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Abstract: In this paper, we introduce a control method for the linear quadratic tracking (LQT) problem with
zero steady-state error. It is achieved by augmenting the original system with an additional state representing
the integrated error between the reference and actual outputs. In its essence, it is a linear quadratic integral
(LQI) control embedded in a general LQT control framework, with the reference trajectory generated by a linear
exogenous system. During the simulative implementation for the specific real-world system Car-in-the-Loop (CiL)
test bench, we assume that the ‘real’” system is completely known. Therefore, for the model-based control, we can
have a perfect model identical to the ‘real’ system. It becomes clear that stable solutions can scarcely be achieved
with controller designed with the perfect model of the ‘real” system. Contrary, we show that a model learnt via
Bayesian Optimization (BO) can facilitate a much bigger set of stable controllers. It exhibits an improved control
performance. To the best of the authors” knowledge, this discovery is the first in the LQT related literature.

Keywords: linear quadratic tracking; zero steady-state error; model learning; Bayesian Optimization;

Car-in-the-Loop test bench

1. Introduction

It is a very common objective in the system control design to force the system output to follow a
reference trajectory. In case of full vehicle test benches in the automotive industry in particular, a typical
control task is the tracking of the wheel hub speed [1]. This subject can be handled by formulating the
test bench control as a Linear Quadratic Tracking (LQT) problem. As discussed in the literatures on
LQT, the general form of the control law can be expressed as

u(t) = —Ky(t)x = Ka(t) f (xr) ©)

which consists of a state feedback dependent on the system states x and a pre-filter f dependent on
the reference trajectory x,. For a finite time horizon T, the feedback gain K; and pre-filter gain K, are
time-variant and it requires additional memory and processing power to solve the LQT problem. In
this paper, we only discuss the time-invariant control on an infinite time horizon, which reduces the
control complexity significantly with its static gains. It is advantageous from an implementation point
of view, especially for industrial systems. A good overview and performance evaluation of LQT for
discrete time-invariant systems is given in [2]. For the case of finite horizon, recursive solutions for
controls with fixed terminal states is proposed in [3].

LQT problems can be solved algebraically by forming the Hamilton function which combines
the cost function and system dynamics by introducing a costate. It can be formulated as a Linear
Quadratic Regulator (LQR) problem. Dependent on the problem formulation, the solution might be
homogeneous or is a superposition of a homogeneous and an inhomogeneous part. The differences of
the methods introduced in the literature differ either from the system formulation or the cost function
definition. For example, in [4], the original system is reformulated by transforming system state x to
x, by introducing x, = x — x,. In the method presented in [5], the reference signal is generated by
x = Fx,, where F is a constant matrix with appropriate dimension. A discounted cost function with

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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discount factor v > 0 is introduced and the original system is augmented with the reference trajectory
xr. Some methods, e.g. [6], optimize the differential quadratic cost between the transient input energy
and the steady-state input energy, which is hard to implement from practical point of view, since the
steady-state input energy is typically unknown a priori. In [7], a generalized LQT control framework is
introduced, where the reference trajectory is generated with an exogenous system. Alternatively, LQT
problem can be studied in frequency domain, as in [8], although it could be numerically intractable for
systems with high dimensions.

We consider a general multi-input multi-output continuous linear time-invariant (LTI) dynamic
system in state-space form as

X = Ax + Bu,
()
y=Cx.
with the state vector x, the input vector u# and the output vector y. Here, A, B and C are, respectively,
the time-invariant system state matrix, the input matrix and the output matrix with appropriate
dimensions.

For a simple LTI system with A =1, B=1 and C =1, the tracking performance of a step command
using the different LQT control methods mentioned above are illustrated in Figure 1. As can be seen, a
tolerated steady-state error is balanced against the dynamic behavior except for method [6], where
the augmented LQ servo system is implemented. Notice that the controller has been parameterized
such that the same amount of energy is injected to the system in all control methods. As can be seen in
the lower plot, it can be consumed by different input trajectories, which results in different control
dynamics. Compared to the other methods, [6] has the slowest transient response and zero steady
state error, while [7] shows the fastest transient response but also the biggest steady-state error.

