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Abstract: A comparative analysis between Bidirectional Evolutionary Structural Optimization
(BESO) and Smoothing-ESO (SESO), simultaneously considering Reliability-Based Topology
Optimization (RBTO) and the structure's self-weight in the case of three-dimensional elasticity, is
presented in this study. Due to the important role of the existence of uncertainties in making the
structural design more realistic, geometry, volumetric fraction, modulus of elasticity, compliance,
and loading are considered random variables with normal probability distribution. When adopting
the First Order Reliability Method (FORM), the failure probability is calculated based on the
reliability index. Furthermore, considering the influence of self-weight in problems involving large
structures in civil engineering, especially in the case of bridges, makes the optimal configuration
more reliable for design. A series of examples are covered to validate the methods presented,
showing their efficiency and robustness.

Keywords: 3D-topology optimization; BESO; SESO; RBTO; self-weight

1. Introduction

Topological Optimization (TO) is a technique used to find the ideal distribution of the material
in a structure, maximizing its performance under certain constraints. In recent decades this approach
has been used by several researchers in the field of structural engineering to reduce weight, improve
efficiency, and increase the strength of materials. As algorithms evolve, this technique has played an
important role in the production of complex and innovative structures, contributing to the
advancement of civil, aerospace, mechanical and naval engineering. However, many TO designs do
not consider the structure's self-weight, which can be a problem when considering large structures
in civil engineering, especially in the case of bridges, viaducts, large buildings, and towers.

Several methods have been developed for OT, including the Moving Asymptote Method by
Svanberg (1987), the density-based Solid Isotropic Material Penalty (SIMP) by Bendsge (1989); Zhou
and Rozvany (1991), the Bubble Method by Eschenauer et al. (1994), the Level-Set Method, by Allaire
(2002), Wang et al. (2003) and Xia and Shi (2016). In this article, we highlight evolutionary methods
such as Evolutionary Structural Optimization (ESO) by Xie and Steven (1993,1997), Querin et al.
(1998), and Bidirectional Evolutionary Structural Optimization (BESO) by Yang et al. (1999), Querin
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et al. (2000) Huang and Xie (2007) and ESO Smoothing called SESO by Almeida et al. (2013) and
Simonetti et al. (2014).

In this article, is propose a comparative analysis of three-dimensional elastic structures between
the methods: a) BESO - Which was developed from ESO, and has a bidirectional optimization
procedure, allowing the addition and removal of inefficient elements of the structure. This method is
efficient and robust and has been successfully applied to a wide variety of OT problems for two-
dimensional structures, including compliance minimization Shobeiri (2017,2019), frequency
maximization, and displacement constraint Huang et al. (2010). BESO for compliance minimization
was applied to three-dimensional structures by Zuo and Xie (2015), who presented a code in Python,
Shobeiri (2017) applying it to strut-and-tie models, Bi et al. (2020) in continuous structures with self-
supporting geometric constraints. Habashneh et al. (2022) extend the BESO method to the RBTO of
three-dimensional structures considering an elastic-plastic topology optimization. Eom et al. (2011)
use BESO for RBTO for 3-D structures in conjunction with the standard response surface method and,
b) SESO — Which is also a bidirectional TO procedure and is efficient and robust in several problems
with restriction of displacement, voltage, compliance, and frequency. Recently, it was extended to
spatial structures in the work of Simonetti et al. (2022,2023) which uses as a restriction the
minimization of compliance coupled with the reliability analysis procedure via the FORM method,
considering geometry, elastic modulus, compliance, force, and von Mises stress as random variables
with normal probability distribution.

For the comparative analysis, RBTO-BESO (Reliability - Based Topology Optimization BESO)
and RBTO-SESO (Reliability — Based Topology Optimization SESO) were implemented, inserting the
structure's self-weight, making the optimal configurations more realistic in structural design.
Furthermore, the proposed algorithm can determine the tensile (blue) and compression (red) regions
in the optimized structure using a modal filter and the partial derivative of the von Mises stress field.

