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Abstract: A comparative analysis between Bidirectional Evolutionary Structural Optimization 
(BESO) and Smoothing-ESO (SESO), simultaneously considering Reliability-Based Topology 
Optimization (RBTO) and the structureʹs self-weight in the case of three-dimensional elasticity, is 
presented in this study. Due to the important role of the existence of uncertainties in making the 
structural design more realistic, geometry, volumetric fraction, modulus of elasticity, compliance, 
and loading are considered random variables with normal probability distribution. When adopting 
the First Order Reliability Method (FORM), the failure probability is calculated based on the 
reliability index. Furthermore, considering the influence of self-weight in problems involving large 
structures in civil engineering, especially in the case of bridges, makes the optimal configuration 
more reliable for design. A series of examples are covered to validate the methods presented, 
showing their efficiency and robustness. 

Keywords: 3D-topology optimization; BESO; SESO; RBTO; self-weight 
 

1. Introduction 

Topological Optimization (TO) is a technique used to find the ideal distribution of the material 
in a structure, maximizing its performance under certain constraints. In recent decades this approach 
has been used by several researchers in the field of structural engineering to reduce weight, improve 
efficiency, and increase the strength of materials. As algorithms evolve, this technique has played an 
important role in the production of complex and innovative structures, contributing to the 
advancement of civil, aerospace, mechanical and naval engineering. However, many TO designs do 
not consider the structureʹs self-weight, which can be a problem when considering large structures 
in civil engineering, especially in the case of bridges, viaducts, large buildings, and towers. 

Several methods have been developed for OT, including the Moving Asymptote Method by 
Svanberg (1987), the density-based Solid Isotropic Material Penalty (SIMP) by Bendsøe (1989); Zhou 
and Rozvany (1991), the Bubble Method by Eschenauer et al. (1994), the Level-Set Method, by Allaire 
(2002), Wang et al. (2003) and Xia and Shi (2016). In this article, we highlight evolutionary methods 
such as Evolutionary Structural Optimization (ESO) by Xie and Steven (1993,1997), Querin et al. 
(1998), and Bidirectional Evolutionary Structural Optimization (BESO) by Yang et al. (1999), Querin 
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et al. (2000) Huang and Xie (2007) and ESO Smoothing called SESO by Almeida et al. (2013) and 
Simonetti et al. (2014). 

In this article, is propose a comparative analysis of three-dimensional elastic structures between 
the methods: a) BESO - Which was developed from ESO, and has a bidirectional optimization 
procedure, allowing the addition and removal of inefficient elements of the structure. This method is 
efficient and robust and has been successfully applied to a wide variety of OT problems for two-
dimensional structures, including compliance minimization Shobeiri (2017,2019), frequency 
maximization, and displacement constraint Huang et al. (2010). BESO for compliance minimization 
was applied to three-dimensional structures by Zuo and Xie (2015), who presented a code in Python, 
Shobeiri (2017) applying it to strut-and-tie models, Bi et al. (2020) in continuous structures with self-
supporting geometric constraints. Habashneh et al. (2022) extend the BESO method to the RBTO of 
three-dimensional structures considering an elastic-plastic topology optimization. Eom et al. (2011) 
use BESO for RBTO for 3-D structures in conjunction with the standard response surface method and, 
b) SESO – Which is also a bidirectional TO procedure and is efficient and robust in several problems 
with restriction of displacement, voltage, compliance, and frequency. Recently, it was extended to 
spatial structures in the work of Simonetti et al. (2022,2023) which uses as a restriction the 
minimization of compliance coupled with the reliability analysis procedure via the FORM method, 
considering geometry, elastic modulus, compliance, force, and von Mises stress as random variables 
with normal probability distribution. 

For the comparative analysis, RBTO-BESO (Reliability - Based Topology Optimization BESO) 
and RBTO-SESO (Reliability – Based Topology Optimization SESO) were implemented, inserting the 
structureʹs self-weight, making the optimal configurations more realistic in structural design. 
Furthermore, the proposed algorithm can determine the tensile (blue) and compression (red) regions 
in the optimized structure using a modal filter and the partial derivative of the von Mises stress field. 

