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Abstract: Introduction PCa is one of the cancers that exhibits the widest disparity gaps. Geographical place of 

residence has been shown to be associated with healthcare access/utilization and PCa outcomes. Geographical 

Information Systems (GIS) are widely being utilized for PCa disparities research, however, inconsistencies in 

their application exist. This systematic review will summarize GIS application within PCa disparities research, 

highlight gaps in the literature and propose alternative approaches. Methods This paper followed the methods 

of the Cochrane Collaboration and the criteria set of the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA). Articles published in peer-reviewed journals were searched through the PubMed, 

Embase, and Web of Science databases till December 2022. The main inclusion criteria were employing a GIS 

approach and examining a relationship between geographical components and PCa disparities. The main 

exclusion criteria were studies conducted outside the US and those that were not published in English. Results 

A total of 25 articles were included, 23 focused on PCa measures as outcomes: incidence, survival, and mortality 

while only two examined PCa management. GIS application in PCa disparities research was grouped into three 

main categories: mapping, processing, and analysis. GIS mapping allowed for the visualization of quantitative, 

qualitative, and temporal trends of PCa factors. GIS processing was mainly used for geocoding and smoothing 

of PCa rates. GIS analysis mainly served to evaluate global spatial autocorrelation and distribution of PCa 

cases, while local cluster identification techniques were mainly employed to identify locations with poorer PCa 

outcomes, soliciting public health interventions. Discussion Varied GIS applications and methodologies have 

been used in researching PCa disparities. Multiple geographical scales were adopted leading to variation in 

associations and outcomes. Geocoding quality varied considerably leading to less robust findings. Limitations 

in cluster-detection approaches were identified especially when variations were captured using the Spatial 

Scan Statistic. GIS approaches utilized in other diseases might be applied within PCa disparities research for 

more accurate inferences. A novel approach for GIS research in PCa disparities could be focusing more on 

geospatial disparities in procedure utilization especially when it comes to PCa screening techniques. 

Conclusion This systematic review summarized and described the current state and trend of GIS application 

in PCa disparities research. Although GIS is of crucial importance when it comes to PCa disparities research, 

future studies should rely on more robust GIS techniques, carefully select the geographical scale studied, and 

partner with GIS scientists for more accurate inferences. Such interdisciplinary approaches have the potential 

to bridge the gaps between GIS and cancer prevention and control to further advance cancer equity. 

Keywords: GIS; geographic; prostate cancer; disparities; systematic review 

 

Introduction 

Prostate cancer (PCa) is the second leading cause of cancer death in American men and one of 

the cancers that exhibits the largest disparities [1,2]. There is a large literature documenting 

disparities in PCa outcomes that is robust across multiple regions and sociodemographic profiles [3]. 

African American (AA) men, on average, have a 78% higher incidence of developing PCa in their 

lifetime compared to Non-Hispanic NHWs (NHW) [1,2,4–7]. Further, AAs are also more likely to be 

diagnosed at a younger age, present with more aggressive disease, and possess a 2.3 times higher 
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mortality rate than their NHW counterparts [4–6]. Hispanics and some Asian groups have lower PCa 

incidence, however, they tend to suffer from more advanced disease at diagnosis [5,6,8]. PCa 

disparities are not only present across racial/ethnic attributes, but they are also significantly 

associated with the geographical place of residence. Hispanics living in Mexico have a lower 

incidence of PCa than Hispanics living in the Caribbean [9] while Puerto Ricans living in Puerto Rico 

have a lower incidence than Puerto Ricans living in the mainland United States [10].  

In 2019, a systematic review compiling results from 169 international studies presented 

substantial evidence that PCa outcomes and management varied according to the place of residence 

across different populations and geographies [11]. Although this review summarized the two most 

important drivers of PCa disparities, which were rurality and area deprivation, various geographical 

approaches were utilized across the studies including multiple geographical scales and geospatial 

analyses which created a wide heterogeneity for study comparison [11]. Other reviews have been 

published around geographical approaches for prostate cancer research, however, none have 

reviewed the utilization of geographic information systems (GIS) as tools to advance PCa disparities 

research [12–15]. In fact, Obertova and Afshar focused their reviews on inconsistencies of rural/urban 

designation and its utilization within PCa disparity research [13,14], while Gilbert discussed GIS 

approaches, however only focusing on the state of Florida [15].  

According to the National Cancer Institute, health disparities research is a growing area in 

research, and tools to identify and eliminate disparities are growing and encouraged in aims to 

identify pockets of disadvantage and map priority areas [16]. Geospatial analyses provide visual 

insights and substantial proof of the location of disparities and demonstrate their variability by 

adding a dynamic layer for traditional findings of disparities [17]. A new frontier of PCa research is 

the utilization of spatial approaches to identify focal points for interventions and resource mitigation 

and help outline underlying drivers of disparities [18].  

Indeed, multiple approaches have been used to examine the association between geographical 

places of residence and PCa outcomes. Precisely, area-level characteristics and socioeconomic (SES) 

profiles have been linked to multiple disparities in PCa outcomes across various geographical scales 

such as county, census, census tracts, and others [19,20]. SES and demographics have also been linked 

to healthcare access and utilization of advanced PCa procedures [21–23]. Further, spatial approaches 

combine techniques from geography, epidemiology, and public health to better understand health 

needs and allocate resources [24]. This is especially relevant within the context of PCa disparities 

research which calls for multidimensional approaches to advance cancer health equity and reduce 

the persisting gap in outcomes [1]. As such, GIS applications may help expose the determinants of 

local and sociodemographic disparities and provide information to improve health service delivery 

models, training for healthcare professionals, and overall health outcomes [25]. 

GIS is defined as any technology, software, or hardware that enables the processing, mapping, 

and analysis of geographical variables [26,27]. Geographic Information Systems (GIS) research in PCa 

has been developing throughout time and branched into multiple applications such as processing, 

mapping, and analysis [18]. The ultimate success of GIS is when data is transformed into a useful 

representation that provides disease insights [28]. Such a collaborative approach delivers prospects 

to examine associations and connections within health outcomes, the contextual environment, and 

social determinants of health to advance cancer-related equity research [29]. This allowed the 

advancement of such tools with time and the development of a field named the Geographic 

Information Science (GIScience) [26], which examines the interdisciplinary collaborations aided by 

GIS to provide meaningful observations that have the potential to guide public health decision-

making. 

Furthermore, different geographical variables and various spatial scales have been adopted in 

aims to conduct such analyses and provide valuable data for public health interventions [30]. As such, 

geographical analyses in PCa outcomes have moved from the simple stratification of rural/urban 

continuum to computation of composite area deprivation indices within neighborhoods and 

utilization of GIS for cluster identification and prediction of poorer outcomes [31,32]. Those 

differences in approaches invite the need for methodological standardization when performing 
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geospatial analyses to identify appropriate applications for Geographic Information Systems (GIS) in 

analyzing PCa disparities.  

The main goal of this comprehensive review is to compile a resource for researchers interested 

in conducting geographical analyses for PCa disparities. This systematic review aims to summarize 

the literature about geospatial disparities in PCa, describe the different GIS applications utilized in 

relating place of residence with disparities in PCa outcomes, and identify gaps in the literature. This 

review also identifies current limitations for GIS application in PCa research and proposes alternative 

approaches. As such, this review provides a comprehensive assessment of methods and a valuable 

resource for researchers joining the increasing trend of analyzing disparities from a geographical 

perspective.  

Methods 

This paper follows the methods of the Cochrane Collaboration [33] and the criteria set of the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [34] to report 

systematic reviews and meta-analyses. Articles published in scholarly (peer-reviewed) journals in 

English were searched through the PubMed, EMBASE, and Web of Science databases till December 

2022.  

Search Method 

The main search terms (i.e., MeSH terms and keywords) focus on 1) GIS 2) disparities and 

inequities 3) prostate neoplasm. Three main databases were researched PubMed, EMBASE, and Web 

of Science [35–37], and a detailed research strategy is included in Appendix A. 

Article Selection 

The population-intervention-comparison-setting (PICOS) method [33] was used to determine 

the eligibility of studies. In our reviewed articles, the participants were “adult men in the US 

diagnosed with PCa”, the intervention was the GIS approach, comparative groups were men from 

varying demographic/socio-economic backgrounds, outcomes were PCa incidence, mortality, and 

survival, and/or PCa management, and finally studies included were observational. Eligible studies 

were all publications resulting from the database queries, referred publications known to the authors 

and others gathered from the reference lists of the identified publications. Out of these eligible 

publications, an article selection process according to specified inclusion and exclusion criteria was 

conducted. Included articles were those employing a GIS approach for examining the relationship 

between geographical components and PCa disparities and/or inequities in the United States. Studies 

that examined disparities in PCa outcomes using geographical elements as independent variables 

were included while studies conducted outside the US, those that are not published in the English 

language, and those that did not assess for a direct relationship between a geographical component 

and PCa disparities were excluded. No date restrictions were applied, and thus, the resulting articles 

were published through December 2022. The last date of search for relevant articles was December 

31st, 2022.  

Study Management 

All included articles were rightfully downloaded, managed and screened using EndNote®. Six 

hundred and fifty-three publications were deemed eligible, all published between 1998 to 2022, 

including 247 duplicates. Articles were screened for eligibility based on title and abstract and 309 

studies were disqualified due to the study setting not being in the US, not having an outcome of 

interest, and having no geographical component. After article selection according to the inclusion 

and exclusion criteria, 25 studies [38–62] met the requirements and were included in this review. 

Detailed reasons for full-text exclusions and the article selection process are represented in Figure 1. 

No potential biases were identified in the individual studies that met the inclusion criteria as all 

resulting studies were evaluated based on reproducibility, methodological quality, and credibility. 
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Figure 1. Article Selection Process. 

