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Abstract: The article presents the author’s works in the field of modifications and modeling of the PQC CSIDH 
algorithm on non-cyclic supersingular Edwards curves and its predecessor CRS scheme on ordinary non-cyclic 
Edwards curves are reviewed. Lower estimates of the computational speed gains of the modified algorithms 
over the original ones are obtained. The most significant results were obtained by choosing classes of non-cyclic 
Edwards curves connected as quadratic twist pairs instead of cyclic complete Edwards curves, as well as the 
method of algorithm randomization as an alternative to “constant time CSIDH.” It is shown that in the CSIDH 
and CSIKE algorithms, there are two independent cryptosystems with the possibility of parallel computation, 
eliminating the threat of side-channel attacks. For the CRS scheme, there are four such cryptosystems. Integral 
lower bound estimates of the performance gain of the modified CSIDH algorithm are obtained at 1.5 ∙ 29, and 
for the CRS scheme are 3 ∙ 29. 

Keywords: post-quantum cryptography; isogeny-based cryptography; isogeny; supersingular 
Edwards curve; quadratic Edwards curve; twisted Edwards curve; complete Edwards curve; 
CSIDH; CSIKE; CRS 

 

1. Introduction 

The announcement of the Post-Quantum Cryptography (PQC) Commutative Supersingular 
Isogeny Diffie-Hellman (CSIDH) algorithm [1], based on the original CRS scheme [2], was 
accompanied by the author’s statement that it has the smallest known key length of 512 bits with a 
security level of 128 bits. However, problems with vulnerability to side-channel attacks and fast 
performance were noted. To overcome the slowness of the implementation of the Couveignes-
Rostovtsev-Stolbunov (CRS) scheme [3], the authors justified their choice of supersingular elliptic 
curves in Montgomery form instead of ordinary (non-supersingular) ones in [2], which speeds up the 
implementation by a factor of 2,000 [1]. 

A significant acceleration of CSIDH [1] implementation (20%) was achieved in [4] with 
Farashahi-Hosseini [5] calculations in projective coordinates (𝑊: 𝑍). The CSIDH model [4] uses the 
Edwards isogenies of complete curves technique [6] with computations of isogenic curve parameters 
using formulas [7]. 

In our articles [8–15] we disagreed with the ambiguous terminology of curves in Edwards form 
in the pioneering [6] and proposed a more correct classification of them into three non-isomorphic 
classes [8]. The present article has two aims. First, we give an overview of our most promising 
modifications of the CSIDH algorithm, which improve the efficiency of the algorithm. Along with 
this, here for the first time we obtain an integral lower bound estimate of the gain in the speed of 
computation of isogenic chains 𝛾 = 3 ∙ 2ଽ  in the speed of computing isogenic chains due to all 
proposed modifications. 

Section 2 gives the rationale for the choice of non-cyclic classes of quadratic and twisted 
supersingular Edwards curves defined as a pair of quadratic twists over a prime field 𝐹௣, where 𝑝 ≡7mod8 [8–11]. Their advantages over the class of complete supersingular Edwards curves are the 
doubling of the set of all curves and, most importantly, the elimination of the laborious operation of 
inversion of the 𝑑ିଵ parameter 𝑑 in the transition to quadratic twist. In this article, we obtain the 
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first partial estimate of the gain 𝛾ଵ𝛾ଶ = 2ହ  in the speed of computation in CSIDH on non-cyclic 
supersingular Edwards curves compared to complete supersingular Edwards curves. 

In Section 3, based on the estimates obtained in [10] of the computational cost in projective 
coordinates (𝑊: 𝑍) Farashahi-Hosseini [5] parameter 𝑑 of the isogenic curve and isogenic function 𝜙(𝑥, 𝑦) we obtained an estimate of the gain in computational speed in CSIDH 𝛾ଷ = 2.235 due to the 
refusal of the redundant calculation of the function 𝜙(𝑥, 𝑦). 

In Section 4, we consider the method of randomization of the CSIDH algorithm [12] and justify 
estimates of the speed gain of its implementation. We emphasize the existence of two isomorphic 
cryptosystems with parallel computation capability, which removes the threat of side-channel and 
doubles the performance of the algorithm. Here, the partial estimate of the speed gain of the 
algorithm is 𝛾ସ𝛾ହ𝛾଺ = 2ଷ. 