The remainder of the article is organized as follows: In Section 2, the formulation for topological 
optimization considering the self-weight is described in general terms for the methods, including the 
formulation of the structureʹs self-weight. Section 3 contains the RBTO formulation in general and 
with the consideration of self-weight and sensitivity analysis to determine the tensile and 
compression regions. Then, in section 4, the examples presented are: cantilever to validate the 
formulation of the tensile and compressed regions, a natural optimization under the action of only 
the structureʹs self-weight with the aim of validating the procedure and the examples of bridges, in 
Section 5. Finally, conclusions are drawn. 

2. SESO—Subject to Self-Weight Loads 

The SESO method aims to optimize structural efficiency by removing or adding elements to the 
structure. In the search for the topology of maximum stiffness, it is common to use the minimization 
of the compliance or the maximum von Mises stress as an objective function, while the constraint is 
imposed on the structural weight, limiting the maximum volume of material allowed. Compliance 
represents the work done by the loads applied in the structureʹs equilibrium state. An alternative 
approach to maximum stiffness design is to use elastic strain energy as a measure of structural 
stiffness. Therefore, the compliance minimization problem can be reformulated as a problem of 
minimizing the total elastic strain energy. Thus, the formulation of the TO problem can be defined 
as: 

Minimize:  𝑈(𝒙) = 1
2

𝑈்(𝒙)𝐾(𝒙)𝑈(𝒙)  
   Subject to:  𝐾(𝒙)𝑈(𝒙) = 𝐹(𝒙) 
              𝐹(𝒙) = 𝑓௘௫௧(𝒙) + 𝑓௚௥௔௩(𝒙)  
              𝑉(𝒙) =  ∑ 𝑥௜𝑉௜ −  V ≤ 0ோ௜ୀ1     
              𝒙 = ሼ𝑥1 𝑥2  𝑥3 … 𝑥௡ሽ, 𝑥௜ = 1 𝑜𝑢  𝑥௜ = 10ି9  

(1)

where 𝑈(𝒙)  is the nodal displacement vector, 𝐾(𝒙)  is the global stiffness matrix and 𝑉௜  is the 
volume of the element. 𝐾(𝒙)𝑈(𝒙) = 𝐹(𝒙)  is the equilibrium equation, 𝐹(𝒙)  is the global force 
vector, 𝑓௘௫௧(𝒙)    the external force vector and 𝑓௚௥௔௩(𝒙)    the force vector inertia forces of the 
structure, 𝑥௜ is the design variable of the ith element, 𝒙 is the vector of design variables. The design 
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is binary and 𝑥௜ = 10ି9  is imposed in order to avoid a singular FEM problem when solving the 
equilibrium.  

To start the SESO process it is necessary to define a problem that specifies a design domain and 
boundary conditions. Then, a finite element analysis is performed to determine the stiffness 
distribution. The heuristic of SESO is that the structure evolves into a stationary optimal solution, 
systematically removing inefficient elements. Through a sensitivity analysis, it is possible to calculate 
a sensitivity number 𝛼௝  for each element, which indicates the magnitude of the change in global 
elastic strain energy resulting from the removal of that element. Elements with a low sensitivity 
number can be removed without significantly affecting the overall stiffness of the structure. The steps 
of the SESO method can be summarized according to the flowchart, see Figure 1. 

 
Figure 1. SESO Flowchart with Own Weight. 