Due to the nature of the research question that aims at reviewing discovered geographical 

disparities in PCa, publication bias may have arisen. Likely, studies with no significant findings for 

disparities weren’t published and thus included publications overrepresented disparities. However, 

the large population-based studies in this review tend to limit this potential overrepresentation. This 

review followed the PRISMA checklist for evidence-based reporting and thus, principal summary 

measures were odds ratios, hazard ratios, relative risks, and differences in percentage along with 

their respective p-values. 

Results  

In this systematic review, a total of 25 studies were included, published from 2002 to 2022, those 

studies are detailed in Table 1. A total of six studies examined disparities in late-stage PC, six in 

incidence, four in mortality and survival, three in incidence, grade, and stage simultaneously, two in 

mortality-to-incidence (MIR) ratio, and two in PCa management (Table 1). GIS applications were 

grouped into three main application purposes: “mapping”, “processing”, and “analysis” (Table 1). 

Table 1. Summary of Studies Included In This Systematic Review. 

Author 

(yr) 

PCa 

Database 

(period) 

Geogra

phic 

scale(s) 

GIS Application 

(method) 

Main 

outcome(

s) 

Main GIS finding(s) 

Jemal A 

et al. 

(2002) 

National 

Center for 

Health 

Statistics 

(1970-1989)* 

County 

Mapping: Quantitative 

and qualitative 

Analysis: Cluster 

identification (Spatial 

Scan Statistic) 

Dispariti

es in PCa 

mortality 

Five clusters of higher 

mortality in NHWs and three 

in AAs. Patterns observed 

could not be attributed to 

selected 

demographic/socioeconomic 

variables. 
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Klassen 

AC et al. 

(2005) 

Maryland 

Cancer 

Registry 

(1992-1997) 

Exact 

patient 

address

, 

Census 

Block 

Group, 

county 

Mapping: Quantitative 

and qualitative 

Processing: Geocoding 

(91%) 

Analysis: Cluster 

identification (Spatial 

Scan Statistic) 

Dispariti

es in PCa 

incidence

, missing 

stage, 

and 

grade 

Six clusters of high/low 

missing stage and three of 

missing grade. After 

adjustment for individual, 

census block group and 

county-level variables, cluster 

decreased, and patterns 

changed. 

DeChell

o LM et 

al. 

(2006) 

Connecticut 

and 

Massachuse

tts tumor 

registries 

(1994-1998)* 

Census 

tract 

Mapping: Quantitative 

and qualitative 

Processing: Geocoding 

(NA) 

Analysis: Cluster 

identification (Spatial 

Scan Statistic) 

Dispariti

es in PCa 

incidence 

Significant high and low 

clusters for both NHW and 

AA men identified. In NHWs, 

higher incidence clusters had 

higher census-tract SES. 

Differences in race-specific 

geographic distribution of 

incidence do not suggest a 

shared environmental 

etiology.  

Oliver 

M N et 

al. 

(2006) 

Virginia 

Cancer 

Registry 

(1990-1999)* 

Census 

tract 

County 

Mapping: Quantitative 

and qualitative 

Processing: Geocoding 

(74%-100%) and 

smoothing 

(headbanging) 

Analysis: Spatial 

autocorrelation (MEET), 

cluster identification 

(Spatial Scan Statistic) 

Dispariti

es in PCa 

incidence 

Significant overall clustering 

with elevated incidence in 

Eastern and Central locations. 

Gregori

o DI et 

al. 

(2007) 

Connecticut 

tumor 

registry 

(1984-1998) 

Exact 

patient 

address 

Mapping: Qualitative  

Analysis: Cluster 

identification (Spatial 

Scan Statistic) 

Dispariti

es in PCa 

survival 

Identification of three 

geographical clusters. 

Adjusting for age, tumor 

grade, stage, and race reduced 

clusters to one. PCa survival 

varies, only in part, according 

to place of residence. 

Xiao H 

et Al 

(2007) 

Florida 

Cancer 

Data 

System 

(1990-2001)* 

Census 

tract 

County 

Mapping: Quantitative  

Processing: Geocoding 

(NA) 

Dispariti

es in PCa 

incidence

, stage, 

and 

grade 

Maps showing greatest racial 

disparities in incidence and 

late stage PCa in the northern 

and central counties. 

Hsu C E 

et 

al.(2007) 

Texas 

prostate-

cancer-

specific 

death cases 

file (1980-

2001) 

County 

Mapping: Qualitative 

Analysis: Cluster 

identification (Spatial 

Scan Statistic) 

Dispariti

es PCa 

mortality 

Identification of statistically 

significant geographic counties 

with excess mortality rates for 

each of the racial groups 

studied and examination of 

those trends in function of 

time. 

Hinrich

sen VL 

(2009) 

Maryland 

Cancer 

Registry 

(1992-1997) 

Census 

block 

groups 

Processing: Geocoding 

(NA) 

Analysis: Spatial 

autocorrelation (Cuzick-

Edward’s k-NN, Global 

Moran’s I, MEET) 

Dispariti

es PCa 

stage 

and 

grade 

For both grade and stage at 

diagnosis, Cuzick-Edwards’ k-

NN and Moran’s I were very 

sensitive to the % of pop. 

parameter. For stage, all three 

tests showed that adjusting for 

individual and area level 

variables reduced clustering, 

but not entirely. 
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Meliker 

JR et al. 

(2009) 

Michigan 

Cancer 

Surveillanc

e Program 

(1985-2002) 

FHLD, 

SHLD 

Neighb

orhoods 

Mapping: Quantitative 

Processing: Geocoding 

(91%) 

Dispariti

es in PCa 

survival 

NHWs had significantly 

higher survival rates 

compared with AAs at the 

FHLD; however, in smaller 

geographic units (SHLD, 

neighborhoods), disparities 

diminished and disappeared. 

Hébert 

JR 

(2010) 

South 

Carolina 

Cancer 

Registry 

(2001-2005) 

DHEC 

Region 

Mapping: Quantitative 

Processing: Geocoding 

(82%-100%) 

Dispariti

es in PCa 

MIR 

Striking differences in MIR 

mapping between AAs and 

NHWs in the 8 DHEC regions 

examined. 

Altekru

se et al. 

(2010) 

State cancer 

registries of 

Tennessee, 

Alabama, 

Georgia, 

and Florida 

(1999-2001)* 

Census 

tract 

Mapping: Qualitative 

Analysis: Cluster 

identification (Spatial 

Scan Statistic) 

Dispariti

es in PCa 

incidence 

(localize

d) 

Identification of statistically 

significant clusters. Higher 

incidence of localized disease 

in urban areas.  

Goovaer

ts P et 

al. 

(2011) 

Florida 

Cancer 

Data 

System 

(1981-2007) 

County 

Mapping: Quantitative 

and qualitative 

Processing: Smoothing 

(Binomial Kriging) 

Dispariti

es in late 

stage 

PCa 

Recent increase in the 

frequency of late-stage 

diagnosis in urban areas. The 

annual rate of decrease in late-

stage diagnosis and the onset 

years for significant declines 

varied greatly among counties 

and racial groups. 

Xiao H 

et al. 

(2011) 

Florida 

Cancer 

Data 

System 

(1996-2002)* 

Census 

tract 

County 

Mapping: Quantitative 

and qualitative 

Processing: Geocoding 

(NA), smoothing 

(Binomial Kriging) 

Dispariti

es in late 

stage 

PCa 

More counties had higher rates 

of late-stage diagnosis for AA 

men than for NHW men and 

the location of these racial 

disparities changed with time. 

Goovaer

ts P et 

al. 

(2012) 

Florida 

Cancer 

Data 

System 

(1981-2007) 

County 

Mapping: Quantitative 

and qualitative 

Processing: Smoothing 

(Binomial Kriging) 

Analysis: Cluster 

identification (spatially 

weighted cluster 

analysis) 

Dispariti

es in late 

stage 

PCa 

Geographical disparities were 

most widespread upon 

introduction of PSA screening. 

Spatially weighted cluster 

analysis resulted in spatially 

compact groups of counties 

with similar temporal trends. 

Goovaer

ts P 

(2013) 

Florida 

Cancer 

Data 

System 

(1981-2007) 

County 

Mapping: Quantitative 

and qualitative 

Processing: Smoothing 

(Binomial Kriging) 

Analysis: Cluster 

identification (spatially 

weighted cluster 

analysis) 

Dispariti

es in late 

stage 

PCa 

A temporal trend in late-stage 

diagnosis suggests the 

existence of geographical 

disparities in the 

implementation and/or impact 

of the newly introduced PSA 

screening. 
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Wagner 

S et al. 

(2013) 

Georgia 

Comprehen

sive Cancer 

Registry 

(1998-2008) 

Census 

tract 

County 

Mapping: Quantitative 

and qualitative 

Analysis: Cluster 

identification (Getis-Ord-

Gi and Spatial Scan 

Statistic) 

Dispariti

es in 

incidence 

and high 

grade or 

stage 

PCa 

Pattern of higher incidence 

and more advanced disease 

found in northern and 

northwest central Georgia. 

Hotspot revealed six 

significant clusters of higher 

incidence for both races. When 

stratified by race, clusters 

among NHW and AA men 

were similar, although 

centroids were slightly shifted. 

Gregori

o DI 

(2013) 

Connecticut 

tumor 

registry 

(1994-1998) 

Exact 

patient 

address 

Mapping: Qualitative  

Analysis: Cluster 

identification (Spatial 

Scan Statistic) 

PCa 

incidence 

Two locations where incidence 

rates significantly exceeded the 

statewide level and two 

locations with significantly 

lower disease rates. Analysis 

adjusted for age and 

covariation of colorectal cancer 

incidence rates across the state 

accounted for all significant 

variation previously observed. 