Section 5 is devoted to the optimization of the distribution of isogeny degrees in CSIDH [14], 
which is not dense and has discontinuities in the table of prime numbers. It is shown that, while 
preserving the security parameters, it is possible to reduce the degree of the senior isogeny and obtain 
a linear estimate of the CSIDH acceleration by a factor of 1.5. 

The original and fast key encapsulation algorithm Commutative Supersingular Isogeny Key 
Encapsulation (CSIKE) [13] and its model implementation are discussed in Section 6. Here a single 
public key of the recipient is used instead of two in CSIDH, which gives a security gain. 

In Section 7, we consider aspects of the CRS model implementation of the Diffie-Hellman secret 
sharing scheme on 4-degree isogenies {3,5,7,37}  of ordinary non-cyclic Edwards curves. An 
important advantage of these curves is the existence of 4-independent cryptosystems with the 
possibility of parallel computation and performance quadrupling (or doubling compared to CSIDH). 
Other interesting problems and modifications of cryptosystems are considered in [15]. 

2. Selection of Classes and Types of Edwards Curves 

Depending on the quadratic properties of the parameters 𝑎 and 𝑑 we in [8] also propose a 
more correct classification of curves into three non-intersecting classes than in [6]: 

A. Complete Edwards curves: 𝜒(𝑎) = 1, 𝜒(𝑑) = −1; 
B. Quadratic Edwards curves: 𝜒(𝑎) = 𝜒(𝑑) = 1; 
C. Twisted Edwards curves: 𝜒(𝑎) = 𝜒(𝑑) = −1. 
The well-known implementation of the CSIDH algorithm [4] is based on complete Edwards 

curves A in the Farashahi-Hosseini (𝑊: 𝑍) coordinate system, which accelerated its performance by 
20% compared to Montgomery curves in the (𝑋: 𝑍) coordinate system. We have justified and utilized 
non-cyclic curves of classes B and C as quadratic twist pairs in [9–15]. They have two important 
advantages over the complete Edwards curves A: 
1. Doubling the number of all curves in the algorithm over a single class A doubles the set of all 

isogenic curves of classes B and C with a corresponding gain in security. This can be exchanged 
for a gain in computational speed 𝛾ଵ = 2; 

2. For half of all computable isogenic curves with negative exponents 𝑒௜ given by the secret key 𝛺 
(see Section 4), no time-consuming inversion of the parameter d of the class A isogenic curve is 
required. The corresponding gain in speed 𝛾ଶ in computational speed should be estimated. 
Let us define curves B and C as a pair of quadratic twists at 𝑝 ≡ 7mod8 by the equations: 𝐸ଵ,ௗ: 𝑥ଶ + 𝑦ଶ = 1 + 𝑑𝑥ଶ𝑦ଶ, 𝑎, 𝑑 ∈ 𝐹௣∗, 𝑎 = 1, 𝜒(𝑑) = 1, (1)𝐸ିଵ,ିௗ: 𝑥ଶ − 𝑦ଶ = 1 − 𝑑𝑥ଶ𝑦ଶ, 𝑎, 𝑑 ∈ 𝐹௣∗, 𝑎 = −1, 𝜒(𝑑) = 1. (2)

In the twisted curve (2), both parameters of the curve are multiplied by (−1) and become non-
square. The orders of all supersingular Edwards curves are equal to #𝐸 = 𝑝 + 1 = 8𝑛, where for the 
CSIDH algorithm 𝑛 = ∏ 𝑙௜௄௜ୀଵ , where 𝑙௜ are the degrees of prime odd isogenies (see Section 4). The 
maximum order of a point of a non-cyclic curve is 4𝑛, so it is sufficient to multiply any random point 
by four to obtain odd-order points. 
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It follows from (1) and (2) that the transition to quadratic twist for classes B and C is practically 
free, whereas within class A such a transition is achieved by inversion of the parameter 𝑑, which 
according to a known estimate [16] requires (10..50)𝑀, where 𝑀 is the cost of multiplication in the 
group 𝐹௣∗. Taking conditionally the complexity of the transition between curves (1) and (2) as 1𝑀, 
we obtain a conditional average estimate of the gain 𝛾ଶ ≈ 2ହ in computational speed compared to 
complete curves A. Since in the CSIDH algorithm the transition to quadratic twist is required for 
approximately half of the isogenic curves, we can use a conditional lower estimate of the gain 𝛾ଶ ≈2ସ. 