In this contribution, with a revisit to the generalized LQT control framework introduced in [7],
we show that by augmenting the system with an integrated tracking error, as introduced in [9], we
obtain a control scheme with the input energy being directly weighted in the cost function, while the
steady-state error is forced to zero. A simple numerical example will illustrate the difference of the
implementation of the method in [7] on the original system and its augmented version. In a further
step, the control method is examined in a real-world system called Car-in-the-Loop (CiL) test bench
[10]. It shows that stable solutions are extremely difficult to find, when the perfect model of the real
system is used for the controller. However, satisfactory control results can be achieved with a model
learnt via Bayesian Optimization (BO). To the best of authors’ knowledge, this discovery is the first in
the LQT related literature.

Comparison of LQT methods
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Figure 1. Tracking of a step command by an LTI system with A =1, B=1 and C = 1 using different

LQT control methods mentioned above. The same amount of input energy is injected to the system for
all control methods: [4-7].
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2. LQT Control Framework with Augmented System

2.1. Problem Description

First, we consider a general multi-input multi-output continuous linear time-invariant (LTT)
dynamic system as described in (2). The objective is to design a controller in such a way that the
closed-loop system exhibits satisfactory transient response to a given reference trajectory and zero
steady-state error, which are desired for many test scenarios on full vehicle test benches. For example, it
is required by the regulation to conduct experiments with certain driving cycles such as New European
Driving Cycle (NEDC) or Worldwide harmonized Light vehicles Test Cycles (WLTC). In those cases,
the velocity profile should be tracked precisely. This can be achieved by augmenting the original
system (2) with an additional state z , which represents the integrated error between the reference
signal ¥, and the actual controlled output v, as discussed in [9,11]. It can be formulated as

2(t) = [~ )it +2(0). ®

In this way, an integral feedback gain is added to the closed-loop system. The augmented system can
be formulated as a linear system with an exogenous input dependent on the reference trajectory vy,
which will be discussed in the following. As stated in [12], the exogenous input in this context is an
unavoidable quantity that cannot be used as a control input in corrective actions. Its magnitude is
given externally and cannot be changed, although it may be possible to find a control input which
cancels out or minimizes the effect of the exogenous input.

The exogenous inputs as a part of the system formulation are being dealt with in [12,13] re-
spectively in continuous and discrete time, as well as indirectly in [4]. A much more general form
for systems with exogenous input is introduced in [7], where an exogenous term, considered as a
disturbance dependent on the reference trajectory, is included in the system formulation. In fact, the
solutions introduced in [4,12] are special cases of the LQT control framework in [7]. However, to the
best of the authors” knowledge, a direct implementation of the LQT control framework in [7] with the
augmented system mentioned above, is not found in the literature. And this will be discussed in 2.4.

2.1.1. Zero Steady-State Error

From (3) it is clear that we have
z=y, —y=—Cx, +Cx, (4)

Combining (2) and (4), we obtain an augmented open-loop system as the following:

-

With the augmented system, a linear state-feedback controller can be constructed to form the closed-
loop system, i.e. we have the following control law:

A 0
—-C 0

B
0

X

. Ol 5)

* C

u -+

X

U= [Kx KZ} (6)

Therefore, provided that the steady-states exist and can be approached by a controller with the form
(6), we can have zZ approaching zero, thus y approaching v, , and the desired zero steady-state error
can then be achieved [9].


https://doi.org/10.20944/preprints202406.1681.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 d0i:10.20944/preprints202406.1681.v1

40f15

2.1.2. Formulation as a System with Exogenous Input

A 0 B
-C 0 0

c o
0 I

X

Witth: Z,Aa: ,Ba: /CIZ:

] and G, =

g] , the augmented system

can be formulated as:
Xq = Aaxq + Bau + Gaxy, @)
Ya = Cuxg.
The system (7) is a continuous LTI system with an exogenous input vector x;, . The control problem
can be described as seeking the control law u that minimizes the cost function

J = /0 " (xaTQuxa + uTRut)dt ®)

subject to system (7), where Q, is a real symmetric positive semi-definite matrix and R is a real
symmetric positive definite matrix. For the case that x, = 0, it becomes a standard LQR optimal
control for the augmented system. For the case that x, # 0, however, the term G,x, cannot be
eliminated from the formulation. Therefore, one cannot formulate the problem in the standard form
and solve the Algebraic Riccati Equation to obtain an optimal feedback gain. In [9] and [11], the
exogenous input of the augmented system is simply being neglected. In the following section, we will
see that the exogenous input of the augmented system is a standard term in the general LQT control
framework in [7], where it is considered by the authors as an input disturbance.