Goovaer

ts P 

(2015) 

Florida 

Cancer 

Data 

System 

(2001-2007)* 

Census 

tract 

County 

Mapping: Quantitative 

and qualitative 

Analysis: Geographically 

Weighted Regression 

Dispariti

es in late 

stage 

PCa 

Identification of locations 

where ORs for late stage are 

higher/lower than the state 

level. 

Wang M 

et al.  

(2017) 

Pennsylvan

ia Cancer 

Registry 

(2000-2011)* 

County 

Mapping: Quantitative 

and qualitative 

Processing: Smoothing 

(Empirical Bayes) 

Analysis: Spatial 

autocorrelation (Global 

Moran’s I), cluster 

identification (Local 

Moran’s I) 

Dispariti

es in PCa 

incidence 

Incidence of PCa among NHW 

males declined from 2000–2002 

to 2009–2011 with significant 

variation across geographic 

regions. 

Wang, 

M et al. 

(2020) 

Pennsylvan

ia Cancer 

Registry 

(2004-2014) 

Exact 

patient 

address 

Mapping: Quantitative 

mapping 

Processing: Smoothing 

(Inverse Distance 

Weighting) 

Dispariti

es in 

aggressiv

e PCa 

Counties where AA 

population is lower than 5.3% 

have the highest odds of 

having the most aggressive 

forms of PCa in those AA men 

Aghda

m et al. 

(2020) 

Single 

institutional 

database 

(2008-2017)* 

Zip 

code  
Mapping: Qualitative 

Dispariti

es in PCa 

manage

ment 

Travel distance did not 

prevent the uptake of SBRT for 

African American, elderly or 

rural patients.  

Georga

ntopoul

os, P. et 

al. 

(2021) 

U.S. 

Veterans 

Health 

Administrat

ion EMR 

(1999-2015) 

ZCTA 

Mapping: Quantitative 

and qualitative 

Analysis: Spatial 

autocorrelation (Global 

Moran’s I), cluster 

identification (Local 

Moran’s I) 

Dispariti

es in PCa 

MIR 

Identification of spatial 

clusters of higher- or lower-

than-expected MIRs by ZCTA. 

Two clusters of higher-than-

expected MIRs were found in 

the Upstate region. 
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Moore J. 

X. et al. 

(2022) 

CDC (1999-

2019) 
County 

Mapping: Qualitative 

Processing: Smoothing 

(Empirical Bayes) 

Analysis: Cluster 

identification (Getis-Ord-

Gi and Local Moran’s I) 

Dispariti

es in PCa 

mortality 

Cancer mortality hot spots 

were heavily concentrated in 

three major areas in Georgia. 

Hot spot counties generally 

had higher proportion of AA 

adults, older adult population, 

greater poverty, and more 

rurality 

Aladuw

aka et 

al. 

(2022) 

Alabama 

State 

Cancer 

Profile data 

(NA)* 

County 
Mapping: Quantitative 

and qualitative 

Dispariti

es in PCa 

incidence 

and 

mortality 

Apparent socioeconomic 

disparity between the AA Belt 

and Non-AA Belt counties of 

Alabama, which suggests that 

disparities in PCa incidence 

and mortality are strongly 

related to SES. 

Tang, C. 

et al. 

(2021) 

National 

Medicare 

Database 

(2011-2014) 

Zip 

code 

County 

Mapping: Quantitative 

and qualitative 

Dispariti

es in PCa 

manage

ment 

Patient access was most 

limited for brachytherapy. 

Lower provider availability in 

rural areas, especially in 

western states. Heterogeneity 

in the access of definitive PCa 

treatment. Greater distance 

was associated with decreased 

probability of treatment. 

*PCa database linked to census data. 

Summary of PCa Disparities Findings in GIS Studies  

GIS studies that examined disparities in PCa incidence 

GIS studies examining disparities in PCa mainly shared a common purpose of identifying 

locations of higher-than-expected incidence and examining their associations with contextual factors. 

For example, in Connecticut and Massachusetts, clusters of high PCa incidence were characterized 

by a better census-tract-level SES (less than 12 years schooling rate, below the poverty rate, renter-

occupied dwellings rate, unemployment rates) mainly in NHWs as compared to AAs [40]. Similarly 

in Virginia, higher household income and urban residence increased the likelihood of diagnosis 

suggesting that better census-tract SES enhances healthcare access, especially for PCa screening [41]. 

Furthermore, residing in urban census tracts was associated with early-stage diagnosis, in a multi-

state study conducted in Alabama, Tennessee, Georgia, and Florida [48]. Also in Georgia, Wagner et 

al. identified clusters of high PCa incidence that slightly differed in locations upon racial stratification 

suggesting the involvement of environmental predictors [53]. A novel approach was adopted by 

Gregorio et al., as they demonstrated that the “detection effect” through adjusting for colorectal 

cancer screening, accounted for all significant spatial variations in PCa incidence [54]. In 

Pennsylvania, the temporal decline in PCa incidence from 2000 to 2011 was suggested to illustrate 

the effect of the variation in PSA screening recommendations. Most notably, age at diagnosis was 

significantly younger in AAs as compared to NHWs, calling for increased attention in metropolitan 

Philadelphia areas where AAs are concentrated [56]. Mapping of PCa incidence in Alabama counties 

against rates of diabetes, obesity, education, and poverty, suggested an apparent association with 

those factors [61]. Accordingly, GIS studies examining disparities in PCa incidence suggested that 

higher PCa incidence may be associated with area-level racial composition, rurality, income, poverty, 

education, unemployment, percent renter-occupied dwellings, access to screening, and other chronic 

comorbidities. 

GIS studies that Examined Disparities in PCa grade and Stage at Diagnosis 

Having a “missing” stage and/or grade information from the tumor registry was utilized as a 

proxy for possible worse PCa outcomes. For example, Klassen et al. examined the relationship 
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between missing stage and/or grade and area-level SES. As such, clusters of having a missing PCa 

stage or grade from the Maryland Tumor Registry were identified. Having a missing stage was 

associated with higher county-level household income while having a missing grade was associated 

with higher census block-group household income [39]. In Florida, northern and central counties 

exhibited the greatest racial disparities in late-stage PCa which was associated with lower census-

tract income and lower college education [43]. Additionally, the late-stage proportions decreased 

significantly from 1981 to 2007, however, the rate of decline varied greatly based on county location 

and racial groups [49]. This variation was suggested to be related to geographical disparities in the 

implementation of the Prostate Specific Antigen (PSA) screening [52]. Upon racial stratification, more 

counties exhibited higher proportions of late-stage diagnosis in AAs versus NHWs. Associations 

were also detected on the census tract level as higher census tract income was protective while the 

presence of farmhouses increased the likelihood of a later stage diagnosis [49,55]. Moreover, a side-

by-side mapping comparison of late-stage odds ratios (ORs) with comorbidities, income, and 

smoking rates at the county level, suggested that those could be associated with a later-stage 

diagnosis [55]. Thus, in addition to establishing relationships between later-stage diagnosis and 

poorer area-level SES, the temporal factor was also important to account for within this context, 

especially when it comes to varying PCa screening recommendations and clinical practices [63]. 

GIS studies that Examined Disparities in PCa Mortality and Survival 

Using national data of PCa patients from 1970 to 1989, five national clusters of higher mortality 

in NHWs and three in AAs were detected, however, those could not be attributable to the selected 

county-level SES variables which included education and agricultural employment [38]. Identified 

geographical clusters of poorer PCa survival in Connecticut significantly diminished when 

individual-level variables representing age, race, and tumor severity (stage and grade) were 

accounted for suggesting that survival only varies in part according to the place of residence and 

other area-level factors might be predictors [42]. In Texas, counties with statistically significant excess 

mortality rates were found to be concentrated in the central state for multiple racial subgroups in a 

spatial and temporal analysis over a 22-year study period [44]. Meliker et al. identified survival 

disparities across the state of Michigan. Existing disparities identified at larger geographical scales 

Federal (House Legislative Districts (FHLD)) diminished and sometimes disappeared upon 

examination on smaller geographical scales (State House Legislative District (SHLD) and 

neighborhoods). This was attributed to the fact that, in smaller areas, the population at risk is more 

uniform in terms of modifiable SES, risk factors, and proximity to cancer screening [46]. In South 

Carolina, Hebert et al. mapped racially stratified MIRs across eight Department of Health and 

Environmental Control (DHEC) regions. Visualization on mapping presented striking differences 

between AAs and NHWs allowing for the localization of areas with the widest disparity gaps. MIR 

was also mapped per Zip Code Tabulation Area (ZCTA) in South Carolina for US Veterans where 

metropolitan MIR was found to be higher than non-metropolitan MIR and two clusters of higher-

than-expected MIRs were detected in the Upstate region. In contrast to Hebert’s finding above, 

Georgantopoulos et al. found that AAs had a lower MIR than NHWs suggesting that Veterans exhibit 

a more uniform population for comparison and that factors causing such disparities are likely 

modifiable and related to healthcare access and SES [59]. Finally, PCa mortality hot spots were 

heavily concentrated in three major areas in Georgia. “Hot spot counties” generally had a higher 

proportion of AAs, older adult population, greater poverty, and more rurality [60]. Although area-

level SES was shown to be associated with poorer PCa survival, including facility-level characteristics 

within GIS studies, as in Georgantopoulos’s study (2021) provided an additional layer for examining 

racial disparities in PCa. 