The remainder of the article is organized as follows: In Section 2, the formulation for topological
optimization considering the self-weight is described in general terms for the methods, including the
formulation of the structure's self-weight. Section 3 contains the RBTO formulation in general and
with the consideration of self-weight and sensitivity analysis to determine the tensile and
compression regions. Then, in section 4, the examples presented are: cantilever to validate the
formulation of the tensile and compressed regions, a natural optimization under the action of only
the structure's self-weight with the aim of validating the procedure and the examples of bridges, in
Section 5. Finally, conclusions are drawn.

2. SESO—Subject to Self-Weight Loads

The SESO method aims to optimize structural efficiency by removing or adding elements to the
structure. In the search for the topology of maximum stiffness, it is common to use the minimization
of the compliance or the maximum von Mises stress as an objective function, while the constraint is
imposed on the structural weight, limiting the maximum volume of material allowed. Compliance
represents the work done by the loads applied in the structure's equilibrium state. An alternative
approach to maximum stiffness design is to use elastic strain energy as a measure of structural
stiffness. Therefore, the compliance minimization problem can be reformulated as a problem of
minimizing the total elastic strain energy. Thus, the formulation of the TO problem can be defined
as:

Minimize: U(x) = ;U (0K (x)U(x)
Subject to: K(x)U(x) = F(x)

F(x) = £ (x) + [ () @

V) = SMExV - V<0

x=1{x% X3 . X}, X; =1ou x; = 1077
where U(x) is the nodal displacement vector, K(x) is the global stiffness matrix and V; is the
volume of the element. K(x)U(x) = F(x) is the equilibrium equation, F(x) is the global force
vector, f®*(x) the external force vector and f97%(x) the force vector inertia forces of the
structure, x; is the design variable of the ith element, x is the vector of design variables. The design
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is binary and x; = 107’ is imposed in order to avoid a singular FEM problem when solving the
equilibrium.

To start the SESO process it is necessary to define a problem that specifies a design domain and
boundary conditions. Then, a finite element analysis is performed to determine the stiffness
distribution. The heuristic of SESO is that the structure evolves into a stationary optimal solution,
systematically removing inefficient elements. Through a sensitivity analysis, it is possible to calculate
a sensitivity number a; for each element, which indicates the magnitude of the change in global
elastic strain energy resulting from the removal of that element. Elements with a low sensitivity
number can be removed without significantly affecting the overall stiffness of the structure. The steps
of the SESO method can be summarized according to the flowchart, see Figure 1.

Start Elastic analysis considering self - weight:
Minimize: U(x) = 2UT (0K (x)U(x)

Sujeitoa:  K(x)U(x) = F(x)

F(x) = f*5(x) + f97*" (x)
Geometry and boundary conditions V(x)= T xV,-Vso0
x={X; X3 X3 .. X}, X, = 1ou x, =10~°
Optimization parameters:
Fraction volume l
Filter Radius i . )
Rejection Ratio (RR) Filter the sensitivity number :sEmg 8
Evolutionary Ratio (ER) &= iz wilt)ey Fim
i wi () f
where
‘vl(rﬂ) = Tmin — l.Il
Sim
Reliability Analysis:
Defines the random variables - Geometry,
volume, modulus of elasticity, load, . L L. .
compliance Generate an updated design considering the objective function
RBTO by Kharmanda et al (2004) using the optimality criteria method
l l Convergence Criterion
Preparing for FEA: /‘ Ti1 (Cijur = Cion—ju) e
{11_(](“} =F e Elements satisfy the equation: / Ty Cicjar
W} {Kl{u} =F C; <RR * Cy jpax 14
Remove p% and add (1-p%) elements according to the equation:
RR=RR+ER

I Nio ‘

Figure 1. SESO Flowchart with Own Weight.

