t =

αt̄
σ

, Ψ =
Ψ̄

l1α
, d =

d̄
l1

,

h =
Hl
l1

, Re =
ραl1

κ
, Q1 =

Q̄1

l1α
, q1 =

q̄1

l1α
, Sxx =

σS̄x̄x̄

κα
, Sxy =

l1S̄x̄ȳ

κα
, Syy =

σS̄ȳȳ

κα
, (8)

where Re "Reynolds number", d is an amplitude ratio, ζ is a dimensionless wave number, Ψ "stream
function". Substituting equations (8) into equations (4- 7) and under the long-wavelength assumption
ζ ≪ 1 become the governing equations after simplification

∂u1

∂x
+

∂u2

∂y
= 0 (9)

∂p
∂x

=
∂Sxy

∂y
, and

∂p
∂y

= 0 (10)

Sxy = (
1

1 + λ1
)

∂u1

∂y
(11)

The boundary conditions become:

u1(y) = u1(−y) = −1 at y = h = 1 − d cos2(πx),

u2(y) = 0 at y = h = 1 − d cos2(πx). (12)

4. Rate of Volume Flow

In fixed coordinate system, the instantaneous volume of flow rate is given by:

Q̂1 =
∫ W

−W
Ū1(X̄, Ȳ, t̄) dȲ. (13)

Substituting equations (3) into (12) and then integrating gets:

Q̂1 = q̄1 + 2αW where q̄1 =
∫ W

−W
ū1( ¯x, ȳ) dȳ

The time-mean flow over a period T = σ
α is defined as

Q̄1 =
1
T

∫ T

0
Q̂1 dt̄ =

1
T

∫ T

0
(q̄1 + 2αW) dt̄ = q̄1 + 2α(l1 −

d̄
2
). (14)

By using equations (8), yields Q1 = q1 + 2(1 − d
2 ) , so that we have q1 = Q1 − 2(1 − d

2 ), where q1

is the dimensionless volume flow rate in the wave frame defined by

q1 =
∫ h

−h
u1(x, y) dy =

∫ h

−h
(

∂Ψ
∂y

) dy = Ψ(h(x))− Ψ(−h(x)). (15)

With boundary conditions: ∂Ψ
∂y |y=h = ∂Ψ

∂y |y=−h = −1, Ψ(h) = 1
2 Q1 Ψ(−h) = − 1

2 Q1.
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5. Solution of the Problem

Substituting equation (11 ) into equation (10) and using the boundary conditions (12) and volume
flow rate q1, we get the solution to the velocity equation and therefore the formula for the velocity
function is

u1 =
(1 + λ1)

2
∂p
∂x

(y2 − h2)− 1. (16)

The corresponding stream functions is Ψ = (1+λ1)
2

∂p
∂x (

1
3 y3 − h2y)− y. The shear stress Sxy =

(1 + λ1)
∂p
∂x y, where the evaluate pressure gradient is ∂p

∂x = −3
2(1+λ1)h3 (Q1 + d − 2 + 2h).

The above solution of the streamline function with specific values of the volume flow rate
Q1 = 0.9, 1.3 and 1.7 and amplitude d = 0.5 can be analyzed to three different scenarios of the flow
field (can seen in Figure 2.). Firstly, backward flow occurs when the entire flow moves with the
opposite direction of the wave motion (in the panel A1). Then, panel A2 shows trapping phenomena
that happens when boluses composed of fluid particles appear in the flow motion. Also, it can be
described as closed path of streamlines. Finally, remarkable change is known augmented appears
when the trapped bolus are under the wave crests and between them there exist some flow transports
through the centerline in the wave direction, see panel A3.