2.1. Formulation for Self-Weight Structure 

Self-weight loads depend on gravitational acceleration and material properties, in particular, 
material density. As such, in OT problems formulated with SESO-3D approaches, the self-weight 
loads also depend on the set of design variables. Thus, it is possible to calculate and apply the self-
weight at the nodes of the elements and the main advantage is that the load is directly proportional 
to the amount of material used in the structure. For the hexahedral element proposed by Liu et al. 
(2014) a gravitational load is obtained by assigning 1/8 of the elementʹs weight to each node according 
to equation 2. 𝑓௜௚௥௔௩ = 𝜌௜ ∗ 𝑉௜ ∗ 𝑔 ∗ 𝜁 = 1

8 𝑑𝑥௜𝑑𝑦௜𝑑𝑧௜𝜌௜𝑔𝜁 (2)

where 𝜌௜ is the density of the i-th element, 𝑔 is the acceleration of gravity (𝑔 = 9.81 𝑚 𝑠²⁄ ) and 𝜁 is 
given by: 𝜁 = ሾ𝜁1 𝜁2    𝜁3 𝜁4 𝜁5    𝜁6 𝜁7 𝜁8ሿ் (3)

with 𝜁௡ is expressed by the nodal coordinates as: 𝜁௡ = ሾ0 −1 0ሿ  com 𝑛 = 1, 2, 3, … , 8 (4)

Thus 𝑓௚௥௔௩ defined in equation 5 can be expressed as: 
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𝑓௚௥௔௩ = ෍ 𝑓௜௚௥௔௩ே
௜ୀ1

 (5)

It should be noted that SESO is a suitable optimization method for this type of problem considering 
the self-weight of the structure as it is a bidirectional method that allows the addition of elements 
that were removed in a given iteration. It should be noted that the direction and magnitude of design-
dependent loads will change as the material distribution of the design domain changes. Therefore, 
loading conditions in the early stages of the process can change drastically after a few iterations. In 
this paper, self-weight is coupled with the Method of Moving Asymptotes (MMA) in the TO program 
SESO-3D to make the optimization procedure more realistic. Furthermore, the Structural Reliability 
procedure is coupled and an analysis of the strut-and-tie models is carried out. 

3. Reliability Analysis 

3.1. Formulation of the RBTO 

For the mathematical model of RBTO it is sufficient to transform the stress constraint in equation 
6 as follows: 

    Minimize: 𝑉(𝑥௜, 𝑿௝, 𝒖) = ∑ 𝑥௜𝑉௜(𝑥௜, 𝑿௝, 𝒖)ோ௜ୀ1                                          
    subject to: 𝑃௙ = Pൣ𝐺൫𝑥௜, 𝐗௝൯ ≤ 0൧ = ׬  … ׬ 𝑓௑(𝐗)𝑑𝑥ீ(௫೔,௑)ஸ0   

       K(𝑥௜, 𝑿௝, 𝒖)U(𝑥௜, 𝑿௝, 𝑢) = F(𝑿௝, 𝒖) 
       𝛽(𝒖) = 𝛽௧  

       𝑥௜ = 1   𝑜𝑟 𝑥௜ = 10ି9  with   𝑖 = 1, … , 𝑁𝐸  𝑎𝑛𝑑  𝑗 = 1, … , 𝑚       

(6)

with 𝑥௜ being the finite element, 𝑿௝ is the j-th random variable, V is the volume of the total structure, 𝑃ௌ is the probability of success, 𝑃௧ is the target probability of success, G is the limit state function, 
NE is the number of variables and m the number of uncertain variables. To control the topologies 
obtained by the RBTO model the reliability index 𝛽(𝒖), see Kharmanda et al. (2004), is introduced 
with a normalized vector 𝒖. 𝐺൫𝑥௜, X௝൯ = 𝑅 − 𝑆 = 𝜎∗ − 𝜎௘௩௠(𝑥௜, X௝) (7)

where 𝑅 denotes the structural strength and S denotes the load variable. In this paper, we consider 
the possibility that random variables may cause the von Mises stress to exceed the yield strength limit 
of the material, thus causing the failure of the structure. Here, R indicates the allowable stress for the 
material (𝜎∗)  and S indicates the von Mises stress of the element 𝜎௘௩௠(𝑥௜, 𝑿௝) . Thus, if 𝐺 > 0 , the 
structure is reliable, if 𝐺 < 0 the structure failure and if 𝐺 = 0 the structure is in the limit state. 

