Pre prints.org

Article Not peer-reviewed version

Application of Geographic Information
Systems (GIS) in the Study of Prostate
Cancer Disparities: A Systematic Review

Christiane El Khoury *

Posted Date: 25 June 2024
doi: 10.20944/preprints202406.1749v1

Keywords: Keywords: GIS, geographic, prostate cancer, disparities, systematic review

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
H available and citable. Preprints posted at Preprints.org appear in Web of
OF Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/2658205

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 June 2024 d0i:10.20944/preprints202406.1749.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Application of Geographic Information Systems

(GIS) in the Study of Prostate Cancer Disparities:
A Systematic Review

Christiane J. E1 Khoury 12

! Program in Public Health, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA;
Christiane.elkhoury@stonybrook.edu; Tel.: +1 718 970 0177

2 Department of Medical Oncology, The Sidney Kimmel Cancer Center at Thomas Jefferson University,
Philadelphia, PA, USA.

Abstract: Introduction PCa is one of the cancers that exhibits the widest disparity gaps. Geographical place of
residence has been shown to be associated with healthcare access/utilization and PCa outcomes. Geographical
Information Systems (GIS) are widely being utilized for PCa disparities research, however, inconsistencies in
their application exist. This systematic review will summarize GIS application within PCa disparities research,
highlight gaps in the literature and propose alternative approaches. Methods This paper followed the methods
of the Cochrane Collaboration and the criteria set of the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA). Articles published in peer-reviewed journals were searched through the PubMed,
Embase, and Web of Science databases till December 2022. The main inclusion criteria were employing a GIS
approach and examining a relationship between geographical components and PCa disparities. The main
exclusion criteria were studies conducted outside the US and those that were not published in English. Results
A total of 25 articles were included, 23 focused on PCa measures as outcomes: incidence, survival, and mortality
while only two examined PCa management. GIS application in PCa disparities research was grouped into three
main categories: mapping, processing, and analysis. GIS mapping allowed for the visualization of quantitative,
qualitative, and temporal trends of PCa factors. GIS processing was mainly used for geocoding and smoothing
of PCa rates. GIS analysis mainly served to evaluate global spatial autocorrelation and distribution of PCa
cases, while local cluster identification techniques were mainly employed to identify locations with poorer PCa
outcomes, soliciting public health interventions. Discussion Varied GIS applications and methodologies have
been used in researching PCa disparities. Multiple geographical scales were adopted leading to variation in
associations and outcomes. Geocoding quality varied considerably leading to less robust findings. Limitations
in cluster-detection approaches were identified especially when variations were captured using the Spatial
Scan Statistic. GIS approaches utilized in other diseases might be applied within PCa disparities research for
more accurate inferences. A novel approach for GIS research in PCa disparities could be focusing more on
geospatial disparities in procedure utilization especially when it comes to PCa screening techniques.
Conclusion This systematic review summarized and described the current state and trend of GIS application
in PCa disparities research. Although GIS is of crucial importance when it comes to PCa disparities research,
future studies should rely on more robust GIS techniques, carefully select the geographical scale studied, and
partner with GIS scientists for more accurate inferences. Such interdisciplinary approaches have the potential
to bridge the gaps between GIS and cancer prevention and control to further advance cancer equity.

Keywords: GIS; geographic; prostate cancer; disparities; systematic review

Introduction

Prostate cancer (PCa) is the second leading cause of cancer death in American men and one of
the cancers that exhibits the largest disparities [1,2]. There is a large literature documenting
disparities in PCa outcomes that is robust across multiple regions and sociodemographic profiles [3].
African American (AA) men, on average, have a 78% higher incidence of developing PCa in their
lifetime compared to Non-Hispanic NHWs (NHW) [1,2,4-7]. Further, AAs are also more likely to be
diagnosed at a younger age, present with more aggressive disease, and possess a 2.3 times higher
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mortality rate than their NHW counterparts [4-6]. Hispanics and some Asian groups have lower PCa
incidence, however, they tend to suffer from more advanced disease at diagnosis [5,6,8]. PCa
disparities are not only present across racial/ethnic attributes, but they are also significantly
associated with the geographical place of residence. Hispanics living in Mexico have a lower
incidence of PCa than Hispanics living in the Caribbean [9] while Puerto Ricans living in Puerto Rico
have a lower incidence than Puerto Ricans living in the mainland United States [10].

In 2019, a systematic review compiling results from 169 international studies presented
substantial evidence that PCa outcomes and management varied according to the place of residence
across different populations and geographies [11]. Although this review summarized the two most
important drivers of PCa disparities, which were rurality and area deprivation, various geographical
approaches were utilized across the studies including multiple geographical scales and geospatial
analyses which created a wide heterogeneity for study comparison [11]. Other reviews have been
published around geographical approaches for prostate cancer research, however, none have
reviewed the utilization of geographic information systems (GIS) as tools to advance PCa disparities
research [12-15]. In fact, Obertova and Afshar focused their reviews on inconsistencies of rural/urban
designation and its utilization within PCa disparity research [13,14], while Gilbert discussed GIS
approaches, however only focusing on the state of Florida [15].

According to the National Cancer Institute, health disparities research is a growing area in
research, and tools to identify and eliminate disparities are growing and encouraged in aims to
identify pockets of disadvantage and map priority areas [16]. Geospatial analyses provide visual
insights and substantial proof of the location of disparities and demonstrate their variability by
adding a dynamic layer for traditional findings of disparities [17]. A new frontier of PCa research is
the utilization of spatial approaches to identify focal points for interventions and resource mitigation
and help outline underlying drivers of disparities [18].

Indeed, multiple approaches have been used to examine the association between geographical
places of residence and PCa outcomes. Precisely, area-level characteristics and socioeconomic (SES)
profiles have been linked to multiple disparities in PCa outcomes across various geographical scales
such as county, census, census tracts, and others [19,20]. SES and demographics have also been linked
to healthcare access and utilization of advanced PCa procedures [21-23]. Further, spatial approaches
combine techniques from geography, epidemiology, and public health to better understand health
needs and allocate resources [24]. This is especially relevant within the context of PCa disparities
research which calls for multidimensional approaches to advance cancer health equity and reduce
the persisting gap in outcomes [1]. As such, GIS applications may help expose the determinants of
local and sociodemographic disparities and provide information to improve health service delivery
models, training for healthcare professionals, and overall health outcomes [25].

GIS is defined as any technology, software, or hardware that enables the processing, mapping,
and analysis of geographical variables [26,27]. Geographic Information Systems (GIS) research in PCa
has been developing throughout time and branched into multiple applications such as processing,
mapping, and analysis [18]. The ultimate success of GIS is when data is transformed into a useful
representation that provides disease insights [28]. Such a collaborative approach delivers prospects
to examine associations and connections within health outcomes, the contextual environment, and
social determinants of health to advance cancer-related equity research [29]. This allowed the
advancement of such tools with time and the development of a field named the Geographic
Information Science (GIScience) [26], which examines the interdisciplinary collaborations aided by
GIS to provide meaningful observations that have the potential to guide public health decision-
making.

Furthermore, different geographical variables and various spatial scales have been adopted in
aims to conduct such analyses and provide valuable data for public health interventions [30]. As such,
geographical analyses in PCa outcomes have moved from the simple stratification of rural/urban
continuum to computation of composite area deprivation indices within neighborhoods and
utilization of GIS for cluster identification and prediction of poorer outcomes [31,32]. Those
differences in approaches invite the need for methodological standardization when performing
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geospatial analyses to identify appropriate applications for Geographic Information Systems (GIS) in
analyzing PCa disparities.

The main goal of this comprehensive review is to compile a resource for researchers interested
in conducting geographical analyses for PCa disparities. This systematic review aims to summarize
the literature about geospatial disparities in PCa, describe the different GIS applications utilized in
relating place of residence with disparities in PCa outcomes, and identify gaps in the literature. This
review also identifies current limitations for GIS application in PCa research and proposes alternative
approaches. As such, this review provides a comprehensive assessment of methods and a valuable
resource for researchers joining the increasing trend of analyzing disparities from a geographical
perspective.