2.1. Formulation for Self-Weight Structure

Self-weight loads depend on gravitational acceleration and material properties, in particular,
material density. As such, in OT problems formulated with SESO-3D approaches, the self-weight
loads also depend on the set of design variables. Thus, it is possible to calculate and apply the self-
weight at the nodes of the elements and the main advantage is that the load is directly proportional
to the amount of material used in the structure. For the hexahedral element proposed by Liu et al.
(2014) a gravitational load is obtained by assigning 1/8 of the element's weight to each node according
to equation 2.

1
[ = pixVixg g = 3 xidyidzipig¢ )
where p; is the density of the i-th element, g is the acceleration of gravity (g = 9.81 m/s?) and { is
given by:

(=104 &G 4 656G & Gl @)
with , is expressed by the nodal coordinates as:
n=[0 -1 0] comn=123,..,38 4)

Thus 97" defined in equation 5 can be expressed as:
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N
f.grav = Zfigmv (5)
i=1
It should be noted that SESO is a suitable optimization method for this type of problem considering
the self-weight of the structure as it is a bidirectional method that allows the addition of elements
that were removed in a given iteration. It should be noted that the direction and magnitude of design-
dependent loads will change as the material distribution of the design domain changes. Therefore,
loading conditions in the early stages of the process can change drastically after a few iterations. In
this paper, self-weight is coupled with the Method of Moving Asymptotes (MMA) in the TO program
SESO-3D to make the optimization procedure more realistic. Furthermore, the Structural Reliability
procedure is coupled and an analysis of the strut-and-tie models is carried out.

3. Reliability Analysis

3.1. Formulation of the RBTO

For the mathematical model of RBTO it is sufficient to transform the stress constraint in equation
6 as follows:
Minimize: V(x;, X;,u) = X% xVi(x;, X, u)
subject to: Py = P[G(x;,X;) < 0] = f"'fc;(xi,x)sofX(x)dx
K(x;, Xj, w)U(x;, Xj,u) = F(X;,w)
Bw) = B¢

x; =1 orxl-=10_9 with i=1,..,NE and j=1,..,m

(6)

with x; being the finite element, X; is the j-th random variable, V is the volume of the total structure,
Ps is the probability of success, P, is the target probability of success, G is the limit state function,
NE is the number of variables and m the number of uncertain variables. To control the topologies
obtained by the RBTO model the reliability index f(u), see Kharmanda et al. (2004), is introduced
with a normalized vector u.

G(x,X;)) =R —S =0"—a¥™(x;,X;) 7)

where R denotes the structural strength and S denotes the load variable. In this paper, we consider
the possibility that random variables may cause the von Mises stress to exceed the yield strength limit
of the material, thus causing the failure of the structure. Here, R indicates the allowable stress for the
material (6*) and S indicates the von Mises stress of the element 0., (x;, X;). Thus, if G > 0, the
structure is reliable, if G < 0 the structure failure and if G = 0 the structure is in the limit state.

3.2. Formulation of the RBTO Problem Considering the Self-Weight

The objective of analyzing strut-and-tie models using the TO strategy is to find a reinforcement
arrangement within the design domain that minimizes the maximum von Mises stress of the
structure for given loading and boundary conditions. Mathematically, the problem can be stated as:

Minimize: V = Y&, x,V,

subject to: K(x)U(x) = F(x)
F(x) = fo*(x) + f97"(x)
ot —0" <0
V) = TV, - V<0
B(u) =B,

x={x; 2 %3 .. X}, x;=1ou x; = 107°

®)

Where the von Mises stress 0™ on each element is calculated using equation 9.

1/2
o™ = |02 + 6} + 67 — 0,0, — 0,0, — 0,0, + 312, + 312, +37%,] / )
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where V is the volume of the whole structure, V, is the volume of the e-th element, K is the stiffness
matrix of the structure, U is the displacements vector, F is the force vector, ne is the total number
of finite elements of the structure, 6™ is the von Mises stress of element e, ¢* is an admissible
stress, x, = 0 denotes empty material and x, = 1 denotes solid material. This formulation shows
that the optimization procedure aims to minimize the amount of elements and therefore minimize
the volume of the structure. This structure is subject to the equilibrium equations as well as a stress
constraint for each element that must be less than or equal to the permissible stress.