3.2. Formulation of the RBTO Problem Considering the Self-Weight 

The objective of analyzing strut-and-tie models using the TO strategy is to find a reinforcement 
arrangement within the design domain that minimizes the maximum von Mises stress of the 
structure for given loading and boundary conditions. Mathematically, the problem can be stated as: 

    Minimize: 𝑉 = ∑ 𝑥௘𝑉௘    ௡௘௘ୀ1                                          
    subject to: 𝐾(𝒙)𝑈(𝒙) = 𝐹(𝒙)  

       𝐹(𝒙) = 𝑓௘௫௧(𝒙) + 𝑓௚௥௔௩(𝒙) 
      𝜎௘௩௠ − 𝜎∗ ≤ 0 
      𝑉(𝒙) =  ∑ 𝑥௜𝑉௜ −  V ≤ 0ோ௜ୀ1  
      𝛽(𝒖) = 𝛽௧  

      𝒙 = ሼ𝑥1 𝑥2  𝑥3 … 𝑥௡ሽ, 𝑥௜ = 1 𝑜𝑢  𝑥௜ = 10ି9 

(8)

Where the von Mises stress  𝜎௘௩௠  on each element is calculated using equation 9. 𝜎௘௩௠  = ൣ𝜎௫2 + 𝜎௬2 + 𝜎௭2 − 𝜎௫𝜎௬ − 𝜎௫𝜎௭ − 𝜎௬𝜎௭ + 3𝜏௫௬2 + 3𝜏௫௭2 +3𝜏௬௭2 ൧1/2 (9)
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where 𝑉 is the volume of the whole structure, 𝑉௘ is the volume of the e-th element, 𝐾 is the stiffness 
matrix of the structure, 𝑈 is the displacements vector ,  𝐹 is the force vector, ne is the total number 
of finite elements of the structure, 𝜎௘௩௠  is the von Mises stress of  element e, 𝜎∗ is an admissible 
stress,  𝑥௘ = 0 denotes empty material and 𝑥௘ = 1 denotes solid material. This formulation shows 
that the optimization procedure aims to minimize the amount of elements and therefore minimize 
the volume of the structure. This structure is subject to the equilibrium equations as well as a stress 
constraint for each element that must be less than or equal to the permissible stress. 

3.3. Sensitivity Analysis for Determining Tensile and Compression Regions 

Taking the local calculation of the derivative of the von Mises stress of the element with respect 
to the components of the stress vector described respectively as: 𝜕(𝜎௘௩௠)𝜕𝜎௫ = 1

2𝜎௘௩௠ ൫2𝜎௫ − 𝜎௬ − 𝜎௭൯ 𝜕(𝜎௘௩௠)𝜕𝜎௬ = 1
2𝜎௘௩௠ ൫2𝜎௬ − 𝜎௫ − 𝜎௭൯ 𝜕(𝜎௘௩௠)𝜕𝜎௭ = 1
2𝜎௘௩௠ ൫2𝜎௭ − 𝜎௫ − 𝜎௬൯ 

(10)

Considering equation 10 and making డ(ఙ೐ೡ೘(௫))డఙೣ > 0 then the elements are preponderantly tensile 

(blue color - ties) while  డ(ఙ೐ೡ೘(௫))డఙ೥ < 0 are preponderantly compressed (red color - strut). 

4. Numerical Examples 

In this article, we present the application of the BESO and SESO methods to generate models of 
optimal topologies in three-dimensional elastic structural systems, aiming to provide engineers with 
an automated tool to determine the regions of tensile (highlighted in blue) and compression 
(highlighted in red), as illustrated in the figures. This approach brings something new because, in a 
three-dimensional regime, the traction and compression regions were defined by the partial 
derivatives of the von Mises stress tensor in the directions where traction and compression 
predominate. Thus, it is possible to provide the designer with the best choice for concrete 
reinforcement, ensuring greater efficiency and safety in structures. Furthermore, this article addresses 
a reliability analysis considering the structureʹs self-weight, emphasizing the influence of this factor 
on the optimization procedure. The following examples of structure engineering focus on TO based 
on minimizing compliance. The following examples of structure engineering focus on TO based on 
minimizing compliance. The geometry and boundary conditions for numerical applications are 
represented in each case. All numerical examples were processed on a Core i7-2370, 8th Gen 
notebook, 2.8 GHz CPU with 20.0 GB (RAM).  