GIS studies that Examined Disparities in PCa Management 

Only two studies examined disparities in PCa management. Those mainly employed GIS 

mapping to identify visual associations between zip-code level factors and PCa treatment. Single 

institutional data was used to relate Stereotactic Body Radiation Therapy (SBRT) with zip-code level 
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characteristics. The geospatial distance between the patient’s zip code and the facility was calculated 

and the geographical reach of the institution was assessed by examining the SES status for each zip 

code. Travel distance did not prevent uptake of prostate SBRT in AAs, elderly, or rural localized PCa 

cases [58]. A national GIS study examined disparities in PCa management using the National 

Medicare Database where PCa modalities were mapped across PCa cases county. Multivariate 

regression identified that practitioners of more novel modalities (i.e.,: SBRT and proton therapy) were 

mainly concentrated in zip codes that are more urban, while greater distance was associated with a 

significantly decreased probability of treatment (IMRT −3.8% per 10 miles; prostatectomy −2.1%; 

brachytherapy −2%; proton therapy −1.6%; and SBRT −1.1%) [62]. 

Application of GIS in PCa Disparities Research 

All included studies shared a mutual rationale for GIS employment which was to identify 

geographic regions with the highest burden of PCa so that public health interventions can be 

prioritized. In this systematic review, three main purposes were identified for utilizing a GIS 

approach in studying PCa disparities: mapping, processing, and analysis. Mapping was employed in 

24 studies, analysis in 16, and processing in 14 (Table 1). Those are described below and are 

represented in Figure 2. 

 

Figure 2. GIS application in Prostate Cancer (PCa) Disparities Research. 

Application of GIS in PCa Disparities Research: “Mapping” 

All but one study [45] employed GIS techniques for mapping/visualization where PCa data were 

mostly translated into polygons of PCa measured in a certain geographical unit. The main purpose 

of creating maps was to provide a cartogenic representation of PCa rates and zones where poorer 

outcomes or higher disparities exist. Multiple software was utilized for mapping, however, ArcGIS 

remained the most utilized as it was employed by nine out of the 23 studies included and it is 

considered by many as the industry standard [64,65]. 

Mapping a Snapshot in Time: Qualitative and Quantitative Data 

All studies presented maps with a single snapshot in time, mostly translating points to polygons 

as point data was aggregated to a certain designated geographical scale. The most common scale for 

mapping was “county” present in 12 studies. Remaining mapping was performed on the level of the 

census tract (in 3 studies )40, 41, 48]), zip codes (2 studies [58,59]), FHLD/SHLD/Neighborhoods (1 

study [46]) and DHEC (1 study [47]), census block group (1 study [39]). For example, after acquiring 

individual-level data from the Virginia Cancer Registry, Oliver et al., geocoded data to the street level 

and assigned a census tract and a county for each case. As such, maps were reproduced displaying 

county-level and census tract-level PCa incidence. Such mapping helped to visually identify how 

disease rates changed from one zone to another. Consequently, PCa incidence was found to be the 

highest in the Eastern and Central portions of Virginia [41]. Such visual indicators can be the source 

of identifying locations where further analysis of contextual factors might be warranted. 

Furthermore, both qualitative and quantitative PCa-related variables were represented (Figure 

3). Eleven studies had both quantitative and qualitative maps while eight had only quantitative and 

six only qualitative. Qualitative mapping showed the spatial distribution of categorical, or nominal 

data such as rural/urban counties, or the presence or absence of certain outcomes, such as zones 

presenting significant disparities or clusters of a concentrated outcome (Figure 3). Conversely, 
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quantitative mapping presented the spatial distribution of numeral data as most of those represented 

PCa rates, either for incidence, late stage, or mortality (Table 1). This kind of mapping was mainly 

used to identify locations with worse PCa outcomes or higher concentrations of the disease. For 

example, Jemal et al. mapped PCa mortality rates per county relying on the national cancer registry 

data. This approach was useful to identify and visualize counties with higher PCa mortality by 

comparing mortality rates across US counties (Figure 3A).  

 
 

 
 

A: Quantitative Mapping: PCa mortality rates 

Prostate cancer mortality rates among NHWs 

(upper panel) and AAs (lower panel) by state 

economic area, 1970–94 [38]. 

B: Qualitative Mapping: Presence/absence of 

disparities Significant racial disparities in 

prostate cancer survival in neighborhoods in 

Detroit, Michigan, 1990-1998 [46]. 

 

 
 

 

C: Qualitative Mapping: rural/urban counties 

Maps of rural–urban continuum codes for Florida 

counties over the period of 1993–2003 [51]. 

D: Trends in time: Three-Dimensional

mapping: 3D representations of 25 maps of 

county-level proportions of late-stage PCa for 

NHW and AA males in Florida from 1982 to 2006

[49]. 

Figure 3. Examples of different types of mapping utilized in PCa disparities research. 

One of the uses for qualitative mapping was to illustrate the presence (or absence) of objective 

differences and/or inequities between specific subpopulations of interest. For example, Meliker et al. 

mapped locations with significant racial disparities in PCa survival to highlight areas of unequal PCa 

outcomes (Figure 3B) [46]. Qualitative mapping was also utilized to map contextual variables that 

help in understanding spatial circumstances under which PCa outcomes may be affected. This was 

especially valuable when qualitative information is visualized in parallel to PCa outcomes. For 

instance, Goovaerts et al., produced a qualitative map of rural/urban counties to obtain a visual 
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representation of the associations between rural/urban places of residence and late-stage diagnosis 

(Figure 3C) [52].  

Mapping Trends Overtime 

Although mapping either qualitative or quantitative data in a time snapshot offers insightful 

visualization, including a temporal dimension ensured a more complete geographical analysis across 

the period studied. Hsu et al. included a temporal element in their mapping by reproducing maps 

showing excess PCa mortality across different time frames [44]. The inclusion of the temporal 

dimension allowed them to not only identify geographical clusters of worse PCa mortality but to also 

examine whether those clusters persisted over time. As such, their mapping identified three specific 

counties where excess mortality among Hispanics has been consistently present for over 19 years, 

calling public health policymakers to prioritize those areas based on spatiotemporal evidence [44]. 

Gooavert et al. [49, 51), furthered the inclusion of the temporal dimensions through 3-D mapping of 

PCa incidence and late-stage diagnosis [51]. Their three-dimensional model was created using 

SGeMS, the Stanford Geostatistical Modeling Software, where proportions of late-stage PCa were 

calculated over a 3-year moving window from 1982 to 2006 (Figure 3D). This mapping approach 

allowed the examination of how rates of late-stage disease responded to the 1990s introduction of 

Prostate Specific Antigen (PSA) testing, a blood test that facilitated PCa detection and early diagnosis. 

As such, including a temporal dimension while mapping PCa outcomes makes it easier to 

comprehend spatiotemporal relationships especially as significant approaches that affect clinical 

guidelines and health outcomes are continuously developing in PCa.  

Application of GIS in PCa Disparities Research: “Processing”  

Processing spatial data was mainly performed in 14 studies to prepare data for subsequent 

analyses and was grouped into geocoding and smoothing. (Table 1). Eight studies mentioned 

geocoding their data, six studies employed smoothing techniques, and two studies employed both 

(Table 1). 

GIS Processing: Geocoding 

Geocoding allowed the provision of geographical coordinates for participants’ addresses that 

were later used for mapping and allowed for individual-level variables to be represented on a 

location basis. Accordingly, addresses of PCa cases were geocoded into a specific location to facilitate 

spatial recognition patterns and allow for observational inferences. For example, Oliver et al. 

geocoded their PCa cases to the census tract using exact patient addresses which allowed examining 

associations between high PCa incidence and census-tract-level SES [41]. Another application of GIS 

processing is the transformation of certain point variables to aggregates which provided variable 

information for multiple geographical scales. For instance, Xiao et al. employed GIS processing to 

transform available latitude and longitudinal data into values per county to examine how county-

level environmental factors affect PCa outcomes. In this case, geocoding assisted in preparing 

environmental data for county-level mapping and analysis by testing the relationship between 

county-level environmental factors and PCa stage/grade [43]. As such, GIS processing allows for scale 

transformation and the obtention of variables to the desired level of aggregation to be able to draw 

inferences between area-level characteristics and PCa outcomes.  

Although geocoding enabled scaled visualization and data transformation, geocoding percentage, 

describing the successful conversion of addresses into a specific location, varied in between studies. 

Half of the studies that mentioned geocoding did not report the percentage of successful geocoding 

(Table 1). The geocoding success rate in the remaining half ranged between a low of 74% [41] to a 

high of 100% [47]. Note, geocoding success increased with the increasing size of the geographical 

scale as it moved from 74% upon geocoding to the census tract to 100% upon geocoding to the county 

[41]. 
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GIS Processing: Smoothing 

Data smoothing created an approximation function intended to capture patterns in the dataset 

and was mainly employed to reduce noise in the data by providing smoothed estimates (Figure 4). 

Goovaerts et al. performed binomial kriging to smooth rates of late-stage PCa to obtain smoother 

maps for late-stage diagnosis rates while Moore et al. (2022) employed the Spatial empirical Bayesian 

smoothing (SEBS) method to smooth mortality rates [60]. In both cases, smoothing was mainly 

utilized to approximate rates data and filter random noise so that clearer spatial patterns are 

observed.  

 

 

 

 

A: Time-average proportions of prostate cancer 

late-stage diagnosis: BM/WM represents 

disparities in late-stage diagnosis between AAs 

and NHWs [49]* 

B: Prostate Cancer Mortality Hot Spots in 

Georgia: Hot Spots were based on within the fifth 

quintile of SEBS of PCa mortality rates [60] 

 

 

 

 
C: Annualized age-adjusted prostate cancer 

incidence rates per 100,000 population (left) by 

Census Tract, 1990–1999. Smoothed rates (right). 