2.2. General LQT Control Framework

A general LQT control framework is introduced in [7] with a system formulation as

X = Ax+ Bu + E;x,
_ ©)
y = Cx+ Dyx.

The disturbances E;¥ and D;x as well as the reference trajectory i are generated with an exogenous
system in following form:

¥ = Ax, 10)
7 = Cx.
The optimization problem then becomes
J= | (w=9"QW-p +u"Rudt (1)
with constraints of (9) and (10). With few conditions fulfilled, it can be solved by the control law
ut = —K"(x* —II,"%) + F*x (12)
with
K* =R 'B'P (13)
F* = -R7'BT1I, (14)

where P is obtained by solving

PA+ ATPp—PBR™'BTP+CTQC = 0. (15)
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and I'l,* in (12) as well as Iy in (14) are obtained by solving
IL* Ao A —BRIBT| |IL* N E; (16)
I, | |-cTQc AT I,* CTQ(C—-Dy) |’

Notice that (16) is called the Sylvester equation.

2.3. LQT Control Framework with Original System Model

In the literature, the general LQT control framework is implemented with the original system
(2). In many use cases, typically E; = Dy = 0. A tolerated steady-state error is balanced against the
necessary input energy. The steady-state error cannot be eliminated.

2.4. LQT control framework with augmented system model

It is straightforward to use the control framework introduced in [9] for the augmented system (7).
By comparing (7) with (9), we have E; = G, and D; = 0. We use the subscript a to distinguish this
case with the notation for the original system. In other words, for the control law with the augmented
system, A, B, C, Q, A and C in (13) - (16) will be replaced by its counterpart with a subscript a.
Furthermore, x, and y, can easily be expressed with x,; and y, . A key difference to the control scheme
compared to the original system lies in the consideration of the augmented state — the integrated
tracking error — in the exogenous system. Though theoretically impossible, since deviation of current
output to reference output always exists in the beginning, it is still justified that the desired reference
for the integrated tracking error is zero. For the augmented system, it is now an optimal problem with
the following cost function:

J= [ (o = 70) " Quly — i) + u Ryt 17)

In the special case of a constant reference trajectory, we have A, = 0, the solution for I',* and IT are
then simply obtained by solving:

_ Eq
0= *craic - by i

—CaTQaCy AT I1,*

A, —BﬂRlBaT] lnx*

2.5. Simple Numerical Example

Before we proceed, we implement the method once again in a simple system: a one-dimensional
LTI system in the form of (2) with A = 1, B = 1, C = 1. It is unstable in open-loop. This example
illustrates the effectiveness of the framework introduced in 2.4. Assume that the control target is to
track a step command with the final value y, = 10 . Both the LQT control framework with original
system and augmented system are implemented. With the same amount of input energy, the differences
of the system behavior with the two control laws are compared. As depicted in Figure 2, it is clear
to see that zero steady-state error is achieved in the augmented version as expected. However, the
transient dynamic is slower and a slight overshoot is observed, compared to the LQT with the original
system. For the latter case, an offset to the desired steady-state is apparent. In both cases, the transient
dynamic can be changed by tuning the input weighting matrix, but the conclusion made above is not
affected.
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Figure 2. Tracking of a step command by an LTI system with A =1, B =1, C = 1. LQT control frame-
work with original system model (red line) and augmented system model (blue line) are implemented.
Same amount of input energy is injected to the system in both control laws.

3. LQT Implementation on Car-in-the-Loop

3.1. Car-in-the-Loop Test Bench Prototype

Now we consider a real-world system called Car-in-the-Loop test bench prototype as depicted in
Figure 3. For simplification of notation, we refer the system in the following chapters as CiL. More
details about the test bench, e.g., the physical parameters, are described in [14]. The control task in this
work is to track a reference trajectory of the wheel hub speed using the brake motor torque, while the
torque from the drive motor can be seen as a disturbance from the perspective of the test bench control.