4.1. Cantilever Beam 

This classic example from the literature is presented with the aim of validating the formulation 
presented in this article. The design domain, boundary conditions and optimal topologies of a 
cantilever with a single, isotropic material are presented in Figures 2 and 3. In Figure 3(a) we have 
the cantilever optimized using the BESO method and in Figure 3(b) the same cantilever was 
optimized using the SESO method. The cantilever is fixed at the left end and subjected to a 
concentrated load of F = 1kN in the center of the free end as illustrated in Figure 2. The volume 
fraction is prescribed at Vf = 0.20 and the radius used in the filter at 𝑟 = 2 𝑚𝑚. A 64x8x40 mesh is 
defined. In this example, the self-weight of the structure was not considered. 
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Figure 2. Design domain and boundary conditions. 

 
Figure 3. Optimal topologies: (a) BESO and (b) SESP. 

The optimization procedure with the BESO method was carried out with an evolutionary ratio 𝐸𝑅 = 0.03 with a computational cost of 47.8 minutes and compliance of 11.3334 N.mm. While in the 
SESO method, a rejection ratio 𝑅𝑅 = 0.01 and an 𝐸𝑅 = 0.02 were used with a computational cost of 
32.5 minutes and compliance of 11.5428 N.mm. It can be seen that the upper part of the cantilever is 
in tensile (blue color) while the lower part is compressed. 

4.2. Example 2—Application of BESO and SESO to the Design of An Apple 

One of the most intriguing questions about the nature and structures that evolve naturally is: 
ʺWhat is the reason for them to have the optimal configuration they do?ʺ. To answer this question 
and validate the implementation of the structureʹs self-weight, the evolutionary optimization 
methods BESO and SESO, for three-dimensional structures, are applied in a natural optimization 
design. Figure 4 presents the design domain and boundary conditions of a structure that will only be 
subjected to the action of its weight. Thus, it would be possible to verify whether these methods could 
reproduce the same shape of an apple created by nature, in order to determine whether its appearance 
was influenced by a genetic or structural perspective. 
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Figure 4. Design domain and boundary conditions. 

The design domain was subdivided using 8-node hexahedral elements, as proposed by Liu et al. 
(2014), with dimensions of 1x1x1 mm. The applied load consists of a downward acceleration of 1g, 
equivalent to -9.8 m/s². The assumed density for all elements was 2700 kg/m³, and the modulus of 
elasticity of the material was assumed to be 70x10³ MPa, as proposed by Querin (1998). Figure 5 
illustrates that the optimal configurations obtained by the methods presented in this article resemble 
the shape of a fruit, specifically that of an apple. This result is notable, as the final topology was 
achieved exclusively through structural constraints. This suggests that, at least for this domain, the 
final form was predominantly developed from a structural perspective rather than biological reasons, 

  
(a) (b) 

Figure 5. Optimal topologies: (a ) SESO and (b) BESO. 

In Figure 5, it is observed that both by the BESO method, Figure 5a,b and by the SESO method, 
Figure 5c,d the influence of self-weight results in traction in the structure. This effect causes tensile in 
the elements located close to the center of gravity, evidenced by the blue color. On the other hand, 
the elements closest to the ends of the structure are subject to compression, indicated by the color red. 