3.3. Sensitivity Analysis for Determining Tensile and Compression Regions

Taking the local calculation of the derivative of the von Mises stress of the element with respect
to the components of the stress vector described respectively as:

a(af™) 1
a;x = W (Zo'x - O'y - O-Z)

a(ag™) 1
ao_ = Zo-gm (Zay —_ O'x - O-Z)

o) 1 a0
oo, - 20ym (ZJZ Ox Gy)

vm
Considering equation 10 and making 2%~

9(ag™ (%))
doy,

> 0 then the elements are preponderantly tensile
Ox

(blue color - ties) while < 0 are preponderantly compressed (red color - strut).

4. Numerical Examples

In this article, we present the application of the BESO and SESO methods to generate models of
optimal topologies in three-dimensional elastic structural systems, aiming to provide engineers with
an automated tool to determine the regions of tensile (highlighted in blue) and compression
(highlighted in red), as illustrated in the figures. This approach brings something new because, in a
three-dimensional regime, the traction and compression regions were defined by the partial
derivatives of the von Mises stress tensor in the directions where traction and compression
predominate. Thus, it is possible to provide the designer with the best choice for concrete
reinforcement, ensuring greater efficiency and safety in structures. Furthermore, this article addresses
a reliability analysis considering the structure's self-weight, emphasizing the influence of this factor
on the optimization procedure. The following examples of structure engineering focus on TO based
on minimizing compliance. The following examples of structure engineering focus on TO based on
minimizing compliance. The geometry and boundary conditions for numerical applications are
represented in each case. All numerical examples were processed on a Core i7-2370, 8th Gen
notebook, 2.8 GHz CPU with 20.0 GB (RAM).

4.1. Cantilever Beam

This classic example from the literature is presented with the aim of validating the formulation
presented in this article. The design domain, boundary conditions and optimal topologies of a
cantilever with a single, isotropic material are presented in Figures 2 and 3. In Figure 3(a) we have
the cantilever optimized using the BESO method and in Figure 3(b) the same cantilever was
optimized using the SESO method. The cantilever is fixed at the left end and subjected to a
concentrated load of F = 1kN in the center of the free end as illustrated in Figure 2. The volume
fraction is prescribed at V¢ = 0.20 and the radius used in the filter at 7 = 2 mm. A 64x8x40 mesh is
defined. In this example, the self-weight of the structure was not considered.
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i F=1kN

64

Figure 2. Design domain and boundary conditions.

(a) BESO (b) SESO

Figure 3. Optimal topologies: (a) BESO and (b) SESP.

The optimization procedure with the BESO method was carried out with an evolutionary ratio
ER = 0.03 with a computational cost of 47.8 minutes and compliance of 11.3334 N.mm. While in the
SESO method, a rejection ratio RR = 0.01 and an ER = 0.02 were used with a computational cost of
32.5 minutes and compliance of 11.5428 N.mm. It can be seen that the upper part of the cantilever is
in tensile (blue color) while the lower part is compressed.

4.2. Example 2— Application of BESO and SESO to the Design of An Apple

One of the most intriguing questions about the nature and structures that evolve naturally is:
"What is the reason for them to have the optimal configuration they do?". To answer this question
and validate the implementation of the structure's self-weight, the evolutionary optimization
methods BESO and SESO, for three-dimensional structures, are applied in a natural optimization
design. Figure 4 presents the design domain and boundary conditions of a structure that will only be
subjected to the action of its weight. Thus, it would be possible to verify whether these methods could
reproduce the same shape of an apple created by nature, in order to determine whether its appearance
was influenced by a genetic or structural perspective.
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Figure 4. Design domain and boundary conditions.