Methods

This paper follows the methods of the Cochrane Collaboration [33] and the criteria set of the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [34] to report
systematic reviews and meta-analyses. Articles published in scholarly (peer-reviewed) journals in
English were searched through the PubMed, EMBASE, and Web of Science databases till December
2022.

Search Method

The main search terms (i.e., MeSH terms and keywords) focus on 1) GIS 2) disparities and
inequities 3) prostate neoplasm. Three main databases were researched PubMed, EMBASE, and Web
of Science [35-37], and a detailed research strategy is included in Appendix A.

Article Selection

The population-intervention-comparison-setting (PICOS) method [33] was used to determine
the eligibility of studies. In our reviewed articles, the participants were “adult men in the US
diagnosed with PCa”, the intervention was the GIS approach, comparative groups were men from
varying demographic/socio-economic backgrounds, outcomes were PCa incidence, mortality, and
survival, and/or PCa management, and finally studies included were observational. Eligible studies
were all publications resulting from the database queries, referred publications known to the authors
and others gathered from the reference lists of the identified publications. Out of these eligible
publications, an article selection process according to specified inclusion and exclusion criteria was
conducted. Included articles were those employing a GIS approach for examining the relationship
between geographical components and PCa disparities and/or inequities in the United States. Studies
that examined disparities in PCa outcomes using geographical elements as independent variables
were included while studies conducted outside the US, those that are not published in the English
language, and those that did not assess for a direct relationship between a geographical component
and PCa disparities were excluded. No date restrictions were applied, and thus, the resulting articles
were published through December 2022. The last date of search for relevant articles was December
31st, 2022.

Study Management

All included articles were rightfully downloaded, managed and screened using EndNote®. Six
hundred and fifty-three publications were deemed eligible, all published between 1998 to 2022,
including 247 duplicates. Articles were screened for eligibility based on title and abstract and 309
studies were disqualified due to the study setting not being in the US, not having an outcome of
interest, and having no geographical component. After article selection according to the inclusion
and exclusion criteria, 25 studies [38-62] met the requirements and were included in this review.
Detailed reasons for full-text exclusions and the article selection process are represented in Figure 1.
No potential biases were identified in the individual studies that met the inclusion criteria as all
resulting studies were evaluated based on reproducibility, methodological quality, and credibility.
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(n=25)

Figure 1. Article Selection Process.

Due to the nature of the research question that aims at reviewing discovered geographical
disparities in PCa, publication bias may have arisen. Likely, studies with no significant findings for
disparities weren't published and thus included publications overrepresented disparities. However,
the large population-based studies in this review tend to limit this potential overrepresentation. This
review followed the PRISMA checklist for evidence-based reporting and thus, principal summary
measures were odds ratios, hazard ratios, relative risks, and differences in percentage along with
their respective p-values.

Results

In this systematic review, a total of 25 studies were included, published from 2002 to 2022, those
studies are detailed in Table 1. A total of six studies examined disparities in late-stage PC, six in
incidence, four in mortality and survival, three in incidence, grade, and stage simultaneously, two in
mortality-to-incidence (MIR) ratio, and two in PCa management (Table 1). GIS applications were

Vi

grouped into three main application purposes: “mapping”, “processing”, and “analysis” (Table 1).

Table 1. Summary of Studies Included In This Systematic Review.
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National Mapping: Quantitative mortality in NHWs and three
Center for and qualitative Dispariti | in AAs. Patterns observed
Health County | Analysis: Cluster es in PCa| could not be attributed to
Statistics identification (Spatial mortality| selected
(1970-1989)* Scan Statistic) demographic/socioeconomic
variables.
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*PCa database linked to census data.

Summary of PCa Disparities Findings in GIS Studies

GIS studies that examined disparities in PCa incidence

GIS studies examining disparities in PCa mainly shared a common purpose of identifying
locations of higher-than-expected incidence and examining their associations with contextual factors.
For example, in Connecticut and Massachusetts, clusters of high PCa incidence were characterized
by a better census-tract-level SES (less than 12 years schooling rate, below the poverty rate, renter-
occupied dwellings rate, unemployment rates) mainly in NHWs as compared to AAs [40]. Similarly
in Virginia, higher household income and urban residence increased the likelihood of diagnosis
suggesting that better census-tract SES enhances healthcare access, especially for PCa screening [41].
Furthermore, residing in urban census tracts was associated with early-stage diagnosis, in a multi-
state study conducted in Alabama, Tennessee, Georgia, and Florida [48]. Also in Georgia, Wagner et
al. identified clusters of high PCa incidence that slightly differed in locations upon racial stratification
suggesting the involvement of environmental predictors [53]. A novel approach was adopted by
Gregorio et al.,, as they demonstrated that the “detection effect” through adjusting for colorectal
cancer screening, accounted for all significant spatial variations in PCa incidence [54]. In
Pennsylvania, the temporal decline in PCa incidence from 2000 to 2011 was suggested to illustrate
the effect of the variation in PSA screening recommendations. Most notably, age at diagnosis was
significantly younger in AAs as compared to NHWs, calling for increased attention in metropolitan
Philadelphia areas where AAs are concentrated [56]. Mapping of PCa incidence in Alabama counties
against rates of diabetes, obesity, education, and poverty, suggested an apparent association with
those factors [61]. Accordingly, GIS studies examining disparities in PCa incidence suggested that
higher PCa incidence may be associated with area-level racial composition, rurality, income, poverty,
education, unemployment, percent renter-occupied dwellings, access to screening, and other chronic
comorbidities.

GIS studies that Examined Disparities in PCa grade and Stage at Diagnosis

Having a “missing” stage and/or grade information from the tumor registry was utilized as a
proxy for possible worse PCa outcomes. For example, Klassen et al. examined the relationship
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between missing stage and/or grade and area-level SES. As such, clusters of having a missing PCa
stage or grade from the Maryland Tumor Registry were identified. Having a missing stage was
associated with higher county-level household income while having a missing grade was associated
with higher census block-group household income [39]. In Florida, northern and central counties
exhibited the greatest racial disparities in late-stage PCa which was associated with lower census-
tract income and lower college education [43]. Additionally, the late-stage proportions decreased
significantly from 1981 to 2007, however, the rate of decline varied greatly based on county location
and racial groups [49]. This variation was suggested to be related to geographical disparities in the
implementation of the Prostate Specific Antigen (PSA) screening [52]. Upon racial stratification, more
counties exhibited higher proportions of late-stage diagnosis in AAs versus NHWs. Associations
were also detected on the census tract level as higher census tract income was protective while the
presence of farmhouses increased the likelihood of a later stage diagnosis [49,55]. Moreover, a side-
by-side mapping comparison of late-stage odds ratios (ORs) with comorbidities, income, and
smoking rates at the county level, suggested that those could be associated with a later-stage
diagnosis [55]. Thus, in addition to establishing relationships between later-stage diagnosis and
poorer area-level SES, the temporal factor was also important to account for within this context,
especially when it comes to varying PCa screening recommendations and clinical practices [63].

GIS studies that Examined Disparities in PCa Mortality and Survival

Using national data of PCa patients from 1970 to 1989, five national clusters of higher mortality
in NHWs and three in AAs were detected, however, those could not be attributable to the selected
county-level SES variables which included education and agricultural employment [38]. Identified
geographical clusters of poorer PCa survival in Connecticut significantly diminished when
individual-level variables representing age, race, and tumor severity (stage and grade) were
accounted for suggesting that survival only varies in part according to the place of residence and
other area-level factors might be predictors [42]. In Texas, counties with statistically significant excess
mortality rates were found to be concentrated in the central state for multiple racial subgroups in a
spatial and temporal analysis over a 22-year study period [44]. Meliker et al. identified survival
disparities across the state of Michigan. Existing disparities identified at larger geographical scales
Federal (House Legislative Districts (FHLD)) diminished and sometimes disappeared upon
examination on smaller geographical scales (State House Legislative District (SHLD) and
neighborhoods). This was attributed to the fact that, in smaller areas, the population at risk is more
uniform in terms of modifiable SES, risk factors, and proximity to cancer screening [46]. In South
Carolina, Hebert et al. mapped racially stratified MIRs across eight Department of Health and
Environmental Control (DHEC) regions. Visualization on mapping presented striking differences
between AAs and NHWs allowing for the localization of areas with the widest disparity gaps. MIR
was also mapped per Zip Code Tabulation Area (ZCTA) in South Carolina for US Veterans where
metropolitan MIR was found to be higher than non-metropolitan MIR and two clusters of higher-
than-expected MIRs were detected in the Upstate region. In contrast to Hebert’s finding above,
Georgantopoulos et al. found that AAs had alower MIR than NHWs suggesting that Veterans exhibit
a more uniform population for comparison and that factors causing such disparities are likely
modifiable and related to healthcare access and SES [59]. Finally, PCa mortality hot spots were
heavily concentrated in three major areas in Georgia. “Hot spot counties” generally had a higher
proportion of AAs, older adult population, greater poverty, and more rurality [60]. Although area-
level SES was shown to be associated with poorer PCa survival, including facility-level characteristics
within GIS studies, as in Georgantopoulos’s study (2021) provided an additional layer for examining
racial disparities in PCa.