Figure 2. A streamline pattern is for the system (17) with different value flow rates Q1 ∈ (0.5, 1.9)
with constant amplitude d = 0.5. The left panel shows the backward flow of fluid with Q1 = 0.9 and
there are just saddle points. The panels A2, and A3 display two significant changes physically and
dynamically with Q1 = 1.089, 1.3 birth red/ black critical points refer to center and saddle points,
respectively. Also, appearance of trapping zone is inside the heteroclinic connection that is created
between two different saddle points. The last panel A4 illustrates augment flow where Q1 = 1.7 and
changes the number of saddle points with a new formation heteroclinic connection.
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6. The Nonlinear System and Its Bifurcation

The dynamical system theory is useful to analyze qualitative behaviors the flow of fluid. From
equations (9, 16), we get the following coupled nonlinear differential equations system for the original
problem with two parameters Q1 and d:

u1 = −(3/8)((2Q1 + d − 4d(cos(πx))2)(−(1 − d(cos(πx))2)2

+ (y)2))/((1 − d(cos(πx))2)3)− 1 = f (x, y),

u2 = −(9/4)((2Q1 + d − 4d(cos(πx))2)(−(1 − d(cos(πx))2)2y

+ (1/3)(y)3)d cos(πx) sin(πx)π)/((1 − d(cos(πx))2)4)

+ (3d cos(πx) sin(πx)π(−(1 − d(cos(πx))2)2y

+ (1/3)(y)3))/((1 − d(cos(πx))2)3)− (3/2)((2Q1 + d

− 4d(cos(πx))2)d cos(πx) sin(πx)πy)/((1 − d(cos(πx))2)2) = g(x, y). (17)

The significant step in studying the above system is found equilibrium points in the flow of fluid. By
putting

f (x, y) = g(x, y) = 0,

The system (17) can be solved numerically by using Maple software and getting the below point
(xi, yi). It is noted that the nature and stability of the critical points (xi, yi) in the flow field of the
channel wall are changed due to vary values of two parameters Q1 and d and have a remarkable effect
on the behaviour of streamline, (see Figure 2).

1. (x1,2, y1,2) =
( arccos(±

√
−6Q1−3d+8

4d )

π , 0
)

,

2. (x3,4, y3,4) =
(

1
2 ,±

√
−−6Q1−3d+8

6Q1+3d

)
,

3. (x5,6, y5,6) =
(

1,±
√
−−6Q1−d+8

6Q1−9d

)
(1 − d),

4. (x7,8, y7,8) =
(

0,±
√
−−6Q1−d+8

6Q1−9d

)
(1 − d).

The Hartmann-Grobman theorem has been adopted as an effective method for studying local
bahaviour and stability in a neighbourhood of the hyperbolic equilibrium point. Also, it is called a
nondegenerate point because it has a Jacobian matrix with trace and determinant are not equal to zero.
The technique of this theorem is found local linearization close to equilibrium points to investigate the
stability status and nature of these equilibrium points. Therefore, the Jacobian matrix A at a critical
point (x, y) which is a matrix containing the first-order partial derivatives of functions. It is required
with its eigenvalues to analyze the stability of the system.

A|{x,y} =

(
fx fy

gx gy

)
,
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Where

fx =
d f
dx

=
9
4

B1(−(B2)
2 + y2) d cos(πx) sin(πx)π

(B2)4

− 3 d cos(πx) sin(πx)π (−(B2)
2 + y2)

(B2)3

+
3
2

B1 d cos(πx) sin(πx)π
(B2)2 ,

fy =
∂ f
y

= −3
4

B1 y
B3

2
,

gx =
∂g
∂x

=
18 B1 d2 cos(πx)2 sin(πx)2 π2(−(B2)

2y + 1
3 y3)

(B2)5

−
36 d2 cos(πx)2 sin(πx)2 π2(−(B2)

2y + 1
3 y3)

(B2)4

+
9
4

B1 d sin(πx)2 π2(−(B2)
2y + 1

3 y3)

(B2)4

− 9
4

B1 d cos(πx)2 π2(−(B2)
2y + 1

3 y3)

(B2)4

+
15 B1 d2 cos(πx)2 sin(πx)2 π2 y

(B2)3

−
3 d sin(πx)2 π2(−(B2)

2y + 1
3 y3)

(B2)3

+
3 d cos(πx)2 π2(−(B2)

2y + 1
3 y3)