The design domain was subdivided using 8-node hexahedral elements, as proposed by Liu et al.
(2014), with dimensions of 1x1x1 mm. The applied load consists of a downward acceleration of 1g,
equivalent to -9.8 m/s2. The assumed density for all elements was 2700 kg/m?, and the modulus of
elasticity of the material was assumed to be 70x10° MPa, as proposed by Querin (1998). Figure 5
illustrates that the optimal configurations obtained by the methods presented in this article resemble
the shape of a fruit, specifically that of an apple. This result is notable, as the final topology was
achieved exclusively through structural constraints. This suggests that, at least for this domain, the
final form was predominantly developed from a structural perspective rather than biological reasons,

(@) (b)
Figure 5. Optimal topologies: (a ) SESO and (b) BESO.

In Figure 5, it is observed that both by the BESO method, Figure 5a,b and by the SESO method,
Figure 5¢,d the influence of self-weight results in traction in the structure. This effect causes tensile in
the elements located close to the center of gravity, evidenced by the blue color. On the other hand,
the elements closest to the ends of the structure are subject to compression, indicated by the color red.

4.3. Example 3 — Deterministic Analysis: Bridge Topology Optimization

The optimization procedure via BESO and SESO methods will be carried out for the examples
of bridges shown in Figure 6a,b with a span of 120m, a width of 10m, and a height of 20m. In Figure
6(a) there is a bridge with a lower deck designed with a semicircular space in the x direction intended
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for traffic and will be considered a non-design domain. The lower left end of the board is fixed in all
directions, while the right end allows movement in the x direction. The bridge illustrated in Figure 6
(b) has an upper deck with the left end fixed in the x, y and z directions, while the right end allows
movement in the x direction. The load used in both designs is uniformly distributed with F =
le5 N/m2 The prescribed final volume is V; = 0.30 and the filter radius is r = 3 m. The board is
defined as a non-design domain region. In the evolutionary optimization procedure, the evolutionary
ratio used in BESO was ER = 0.03, while in SESO RR = 0.01 and ER = 0.02 were considered.

A -

(a) (b)

Figure 6. Design domain and boundary conditions: (a) Bridge with lower deck and semicircular
opening in the x direction and (b) Bridge with upper deck.

In case (a), a bridge that has a hole in the x direction, the optimized structure resembles tied arch
bridges, with concrete (blue color) shaping the arch above the deck, while steel is used in the tie rods
and the deck (red), see Figure 7a,b. Aesthetically, the cables take the form of catenaries due to the
influence of gravity. In contrast, case (b), see Figure 8ab, presents a substantially different
configuration, with the majority of the structure located below the bridge deck. In this situation, an
arch in the opposite direction to that in case (a) is formed, with the steel playing the main role by
composing a brace that supports the main load of the bridge. Concrete, in turn, is used to build the
deck and the small inclined columns that connect the deck to the belt. However, it is possible to
observe that BESO presents a topology with the internal arc above the deck that is clearer than SESO,
which presents a topology in the shape of two oblique cables.

In case (b), the deterministic optimal topologies presented in Figure 8a,b, the presence of regions
that transmit efforts (blue) and regions that are compressed (red) is evident. In this article, allowable
stress values for tensile and compression were incorporated, and, in the case of rods subjected to
compression, it is essential to consider the possibility of failures due to buckling (slenderness) when
sizing the designs.
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(@) (b)
Figure 7. Deterministic Optimal Topologies: (a) BESO and (b) SESO.

(a) (b)

Figure 8. Deterministic Optimal Topologies: (a) BESO and (b) SESO.

4.4. Example 4 — Reliability-Based Topology Optimization without Considering Self-Weight

The optimization process in example 4.3 was developed based on the reliability analysis
proposed by Kharmanda et al. (2004). In this example, geometry, volume, modulus of elasticity, and
compliance obtained from the deterministic analysis were considered as random variables. Coupling
structural reliability analysis into the BESO-3D and SESO-3D methods demonstrated effectiveness
and robustness when optimizing the bridges illustrated in Figure 6a,b. It is worth mentioning that
the optimal configurations obtained are as slender as the previous ones, without significant
differences in terms of structural design. For this analysis, a target reliability index S, = 3.0 was
considered, which is equivalent to a probability of structure failure equal to P; = 0.001358.