African Americans (top) and Whites (bottom). A 

total of 74% of all cases were geocoded to the 

census tract. [41] 

 

D: Spatial variation on the local risk of highly 

aggressive prostate cancer in Black compared to 

White men diagnosed with prostate cancer, 

Pennsylvania 2004–2014 [57]. 

Figure 4. Application of smoothing techniques in GIS studies examining PCa disparities. *Yearly 

kriging estimates were averaged over the period 1982-2006 and weighted according to the inverse of 

the binomial kriging standard deviations to assign more importance to more reliable estimates. For 

black males (BM), results are expressed as the ratio of average proportions for black versus white 

males (WM) to facilitate the visualization of racial disparities. 
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An additional reason binomial kriging was performed is to replace missing values from the years 

where no PCa cases were diagnosed within specific locations in Florida [49]. Binomial kriging 

provided a measure of reliability called the kriging variance that allowed capitalizing on spatial 

autocorrelation and neighboring geographical units. This was followed by a sensitivity analysis 

which showed that kriging-based noise-filtering improved the fit of the joinpoint regression models 

(i.e., lower residual variability) compared to the modeling of raw rates. In this case, noise-filtered 

data also helped in providing a clearer detection of the variation in county-level late-stage diagnosis 

rates across racial groups and study period (Figure 4A) [49]. 

Moore et al. applied the SBES method to smooth PCa mortality rates and group them into 

quintiles. This distribution allowed for quintile-based quantitative mapping to identify and represent 

counties belonging to the poorest quintiles of PCa mortality (Figure 4B). Such an initial approach only 

provided information on how counties compare in terms of PCa outcomes, without identifying 

clusters or hot spots of concern [60]. On another hand, a weighted two-dimensional smoothing 

algorithm called “Headbanging” was performed on PCa incidence rates in Virginia (Figure 4C). This 

allowed for smoother mapping of PCa outcomes, allowing patterns to emerge from the data [41]. 

Lastly, the Inverse Distance Weighting (IDW) interpolation technique was performed to provide 

smoothed GIS mapping based on local odds ratios of highly aggressive PCa [57]. This technique 

created continuous and smoothed surfaces for the entire state of Pennsylvania based on the 

respondents’ addresses. This allowed the visualization of spatial patterns of the explanatory effect of 

the variable “race” as smoothed rates were racially stratified (Figure 4D). 

Application of GIS in PCa Disparities Research: “Spatial Analysis” 

Although mapping and processing may produce key visual insights, spatial associations can be 

examined by utilizing specific GIS analysis methods. In this systematic review, 16 studies applied 

GIS analysis to spatially analyze and interpret associations with PCa outcomes. Of those, four 

performed global spatial autocorrelation, 15 included a cluster identification approach, and one study 

employed a geographically weighted regression (Table 1).  

GIS Analysis: Identification of Spatial autocorrelation 

Spatial autocorrelation is the term used to describe the presence of systematic spatial variation 

in a variable and it’s the tendency for areas or sites that are close together to have similar values [66]. 

As Waldo Tobler’s first law of geography states: “Everything is related to everything else. But near 

things are more related than distant things” [67]. This was used as a key concept in geospatial 

research as it laid the rationale of spatial autocorrelation methods that test whether geographically 

closer zones have more of the same health outcomes profiles. Spatial autocorrelation indicated the 

presence of clustering or dispersion in a map, as such, examining the global spatial autocorrelation 

was used as an initial step for assessing overall geographical variability in the study area and has 

been performed in four out of the 25 studies included (Table 1). Three spatial tests were utilized to 

assess for global autocorrelation: the Global Moran’s I, Cuzick-Edwards’ k-NN, and Tango’s 

Maximized Excess Events Test MEET (Table 1).  

Data from the Pennsylvania Cancer Registry was used to test for significant global 

autocorrelation using the global Moran’s I. The global Moran’s I statistics with 95% confidence 

intervals were calculated for each of the four time periods studied (2000-2002, 2003-2005, 2006-2008, 

and 2009-2011) and resulted in a non-significant negative value, indicating a non-significant negative 

spatial autocorrelation or a dispersed pattern in the data. As such, the authors’ interpretation 

included the presence of heterogenous dispersion of PCa incidence across counties which was also 

apparent on the quantitative mapping [56]. Similarly, a non-significant global Moran’s I (p=0.08) was 

also obtained upon testing for spatial autocorrelation of MIRs in South Carolina [59]. Despite the lack 

of statistically significant global heterogeneity, subsequent local cluster identification techniques 

detected two significant clusters of higher-than-expected MIRs [59]. Although examining global 

spatial autocorrelation was mainly utilized to test for general dispersion or clustering of the whole 

area of study, this approach did not eliminate the presence or absence of local PCa clusters.  
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A comparative study was performed to compare three different global spatial clustering 

techniques, utilized commonly in GIS research, to test for clustering in PCa stage and grade: Cuzick-

Edwards’ k-NN, Global Moran’s I, and Tango’s Maximized Excess Events Test MEET [45]. Cuzick-

Edwards’ k-NN and Moran’s I were found to be very sensitive to the population’s density, while 

MEET turned out to be the simplest to use as density does not need to be specified for the test. For 

the stage at diagnosis, all three models showed a reduction in clustering upon individual and area-

level adjustments, however, some residual clustering remained. This study showed that, in addition 

to testing for global dispersion, those three global clustering techniques can be applied to check for 

residual clustering especially after adjusting for individual and area-level variables [45]. All in all, 

assessing for global clustering allows for identifying dispersion in overall PCa outcomes within 

spatial data. This initial step was important to understand the level of geographical heterogeneity of 

the PCa measure in question and elicited the need to adjust for underlying factors.  

GIS Analysis: Cluster Identification 

In addition to assessing for global spatial autocorrelation, GIS was utilized to identify clusters 

of concern in 14 studies, as this was often performed with the aim to identify and prioritize zones for 

public health interventions and/or locations that elicit further analyses (Table 1). Methods of cluster 

detection varied (Figure 5) as eight studies employed the Spatial Scan Statistic, two the local Moran 

I, two utilized a spatially weighted hierarchical cluster analysis, one performed a hot spot analysis 

coupled with the Spatial Scan Statistic, and another coupled with the local Moran’s I test (Table 1). 

 

 
 

 

 

A: Geographic incidence clusters of invasive prostate 

cancer adjusted for age at the time of diagnosis

Connecticut, 1994–98: adjusted for (A) age at time of 

diagnosis, (B) age and race, (C) age and poverty level, and 

(D) age and age-adjusted incidence rates of male colorectal 

cancer. [54] 

B: LISA cluster maps for White men in Pennsylvania (2009-2011) 

[56] 
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C: Getis-Ord Gi* statistic for hot spot analysis of PCa

incidence for both races by county, 1998–2008, Georgia

[53] 

D: Results of spatially weighted classification of 67 counties in 

Florida: grouping of counties based on the similarity of their 

temporal trends in proportions of late-stage diagnosis and their 

geographically proximity [51]. 

Figure 5. Application of GIS Analysis in PCa Disparities Research. 

The Spatial Scan Statistic developed by Kulldorff [68] was commonly used to identify whether 

PCa outcomes were geographically randomly distributed or whether clusters were present. Within 

these studies, SatScan software was utilized to generate ellipses and/or circles of varying sizes and 

evaluate observed versus expected rate ratios (risk within vs outside the circles) to identify 

statistically significant “clusters” of disease rates [68]. Variations in the utilization of Kulldorff’s 

Spatial Scan Statistic were identified and described in Table 2. Six studies relied on circular scanning 

windows, one on both circular and elliptical, and two did not mention the scanning window shape 

employed. Variations in scanning window size also occurred as this was mostly dependent on the 

size of the population at risk (four studies) and on the study period (one study). Furthermore, the 

cluster delimitation approach was different among studies as five studies did not rely on geopolitical 

boundaries for cluster formation while three based their clusters on county and census tract 

boundaries (Table 2). 

Table 2. Variations in the Spatial Scan Statistic Technique for Cluster Identification. 

Study 
Scanning 

Window Shape 
Scanning Window Size 

Clusters 

delimited by 

geopolitical 

boundaries 

Outcome 

Jemal A 

et al.

(2002) 

Circular 
0%-50% of the total population at 

risk. 
Yes (county) PCa mortality 

Klassen 

AC et al.

(2005) 

Circular 
0%-50% of the total population at 

risk. 
No 

PCa incidence, 

missing stage, 

and grade 

DeChell

o LM et 

al. (2006) 

Circular 
0%-50% of the total population at 

risk. 
No PCa incidence 

Oliver M 

N et al.

(2006) 

NA 
NA (A Spatial Scan Statistic was 

used to evaluate raw counts). 

NA (clusters 

not mapped). 
PCa incidence 

Hsu et al.

(2007) 
NA 

50% and 90% of the study period. 

50% of the population at risk. 
Yes (county) PCa mortality 

Gregorio 

DI et al.

(2007) 

Circular 
NA (varying sizes across the 

geography of the study area) 
No PCa survival 

Altekrus

e et al.

(2010) 

Circular and 

elliptical 

0%-50% of the total population at 

risk. 

Yes (census 

tract) 

PCa incidence 

(localized) 

Wagner 

S et al.

(2013) 

Circular 50% spatial scanning window No 

incidence and 

high grade or 

stage PCa 

Gregorio 

DI (2013) 
Circular 

NA (scanning circles at random 

locations and of varying sizes) 
No PCa incidence 

*NA= Not Available. 