GIS studies that Examined Disparities in PCa Management

Only two studies examined disparities in PCa management. Those mainly employed GIS
mapping to identify visual associations between zip-code level factors and PCa treatment. Single
institutional data was used to relate Stereotactic Body Radiation Therapy (SBRT) with zip-code level
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characteristics. The geospatial distance between the patient’s zip code and the facility was calculated
and the geographical reach of the institution was assessed by examining the SES status for each zip
code. Travel distance did not prevent uptake of prostate SBRT in AAs, elderly, or rural localized PCa
cases [58]. A national GIS study examined disparities in PCa management using the National
Medicare Database where PCa modalities were mapped across PCa cases county. Multivariate
regression identified that practitioners of more novel modalities (i.e.,: SBRT and proton therapy) were
mainly concentrated in zip codes that are more urban, while greater distance was associated with a
significantly decreased probability of treatment (IMRT -3.8% per 10 miles; prostatectomy —2.1%;
brachytherapy —2%; proton therapy -1.6%; and SBRT -1.1%) [62].

Application of GIS in PCa Disparities Research

All included studies shared a mutual rationale for GIS employment which was to identify
geographic regions with the highest burden of PCa so that public health interventions can be
prioritized. In this systematic review, three main purposes were identified for utilizing a GIS
approach in studying PCa disparities: mapping, processing, and analysis. Mapping was employed in
24 studies, analysis in 16, and processing in 14 (Table 1). Those are described below and are
represented in Figure 2.

Mapping Processing Analysis
| 1 |
I 1 1 | 1 1
’ Geographicaly
. s . . Spatial Cluster :
Quantitative Qualitative Temporal trends Geocoding Smocthing autocorrelation identification Wewght_ed
Regression
= = m : Understand how
SN s Visualize how PCa |_ Provide spatial |_ Filter random |_ Test for overall L Identify zones of L ; -
it th PC:
I_ Vggaa‘zlymtcrgtr:‘z:f |_ f\:rsgg!z; iiﬂtrﬁf; |— cutcomes change locations for PCa spatial errors in variability for PCa RogtesRCa [ outcomes spatialy |
- i with time data PCarates rates outcomes vary

Figure 2. GIS application in Prostate Cancer (PCa) Disparities Research.

Application of GIS in PCa Disparities Research: “Mapping”

All but one study [45] employed GIS techniques for mapping/visualization where PCa data were
mostly translated into polygons of PCa measured in a certain geographical unit. The main purpose
of creating maps was to provide a cartogenic representation of PCa rates and zones where poorer
outcomes or higher disparities exist. Multiple software was utilized for mapping, however, ArcGIS
remained the most utilized as it was employed by nine out of the 23 studies included and it is
considered by many as the industry standard [64,65].

Mapping a Snapshot in Time: Qualitative and Quantitative Data

All studies presented maps with a single snapshot in time, mostly translating points to polygons
as point data was aggregated to a certain designated geographical scale. The most common scale for
mapping was “county” present in 12 studies. Remaining mapping was performed on the level of the
census tract (in 3 studies )40, 41, 48]), zip codes (2 studies [58,59]), FHLD/SHLD/Neighborhoods (1
study [46]) and DHEC (1 study [47]), census block group (1 study [39]). For example, after acquiring
individual-level data from the Virginia Cancer Registry, Oliver et al., geocoded data to the street level
and assigned a census tract and a county for each case. As such, maps were reproduced displaying
county-level and census tract-level PCa incidence. Such mapping helped to visually identify how
disease rates changed from one zone to another. Consequently, PCa incidence was found to be the
highest in the Eastern and Central portions of Virginia [41]. Such visual indicators can be the source
of identifying locations where further analysis of contextual factors might be warranted.

Furthermore, both qualitative and quantitative PCa-related variables were represented (Figure
3). Eleven studies had both quantitative and qualitative maps while eight had only quantitative and
six only qualitative. Qualitative mapping showed the spatial distribution of categorical, or nominal
data such as rural/urban counties, or the presence or absence of certain outcomes, such as zones
presenting significant disparities or clusters of a concentrated outcome (Figure 3). Conversely,
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quantitative mapping presented the spatial distribution of numeral data as most of those represented
PCa rates, either for incidence, late stage, or mortality (Table 1). This kind of mapping was mainly
used to identify locations with worse PCa outcomes or higher concentrations of the disease. For
example, Jemal et al. mapped PCa mortality rates per county relying on the national cancer registry

data. This approach was useful to identify and visualize counties with higher PCa mortality by
comparing mortality rates across US counties (Figure 3A).

White Males

US = 22.01/100,000
{nighast 10%

US = 47.22/100,000
st 7 (ignaat 10

)

: Not Significant
i il Whites Lower Survival Rates than Blacks
Blacks Lower Survival Rates than Whites

A: Quantitative Mapping: PCa mortality rates B: Qualitative Mapping: Presence/absence of
Prostate cancer mortality rates among NHWSs disparities Significant racial disparities in
(upper panel) and AAs (lower panel) by state prostate cancer survival in neighborhoods in
economic area, 1970-94 [38]. Detroit, Michigan, 1990-1998 [46].

1982

More Urban

D: Trends in time: Three-Dimensional
C: Qualitative Mapping: rural/urban counties mapping: 3D representations of 25 maps of

Maps of rural-urban continuum codes for Florida county-level proportions of late-stage PCa for

counties over the period of 1993-2003 [51]. NHW and AA males in Florida from 1982 to 2006

[49].

Figure 3. Examples of different types of mapping utilized in PCa disparities research.

One of the uses for qualitative mapping was to illustrate the presence (or absence) of objective
differences and/or inequities between specific subpopulations of interest. For example, Meliker et al.
mapped locations with significant racial disparities in PCa survival to highlight areas of unequal PCa
outcomes (Figure 3B) [46]. Qualitative mapping was also utilized to map contextual variables that
help in understanding spatial circumstances under which PCa outcomes may be affected. This was
especially valuable when qualitative information is visualized in parallel to PCa outcomes. For
instance, Goovaerts et al., produced a qualitative map of rural/urban counties to obtain a visual


https://doi.org/10.20944/preprints202406.1749.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 June 2024 d0i:10.20944/preprints202406.1749.v1

12

representation of the associations between rural/urban places of residence and late-stage diagnosis
(Figure 3C) [52].

Mapping Trends Overtime

Although mapping either qualitative or quantitative data in a time snapshot offers insightful
visualization, including a temporal dimension ensured a more complete geographical analysis across
the period studied. Hsu et al. included a temporal element in their mapping by reproducing maps
showing excess PCa mortality across different time frames [44]. The inclusion of the temporal
dimension allowed them to not only identify geographical clusters of worse PCa mortality but to also
examine whether those clusters persisted over time. As such, their mapping identified three specific
counties where excess mortality among Hispanics has been consistently present for over 19 years,
calling public health policymakers to prioritize those areas based on spatiotemporal evidence [44].
Gooavert et al. [49, 51), furthered the inclusion of the temporal dimensions through 3-D mapping of
PCa incidence and late-stage diagnosis [51]. Their three-dimensional model was created using
SGeMS, the Stanford Geostatistical Modeling Software, where proportions of late-stage PCa were
calculated over a 3-year moving window from 1982 to 2006 (Figure 3D). This mapping approach
allowed the examination of how rates of late-stage disease responded to the 1990s introduction of
Prostate Specific Antigen (PSA) testing, a blood test that facilitated PCa detection and early diagnosis.
As such, including a temporal dimension while mapping PCa outcomes makes it easier to
comprehend spatiotemporal relationships especially as significant approaches that affect clinical
guidelines and health outcomes are continuously developing in PCa.