Brake motor = | Drive motor
steering : ad steering

Car-in-the-Loop Mini Countryman
module parts

Figure 3. Car-in-the-Loop test bench prototype.
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In this contribution, to simplify the case study, we neglect the friction and backlash in the system
and consider the CiL as an LTI system, which can be described in state-space form as (2) with

0 0 1 1 0
0 0 0 1 -1
A= |-322277 0 2324 2312 0 |,
27038.8 —48516.0 194 —924 727
0 401767.1 0 60.24 —60.32 (19)

T

B:[o 000 40.16},
T

C:[o 00 1 o}.

The output matrix C hints that only the wheel hub speed among all the five states is measured.

Since the LQT control framework with augmented system has the advantage of zero steady-state
error, we adopt this method for the further study on CiL. To be more specific, we augment the system
with the integrated tracking error of wheel hub speed as an additional state. Furthermore, we include
this state also in the exogenous system and simply assume that it should be constantly zero.

For the case that we have an LQT with a step command of the wheel hub speed, we can construct
the exogenous system for the augmented system as the following:

00

a 1 0 7

- 10

C,= [o 0], (20)
T

c_fooo000n

o000 00"

And for the augmented system, we construct the weighting matrix of the cost function with Q =diag([Q1, Q2])

and R, with Q; being the weighting factor for the tracking error, Q for the augmented state and R for
the system input.

A, =

3.2. LQT Control with Perfect Model of the Real System

Assume that the real system is completely known, the controllability and observability of the
system can easily be examined. Therefore, we can use (A, B, C) as the perfect model of the real system
to solve the LQT problem as described in 2.4, by calculating (12) using (13) and (14), with P and T1,
obtained by solving (15) and (16). Due to the characteristic of the system state matrix, it is rescaled for
more stable matrix operations. For this specific system, it is proved to be extremely difficult to find
a stable control solution using the perfect model of the real system for the control. A Monte-Carlo
simulation with a number of 1e4 repeats with Q; ,Q; and R randomly selected in the range of 1e[—20, 4]
is performed. As depicted on the left side of Figure 4, only 5 out of the 1e4 random combinations of
weighting factors contribute to a stable controller.

From the optimization point of view, the model offers much more degrees of freedom for the
problem solving than that of the weighting matrices in the cost function. Abandoning a direct physical
interpretation of the model for the controller, in the following chapters we are going to show that a
model learnt via Bayesian Optimization (BO) can facilitate a much bigger set of stable controllers. It
also exhibits an improved control performance. To the best of the authors” knowledge, this discovery
is the first in the LQT related literature. Before implementing the method on CiL, along with a short
discussion on model learning for control, the fundamentals of BO will first be introduced.
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Figure 4. Stable controller set with Monte Carlo Simulation. Q; ,Q» and R are randomly selected in the
range of 1e[—20, 4]. For ease of reading, the cost evaluation is averaged over the sample numbers and
logarithmized. Left: stable controller set with perfect model of the real system, right: stable controller
set with learnt model via BO.

4. Model Learning via Bayesian Optimization

Bayesian optimization is a powerful tool, which allows the user to develop a framework to
efficiently solve learning problems [15]. Satisfactory results can be obtained within even fewer than
100 iterations [16,17]. Furthermore, it tolerates stochastic noise in function evaluations and is best
suited for optimization of system with small to medium sizes, typically less than 20 dimensions [18].
Bayesian optimization is being continuously developed, for an overview to recent advances of the
algorithm the readers can refer to [19]. Due to the learning efficiency and noise toleration, it has great
potential for industrial implementations, for example in process systems [20,21], positioning system
[22] and robotics [23].

4.1. A Short Discussion on Model Learning for Control

With regard to the control of dynamic systems, Bayesian optimization has recently gained in-
creased attention. A great part of it focus on controller parameter tuning [24,25]. In comparison,
leveraging BO for model learning is not extensively researched [26,27]. Among the few publications,
many of them are focusing on learning a residual model to complement the linear model in the
model-based controller scheme, to achieve a better control quality. In [28], the authors use GP to learn
the relation between the adaptive term and modelling error in Model Reference Adaptive Control.
And in [29], GP is used for real time model adaptation, minimizing the error between prediction and
measurement, as a straightforward extension of robust control. Similarly, GP is used to approximate
the unknown part of the nonlinear model in [27,30]. According to [31], it is often estimated that 75% of
the cost associated to an advanced control project goes into system modeling. From the practical point
of view, the proposed methods in literature does not significantly reduce the effort for modeling, since
a static nominal model still needs to be identified. On the other hand however, additional effort should
be made for the learning procedure. This fact could be a big hazard namely a motivation stopper for
the industrial implementation of the proposed advanced controller optimization algorithm.