(B2)3

− 24 d2 cos(πx)2 sin(πx)2 π2y
(B2)2

+
3
2

B1 d sin(πx)2 π2 y
(B2)2

− 3
2

B1 d cos(πx)2 π2 y
(B2)2 ,

(18)

gy =
∂g
∂y

= −9
4

B1 (−(B2)
2 + y2) d cos(πx) sin(πx) π

(B2)4

+
3 d cos(πx) sin(πx) π(−(B2)

2 + y2)

(B2)3

− 3
2

B1 d cos(πx) sin(πx) π

(B2)2 , (19)

where B1 = 2Q1 + d − 4d cos(πx)2 and B2 = 1 − d cos(πx)2.
From above matrix, we can get the quadratic function µ2 + τµ + δ = 0, such that τ|{x,y} = fx + gy

and δ|{x,y} = dat(A). The solution of this equation is two eigenvalues µ1 and µ2. The fixed point p∗ is
called hyperbolic (nondegenerate ) if the real part of the eigenvalues µ1 and µ2 of the matrix A are
nonzero. A hyperbolic fixed point can be classified according to its eigenvalues: a sink, source and
center. It is a stable sink or node, if it has eigenvalues with a negative real parts, Re(µ1,2 < 0). In
addition, it is called an unstable sours or node point, if the real parts of all eigenvalues are positive,
Re(µ1,2 > 0). Finally, it is called a saddle if it is neither a sink nor a source; this would be the case if
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the real part of eigenvalues satisfy Re(µ1) > 0 and Re(µ2) < 0, or vice versa. A nonhyperbolic critical
point is said to have a center that has eigenvalues are only conjugate imaginary part.

In this section, we describe the changes in the flow patterns for the stream function that are given
in equation (17). These changes are shown in Figures 2 and 3 with labels Ai, Bi (i = 1, 2, 3, 4) at two
constant amplitude ratios of the flow channel d = 0.5, 0.7 respectively, with different values for the
rate of flow Q1 ∈ (0.5, 1.9). Also for the system (17), a local bifurcation diagram is plotted in (Q1, u2)

planes with different fluid behavior indices according to change values of d, it is displayed in Figure 4a,
b, c. Moreover, a parameter space shows bifurcation parameter is numerically estimated for a regular
range of d and Q1, also at Figure 4e.

Figure 3. (A description is as in Figure 2 except for the change in the value of the parameter d = 0.7)
A streamline patterns for different value flow rates Q1 with constant amplitude d = 0.7. The left
panel shows the backward flow of fluid with Q1 = 0.85 and there are just saddle points. The panels
B2, and B3 display two significant changes physically and dynamically with Q1 = 1., 1.3 birth red/
black critical points refer to center and saddle points, respectively. Also, apperance of trapping zone is
inside the heteroclinic connection that is created between two different saddle points. The last panel
B4 illustrates augment flow where Q1 = 1.5 and changes the number of saddle points with a new
formation heteroclinc connection.

The important qualitative observation is in Figure 2 where the value of d = 0.5. At the panel A1,
there are saddle points for flow pattern at Q1 < 1.083 and represent heteroclinic connections between
them. This case shows backward flow and corresponds to the blue branch in the bifurcation diagram
(Figure 4a).

After the transition from A1 to A2 where the Q1 = 1.089 and cross the pink bifurcation point
Q1 ≃ 1.083 (Figure 4a), it will appear a small trapping zone and the distance between two centers
under the same wave crest is small. With an increased value of the flow rate Q1 = 1.3 at Figure 2A3,
the trapping region will expand and center points will gradually move away from each other.

Moreover, it is remarkably observed that there are black unstable saddle points (x3,4, y3,4) on the
centerline and red center points (x1,2, y1,2). The nondegenerate saddle points are plotted as a single
black line and red center points represent two red branches of lines in Figure 4a at the light yellow
area. There are more consequences when the value of the flow rate crosses the pink bifurcation. Every
two saddle points come together to create a heteroclinic connection that it provides a global bifurcation
picture of the dynamics. Due to the existence of saddle connections and center points under the
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wave crest, the streamlines create an enclosed flow zone, which is characterized as a “trapping” bolus
phenomenon. The trapping zone appears near the upper and lower centerline of the channel.