Application of GIS in PCa Disparities Research: “Processing”

Processing spatial data was mainly performed in 14 studies to prepare data for subsequent
analyses and was grouped into geocoding and smoothing. (Table 1). Eight studies mentioned
geocoding their data, six studies employed smoothing techniques, and two studies employed both
(Table 1).

GIS Processing: Geocoding

Geocoding allowed the provision of geographical coordinates for participants’ addresses that
were later used for mapping and allowed for individual-level variables to be represented on a
location basis. Accordingly, addresses of PCa cases were geocoded into a specific location to facilitate
spatial recognition patterns and allow for observational inferences. For example, Oliver et al.
geocoded their PCa cases to the census tract using exact patient addresses which allowed examining
associations between high PCa incidence and census-tract-level SES [41]. Another application of GIS
processing is the transformation of certain point variables to aggregates which provided variable
information for multiple geographical scales. For instance, Xiao et al. employed GIS processing to
transform available latitude and longitudinal data into values per county to examine how county-
level environmental factors affect PCa outcomes. In this case, geocoding assisted in preparing
environmental data for county-level mapping and analysis by testing the relationship between
county-level environmental factors and PCa stage/grade [43]. As such, GIS processing allows for scale
transformation and the obtention of variables to the desired level of aggregation to be able to draw
inferences between area-level characteristics and PCa outcomes.

Although geocoding enabled scaled visualization and data transformation, geocoding percentage,
describing the successful conversion of addresses into a specific location, varied in between studies.
Half of the studies that mentioned geocoding did not report the percentage of successful geocoding
(Table 1). The geocoding success rate in the remaining half ranged between a low of 74% [41] to a
high of 100% [47]. Note, geocoding success increased with the increasing size of the geographical
scale as it moved from 74% upon geocoding to the census tract to 100% upon geocoding to the county

[41].
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GIS Processing: Smoothing

Data smoothing created an approximation function intended to capture patterns in the dataset
and was mainly employed to reduce noise in the data by providing smoothed estimates (Figure 4).
Goovaerts et al. performed binomial kriging to smooth rates of late-stage PCa to obtain smoother
maps for late-stage diagnosis rates while Moore et al. (2022) employed the Spatial empirical Bayesian
smoothing (SEBS) method to smooth mortality rates [60]. In both cases, smoothing was mainly
utilized to approximate rates data and filter random noise so that clearer spatial patterns are
observed.

Ratio of % of late-stage diagnosis
(BM/WM, 1981-2007)
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A: Time-average proportions of prostate cancer
late-stage  diagnosis: BM/WM represents
disparities in late-stage diagnosis between AAs
and NHWs [49]*

B: Prostate Cancer Mortality Hot Spots in
Georgia: Hot Spots were based on within the fifth
quintile of SEBS of PCa mortality rates [60]

C: Annualized age-adjusted prostate cancer
incidence rates per 100,000 population (left) by
Census Tract, 1990-1999. Smoothed rates (right).
African Americans (top) and Whites (bottom). A
total of 74% of all cases were geocoded to the
census tract. [41]

D: Spatial variation on the local risk of highly
aggressive prostate cancer in Black compared to
White men diagnosed with prostate cancer,
Pennsylvania 2004-2014 [57].

Figure 4. Application of smoothing techniques in GIS studies examining PCa disparities. *Yearly
kriging estimates were averaged over the period 1982-2006 and weighted according to the inverse of
the binomial kriging standard deviations to assign more importance to more reliable estimates. For
black males (BM), results are expressed as the ratio of average proportions for black versus white
males (WM) to facilitate the visualization of racial disparities.
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An additional reason binomial kriging was performed is to replace missing values from the years
where no PCa cases were diagnosed within specific locations in Florida [49]. Binomial kriging
provided a measure of reliability called the kriging variance that allowed capitalizing on spatial
autocorrelation and neighboring geographical units. This was followed by a sensitivity analysis
which showed that kriging-based noise-filtering improved the fit of the joinpoint regression models
(i.e., lower residual variability) compared to the modeling of raw rates. In this case, noise-filtered
data also helped in providing a clearer detection of the variation in county-level late-stage diagnosis
rates across racial groups and study period (Figure 4A) [49].

Moore et al. applied the SBES method to smooth PCa mortality rates and group them into
quintiles. This distribution allowed for quintile-based quantitative mapping to identify and represent
counties belonging to the poorest quintiles of PCa mortality (Figure 4B). Such an initial approach only
provided information on how counties compare in terms of PCa outcomes, without identifying
clusters or hot spots of concern [60]. On another hand, a weighted two-dimensional smoothing
algorithm called “Headbanging” was performed on PCa incidence rates in Virginia (Figure 4C). This
allowed for smoother mapping of PCa outcomes, allowing patterns to emerge from the data [41].
Lastly, the Inverse Distance Weighting (IDW) interpolation technique was performed to provide
smoothed GIS mapping based on local odds ratios of highly aggressive PCa [57]. This technique
created continuous and smoothed surfaces for the entire state of Pennsylvania based on the
respondents’ addresses. This allowed the visualization of spatial patterns of the explanatory effect of
the variable “race” as smoothed rates were racially stratified (Figure 4D).

Application of GIS in PCa Disparities Research: “Spatial Analysis”

Although mapping and processing may produce key visual insights, spatial associations can be
examined by utilizing specific GIS analysis methods. In this systematic review, 16 studies applied
GIS analysis to spatially analyze and interpret associations with PCa outcomes. Of those, four
performed global spatial autocorrelation, 15 included a cluster identification approach, and one study
employed a geographically weighted regression (Table 1).

GIS Analysis: Identification of Spatial autocorrelation

Spatial autocorrelation is the term used to describe the presence of systematic spatial variation
in a variable and it’s the tendency for areas or sites that are close together to have similar values [66].
As Waldo Tobler’s first law of geography states: “Everything is related to everything else. But near
things are more related than distant things” [67]. This was used as a key concept in geospatial
research as it laid the rationale of spatial autocorrelation methods that test whether geographically
closer zones have more of the same health outcomes profiles. Spatial autocorrelation indicated the
presence of clustering or dispersion in a map, as such, examining the global spatial autocorrelation
was used as an initial step for assessing overall geographical variability in the study area and has
been performed in four out of the 25 studies included (Table 1). Three spatial tests were utilized to
assess for global autocorrelation: the Global Moran’s I, Cuzick-Edwards’ k-NN, and Tango’s
Maximized Excess Events Test MEET (Table 1).

Data from the Pennsylvania Cancer Registry was used to test for significant global
autocorrelation using the global Moran’s 1. The global Moran’s I statistics with 95% confidence
intervals were calculated for each of the four time periods studied (2000-2002, 2003-2005, 2006-2008,
and 2009-2011) and resulted in a non-significant negative value, indicating a non-significant negative
spatial autocorrelation or a dispersed pattern in the data. As such, the authors’ interpretation
included the presence of heterogenous dispersion of PCa incidence across counties which was also
apparent on the quantitative mapping [56]. Similarly, a non-significant global Moran’s I (p=0.08) was
also obtained upon testing for spatial autocorrelation of MIRs in South Carolina [59]. Despite the lack
of statistically significant global heterogeneity, subsequent local cluster identification techniques
detected two significant clusters of higher-than-expected MIRs [59]. Although examining global
spatial autocorrelation was mainly utilized to test for general dispersion or clustering of the whole
area of study, this approach did not eliminate the presence or absence of local PCa clusters.
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A comparative study was performed to compare three different global spatial clustering
techniques, utilized commonly in GIS research, to test for clustering in PCa stage and grade: Cuzick-
Edwards’ k-NN, Global Moran’s I, and Tango’s Maximized Excess Events Test MEET [45]. Cuzick-
Edwards’ k-NN and Moran’s I were found to be very sensitive to the population’s density, while
MEET turned out to be the simplest to use as density does not need to be specified for the test. For
the stage at diagnosis, all three models showed a reduction in clustering upon individual and area-
level adjustments, however, some residual clustering remained. This study showed that, in addition
to testing for global dispersion, those three global clustering techniques can be applied to check for
residual clustering especially after adjusting for individual and area-level variables [45]. All in all,
assessing for global clustering allows for identifying dispersion in overall PCa outcomes within
spatial data. This initial step was important to understand the level of geographical heterogeneity of
the PCa measure in question and elicited the need to adjust for underlying factors.