In general, the majority of the literature in this regard handles the modelling based on the
belief of separation principle and certainty equivalence, in case when state estimation is involved.
As stated in [32], "a guiding principle should be to model as well as possible before any model or
controller simplifications are made as this ensures the best statistical accuracy". So the general consent
in the framework of data-driven control is that we also need a perfect model-plant match. There
are only very few exceptions in literature that discuss the topic of direct performance-driven model
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learning under closed-loop conditions [33], where model-plant mismatch could be possible, it is not
necessarily examined. In this approach, no or very little prior knowledge with very few implementing
cost is required, the model parameters are used directly and purely for the optimization of control
performance.

Within the LQT control framework, it turns out that the controller with learnt model can provide
significantly more stable solutions for some certain systems, than the controller which has the perfect
knowledge of the system. An assumption is that inherently a model-plant mismatch is highly possible
for the former case. This fact causes two concerns. The first concern is over-fitting. However, it is
shown that with carefully designed experiments, one can learn a data-driven model for control which
excites the dynamic spectrum of interest. This is a very useful insight. In fact, the authors encourage
readers to use the system itself to (semi-)automatically generate the information of interest [32]. A
second concern is the stability margin. In the case of LQG controller, as famously stated in [34], there
is none for this class. It means that the stability margin is always system specific. In practical use,
we carefully examine the robustness of the controller for individual cases. For CiL, the test scenarios
can be categorized in several dynamic range and represented with certain test signals. In this case,
the robustness will be examined directly in experimental setup. Examples for systematic study of
robustness and integration into the algorithm for data-driven control can refer to [24,30,35]. It is not in
the scope of this paper. The intention of the authors is to showcase the possibilities opened up by this
new approach, with focus on the industrial practicability.

4.2. Bayesian Optimization with Gaussian Process as Surrogate Model

As hinted in the previous section, in this contribution, we focus on using the BO to learn a system
model dedicated for the control task. In other words, it is a performance-driven learning scheme [36].
The learning procedure is summarized in Algorithm 1 and will be explained in detail in the following.

Essentially, BO is an efficient way to learn the relationship between the model parameter § and
the control performance | based on past observations. With random initial model parameters 6 , the
controller is instantiated and control sequences are applied to the dynamic system. We then evaluate
the control performance Jy(, o) with respect to input energy and tracking error by computing a
predefined cost function. Then we obtain our first observation Dy (6y), with 6 hinting the dependencies
of the observation on the model parameters. For simplification of notation, in the following, when no
misunderstanding occurs, D;(6;) will be simply note as D;. Notice also that without any suffix, the
observation D represents the whole set of current observations, same rules apply to other mathematical
notations.

We assume that the control performances are random variables that have a joint Gaussian distri-
bution dependent on the model parameters. Without any observation, we define a GP prior that is
a Gaussian distribution over function, which is completely parameterized by its mean and variance.
Then, we can draw samples from it, which serve as candidate functions for what we are looking for.
The actual observation D; is a sample from the distribution of f(6;). In Bayesian learning, we use the
observations to re-weight these function candidates. The probability of a certain candidate function
£(0) from the prior is defined as p(f(6)), the Bayes rule

_ pDIf®)
PO D) = DT g @)p(3(6))dz )

scales this probability by a factor. The numerator of the scaling factor describes the likelihood of
observations given the candidate function. It is normalized by the average likelihood, in other words,
the overall probability of our observation over all possible candidate functions.