Although all studies utilizing the Spatial Scan Statistic shared a similar purpose, several 

rationales were employed. Some studies relied on racially stratifying cluster identification to 

highlight racial disparities in PCa outcomes. For example, four clusters of higher PCa incidence were 

detected in NHW while two clusters were detected in AA within the states of Connecticut and 
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Massachusetts between 1994 and 1998 (Figure 5A) [40]. Other studies attempted to understand the 

underlying factors behind cluster formation by testing whether identified clusters remained after 

adjusting for designated factors. As an example, the number of significant clusters diminished when 

adjusting for individual-level variables such as race, age, and year and census-tract level SES. This 

approach explained the potential variables affecting cluster formation as older age, black race, and 

higher county-level income increased the likelihood of missing stage while older age and higher 

block-group income increased the likelihood of missing grade [39]. Similarly, the number of clusters 

of poorer PCa survival decreased in Connecticut upon adjusting for disease severity. However, the 

fact that some of those clusters remained demonstrated that additional factors, not accounted for in 

the study, were contributing to worse PCa prognosis [42]. Another approach for employing cluster 

identification was to profile the SES characteristics of the identified clusters in order to understand 

the relationship between poorer outcomes and area-level variables within those specific geographical 

boundaries. For example, Altekruse et al. focused on gathering clusters of higher PCa incidence to 

examine the relationship between high incidence within those boundaries and area-level SES 

utilizing the Pearson correlation test [48]. This resulted in significant associations between a higher 

relative risk of localized PCa and urban locations as well as a higher AA proportions [48]. 

The Getis-Ord-Gi technique developed by Getis and Ord in 1992 was also used to identify hot 

spots of concentrated disease outcomes [69]. In contrast to clusters identified by the Spatial Scan 

Statistic, this approach mainly identified “cooler” or “hotter” zones of the designated outcome in 

question. For example, in the state of Georgia, Wagner et al. analyzed county-level hotspots of PCa 

incidence with the Getis-Ord-Gi statistic and identified census-tract level clusters using the Spatial 

Scan Statistic. The rationale behind this dual cluster identification approach was primarily to identify 

counties with the highest PCa incidence and delineate clusters of higher incidence within smaller 

geographical areas [53]. Another county-level hot spot analysis was performed also in Georgia to 

detect counties with the highest PCa mortality (Figure 5C). Such an analysis was then racially 

stratified to compare racial disparities in PCa mortality. The identified hot spot counties were then 

analyzed for SES characteristics and found to have a higher AA proportion and lower median 

household income when compared with non-hot spot counties [60].  

Furthermore, three studies employed the local Moran’s I to identify Local Indicators of Spatial 

Autocorrelations (LISA) (Table 1). LISA was used to identify significant clusters of Pennsylvania 

counties with either higher or lower PCa incidence as well as counties that differed significantly from 

their neighboring counties, representing either a “high-low” or “low-high” geographical cluster 

(Figure 5). In addition to identifying low and high-incidence counties, LISA provided information on 

how a specific location compared with its surroundings (Figure 5B). The analysis was repeated for 

four different time periods to understand the temporal variation of identified clusters [56]. Lastly, 

two studies employed the spatially weighted hierarchical cluster analysis using Ward’s minimum 

variance to group counties that have similar temporal trends of late-stage incidence rates in the state 

of Florida. This was mainly performed to examine the temporal and spatial clustering of late-stage 

proportions, especially since screening recommendations were introduced during the study period 

(Figure 5D) [51,52].  

GIS Analysis: Geographically Weighted Regression (GWR) 

Only a single study employed GWR (Table 1) which provided a spatial dimension to traditional 

measures of associations. A geographically weighted local logistic regression model was used to 

investigate how the covariate effects on PCa outcome changed spatially by considering spatial 

dependence. In fact, higher weight was assigned to cases that were geographically closer to each 

other to account for spatial dependence. This method was mainly applied to represent how 

associations between predictors and PCa outcomes vary geographically. For example, Goovaerts et 

al. identified specific areas where the risk of advanced PCa is more sensitive to the census-tract 

median household income [55].  
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Discussion 

This systematic review is the first to comprehensively summarize GIS applications in prostate 

cancer (PCa) disparities research. Unlike previous reviews that focused on geographical variability 

in PCa outcomes and associations with predictors, this review emphasizes the utility of GIS 

[11,12,14,18]. GIS’s interdisciplinary approach is crucial for addressing disparities in PCa outcomes 

[6,70]. 

Main Themes and Findings 

GIS applications in PCa disparities research fall into three main themes: mapping, processing, 

and analysis. Most studies (23 out of 25) utilized GIS to examine PCa incidence, mortality, and 

survival rather than treatment and management. The primary rationale was to visualize and 

statistically identify geographical areas with poorer PCa outcomes, aiding in policy and public health 

intervention prioritization. Policymakers could also benefit from identifying disparities in healthcare 

access, as disparities in procedure utilization and PCa management contribute to worse outcomes 

[20–22,71]. A clear limitation in examining PCa management outcomes in GIS research is the 

databases used. Including databases with procedure information, such as SEER-Medicare [72] or 

SPARCS [73], could enhance GIS research by visualizing healthcare access disparities and associating 

them with outcomes. Despite this, cancer registry data linked to census data proved valuable for 

examining PCa outcomes and area-level characteristics (Table 1). 

Specific GIS Applications in PCa Management 

Two studies focused on PCa management, using GIS for mapping and regression analyses to 

explore the relationship between radiation therapy uptake, travel distance, and socioeconomic status 

(SES) [58,62]. Aghdam et al. mapped SES clusters of patients receiving radiation therapy [58], while 

Tang et al. mapped PCa treatment modalities by county [62]. Other studies also examined the impact 

of travel distance on treatment utilization, finding that longer distances were associated with lower 

radiation therapy likelihood [74,75] and increased advanced-stage PCa rates among African 

Americans [76]. Dobbs et al. used Google Distance Matrix API to calculate transit times and their 

impact on clinic absenteeism, finding driving distance inversely associated with missed 

appointments [77]. This approach could help study the impact of distance and time on healthcare 

access among PCa patients. Combining procedure uptake information with analytical GIS 

approaches could provide insights into healthcare access for PCa patients. Such approaches have 

been used to study spatial variation and identify clusters in other diseases, such as malignancies and 

vaccine uptake [78–80]. For example, Zahnd et al. performed hotspot analysis and spatial lag models 

to detect low mammography access clusters and identify associated sociodemographic factors [80]. 

Translating these approaches to PCa procedure uptake, such as multiparametric MRI for advanced 

diagnosis and detection, could advance understanding of PCa disparities. This is crucial as PCa is a 

screenable and highly curable disease when appropriate screening and management are undertaken. 

Multilevel Analyses in GIS Research 

Four studies successfully integrated GIS with multilevel analyses, an essential approach given 

the complex relationship between race/ethnicity and area-level SES in PCa disparities [81–83]. 

Klassen et al. identified high PCa grade and stage clusters and evaluated variability before and after 

adjusting for census-level characteristics [39]. This approach helps determine the contribution of 

multileveled factors to spatial clusters and identifies areas for additional localized investigations. 

Similarly, Altekruse’s study further examined identified clusters for local associations with area-level 

factors [48]. 

Limitations and Recommendations 

Several limitations and recommendations from this review are detailed in Table 3. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 June 2024                   doi:10.20944/preprints202406.1749.v1

https://doi.org/10.20944/preprints202406.1749.v1


 19 

 

Table 3. Summary of GIS Applications, Limitations, and Proposed Recommendations in PCa 

Research. 

GIS 

Application 
Limitation(s)/Gap(s) Proposed Recommendations(s) 

Overall 

Scope 

 Limited focus on PCa 

management and/or 

treatment 

 

 Limited variability in PCa 

database types 

 

 

 

 Limited focus on racial 

disparities in remaining 

minority groups (main focus 

on NHWs and AAs) 

 Include more GIS research on PCa and 

procedure utilization in PCa patients (ie: 

access to screening)  

 

 Utilize claims databases for procedure 

information 

 Include the temporal element to account 

for clinical advancement in PCa 

procedures and changes in guidelines 

 

 Include other racial categories which have 

proven to exhibit PCa disparities (ie: 

NHAPI, NHAIAN) 

Mapping 

 Lack of justification for the 

determination of geographic 

scale for PCa inferences 

 

 

 Varying PCa associations 

dependent on the 

geographical scale adopted 

(MAUP) 

 Consider larger scales for examining PCa 

disparities in-between geographical 

locations 

 Consider smaller scales when examining 

associations between PCa outcomes and 

area-level characteristics 

 

 Utilize original point data instead of 

aggregates if possible 

 Create districts based on the spatial 

patterns observed in the selected PCa 

dataset 

 Include sensitivity analysis across different 

geographical scales 

Processing 

 Low-quality geocoding 

leading to inaccurate PCa 

cluster detection 

 

 

 Over-smoothing 

 Adhere to geocoding principles as per 

NAACR 

 Always include the geocoding quality 

percentage 

 

 

 Avoid over-smoothing and utilize 

imputation techniques for missing PCa 

data as appropriate 

Analysis 

 Lack of initial global spatial 

autocorrelation testing 

 

 

 Variability in cluster 

detection methods especially 

when using the Spatial Scan 

Statistic 

 Always include global spatial 

autocorrelation as an initial step to assess 

for overall dispersion in PCa outcomes  

 

 

 Employ alternative cluster detection 

methods that exhibit less variability (ie: 

LISA) or have proven to be superior in 

cluster detection (ie: SpODT, and HBSM) 

 Combine cluster detection techniques for 

more robust and comprehensive findings 

(ie: Hotspot analysis followed by SSS or 

LISA) 

* NHAPI: Non-Hispanic Asian Pacific Islander, NHAIAN: Non-Hispanic American Indian/Alaskan Native, 

MAUP: Modifiable Areal Unit Problem, LISA: Local Indicator of Spatial Autocorrelation, SpODT: spatial oblique 

decision tree, HBSM: hierarchical Bayesian spatial modeling. 
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GIS Mapping and Scale Definition: Almost all studies (24/25) used mapping to visually represent 

associations between geography and PCa. However, varying geographical scales were adopted, 

resulting in different findings [41,43,46]. County-level data was most commonly used due to ease of 

access. However, multiple scales within studies introduced challenges in disentangling personal 

choice from contextual factors. For example, Meliker et al. observed disappearing survival disparities 

between NHW and AAs when moving from larger to smaller geographical scales [46]. Oliver et al. 

detected significant SES associations with PCa outcomes at the census tract level but not at the county 

level [41]. This phenomenon, known as the Modifiable Areal Unit Problem (MAUP), introduces 

statistical bias. The recommended geographical scale depends on the research question. Smaller 

scales might better capture associations with area-level indicators, while larger scales might better 

detect disparities between geographical areas. To mitigate MAUP, using original point data or 

smaller units of analysis (e.g., “County” instead of “State”) and performing sensitivity analyses for 

each geographical scale are suggested [86]. Luo et al. demonstrated the context-dependency of 

aggregation error using a Monte Carlo simulation, emphasizing the importance of population density 

consideration [88]. 