4.3. Example 3—Deterministic Analysis: Bridge Topology Optimization 

The optimization procedure via BESO and SESO methods will be carried out for the examples 
of bridges shown in Figure 6a,b with a span of 120m, a width of 10m, and a height of 20m. In Figure 
6(a) there is a bridge with a lower deck designed with a semicircular space in the x direction intended 
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for traffic and will be considered a non-design domain. The lower left end of the board is fixed in all 
directions, while the right end allows movement in the x direction. The bridge illustrated in Figure 6 
(b) has an upper deck with the left end fixed in the x, y and z directions, while the right end allows 
movement in the x direction. The load used in both designs is uniformly distributed with 𝐹 =
1𝑒5 𝑁/𝑚². The prescribed final volume is 𝑉௙ = 0.30  and the filter radius is 𝑟 = 3 𝑚. The board is 
defined as a non-design domain region. In the evolutionary optimization procedure, the evolutionary 
ratio used in BESO was 𝐸𝑅 = 0.03, while in SESO 𝑅𝑅 = 0.01 and 𝐸𝑅 = 0.02 were considered. 

 

 

(a) (b) 

Figure 6. Design domain and boundary conditions: (a) Bridge with lower deck and semicircular 
opening in the x direction and (b) Bridge with upper deck. 

In case (a), a bridge that has a hole in the x direction, the optimized structure resembles tied arch 
bridges, with concrete (blue color) shaping the arch above the deck, while steel is used in the tie rods 
and the deck (red), see Figure 7a,b. Aesthetically, the cables take the form of catenaries due to the 
influence of gravity. In contrast, case (b), see Figure 8a,b, presents a substantially different 
configuration, with the majority of the structure located below the bridge deck. In this situation, an 
arch in the opposite direction to that in case (a) is formed, with the steel playing the main role by 
composing a brace that supports the main load of the bridge. Concrete, in turn, is used to build the 
deck and the small inclined columns that connect the deck to the belt. However, it is possible to 
observe that BESO presents a topology with the internal arc above the deck that is clearer than SESO, 
which presents a topology in the shape of two oblique cables. 

In case (b), the deterministic optimal topologies presented in Figure 8a,b, the presence of regions 
that transmit efforts (blue) and regions that are compressed (red) is evident. In this article, allowable 
stress values for tensile and compression were incorporated, and, in the case of rods subjected to 
compression, it is essential to consider the possibility of failures due to buckling (slenderness) when 
sizing the designs. 
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(a) (b) 

Figure 7. Deterministic Optimal Topologies: (a) BESO and (b) SESO. 

  

(a) (b) 

Figure 8. Deterministic Optimal Topologies: (a) BESO and (b) SESO. 

4.4. Example 4—Reliability-Based Topology Optimization without Considering Self-Weight 

The optimization process in example 4.3 was developed based on the reliability analysis 
proposed by Kharmanda et al. (2004). In this example, geometry, volume, modulus of elasticity, and 
compliance obtained from the deterministic analysis were considered as random variables. Coupling 
structural reliability analysis into the BESO-3D and SESO-3D methods demonstrated effectiveness 
and robustness when optimizing the bridges illustrated in Figure 6a,b. It is worth mentioning that 
the optimal configurations obtained are as slender as the previous ones, without significant 
differences in terms of structural design. For this analysis, a target reliability index 𝛽௧ = 3.0  was 
considered, which is equivalent to a probability of structure failure equal to 𝑃௙ = 0.001358. 

The initial design parameters are presented in Table 1, where nelx (length), nely (height), nelz 
(width) represent the geometry of the structure, F, represents the distributed external load, E, 
represents the modulus of elasticity, V, the volume of the structure, C, compliance and are considered 
random variables with normal distribution, while Poissonʹs ratio (ν) have a constant distribution 

Table 1. Coefficients in constitutive relations. 

Distribution parameter Distribution type Mean (m ) Standard deviation  
(s ) 

nelx (mm) Normal 120 0.1 
nely (mm) Normal 20 0.1 
nelz (mm) Normal 10 0.1 

E (GPa) Normal 1 0.1 𝝂 Constant 0.30 0 
F (1000N/m²) Normal 1 0.1 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 June 2024                   doi:10.20944/preprints202406.1618.v1

https://doi.org/10.20944/preprints202406.1618.v1


 10 

 

Volume (mm³) Normal 0.30  0.1 
Compliance (N.mm) Normal 4.82e6  0.1 

Figure 9a,b illustrate, respectively, the optimal configurations obtained by the two methods 
presented in this article. It is noteworthy that both BESO and SESO converged with 3 FORM 
iterations, 81 topology iterations with computational costs, respectively, equal to 73.02 min and 50.41 
minutes. It is noteworthy that the computational performance of SESO for all examples presented in 
this article is superior to BESO. 