The initial design parameters are presented in Table 1, where nelx (length), nely (height), nelz
(width) represent the geometry of the structure, F, represents the distributed external load, E,
represents the modulus of elasticity, V, the volume of the structure, C, compliance and are considered
random variables with normal distribution, while Poisson's ratio (v) have a constant distribution

Table 1. Coefficients in constitutive relations.

Standard deviatio
Distribution parameter ~ Distribution type =~ Mean (1) andard ceviation

(0)

nelx (mm) Normal 120 0.1
nely (mm) Normal 20 0.1
nelz (mm) Normal 10 0.1
E (GPa) Normal 1 0.1
v Constant 0.30 0

F (1000N/m2) Normal 1 0.1
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Volume (mm?) Normal 0.30 0.1
Compliance (N.mm) Normal 4.82e6 0.1

Figure 9a,b illustrate, respectively, the optimal configurations obtained by the two methods
presented in this article. It is noteworthy that both BESO and SESO converged with 3 FORM
iterations, 81 topology iterations with computational costs, respectively, equal to 73.02 min and 50.41
minutes. It is noteworthy that the computational performance of SESO for all examples presented in
this article is superior to BESO.

(a) (b)
Figure 9. RBTO: (a) BESO and (b) SESO.

It is observed that the optimal configuration for both methods are equivalent. It is noteworthy
that BESO has a configuration closer to SESO when considering the reliability analysis of the
structure, the arc presented in Figure 6(a) tends here for inclined cables.

4.5. Example 5— Reliability-Based Topology Optimization Considering Self-Weight

The bridge shown in Figure 6(a) was analyzed by coupling the structure's own weight in the
optimization procedure with the aim of analyzing the influence of the self-weight on the optimal
configuration. It is worth mentioning that the optimal configurations obtained by the RBTO-
BESO_3D and RBTO-SESO_3D methods are different in terms of structural design. However, when
examining the optimal configurations, considering the self-weight, see Figure 10, we observed that
the two models produced similar configurations with just a denser arc in the shape of a catenary.
These changes in topology are attributable to the influence of gravitational force and have important
implications for engineers. This is due to the fact that optimizing the structure taking into account its
self-weight can result in more efficient and safe solutions.

XN PN

(a) (b)
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Figure 10. RBTO with own weight: (a) BESO and (b) SESO.

4.6. Example 6 — Reliability Analysis— Effects of Boundary Conditions and Self-Weight on Bridge Topology

Figure 11 displays the design domain and boundary conditions of a bridge with three different
support locations. The objective is to analyse the influence of the location of the supports on the
optimal configuration for different reliability indices. Furthermore, we consider geometry, volume,
loading, compliance, and elastic modulus as random variables with normal distribution and standard
deviation equal to 0.1. In this study, we consider the self-weight of the structure during the
optimization process. The material density was defined for a steel structure o = 7,800 kg/m?. The
volume fraction is set to V = 0.25 and the filter radius is set to r = 1.5 m. In each case, the mesh is
defined as 120x30x10, totaling 36,000 hexahedral finite elements with eight nodes according to Liu et
al. (2014). The deck with a thickness t = 1.0 m is defined as a non-design domain area shown as the
darker area in Figure 11, H = 145m, L =90m, ¢ = 15m and B = 10.0 m. Therefore, the region in
the highlighted region will not be allowed to remove solid elements.

r—J L]

P
F
S % 5
/// {T% {V% B
-—c - L - c—=l

Figure 11. Design domain and boundary conditions.

Figure 12 displays the deterministic optimal topologies obtained by the two methods covered in
this article. Although the topologies are identical, the SESO method required a computational cost of
1.5 hours resulting in a compliance of C = 6.479e5 N.m,, while the BESO method required time =
1.6 hours of computational cost and resulted in a compliance of C = 6.495e5 N. m.