Figure 4. This figure shows the bifurcation diagram with Q1 aginst u2 for the equations (17) with
the various values of parameters d = 0.5, 0.7, 0.9 in the panals A1,2,3 respectively. Red/ black lines
refer to stable/unstable points, green indicates periodic orbit and a single saddle−node is represented
in a blue line. At A4, there are two branch lines of saddle−node bifurcation (dash−circle lines) and
three regions have a light color (blue, yellow, green) that indicate the existence of three complicated
behaviours (backward, trapping, augment) respectively. The symbols I, I I I, IV is the number of critical
points in every zone.

This phenomenon will be continuous with growing the value of flow rate until the second cyan
bifurcation point Q1 ≃ 1.417 will emerge, where the saadle-node bifurcation will occur. With more
explanation, a saddle point splits into two black saddle points (x5,6, y5,6) and (x7,8, y7,8) under the wave
trough. They shift away from u1 − axis and create a saddle connection, which is known heteroclinic
connection that happens between two different saddle points. Also, these changes are depicted as
double black curves indicate unstable critical points in the bifurcation diagram 4a. The new value of the
bifurcation parameter Q1 causes the appearance of augmented flow phenomena. In other words, when
the trapped bolus splits and there exist some flow going forward between them, the two remaining
eddies being below the wave crests and inside the heteroclinic orbit.

With more clarification, it can be divided bifurcation diagram 4a into three regions: the first one is
light blue I, where backward flow occurs; the next region is light yellow, I I I, where the trapping zone
is seen; and finally, at light green IV, appearance of augmented flow phenomena. The Roman numbers
refer to the number of equilibrium points. These regions and the pink and cyan bifurcation points are
also determined in the parameter space (Q1, d), see Figure 4e. This figure displays the relationship
between effective parameters on the streamline.

The topological appearance of the two Figures 2 and 3 has a similar scenario with different values
of the amplitude d = 0.5, 0.7, respectively. However, there is a core difference between them. Which
is as the fluid amplitude d increases approximately ∆d = 0.2, the distance between two bifurcation
points ( pink at Q1 ≃ 1.45 and cyan at Q1 ≃ 0.9833) also increases. The effect of that change is the
trapping zone is lengthened with respect to the flow rate, such that ∆Q1(0.7)

− ∆Q1(0.5)
= 0.1327, see

Figure 4a, b (light yellow region) and Figure 4e solid and dash line.
Parameter space provides techniques for analyzing the stability and qualitative change of the

system when parameters are changed, see Figure 4e. Also, the information gained from this space
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allows us to predict and understand the behaviour of the streamline of the system. For instance
by observation, when the amplitude is d = 0.9, at Figure 4c, it can be investigated the pink/ cyan
bifurcation points for Q1 ≃ 0.8333, 1.483 respectively, both of them lay on the branches of saddle−node
bifurcation ( black dash-circle lines) in the light yellow (parameter plane). The findings from these
notes tell us that there existence a trapping zone that expands more than in previous states, without
the need to plot phase portraits. Moreover, it can be predicted what will happen in a complicated
behaviour of flow in the future.

7. Conclusions

This paper analyzes the flow of Jeffrey’s fluid through a wave channel that simulates blood flow
through arterioles. Dynamic system theory is used to analyze the streamlined topologies. In addition,
it is explored the stability of equilibrium points along with their ramifications for peristaltic fluid
transport. The critical points are classified by the eigenvalues extracted from the Jacobian matrix of
the linearization system. There are two types of equilibrium points: centers and unstable saddles.
The center shows the eddying motion in the flow, while the point where separatrices divide the flow
corresponds to the saddle. The local bifurcations of the critical point are presented to display effective
changes in amplitude and the flow rate parameter on the transport of fluid. Three types of streamline
patterns occur: backward, trapping and augmented flow in the channel through movement due to
change in value of the rate parameter. These patterns are plotted in phase portraits. The changes in the
behavior of fluid through the channel correspond to the bifurcation phenomenon where non-hyperbolic
degenerate points change their behavior to form the heteroclinic connection between saddles. The
stability and nature of critical points and local topological changes are explained graphically, which
are found numerically and analytically.
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