  
(a) (b) 

Figure 9. RBTO: (a) BESO and (b) SESO. 

It is observed that the optimal configuration for both methods are equivalent. It is noteworthy 
that BESO has a configuration closer to SESO when considering the reliability analysis of the 
structure, the arc presented in Figure 6(a) tends here for inclined cables. 

4.5. Example 5—Reliability-Based Topology Optimization Considering Self-Weight 

The bridge shown in Figure 6(a) was analyzed by coupling the structureʹs own weight in the 
optimization procedure with the aim of analyzing the influence of the self-weight on the optimal 
configuration. It is worth mentioning that the optimal configurations obtained by the RBTO-
BESO_3D and RBTO-SESO_3D methods are different in terms of structural design. However, when 
examining the optimal configurations, considering the self-weight, see Figure 10, we observed that 
the two models produced similar configurations with just a denser arc in the shape of a catenary. 
These changes in topology are attributable to the influence of gravitational force and have important 
implications for engineers. This is due to the fact that optimizing the structure taking into account its 
self-weight can result in more efficient and safe solutions. 

  
(a) (b) 
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Figure 10. RBTO with own weight: (a) BESO and (b) SESO. 

4.6. Example 6—Reliability Analysis—Effects of Boundary Conditions and Self-Weight on Bridge Topology 

Figure 11 displays the design domain and boundary conditions of a bridge with three different 
support locations. The objective is to analyse the influence of the location of the supports on the 
optimal configuration for different reliability indices. Furthermore, we consider geometry, volume, 
loading, compliance, and elastic modulus as random variables with normal distribution and standard 
deviation equal to 0.1. In this study, we consider the self-weight of the structure during the 
optimization process. The material density was defined for a steel structure ρ = 7,800 kg/m³. The 
volume fraction is set to 𝑉 = 0.25 and the filter radius is set to 𝑟 = 1.5 𝑚. In each case, the mesh is 
defined as 120x30x10, totaling 36,000 hexahedral finite elements with eight nodes according to Liu et 
al. (2014). The deck with a thickness t = 1.0 m  is defined as a non-design domain area shown as the 
darker area in Figure 11, 𝐻 = 14.5 𝑚, 𝐿 = 90 𝑚, 𝑐 = 15 𝑚 and 𝐵 = 10.0 𝑚. Therefore, the region in 
the highlighted region will not be allowed to remove solid elements. 

 
Figure 11. Design domain and boundary conditions. 

Figure 12 displays the deterministic optimal topologies obtained by the two methods covered in 
this article. Although the topologies are identical, the SESO method required a computational cost of 
1.5 hours resulting in a compliance of C = 6.479e5 N. m,, while the BESO method required time =
1.6 hours of computational cost and resulted in a compliance of C = 6.495e5 N. m. 

 
 

 

(a) (b) 

Figure 12. Deterministic procedure topology optimization: (a) BESO and (b) SESO. 

In the optimal configurations shown in Figure 13(a) BESO and 13(b) SESO, reliability analysis 
was considered with an equal reliability index 𝛽௧ = 3 but the structureʹs weight was not considered. 
It is noted that the topologies are similar, with a final volume 15% smaller than in deterministic 
topologies and computational costs 8% lower for SESO. It is worth mentioning that the compliance 
presented by BESO is 0.2% lower than in SESO. Additionally, SESO introduced more tensile cables 
on tensile arch bridges to help support the bridge load and distribute it effectively. In a tensile arch 
bridge, the arch supports most of the load through compression, but the tensile cables help distribute 
some of this load laterally to the supporting piers and ends of the bridge. These tensile cables help to 
stabilize the bridge structure and prevent excessive deformation under load, thus ensuring the safety 
and stability of the bridge. 
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(a) (b) 

Figure 13. RBTO considering self-weight: (a) BESO and (b) SESO. 