GIS Analysis: Cluster Identification

In addition to assessing for global spatial autocorrelation, GIS was utilized to identify clusters
of concern in 14 studies, as this was often performed with the aim to identify and prioritize zones for
public health interventions and/or locations that elicit further analyses (Table 1). Methods of cluster
detection varied (Figure 5) as eight studies employed the Spatial Scan Statistic, two the local Moran
I, two utilized a spatially weighted hierarchical cluster analysis, one performed a hot spot analysis
coupled with the Spatial Scan Statistic, and another coupled with the local Moran’s I test (Table 1).
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D: Results of spatially weighted classification of 67 counties in
Florida: grouping of counties based on the similarity of their
temporal trends in proportions of late-stage diagnosis and their
geographically proximity [51].

C: Getis-Ord Gi* statistic for hot spot analysis of PCa
incidence for both races by county, 1998-2008, Georgia
[53]

Figure 5. Application of GIS Analysis in PCa Disparities Research.

The Spatial Scan Statistic developed by Kulldorff [68] was commonly used to identify whether
PCa outcomes were geographically randomly distributed or whether clusters were present. Within
these studies, SatScan software was utilized to generate ellipses and/or circles of varying sizes and
evaluate observed versus expected rate ratios (risk within vs outside the circles) to identify
statistically significant “clusters” of disease rates [68]. Variations in the utilization of Kulldorff's
Spatial Scan Statistic were identified and described in Table 2. Six studies relied on circular scanning
windows, one on both circular and elliptical, and two did not mention the scanning window shape
employed. Variations in scanning window size also occurred as this was mostly dependent on the
size of the population at risk (four studies) and on the study period (one study). Furthermore, the
cluster delimitation approach was different among studies as five studies did not rely on geopolitical
boundaries for cluster formation while three based their clusters on county and census tract
boundaries (Table 2).

Table 2. Variations in the Spatial Scan Statistic Technique for Cluster Identification.

Clusters
Scanning . . . delimited by
Study Window Shape Scanning Window Size ] Outcome
boundaries
Jemal A o =no .
et al Circular Sifkm/o of the total population af Yes (county) |PCa mortality
(2002) '
Klassen o =no . PCa incidence,
AC et al| Circular SiflfO/o of the total population at No missing stage,
(2005) ] and grade
DeChell o =no .
o LM et Circular 312(;50/0 of the total population af No PCa incidence
al. (2006) '
Oliver M . -
N et all NA NA (A Spatial Scan Statistic was NA (clusters PCa incidence
(2006) used to evaluate raw counts). not mapped).
Hsu et al, 50% and 90% of the study period. .
A Y t P tal
(2007) N 50% of the population at risk. es (county) | PCa mortality
Gregorio . .
DI et al| Circular NA (varying _sizes across  the No PCa survival
2007) geography of the study area)
Al
o t::(mai Circular and| 0%-50% of the total population afj Yes (census|PCa incidence
2010) | elliptical risk. tract) (localized)
Wagner incidence and|
S et al|Circular 50% spatial scanning window No high grade or
(2013) stage PCa
Gregorio Circular NA ‘(scannmg Clrcl‘es aF random| No PCa incidence
DI (2013) locations and of varying sizes)

*NA= Not Available.

Although all studies utilizing the Spatial Scan Statistic shared a similar purpose, several
rationales were employed. Some studies relied on racially stratifying cluster identification to
highlight racial disparities in PCa outcomes. For example, four clusters of higher PCa incidence were
detected in NHW while two clusters were detected in AA within the states of Connecticut and
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Massachusetts between 1994 and 1998 (Figure 5A) [40]. Other studies attempted to understand the
underlying factors behind cluster formation by testing whether identified clusters remained after
adjusting for designated factors. As an example, the number of significant clusters diminished when
adjusting for individual-level variables such as race, age, and year and census-tract level SES. This
approach explained the potential variables affecting cluster formation as older age, black race, and
higher county-level income increased the likelihood of missing stage while older age and higher
block-group income increased the likelihood of missing grade [39]. Similarly, the number of clusters
of poorer PCa survival decreased in Connecticut upon adjusting for disease severity. However, the
fact that some of those clusters remained demonstrated that additional factors, not accounted for in
the study, were contributing to worse PCa prognosis [42]. Another approach for employing cluster
identification was to profile the SES characteristics of the identified clusters in order to understand
the relationship between poorer outcomes and area-level variables within those specific geographical
boundaries. For example, Altekruse et al. focused on gathering clusters of higher PCa incidence to
examine the relationship between high incidence within those boundaries and area-level SES
utilizing the Pearson correlation test [48]. This resulted in significant associations between a higher
relative risk of localized PCa and urban locations as well as a higher AA proportions [48].

The Getis-Ord-Gi technique developed by Getis and Ord in 1992 was also used to identify hot
spots of concentrated disease outcomes [69]. In contrast to clusters identified by the Spatial Scan
Statistic, this approach mainly identified “cooler” or “hotter” zones of the designated outcome in
question. For example, in the state of Georgia, Wagner et al. analyzed county-level hotspots of PCa
incidence with the Getis-Ord-Gi statistic and identified census-tract level clusters using the Spatial
Scan Statistic. The rationale behind this dual cluster identification approach was primarily to identify
counties with the highest PCa incidence and delineate clusters of higher incidence within smaller
geographical areas [53]. Another county-level hot spot analysis was performed also in Georgia to
detect counties with the highest PCa mortality (Figure 5C). Such an analysis was then racially
stratified to compare racial disparities in PCa mortality. The identified hot spot counties were then
analyzed for SES characteristics and found to have a higher AA proportion and lower median
household income when compared with non-hot spot counties [60].

Furthermore, three studies employed the local Moran’s I to identify Local Indicators of Spatial
Autocorrelations (LISA) (Table 1). LISA was used to identify significant clusters of Pennsylvania
counties with either higher or lower PCa incidence as well as counties that differed significantly from
their neighboring counties, representing either a “high-low” or “low-high” geographical cluster
(Figure 5). In addition to identifying low and high-incidence counties, LISA provided information on
how a specific location compared with its surroundings (Figure 5B). The analysis was repeated for
four different time periods to understand the temporal variation of identified clusters [56]. Lastly,
two studies employed the spatially weighted hierarchical cluster analysis using Ward’s minimum
variance to group counties that have similar temporal trends of late-stage incidence rates in the state
of Florida. This was mainly performed to examine the temporal and spatial clustering of late-stage
proportions, especially since screening recommendations were introduced during the study period
(Figure 5D) [51,52].

GIS Analysis: Geographically Weighted Regression (GWR)

Only a single study employed GWR (Table 1) which provided a spatial dimension to traditional
measures of associations. A geographically weighted local logistic regression model was used to
investigate how the covariate effects on PCa outcome changed spatially by considering spatial
dependence. In fact, higher weight was assigned to cases that were geographically closer to each
other to account for spatial dependence. This method was mainly applied to represent how
associations between predictors and PCa outcomes vary geographically. For example, Goovaerts et
al. identified specific areas where the risk of advanced PCa is more sensitive to the census-tract
median household income [55].
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Discussion

This systematic review is the first to comprehensively summarize GIS applications in prostate
cancer (PCa) disparities research. Unlike previous reviews that focused on geographical variability
in PCa outcomes and associations with predictors, this review emphasizes the utility of GIS
[11,12,14,18]. GIS’s interdisciplinary approach is crucial for addressing disparities in PCa outcomes
[6,70].