GIS Processing: Geocoding quality and data smoothing were the main GIS processing 

applications identified. Only eight studies reported geocoding, with success rates varying between 

74% and 100% (Table 1). Standardized geocoding approaches, such as those by NAACCR, are 

recommended to improve outcome comparability [89]. Insufficient geocoding can lead to 

systematically missing data, misinforming public health interventions. This was illustrated by Oliver 

et al., who showed how varying geocoding quality resulted in different cluster formations for PCa 

patients (Figure 6) [90]. Smoothing techniques help aggregate results of adjacent areas with scarce or 

missing data but can introduce bias if over-applied. Proper use of smoothing techniques can fill gaps, 

reduce bias, and prepare data for spatial analysis. 

 

Figure 6. Variation in clusters of PCa incidence based on Geocoding Quality (Virginia 1990-1999) 

[90]. 

GIS Analysis: GIS applications enable rapid spatial analysis of PCa outcomes. Spatial 

autocorrelation is crucial for examining the impact of space on PCa observations. Three spatial 

autocorrelation approaches were identified: Global Moran’s I, Tango’s MEET, and Cuzick-Edward’s 

k-NN. Global Moran’s I is commonly used to test for global spatial autocorrelation, but the Geary’s c 

test could also be employed [95]. The absence of global spatial autocorrelation does not imply the 

absence of localized spatial patterns. Cluster detection methods varied, with the Spatial Scan Statistic 

(SSS), Local Indicator of Spatial Autocorrelation (LISA), and hotspot analysis using the Getis-Ord-Gi 

statistic being the primary techniques. Variations in SSS model specifications highlight the need for 
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standardization. LISA is more sensitive and specific in cluster detection but increases Type I error 

with more cases. Hotspot analysis provides color-scaled visual representations of cold and hot spots 

but is limited by pre-defined geographical boundaries. Combining multiple geospatial approaches, 

such as hotspot analysis and LISA, is recommended for robust findings. A table summarizing the 

strengths and weaknesses of the different GIS analysis methods utilized in PCa research is presented 

below (Table 4). 

Table 4. Summary of strengths and weaknesses of GIS analyses methods applied in PCa research. 

Method Strengths Weaknesses 
Example of recommended 

application 

Spatial 

Scan 

Statistic 

(SSS) 

 Provides the 

location, size, and 

statistical 

significance of PCa 

clusters 

 Identifies areas with 

higher-than-

expected PCa rates 

 Publicly available 

 Sensitivity to 

parameters: the choice 

of scanning window, 

shape and size can 

influence the results  

 Assumes circular or 

elliptical cluster shapes 

 Computational 

complexity increases 

with larger datasets  

 

To detect significant 

circular or elliptical clusters 

of high PCa mortality 

within a specific region, 

accounting for the 

population at risk and 

considering varying cluster 

sizes 

Local 

Moran’s I 

(LISA) 

 Identifies areas 

where PCa cases are 

spatially clustered 

or dispersed 

 Does not need a 

priori specification 

of a scan window 

shape and size 

 More appropriate 

for finer scales 

(census tracts, 

neighborhoods) 

 Higher probability of 

false positives with an 

increasing number of 

cases 

 

 Scale sensitivity 

 

 

To identify statistically 

significant clusters of high 

or low PCa incidence rates, 

provide insight to 

neighboring observations 

and, understand spatial 

patterns of PCa incidence 

at smaller scales (census 

tracts, neighborhoods)  

 

 

Hotspot 

Analysis 

(Getis-Ord 

Gi* 

statistic) 

 Allows for the visual 

identification of 

geographically-

delimited clusters at 

the local level (i.e.,: 

census, county…) 

 Helps to pinpoint 

geographical-limited 

areas with high or 

low prostate cancer 

rates 

 Identified areas are 

limited by geopolitical 

boundaries 

 Scale sensitivity 

 

To identify local hotspots 

or coldspots of PCa 

incidence within a specific 

geographic area, such as a 

county or a census tract 

Geographic

ally 

Weighted 

Regression 

(GWR) 

 Recognizes spatially 

varying 

relationships 

 Allows for localized 

and more accurate 

modeling of the 

relationships 

between variables 

 Captures spatial 

heterogeneity 

 Aids in the 

identification of 

 May require a 

relatively large sample 

size to ensure reliable 

estimation and avoid 

issues of spatial 

outliers or sparse data 

in specific regions 

 Increased 

computational 

requirements 

(estimates regression 

 

To investigate the locally 

dynamic relationship 

between area-level 

characteristics (e.g., racial 

composition, 

socioeconomic status, 

availability of healthcare) 

and PCa outcomes (i.e.,: 

appropriate for multilevel 

analyses) 
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localized clusters or 

spatial patterns of 

PCa outcomes 

coefficients for each 

location) 

 Requires 

understanding of the 

spatial context for 

accurate interpretation 

 Multicollinearity 

Future Recommendations for GIS Application in PCa Research 

Future GIS research in PCa disparities should focus on several key areas to enhance the scope 

and impact of findings:  

 Expanding the scope to include treatment and management outcomes is crucial. Utilizing 

comprehensive databases like SEER-Medicare and SPARCS for procedure-level information 

will provide valuable insights into healthcare access and utilization, leading to a more holistic 

understanding of PCa disparities. 

 Incorporating both spatial and temporal dimensions in GIS research will allow for a more 

comprehensive assessment of the cancer burden. This can be achieved through preliminary 

stratification, joinpoint analysis, or detailed discussions that account for ongoing medical 

advancements and changes in screening recommendations. 

 Ensuring racial inclusivity in study populations is also vital. Future research should extend 

beyond African Americans (AAs) and Non-Hispanic Whites (NHWs) to include other minority 

groups such as Non-Hispanic Asian/Pacific Islanders (NHAPI). This will provide a broader 

understanding of racial disparities in PCa outcomes. 

 Combining multiple geospatial approaches for robust cluster detection and sensitivity analysis 

will enhance the reliability and validity of research findings. Employing techniques like Spatial 

Scan Statistic (SSS), Local Indicator of Spatial Autocorrelation (LISA), spatial oblique decision 

trees (SpODT), and hierarchical Bayesian spatial modeling (HBSM) will offer a comprehensive 

view of spatial patterns and their underlying causes. 

 Addressing geocoding quality and the Modifiable Areal Unit Problem (MAUP) is essential. 

Researchers should adhere to standardized geocoding principles and report geocoding success 

rates. Conducting sensitivity analyses across different geographical scales and using original 

point data when possible will mitigate issues related to MAUP and enhance the robustness of 

findings. 

By addressing these recommendations, future GIS research can leverage spatial analysis to 

design effective public health interventions, ultimately reducing disparities in PCa outcomes. 

Including visual aids such as tables and figures can further enhance the clarity of the discussion. For 

example, a table summarizing the strengths and weaknesses of different GIS methods, a visual 

representation of geographical scales and their impact on findings, and a flowchart of recommended 

GIS approaches for PCa disparities research can make the information more digestible. Following 

these recommendations will ensure that future GIS studies in PCa disparities are more robust, 

comprehensive, and impactful. 

Study Strengths and Limitations 

To my knowledge, this is the first systematic review of GIS applications within PCa disparities 

research. This review is unique as it provided a comprehensive summary of spatial analysis within 

this disease, highlighted the importance of specific methods in relation to PCa outcomes, and 

discussed potential gaps while proposing potential solutions. A GIS approach for PCa disparities is 

crucial for designing efficient and targeted public health interventions. Although this review contains 

valuable information for future researchers joining the rising trend of GIS research and disparities, 

few limitations were encountered. Limitations mainly include the search terms used to select the 

articles. Some used terms might have been new to the literature, and thus historical articles describing 

the same initiative might have been missed by using obsolete terminology. Also, selections have been 
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restricted to published articles only. By doing so, valuable unpublished findings might have been 

missed, especially since this area of research is evolving rapidly nowadays. 

Conclusions 

This review highlights current trends in GIScience for PCa surveillance and epidemiology, 

categorizing GIS approaches into processing, mapping, and analysis. Mapping enables visualization 

of PCa rates and disparities, processing involves geocoding and rate smoothing, and analysis 

identifies clusters for public health interventions. Limitations were noted in each area, with 

recommendations to expand GIS research to address healthcare access disparities, justify scale 

selections, and combine cluster detection methods for improved accuracy. The review emphasizes 

interdisciplinary collaboration to enhance PCa disparity studies, guiding future public health and 

policy interventions effectively. 
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Appendix A. Research Strategy 

Research Question   

State Question: What are the different 

geospatial approaches for quantifying health 

disparities in prostate cancer outcomes? 