We are interested in finding the posterior p(f(6*) | D) because we want to make predictions at the
unobserved locations 6%, which in turn will be evaluated by the acquisition function for the decision

-p(f(9)) (21)
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of where the next iteration is going. We compute the posterior from the prior and the likelihood. By
applying the Gaussian marginalization rule we obtain

f(07) ~ N (m(67),k(67,67)) (22)

Both f(6*) and observations D are Gaussian, by unfolding the definition of covariance and
linearity of expectation, their joint distribution can be formulated as follows:

m(0*)| |k(6*,6%) k(6*,0)
'“Mlm«»]' [kw*,eﬂ (k(6,6) + 1°1,) | *)

£(67)
D

By applying the conditional rule for multivariate Gaussian, the distribution for the posterior is

obtained:
f(6°) | D~ N (" 0%?) (24)
with the posterior mean p*:
pt=m(0%) +k(6",0)(k(6,0) +1°Ly) "' (J(0) — m(6)) (25)
and posterior covariance ¢*?
o*? = k(6*,0%) —k(6*,0)(k(6,0) + 7°L,) 'k(6*,0)" (26)

The steps of (23), (25) and (26) are a recurring pattern in Bayesian learning and we use this to
compute the posterior for Gaussian process model. By assuming zero mean and expanding (25) we

have _
I
= 23
*
Fin ] (27)
k(67,61) k(67,02) ... Kk(67,60n;) D
_ | K(63,61)  Kk(63,62) .. Kk(63,6,;) (K(6,6) + 721ny) ! D,
4 T
k(6 ,01) k(0;.,602) ... k(0g.,0u;) Dy, |

The expanded mean (27) reveals that for an arbitrary test location 6]’-*, the posterior is a weighted
sum of all the observations D normalized by (k(6,0) + 5?1, ). The weights are defined by the kernel
between this test location 67 and all training locations in D. A typical kernel function is the squared
exponential kernel with the following structure:

—(6; — 6;)?

k(8;,0¢) = o?exp( T

), (28)
with [ being the length scale, which characterize how correlated the random variables are depending
on the distance, and o the signal variance, which reflects the range of function values.

Finally, we model the observations as a linear transformation from the latent variable f with
added Gaussian noise. The questions arises during this process are how to select the test points for
prediction from infinite possibilities in the parameter space and how BO decides the next iteration
point, leveraging the information gathered from the GP. To the first question, there are many different
search methods introduced in the literature, e.g. "local random search". For the second question,
typically, BO decides the next sample location by optimizing the so-called acquisition function «(6)
, e.g. Expected Improvement (EI), with the use of the mean and variance predictions of the GP. It
selects the next parameter set where the expected improvement over the target minimum among all
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the explored data is maximal. In this way, the model instance with this new optimal parameter set - up
to the current iteration - is used for the controller in the subsequent step.

It is important to note that the decision on the next model parameter set is an internal loop of the
BO framework, which does not require experiments on the real system. Therefore, the approach is
extremely data efficient. To speed up the algorithm’s convergence, one can also set constraints on the
search space of the model parameters based on prior knowledge to the system. For example, the signs
of certain parameters can be predetermined, when their meaning can be physically interpreted.

5. LQT Implmentation on Car-in-the-Loop Revisited

Recall that in Chapter 3, we can scarcely find stable controllers by implementing LQT with
augmented states on CiL with perfect knowledge of the 'real” system. In other words, we use a perfect
model of the 'real” system for the controller in the simulation study. Now we revisit the CiL control
problem and implement the algorithm of model learning via BO as described in Algorithm 1 on the
simulated test bench.

Algorithm 1: Model learning via Bayesian Optimization

Step Procedure

1 Initialize GP with Dy = Jo(6p)
2 fori=1:N-1
find 0* = argmax a(6|D), apply 6; < 6*
conduct closed-loop experiment with S(6;)
measure #; and y;;
compute cost function J;
update GP and D with 6;, J;
3 Compute optimal parameter 0}, where i* = argmin J; .

5.1. LQT with Model Learnt via BO

To be more specific, we use the BO to learn the system state matrix App and input matrix Bpo for
the LQT controller directly in closed-loop conditions. With trivial weighting of Q1 =1, Q; = 8 and
R =1 and random initialization, we obtain the following BO model (App, Bgo) for the LQT control:

0 0 1 -1 0
0 0 0 1 -1
Ago = | —565390 0 —490.92  106.63 0o |,
824120 —563610 3235 —475.87 27853 (29)
0 271700 0 31496 —83.672

BBo:[o 000 95.36}T.