The example represented in Figure 11 was analyzed for different reliability indices, as shown in 
Table 2, for the two methods proposed in this article. The random variables follow the data in table 
1. It is noteworthy that the RBTO models provided a volume reduction in relation to the DTO models 
of approximately 9%. It can be seen that the optimal topologies presented considering the structureʹs 
weight are different from the deterministic optimal topologies without considering the self-weight. 
This is because the tensile arch is mainly responsible for supporting compression loads, while the 
bridge deck, which is under compression, is responsible for transmitting these loads to the supports. 
In this case, cables are not needed because the loads are being transferred directly through the arch 
and deck without the need for an additional tensile cable structure. 

When considering the structureʹs self-weight, a fully distributed load and the influence of 
gravity throughout the analyzed domain are taken into account. Therefore, it results in lighter and 
more efficient structures, as expected, according to Jain and Saxena (2018). 

Table 2. Influence of the reliability index 𝛽௧ on Topology Optimization. 

 
Opt. 

Techniques 

 
RBTO-BESO 

 
RBTO-SESO 

Time RBTO-BESO 
(hours)/compliance

/iteration FORM 

Time RBTO-
SESO(hours)/compli
ance/iteration FORM 

 𝜷𝒕 = 𝟏 
  

Time =2.22  𝐶 = 3.58𝑒7 𝑖𝑡𝑒𝑟 = 1 

Time =1.86  𝐶 = 3.68𝑒7 𝑖𝑡𝑒𝑟 = 1 

 𝜷𝒕 = 𝟐 
  

Time =1.62  𝐶 = 2.61𝑒7 𝑖𝑡𝑒𝑟 = 3 

Time =1.33  𝐶 = 2.77𝑒7 𝑖𝑡𝑒𝑟 = 3 

 𝜷𝒕 = 𝟑 
  

Time =1.37  𝐶 = 2.53𝑒7 𝑖𝑡𝑒𝑟 = 4 

Time =1.19  𝐶 = 2.71𝑒7 𝑖𝑡𝑒𝑟 = 4 

 𝜷𝒕 = 𝟒  

Time = 1.56 𝐶 = 2.45𝑒7 𝑖𝑡𝑒𝑟 = 6 

Time =1.24  𝐶 = 2.67𝑒7 𝑖𝑡𝑒𝑟 = 6 

 𝜷𝒕 = 𝟓 
 

Time =1.58  𝐶 = 2.29𝑒7 𝑖𝑡𝑒𝑟 = 8 

Time =1.25  𝐶 = 2.57𝑒7 𝑖𝑡𝑒𝑟 = 8 

 𝜷𝒕 = 𝟔 
 

Time =1.83  𝐶 = 2.15𝑒7 𝑖𝑡𝑒𝑟 = 9 

Time =1.25  𝐶 = 2.38𝑒7 𝑖𝑡𝑒𝑟 = 9 

It is worth mentioning that the computational cost of SESO is much lower than that of BESO. 
However, BESO presents lower compliance for the reliability indices analyzed. Figure 14 displays 
this behavior. 
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Figure 14. Graph – Objective Function by reliability index. 

5. Conclusions 

This article addresses a qualitative comparison between the BESO and SESO methods, revealing 
that both are effective in generating optimal topologies for three-dimensional structural systems, 
considering compliance minimization and the influence of the structureʹs self-weight. The examples 
analyzed show that these methods produce configurations that meet safety and structural efficiency 
requirements, being robust even in the face of variations in boundary conditions and design 
parameters. Furthermore, the coupling of the structureʹs self-weight, in the two methods analyzed, 
with the reliability analysis, represents a significant contribution in the field of optimal topology for 
structural systems. It is worth mentioning that SESO presents a lower computational cost in all 
examples, while BESO results in lower compliance. These approaches offer engineers an advanced 
and reliable tool for the automated design of structures by distinguishing between tensile (blue) and 
compression (red) regions, ensuring greater safety and efficiency in practical applications. 
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