Main Themes and Findings

GIS applications in PCa disparities research fall into three main themes: mapping, processing,
and analysis. Most studies (23 out of 25) utilized GIS to examine PCa incidence, mortality, and
survival rather than treatment and management. The primary rationale was to visualize and
statistically identify geographical areas with poorer PCa outcomes, aiding in policy and public health
intervention prioritization. Policymakers could also benefit from identifying disparities in healthcare
access, as disparities in procedure utilization and PCa management contribute to worse outcomes
[20-22,71]. A clear limitation in examining PCa management outcomes in GIS research is the
databases used. Including databases with procedure information, such as SEER-Medicare [72] or
SPARCS [73], could enhance GIS research by visualizing healthcare access disparities and associating
them with outcomes. Despite this, cancer registry data linked to census data proved valuable for
examining PCa outcomes and area-level characteristics (Table 1).

Specific GIS Applications in PCa Management

Two studies focused on PCa management, using GIS for mapping and regression analyses to
explore the relationship between radiation therapy uptake, travel distance, and socioeconomic status
(SES) [58,62]. Aghdam et al. mapped SES clusters of patients receiving radiation therapy [58], while
Tang et al. mapped PCa treatment modalities by county [62]. Other studies also examined the impact
of travel distance on treatment utilization, finding that longer distances were associated with lower
radiation therapy likelihood [74,75] and increased advanced-stage PCa rates among African
Americans [76]. Dobbs et al. used Google Distance Matrix API to calculate transit times and their
impact on clinic absenteeism, finding driving distance inversely associated with missed
appointments [77]. This approach could help study the impact of distance and time on healthcare
access among PCa patients. Combining procedure uptake information with analytical GIS
approaches could provide insights into healthcare access for PCa patients. Such approaches have
been used to study spatial variation and identify clusters in other diseases, such as malignancies and
vaccine uptake [78-80]. For example, Zahnd et al. performed hotspot analysis and spatial lag models
to detect low mammography access clusters and identify associated sociodemographic factors [80].
Translating these approaches to PCa procedure uptake, such as multiparametric MRI for advanced
diagnosis and detection, could advance understanding of PCa disparities. This is crucial as PCa is a
screenable and highly curable disease when appropriate screening and management are undertaken.

Multilevel Analyses in GIS Research

Four studies successfully integrated GIS with multilevel analyses, an essential approach given
the complex relationship between race/ethnicity and area-level SES in PCa disparities [81-83].
Klassen et al. identified high PCa grade and stage clusters and evaluated variability before and after
adjusting for census-level characteristics [39]. This approach helps determine the contribution of
multileveled factors to spatial clusters and identifies areas for additional localized investigations.
Similarly, Altekruse’s study further examined identified clusters for local associations with area-level
factors [48].

Limitations and Recommendations

Several limitations and recommendations from this review are detailed in Table 3.
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Table 3. Summary of GIS Applications, Limitations, and Proposed Recommendations in PCa

Research.
GIS . .. | Limitation(s)/Gap(s) Proposed Recommendations(s)
Application

e Limited focus on PCa e Include more QIS 'rese'arch on PC'a and.

management and/or procedure utlhz'atlon in PCa patients (ie:
access to screening)
treatment

e Limited variability in PCa o ptilize cllaims databases for procedure
database types information

Overall P . Include the temporal element to account
Scope for clinical advancement in PCa
procedures and changes in guidelines

. Limited focus on racial
disparities in remaining e Include other racial categories which have
minority groups (main focus proven to exhibit PCa disparities (ie:
on NHWs and AAs) NHAPIL NHAIAN)

e  Consider larger scales for examining PCa
disparities in-between geographical
o locations

* Lack of.]ust.lflcatlon for the. e  Consider smaller scales when examining
determmatlor? of geographic associations between PCa outcomes and
scale for PCa inferences area-level characteristics

Mapping . o e Utilize original point data instead of

o Varying PCa associations aggregates if possible
dependerft on the e  Create districts based on the spatial
geographical scale adopted patterns observed in the selected PCa
(MAUP) dataset

e Include sensitivity analysis across different
geographical scales

. Adhere to geocoding principles as per
NAACR

e Low-quality geocoding e Always include the geocoding quality

leading to inaccurate PCa percentage
. cluster detection
Processing
. . Avoid over-smoothing and utilize
. Over-smoothing . . . .
imputation techniques for missing PCa
data as appropriate
. Always include global spatial

autocorrelation as an initial step to assess
for overall dispersion in PCa outcomes

. Lack of initial global spatial
autocorrelation testing

. Employ alternative cluster detection
Analysis o methods that exhibit less variability (ie:

*  Variability in cluster LISA) or have proven to be superior in
detection methods especially cluster detection (ie: SpODT, and HBSM)
when using the Spatial Scan |4 Combine cluster detection techniques for
Statistic more robust and comprehensive findings

(ie: Hotspot analysis followed by SSS or
LISA)

* NHAPI: Non-Hispanic Asian Pacific Islander, NHAIAN: Non-Hispanic American Indian/Alaskan Native,
MAUP: Modifiable Areal Unit Problem, LISA: Local Indicator of Spatial Autocorrelation, SpODT: spatial oblique
decision tree, HBSM: hierarchical Bayesian spatial modeling.
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GIS Mapping and Scale Definition: Almost all studies (24/25) used mapping to visually represent
associations between geography and PCa. However, varying geographical scales were adopted,
resulting in different findings [41,43,46]. County-level data was most commonly used due to ease of
access. However, multiple scales within studies introduced challenges in disentangling personal
choice from contextual factors. For example, Meliker et al. observed disappearing survival disparities
between NHW and AAs when moving from larger to smaller geographical scales [46]. Oliver et al.
detected significant SES associations with PCa outcomes at the census tract level but not at the county
level [41]. This phenomenon, known as the Modifiable Areal Unit Problem (MAUP), introduces
statistical bias. The recommended geographical scale depends on the research question. Smaller
scales might better capture associations with area-level indicators, while larger scales might better
detect disparities between geographical areas. To mitigate MAUP, using original point data or
smaller units of analysis (e.g., “County” instead of “State”) and performing sensitivity analyses for
each geographical scale are suggested [86]. Luo et al. demonstrated the context-dependency of
aggregation error using a Monte Carlo simulation, emphasizing the importance of population density
consideration [88].

GIS Processing: Geocoding quality and data smoothing were the main GIS processing
applications identified. Only eight studies reported geocoding, with success rates varying between
74% and 100% (Table 1). Standardized geocoding approaches, such as those by NAACCR, are
recommended to improve outcome comparability [89]. Insufficient geocoding can lead to
systematically missing data, misinforming public health interventions. This was illustrated by Oliver
et al.,, who showed how varying geocoding quality resulted in different cluster formations for PCa
patients (Figure 6) [90]. Smoothing techniques help aggregate results of adjacent areas with scarce or
missing data but can introduce bias if over-applied. Proper use of smoothing techniques can fill gaps,
reduce bias, and prepare data for spatial analysis.

Address Matches 1990 to 1994 (74% of Cases) Address Matches 1995 to 1999 (74% of Cases)

Source: 1990 to 1999 Virginia Cancer Registry and 1990 Population Census

Figure 6. Variation in clusters of PCa incidence based on Geocoding Quality (Virginia 1990-1999)
[90].

GIS Analysis: GIS applications enable rapid spatial analysis of PCa outcomes. Spatial
autocorrelation is crucial for examining the impact of space on PCa observations. Three spatial
autocorrelation approaches were identified: Global Moran’s I, Tango’s MEET, and Cuzick-Edward’s
k-NN. Global Moran’s I is commonly used to test for global spatial autocorrelation, but the Geary’s c
test could also be employed [95]. The absence of global spatial autocorrelation does not imply the
absence of localized spatial patterns. Cluster detection methods varied, with the Spatial Scan Statistic
(SSS), Local Indicator of Spatial Autocorrelation (LISA), and hotspot analysis using the Getis-Ord-Gi
statistic being the primary techniques. Variations in SSS model specifications highlight the need for


https://doi.org/10.20944/preprints202406.1749.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 June 2024

do0i:10.20944/preprints202406.1749.v1

21

standardization. LISA is more sensitive and specific in cluster detection but increases Type I error
with more cases. Hotspot analysis provides color-scaled visual representations of cold and hot spots
but is limited by pre-defined geographical boundaries. Combining multiple geospatial approaches,
such as hotspot analysis and LISA, is recommended for robust findings. A table summarizing the
strengths and weaknesses of the different GIS analysis methods utilized in PCa research is presented

below (Table 4).