(@) (b)
Figure 12. Deterministic procedure topology optimization: (a) BESO and (b) SESO.

In the optimal configurations shown in Figure 13(a) BESO and 13(b) SESO, reliability analysis
was considered with an equal reliability index f; = 3 but the structure's weight was not considered.
It is noted that the topologies are similar, with a final volume 15% smaller than in deterministic
topologies and computational costs 8% lower for SESO. It is worth mentioning that the compliance
presented by BESO is 0.2% lower than in SESO. Additionally, SESO introduced more tensile cables
on tensile arch bridges to help support the bridge load and distribute it effectively. In a tensile arch
bridge, the arch supports most of the load through compression, but the tensile cables help distribute
some of this load laterally to the supporting piers and ends of the bridge. These tensile cables help to
stabilize the bridge structure and prevent excessive deformation under load, thus ensuring the safety
and stability of the bridge.
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(a) (b)
Figure 13. RBTO considering self-weight: (a) BESO and (b) SESO.

The example represented in Figure 11 was analyzed for different reliability indices, as shown in
Table 2, for the two methods proposed in this article. The random variables follow the data in table
1. It is noteworthy that the RBTO models provided a volume reduction in relation to the DTO models
of approximately 9%. It can be seen that the optimal topologies presented considering the structure's
weight are different from the deterministic optimal topologies without considering the self-weight.
This is because the tensile arch is mainly responsible for supporting compression loads, while the
bridge deck, which is under compression, is responsible for transmitting these loads to the supports.
In this case, cables are not needed because the loads are being transferred directly through the arch
and deck without the need for an additional tensile cable structure.

When considering the structure's self-weight, a fully distributed load and the influence of
gravity throughout the analyzed domain are taken into account. Therefore, it results in lighter and
more efficient structures, as expected, according to Jain and Saxena (2018).

Table 2. Influence of the reliability index S, on Topology Optimization.

Time RBTO-BESO Time RBTO-

Opt. (hours)/compliance SESO(hours)/compli
RBTO-BESO RBTO-SESO
Techniques /iteration FORM ance/iteration FORM
C =3.58e7 C = 3.68e7
B:=1

iter =1 iter =1
Time =1.62 Time =1.33
B, =2 C =261e7 C=277e7
t- iter =3 iter =3
Time =1.37 Time =1.19
B.=3 C =253e7 C=271e7
£t iter =4 iter =4
A A Time =156 Time =1.24
C =245e7 C =267e7
B.=4 iter =6 iter =6
Time =1.58 Time =1.25
=5 C =2.29e7 C =257e7
t iter =8 iter =8
A Q Time =1.83 Time =1.25
_ C =2.15e7 C =238e7
B.=6 iter =9 iter =9

It is worth mentioning that the computational cost of SESO is much lower than that of BESO.
However, BESO presents lower compliance for the reliability indices analyzed. Figure 14 displays
this behavior.
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Objective function

Reliability Index

Figure 14. Graph — Objective Function by reliability index.

5. Conclusions

This article addresses a qualitative comparison between the BESO and SESO methods, revealing
that both are effective in generating optimal topologies for three-dimensional structural systems,
considering compliance minimization and the influence of the structure's self-weight. The examples
analyzed show that these methods produce configurations that meet safety and structural efficiency
requirements, being robust even in the face of variations in boundary conditions and design
parameters. Furthermore, the coupling of the structure’s self-weight, in the two methods analyzed,
with the reliability analysis, represents a significant contribution in the field of optimal topology for
structural systems. It is worth mentioning that SESO presents a lower computational cost in all
examples, while BESO results in lower compliance. These approaches offer engineers an advanced
and reliable tool for the automated design of structures by distinguishing between tensile (blue) and
compression (red) regions, ensuring greater safety and efficiency in practical applications.
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