By curve type here we mean supersingular curves with trace 𝑡 = 0 or ordinary curves with 
order #𝐸 = 𝑝 + 1 − 𝑡, where 𝑡 is the trace of the Frobenius equation, 𝑡 ≠ 0. Since the set of the 
former is ඥ𝑝 times wider than the set of supersingular curves, interesting unique applications of this 
type of Edwards curves are discussed in [15] and Section 7. 

An important tool in analyzing isogenies is the J-invariant [6] 𝐽(𝑎, 𝑑) = 16(𝑎ଶ + 𝑑ଶ + 14𝑎𝑑)ଷ𝑎𝑑(𝑎 − 𝑑)ସ , 𝑎𝑑(𝑎 − 𝑑) ≠ 0. (3)

This parameter distinguishes between isogenic (with different J-invariants) and isomorphic 
(with equal J-invariants) curves. Since the J-invariant retains its value for all isomorphic curves and 
quadratic twist pairs [17], it is the same for a pair of quadratic and twisted supersingular Edwards 
curves (𝑎 = ±1), so we will use the invariant 𝐽(𝑑). It is useful both in finding supersingular curves 
and in constructing isogeny chain graphs. One of the properties of J-invariant is 𝐽(𝑑) = 𝐽(𝑑ିଵ). 

For the considered classes of supersingular Edwards curves the substitution 𝑑 → 𝑑ିଵ gives an 
isomorphism, and for complete Edwards curves a quadratic twist. 

3. Computation of Odd-Degree Isogenies on Edwards Curves and Complexity Estimation 

Isogenies of an elliptic curve 𝐸(𝐾) over the field 𝐾 into a curve 𝐸ᇱ(𝐾) is a homomorphism 𝜙: 𝐸(𝐾ሜ ) →   𝐸ᇱ(𝐾ሜ )given by rational functions. This means that there exists a rational function [17] 𝜙(𝑥, 𝑦) = ቆ𝑝(𝑥)𝑞(𝑥) , 𝑦 𝑓(𝑥)𝑔(𝑥)ቇ = (𝑥ᇱ, 𝑦ᇱ), (4)

mapping the points of the curve 𝐸 to the points of the curve 𝐸ᇱ, and for all 𝑃, 𝑄 ∈ 𝐸(𝐾) 𝜙(𝑃 + 𝑄) =𝜙(𝑃) + 𝜙(𝑄) . The isogeny degree is the maximum of the degrees 𝑙 = deg 𝜙 (𝑥, 𝑦) =max{ deg 𝑝 (𝑥), deg 𝑞 (𝑥)}and its kernel ker 𝜙 = 𝐺 is the subgroup 𝐺 ⊆ 𝐸 whose points are mapped 
by the function 𝜙(𝑥, 𝑦)  into a neutral element 𝑂  of the group 𝐸ᇱ . The degree of the separable 
isogeny is equal to the ordering 𝑙 of its kernel. The isogeny compresses the set of points of the curve 𝐸 в 𝑙 times (𝑙 curve points 𝐸 are mapped to a single point on the curve 𝐸ᇱ). 

The computation of isogenies of Edwards curves of classes A and B of odd powers is performed 
according to Theorem 2 [7]. In [9] we generalized it to curves of class C in the following theorem. 

Theorem 1. Let 𝐺 = {(1,0), ±𝑄ଵ, ±𝑄ଶ, … , ±𝑄௦} is a subgroup of odd order of 𝑙 = 2𝑠 + 1 points of ±𝑄௜ =(𝛼௜, ±𝛽௜) curve 𝐸ௗ over the field 𝐹௣. 

Let’s determine 𝜙(𝑃) = (𝑥ᇱ, 𝑦ᇱ) = ቌෑ 𝑥௉ାொ೔𝑥ொ೔
𝑥௉ିொ೔𝑥ିொ೔ , ෑ 𝑦௉ାொ೔𝑥ொ೔

𝑦௉ିொ೔𝑥ିொ೔  ொ∈ீொ∈ீ ቍ. (5)