Table 4. Summary of strengths and weaknesses of GIS analyses methods applied in PCa research.

Method Strengths Weaknesses Exan?ple‘ of recommended
application
o Sensitivity to
*  Provides the parameters: the choice o
location, size, and of scanning window, Tp detect SIgI}IfIFant
Spatial s’.cati.st.ical shape and size can ClI'Cl'ﬂaI' or elhptlcal. clusters
Scan significance of PCa influence the results Of_hlgh PCa rr.u.)rtaht.y
Statistic clusters e Assumes circular or | Within a specific region,
(SSS) ° Identifies areas with elliptical cluster shapes account%ng for Fhe
higher-than- R Computational pOpL.llatI.OI’l at I'lSl.( and
expected PCa rates complexity increases c9ns1der1ng varying cluster
*  Publicly available with larger datasets | 5'%¢®
o Identifies areas
Wh?euPC? Calses gre To identify statistically
Zﬁilil:pe}z,r;etclls ere . Higher probability of significant c.lus.ters of high
false positives with an | ©F low PCa incidence rates,
Local *  Doesnotneeda . PO ber of |Provide insight to
Moran’s I priori specification mereasing nmber o neighboring observations
(LISA) 0}f1a scangviTldow cases and, understand spatial
o [+ Sy |l e
for finer scales tracts, neighborhoods)
(census tracts,
neighborhoods)
e  Allows for the visuall
identification of
geographically-
HotSPO.t delimited clusters at | 4 Identified areas are To identify local hotspots
Anal.ys1s the local level (i.e.,: limited by geopolitical | or coldspots of PCa
(é;i:tls-Ord . :;sus; c01'1r1ty.'. i boundarie.s. ’ incidence within a specific
. . pstopmpomt = e Scale sensitivity geographic area, such as a
statistic) geographical-limited count tract
e y Or a census trac
areas with high or
low prostate cancer
rates
*  Recognizes spatially | | May require a
VaryTng . relatively large sample | To investigate the locally
relationships ) size to ensure reliable | dynamic relationship
Geographic| * Allows for localized estimation and avoid |between area-level
ally and more accurate issues of spatial characteristics (e.g., racial
Weighted mod'elmg f)f the outliers or sparse data | composition,
Regression relat1onsh1ps. in specific regions socioeconomic status,
(GWR) between vana.bles Increased availability of healthcare)
¢ Captures SPatlal computational and PCa outcomes (i.e.,:
he.ter(.)genelty requirements appropriate for multilevel
¢ Aids in the (estimates regression | analyses)
identification of
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localized clusters or coefficients for each
spatial patterns of location)
PCa outcomes e Requires

understanding of the

spatial context for

accurate interpretation
e Multicollinearity

Future Recommendations for GIS Application in PCa Research

Future GIS research in PCa disparities should focus on several key areas to enhance the scope
and impact of findings:

e Expanding the scope to include treatment and management outcomes is crucial. Utilizing
comprehensive databases like SEER-Medicare and SPARCS for procedure-level information
will provide valuable insights into healthcare access and utilization, leading to a more holistic
understanding of PCa disparities.

e Incorporating both spatial and temporal dimensions in GIS research will allow for a more
comprehensive assessment of the cancer burden. This can be achieved through preliminary
stratification, joinpoint analysis, or detailed discussions that account for ongoing medical
advancements and changes in screening recommendations.

¢  Ensuring racial inclusivity in study populations is also vital. Future research should extend
beyond African Americans (AAs) and Non-Hispanic Whites (NHWs) to include other minority
groups such as Non-Hispanic Asian/Pacific Islanders (NHAPI). This will provide a broader
understanding of racial disparities in PCa outcomes.

e  Combining multiple geospatial approaches for robust cluster detection and sensitivity analysis
will enhance the reliability and validity of research findings. Employing techniques like Spatial
Scan Statistic (SSS), Local Indicator of Spatial Autocorrelation (LISA), spatial oblique decision
trees (SpODT), and hierarchical Bayesian spatial modeling (HBSM) will offer a comprehensive
view of spatial patterns and their underlying causes.

e  Addressing geocoding quality and the Modifiable Areal Unit Problem (MAUP) is essential.
Researchers should adhere to standardized geocoding principles and report geocoding success
rates. Conducting sensitivity analyses across different geographical scales and using original
point data when possible will mitigate issues related to MAUP and enhance the robustness of
findings.

By addressing these recommendations, future GIS research can leverage spatial analysis to
design effective public health interventions, ultimately reducing disparities in PCa outcomes.
Including visual aids such as tables and figures can further enhance the clarity of the discussion. For
example, a table summarizing the strengths and weaknesses of different GIS methods, a visual
representation of geographical scales and their impact on findings, and a flowchart of recommended
GIS approaches for PCa disparities research can make the information more digestible. Following
these recommendations will ensure that future GIS studies in PCa disparities are more robust,
comprehensive, and impactful.

Study Strengths and Limitations

To my knowledge, this is the first systematic review of GIS applications within PCa disparities
research. This review is unique as it provided a comprehensive summary of spatial analysis within
this disease, highlighted the importance of specific methods in relation to PCa outcomes, and
discussed potential gaps while proposing potential solutions. A GIS approach for PCa disparities is
crucial for designing efficient and targeted public health interventions. Although this review contains
valuable information for future researchers joining the rising trend of GIS research and disparities,
few limitations were encountered. Limitations mainly include the search terms used to select the
articles. Some used terms might have been new to the literature, and thus historical articles describing
the same initiative might have been missed by using obsolete terminology. Also, selections have been
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restricted to published articles only. By doing so, valuable unpublished findings might have been
missed, especially since this area of research is evolving rapidly nowadays.

Conclusions

This review highlights current trends in GIScience for PCa surveillance and epidemiology,
categorizing GIS approaches into processing, mapping, and analysis. Mapping enables visualization
of PCa rates and disparities, processing involves geocoding and rate smoothing, and analysis
identifies clusters for public health interventions. Limitations were noted in each area, with
recommendations to expand GIS research to address healthcare access disparities, justify scale
selections, and combine cluster detection methods for improved accuracy. The review emphasizes
interdisciplinary collaboration to enhance PCa disparity studies, guiding future public health and
policy interventions effectively.

Funding: No funding was utilized for this research

Data Availability Statement: The full search strategy is included in the appendix and can be applied for future
reproducibility.

Conflicts of Interest: No conflicts of interest exist, and no disclosures are to be mentioned.

Appendix A. Research Strategy

Research Question

State Question: What are the different
geospatial approaches for quantifying health
disparities in prostate cancer outcomes?

Limits:
Spec1f.1c Inclu51'ons/ExclusmI'ls: . - Select Core Databases: English only
Inclusion: Studies that examine disparities in

. . PubMed
PCa using geographical elements as Embase Years: Up to 2022
independent variables .

Web of Science

Age Groups: Adults
Exclusion: Studies conducted outside the US, 18 years and older
studies that did not assess for a direct
relationship  between a  geographical

component and PCa disparities were excluded.