This model will be called BO model in the following sections for simplification of notation.

A Monte-Carlo simulation with the same settings as described in Chapter 3 is performed and
the simulation results are illustrated on the right side of Figure 4. In total, 1782 stable controllers are
obtained, which is a significant improvement compared to the sparse stable controller set with the
perfect model of the ‘real” system. In Figure 5, a comparison of the step command response is depicted.
The best result with the perfect model (lower left point in the left plot of Figure 4) is shown in red color.
A representative point with comparable overall cost from the results with BO model is presented in
blue. As illustrated, the controller with BO model injects more energy to the system to allow a much
faster transient dynamic.

In practice, it is difficult to describe an arbitrary reference trajectory of wheel hub speed, i.e., the
vehicle velocity with the formulation of (10). It is trivial to consider the reference trajectory as small
step commands in each sample time and therefore, one can use the same controller for an arbitrary
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reference trajectory as for the step command. The practicability of this simplification is validated
using a recorded wheel hub speed from real world driving as reference trajectory, where the tire slip
phenomenon is captured. The results are illustrated in Figure 6. Due to the much faster transient
dynamic, the controller with BO model tracks the reference trajectory much better than its counterpart

with the perfect model.

Tracking of wheel hub speed

<15 . . .
.
B | — - -J'!‘
= 10 e . 1
g 1 Yper fect
= 1
T st —YBO i
E 0 1 1 1
= 0.5 1 15 2 25 3
System input
= 200 T T I
= ,
= 150 Uper fect |
E 100 —URBRO R
g
= 50 T
£
< 0
=
50 I I I I
15 2 25 3

<
w
-

Time in s

Figure 5. Comparison of the step command response with LQT control framework using perfect model
of the 'real” system and the BO model. Overall cost for both controllers is comparable.

Tracking of wheel hub speed
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Figure 6. Comparison of the tracking of real measurement data with LQT control framework using

perfect model of the "real” system and the BO model.

5.2. Effectiveness of Bayesian Learning

The BO algorithm for model learning converges fast in the case of CiL. In Figure 7, a representative
closed-loop system performance of CiL in simulation over the iteration steps during the model learning
is illustrated. The blue line visualizes the current best performance up to iteration i. With enough initial
seeds of parameter sets randomly selected from the parameter space, the BO algorithm converges in a
very effective manner. Therefore, in the case of CiL, the performance-driven approach together with

BO is data-efficient and suitable for experimental controller design.
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Figure 7. Iteration of the Bayesian optimization algorithm.

5.3. Limitations

Currently the introduced method is studied in the simulation environment, where all the system
states are assumed known. Nonlinear effects of the real system are not considered. Since not all the
system states can be measured, the feasibility of the method and stability of the controller with a
state estimator needs further investigation, to pace the way for its implementation on the real system.
Moreover, due to the state augmentation as well as the introduction of the exogenous system, the
dimensions involved in the controller design can increase significantly for systems with high dimension
and/or multiple tracking states.

6. Conclusion

In this contribution, we discuss a control method for LQT with zero steady-state error. It is
realized by augmenting the system state with the integrated tracking error. The general LQT control
framework introduced in [7] can be used for the augmented system, which is not mentioned in the
literature.

A possible reason could be that due to the augmentation of the system as well as the introduction
of the exogenous system, the dimension of the Sylvester equation (16) could be increased quite
significantly, when many states or outputs are to be tracked in the system. This fact could be a
limitation of the method.

On the other hand, an interesting discovery is, for the specific system CiL, that nearly no stable
solution can be found with the perfect model of the ‘real” system for the LQT control. However, a
stable and more performing solution can be found more easily with a plant model learnt via BO. Based
on the learnt model, the controller parameter can be further tuned in a sequential step and achieve a
desired performance with regard to certain objective.

Currently, the conclusions made in this contribution are based on numerical simulations. All
system states are assumed known. In future works, the control method in combination with a state
estimator should be studied further to pave the way for its practical use. It is also interesting to prove
the feasibility or stability of the method mathematically in a more general term. For example, how
can the BO model as a substitute model provide an alternative way to the LQT controller design for a
certain class of system similar to CiL, which is scarcely unsolvable with the perfect model of the "real’
system.
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