 

Specific Inclusions/Exclusions:  

Inclusion: Studies that examine disparities in 

PCa using geographical elements as 

independent variables 

 

Exclusion: Studies conducted outside the US, 

studies that did not assess for a direct 

relationship between a geographical 

component and PCa disparities were excluded. 

Select Core Databases: 

PubMed 

Embase 

Web of Science   

Limits: 

English only 

 

Years: Up to 2022 

 

Age Groups: Adults 

18 years and older 

 Concept: Health Disparities Concept: Geospatial analysis 
Concept: prostate 

cancer 

Thesaurus 

Terms / 

Subheadings 

“Socioeconomic 

Factors”[Mesh] OR 

“Health Status 

Disparities”[Mesh] OR  

“Healthcare 

Disparities”[Mesh] OR 

“Health Services 

Accessibility”[Mesh] OR 

“Vulnerable 

Populations”[Mesh] OR 

“Geospatial analysis”[MeSH 

Terms] OR “geographic 

[MeSH]) OR 

(geographical[MeSH]) OR 

(spatial[MeSH])  

“Prostatic 

Neoplasms”[Mesh] 

OR 
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Textwords 

socioeconomic* OR 

disparit* OR  

vulnerable OR 

“healthcare access” OR 

“healthcare accessibility” 

OR  

“health service accessibility” 

OR 

“health services 

accessibility” 

Geograph* OR Spatial OR 

Geospatial OR GIS OR Place of 

Residence OR Mapping 

“prostate cancer” OR 

“prostate cancers” 

OR 

“cancer of the 

prostate” OR 

“prostatic 

neoplasms” OR 

“prostate 

neoplasms”   

PubMED SEARCH STRATEGIES 

Search 

numb

er 

Query Search Details Results 

4 

(((“Prostatic Neoplasms”[Mesh] OR 

“prostate cancer” OR “prostate cancers” OR 

“cancer of the prostate” OR “prostatic 

neoplasms” OR “prostate neoplasms”)) 

AND ((“Socioeconomic Factors”[Mesh] OR 

“Health Status Disparities”[Mesh] OR 

“Healthcare Disparities”[Mesh] OR 

“Health Services Accessibility”[Mesh] OR 

“Vulnerable Populations”[Mesh] OR 

socioeconomic* OR disparit* OR vulnerable 

OR “healthcare access” OR “healthcare 

accessibility” OR “health service 

accessibility” OR “health services 

accessibility”)))) AND 

(“Geography”[Mesh] OR “Geography, 

Medical”[Mesh] OR geograph* OR spatial 

OR geospatial* OR geospatial analysis OR 

GIS OR Mapping OR “Place of Residence”) 

Filters: English 

(“Prostatic Neoplasms”[MeSH Terms] 

OR “prostate cancer”[All Fields] OR 

“prostate cancers”[All Fields] OR 

“cancer of the prostate”[All Fields] OR 

“Prostatic Neoplasms”[All Fields] OR 

“prostate neoplasms”[All Fields]) AND 

(“Socioeconomic Factors”[MeSH Terms] 

OR “Health Status Disparities”[MeSH 

Terms] OR “Healthcare 

Disparities”[MeSH Terms] OR “Health 

Services Accessibility”[MeSH Terms] OR 

“Vulnerable Populations”[MeSH Terms] 

OR “socioeconomic*”[All Fields] OR 

“disparit*”[All Fields] OR 

(“vulnerabilities”[All Fields] OR 

“vulnerability”[All Fields] OR 

“vulnerable”[All Fields] OR 

“vulnerables”[All Fields]) OR 

“healthcare access”[All Fields] OR 

“healthcare accessibility”[All Fields] OR 

“health service accessibility”[All Fields] 

OR “Health Services Accessibility”[All 

Fields]) AND (“Geography”[MeSH 

Terms] OR “geography, medical”[MeSH 

Terms] OR “geograph*”[All Fields] OR 

(“spatial”[All Fields] OR 

“spatialization”[All Fields] OR 

“spatializations”[All Fields] OR 

“spatialized”[All Fields] OR 

“spatially”[All Fields]) OR 

“geospatial*”[All Fields] OR 

((“geospatial”[All Fields] OR 

“geospatially”[All Fields]) AND 

(“analysis”[MeSH Subheading] OR 

“analysis”[All Fields])) OR (“proc acm 

sigspatial int conf adv inf”[Journal] OR 

“gis”[All Fields]) OR (“mapped”[All 

Fields] OR “mapping”[All Fields] OR 

“mappings”[All Fields]) OR “Place of 

Residence”[All Fields]) 

320 
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3 

“Geography”[Mesh] OR “Geography, 

Medical”[Mesh] OR geograph* OR spatial 

OR geospatial* OR geospatial analysis OR 

GIS OR Mapping OR “Place of Residence” 

“Geography”[MeSH Terms] OR 

“geography, medical”[MeSH Terms] OR 

“geograph*”[All Fields] OR 

(“spatial”[All Fields] OR 

“spatialization”[All Fields] OR 

“spatializations”[All Fields] OR 

“spatialized”[All Fields] OR 

“spatially”[All Fields]) OR 

“geospatial*”[All Fields] OR 

((“geospatial”[All Fields] OR 

“geospatially”[All Fields]) AND 

(“analysis”[MeSH Subheading] OR 

“analysis”[All Fields])) OR (“proc acm 

sigspatial int conf adv inf”[Journal] OR 

“gis”[All Fields]) OR (“mapped”[All 

Fields] OR “mapping”[All Fields] OR 

“mappings”[All Fields]) OR “Place of 

Residence”[All Fields] 

1,116,497 

2 

(“Socioeconomic Factors”[Mesh] OR 

“Health Status Disparities”[Mesh] OR 

“Healthcare Disparities”[Mesh] OR 

“Health Services Accessibility”[Mesh] OR 

“Vulnerable Populations”[Mesh] OR 

socioeconomic* OR disparit* OR vulnerable 

OR “healthcare access” OR “healthcare 

accessibility” OR “health service 

accessibility” OR “health services 

accessibility”)) 

“Socioeconomic Factors”[MeSH Terms] 

OR “Health Status Disparities”[MeSH 

Terms] OR “Healthcare 

Disparities”[MeSH Terms] OR “Health 

Services Accessibility”[MeSH Terms] OR 

“Vulnerable Populations”[MeSH Terms] 

OR “socioeconomic*”[All Fields] OR 

“disparit*”[All Fields] OR 

“vulnerabilities”[All Fields] OR 

“vulnerability”[All Fields] OR 

“vulnerable”[All Fields] OR 

“vulnerables”[All Fields] OR “healthcare 

access”[All Fields] OR “healthcare 

accessibility”[All Fields] OR “health 

service accessibility”[All Fields] OR 

“Health Services Accessibility”[All 

Fields] 

950,029 

1 

(“Prostatic Neoplasms”[Mesh] OR 

“prostate cancer” OR “prostate cancers” OR 

“cancer of the prostate” OR “prostatic 

neoplasms” OR “prostate neoplasms”) 

“Prostatic Neoplasms”[MeSH Terms] 

OR “prostate cancer”[All Fields] OR 

“prostate cancers”[All Fields] OR 

“cancer of the prostate”[All Fields] OR 

“Prostatic Neoplasms”[All Fields] OR 

“prostate neoplasms”[All Fields] 

184,831 

EMBASE SEARCH STRATEGIES 

No. Query Results 

#4 #1 AND #2 AND #3 317 

#3 
(‘geography’ OR ‘geography, medical’ OR geograph* OR spatial OR geospatial* OR 

geospatial) AND analysis OR gis OR mapping OR ‘place of residence’ 
682890 

#2 

‘socioeconomic factors’ OR ‘health status disparities’ OR ‘healthcare disparities’ OR 

‘vulnerable populations’ OR socioeconomic* OR disparit* OR vulnerable OR ‘healthcare 

access’ OR ‘healthcare accessibility’ OR ‘health service accessibility’ OR ‘health services 

accessibility’ 

583093 
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#1 ‘prostatic neoplasms’/exp OR ‘prostatic neoplasms’ 291595 

WEB OF SCIENCE SEARCH STRATEGIES 

Query Results 

(‘prostatic neoplasms’ OR ‘prostatic neoplasms’) AND (‘socioeconomic factors’ OR ‘health 

status disparities’ OR ‘healthcare disparities’ OR ‘vulnerable populations’ OR socioeconomic* 

OR disparit* OR vulnerable OR ‘healthcare access’ OR ‘healthcare accessibility’ OR ‘health 

service accessibility’ OR ‘health services accessibility’) AND ((‘geography’ OR ‘geography, 

medical’ OR geograph* OR spatial OR geospatial* OR geospatial) AND analysis OR gis OR 

mapping OR ‘place of residence’) 

16 

((‘geography’ OR ‘geography, medical’ OR geograph* OR spatial OR geospatial* OR 

geospatial) AND analysis OR gis OR mapping OR ‘place of residence’) 
3,173,703 

(‘socioeconomic factors’ OR ‘health status disparities’ OR ‘healthcare disparities’ OR 

‘vulnerable populations’ OR socioeconomic* OR disparit* OR vulnerable OR ‘healthcare 

access’ OR ‘healthcare accessibility’ OR ‘health service accessibility’ OR ‘health services 

accessibility’) 

629,895 

(‘prostatic neoplasms’ OR ‘prostatic neoplasms’) 8,363 
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