Concept: Health Disparities | Concept: Geospatial analysis Concept:  prostate

cancer

“Socioeconomic

Factors”[Mesh] OR

ITIealtI}. ., Status “Geospatial  analysis”[MeSH

Disparities”[Mesh] OR ' . . .
Thesaurus “Healthcare Terms] OR “geographic | “Prostatic
Terms / Disparities” [Mesh] OR [MeSH]) OR | Neoplasms”[Mesh]
Subheadings " P . (geographical[MeSH]) OR | OR

Health Services ,

(spatial[MeSH])

Accessibility”[Mesh] OR
“Vulnerable
Populations”[Mesh] OR
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socioeconomic* OR
disparit* OR

vulnerable OR

“healthcare access” OR
“healthcare  accessibility”

“prostate cancer” OR
“prostate  cancers”
OR

Geograph* OR Spatial OR | “cancer of  the

Textwords Geospatial OR GIS OR Place of | prostate” OR

OR . : u .
“health service accessibility” Residence OR Mapping prostatic L
neoplasms” OR
OR o rostat
“health services prostate .
S neoplasms
accessibility
PubMED SEARCH STRATEGIES

Search

numb | Query Search Details Results

er

(“Prostatic Neoplasms”[MeSH Terms]
OR “prostate cancer”[All Fields] OR
“prostate  cancers”[All Fields] OR
“cancer of the prostate”[All Fields] OR
“Prostatic Neoplasms”[All Fields] OR
“prostate neoplasms”[All Fields]) AND
(“Socioeconomic Factors”[MeSH Terms]
OR “Health Status Disparities”[MeSH
Terms] OR “Healthcare
Disparities”[MeSH Terms] OR “Health
Services Accessibility”[MeSH Terms] OR
“Vulnerable Populations”[MeSH Terms]
OR “socioeconomic*’[All Fields] OR
“disparit*”[All Fields] OR
(“vulnerabilities”[All Fields] OR
“vulnerability”[All Fields] OR
“vulnerable”[All Fields] OR
“vulnerables”[All Fields]) OR
“healthcare access”[All Fields] OR
“healthcare accessibility”[All Fields] OR
“health service accessibility”[All Fields]
OR “Health Services Accessibility”[All
Fields]) AND (“Geography”[MeSH
Terms] OR “geography, medical”[MeSH
Terms] OR “geograph*’[All Fields] OR
(“spatial”[All Fields] OR
“spatialization”[All Fields] OR
“spatializations” [All Fields] OR
“spatialized”[All Fields] OR

(((“Prostatic Neoplasms”[Mesh] OR
“prostate cancer” OR “prostate cancers” OR
“cancer of the prostate” OR “prostatic
neoplasms” OR “prostate neoplasms”))
AND ((“Socioeconomic Factors”[Mesh] OR
“Health Status Disparities”[Mesh] OR
“Healthcare Disparities”[Mesh] OR
“Health Services Accessibility”[Mesh] OR
“Vulnerable  Populations”[Mesh]  OR
4 socioeconomic* OR disparit* OR vulnerable
OR “healthcare access” OR “healthcare
accessibility” =~ OR  “health  service
accessibility” =~ OR  “health  services
accessibility”)))) AND
(“Geography”[Mesh] OR  “Geography,
Medical”[Mesh] OR geograph* OR spatial
OR geospatial* OR geospatial analysis OR
GIS OR Mapping OR “Place of Residence”)
Filters: English

320

“spatially”[All Fields]) OR
“geospatial*’[All Fields] OR
((“geospatial "[All Fields] OR

“geospatially”[All Fields]) AND
(“analysis”[MeSH  Subheading] OR
“analysis”[All Fields])) OR (“proc acm
sigspatial int conf adv inf”[Journal] OR
“gis”[All Fields]) OR (“mapped”[All
Fields] OR “mapping”[All Fields] OR
“mappings”[All Fields]) OR “Place of
Residence”[All Fields])
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“Geography”[MeSH Terms] OR
“geography, medical”[MeSH Terms] OR
“geograph*”’[All Fields] OR
(“spatial”[All Fields] OR
“spatialization”[All Fields] OR
“spatializations” [All Fields] OR
“spatialized”[All Fields] OR
“Geography”’[Mesh] OR  “Geography, | “spatially”[All Fields]) OR
3 Medical”[Mesh] OR geograph* OR spatial | “geospatial*’[All Fields] OR 1116497
OR geospatial* OR geospatial analysis OR | ((“geospatial”’[All Fields] OR| 7"
GIS OR Mapping OR “Place of Residence” | “geospatially”[All Fields]) AND
(“analysis”[MeSH  Subheading] OR
“analysis”[All Fields])) OR (“proc acm
sigspatial int conf adv inf”[Journal] OR
“gis”[All Fields]) OR (“mapped”[All
Fields] OR “mapping”[All Fields] OR
“mappings”[All Fields]) OR “Place of
Residence”[All Fields]
“Socioeconomic Factors”[MeSH Terms]
OR “Health Status Disparities”[MeSH
Terms] OR “Healthcare
Di ities”[MeSH T R “Health
(“Socioeconomic  Factors”[Mesh] OR 1sp.ar1 fes”] e.S” frms] © ca
M . . Services Accessibility”[MeSH Terms] OR
Health Status Disparities”[Mesh] OR| , .
“ . s Vulnerable Populations”[MeSH Terms]
Healthcare Disparities”[Mesh] OR . ) )
" . e OR “socioeconomic*’[All Fields] OR
Health Services Accessibility”[Mesh] OR| . e .
“ ., disparit*’[All Fields] OR
Vulnerable  Populations”[Mesh]  OR| , ere .
2 . . . . vulnerabilities”[All Fields] OR | 950,029
socioeconomic* OR disparit* OR vulnerable | , e .
Y ., B vulnerability”[All Fields] OR
OR “healthcare access” OR “healthcare |, \ .
s " . vulnerable”[All Fields] OR
accessibility OR health service | , . . P
accessibili”  OR  “health  services vulnerables”[All Fields] OR “healthcare
accessibility”)) access”[All Fields] OR “healthcare
y accessibility”[All Fields] OR “health
service accessibility”[All Fields] OR
“Health  Services  Accessibility”[All
Fields]
“Prostatic Neoplasms”[MeSH Terms]
(“Prostatic Neoplasms”[Mesh] OR|OR “prostate cancer”[All Fields] OR
1 “prostate cancer” OR “prostate cancers” OR | “prostate  cancers”[All ~ Fields] OR 184 831
“cancer of the prostate” OR “prostatic| “cancer of the prostate”[All Fields] OR i
neoplasms” OR “prostate neoplasms”) “Prostatic Neoplasms”[All Fields] OR
“prostate neoplasms”[All Fields]
EMBASE SEARCH STRATEGIES
No. Query Results
#4 #1 AND #2 AND #3 317
(‘geography’ OR ‘geography, medical’ OR geograph* OR spatial OR geospatial* OR
#3 . . . . , . , 682890
geospatial) AND analysis OR gis OR mapping OR “place of residence
‘socioeconomic factors” OR ‘health status disparities” OR ‘healthcare disparities” OR
#2 “vulnerable populations” OR socioeconomic* OR disparit* OR vulnerable OR ‘healthcare 583093
access’ OR "healthcare accessibility” OR ‘health service accessibility” OR “health services
accessibility”
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#1 ‘prostatic neoplasms’/exp OR ‘prostatic neoplasms’ 291595

WEB OF SCIENCE SEARCH STRATEGIES

Query Results

(“prostatic neoplasms” OR ‘prostatic neoplasms’) AND (‘socioeconomic factors” OR ‘health
status disparities” OR ‘healthcare disparities” OR ‘vulnerable populations” OR socioeconomic*
OR disparit* OR vulnerable OR ‘healthcare access” OR ‘healthcare accessibility” OR ‘health
service accessibility’ OR ‘health services accessibility’) AND ((‘geography’ OR ‘geography,
medical’ OR geograph* OR spatial OR geospatial* OR geospatial) AND analysis OR gis OR
mapping OR “place of residence’)

16

(‘geography’ OR ‘geography, medical’ OR geograph* OR spatial OR geospatial* OR
geography geography geograp P geosp

173,7
geospatial) AND analysis OR gis OR mapping OR ‘place of residence’) 3,173,703

(‘socioeconomic factors’” OR ‘health status disparities’ OR ‘healthcare disparities’” OR
‘vulnerable populations’” OR socioeconomic* OR disparit* OR vulnerable OR ‘healthcare
access’” OR ‘healthcare accessibility’ OR ‘health service accessibility’ OR ‘health services
accessibility”)

629,895

(“prostatic neoplasms’ OR “prostatic neoplasms’) 8,363
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