Then 𝜙(𝑥, 𝑦) there is l-isogeny with the kernel G from the curve 𝐸௔,ௗ into a curve 𝐸௔ᇲ,ௗᇲᇱ  with 
parameters 𝑎ᇱ = 𝑎௟𝑑ᇱ = 𝐴଼𝑑௟, where 𝐴 = ∏ 𝛼௜௦௜ୀଵ , and the mapping function 𝜙(𝑥, 𝑦) = ൭ 𝑥𝐴ଶ ෑ (𝛼௜𝑥)ଶ − 𝑎ଶ(𝛽௜𝑦)ଶ1 − (𝑑𝛼௜𝛽௜𝑥𝑦)ଶ௦

௜ୀଵ , 𝑦𝐴ଶ ෑ (𝛼௜𝑦)ଶ − (𝛽௜𝑥)ଶ1 − (𝑑𝛼௜𝛽௜𝑥𝑦)ଶ௦
௜ୀଵ ൱ (6)

or 
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𝜙(𝑥, 𝑦) = ൭ 𝑥𝐴ଶ ෑ 𝑥ଶ − 𝑎𝛽௜ଶ1 − 𝑑𝛽௜𝑥ଶ௦
௜ୀଵ , − 𝑦𝐴ଶ ෑ 𝑥ଶ − 𝑎௜ଶ𝑎 − 𝑑𝛼௜𝑥ଶ௦

௜ୀଵ ൱. (7)

Proof of Theorem 1. Its proof is given in [9]. It is important to note that the isogenic function (7) 
includes the parameter 𝑎, which is absent in the original Theorem 2 [7]. □ 

The parameters of the isogenic curve according to Theorem 2 [7] are calculated by the formulas 𝑎ᇱ = 𝑎௟𝑑ᇱ = 𝐴଼𝑑௟, 𝐴 = ∏ 𝛼௜௦௜ୀଵ . (8)

The task of this section is a comparative evaluation of the complexity of computing the isogenic 
function 𝜙(𝑥, 𝑦) and the parameter 𝑑ᇱ of the isogenic curve 𝐸௔ᇲ,ௗᇲᇱ . This will allow us to estimate the 
gain in computational speed in the CSIDH algorithm when giving up the computation of the function 𝜙(𝑥, 𝑦) (justified in Section 4). 

The fastest results today for curve isogenies in Edwards form are obtained in projective 
coordinates (𝑊: 𝑍) with the introduction of a generalized Farashahi-Hosseini variable 𝑤 = 𝑑𝑥ଶ𝑦ଶ 
[5]. For isogenies of degree 𝑙 are calculated 𝑠 = (𝑙 − 1)/2 points 𝑄௜ = (𝛼௜, 𝛽௜) of the isogeny kernel 
together with the coordinates 𝑤௜ = 𝑑𝛼௜ଶ𝛽௜ଶ, then according to Theorem 2 [4] 𝑤( 𝜙) = 𝑤 ෑ 𝑤 − 𝑤௜1 − 𝑤𝑤௜

௦
௜ୀଵ . (9)

Let 𝑀 complexity of multiplication in the field 𝐹௣, 𝑆 is the complexity of squaring, and let us 
use the results of [4]. Taking into account the complexity of calculating the coordinates of the kernel 
points, the complexity of calculating the function 𝜙(𝑥, 𝑦) is equal to 𝐶థ = 𝑠(8𝑀 + 2𝑆) + 𝑆 − 2𝑀. (10)

The cost of calculating the parameter 𝑑ᇱ of the isogenic curve 𝐸ᇱ, respectively, 𝐶ௗ = 𝑠(6𝑀 + 2𝑆) + 5𝑆 − 4𝑀. (11)

Let’s take the known estimate 𝑆 = ଶଷ 𝑀 [6]. Then we have 𝐶థ = ଶଷ଼ 𝑠𝑀 − ସଷ 𝑀, 𝐶ௗ = ଶଶଷ 𝑠𝑀 − ଶଷ 𝑀. (12)

The gain in computing speed without taking into account 𝐶థ equals 𝛾ଷ =  𝐶ௗ + 𝐶థ 𝐶ௗ = 1 + 𝐶థ𝐶ௗ = 1 + 14𝑠 − 211𝑠 − 1. (13)

For 𝑙  at the maximum 𝑠 ≈ 300  and minimum 𝑠 = 1  this gain is equal to 2.27 and 2.20, 
respectively. On average, we obtain 𝛾ଷ = 2.235. Thus, the acceleration of the CSIDH algorithm when 
refusing the redundant calculation of the function 𝜙(𝑥, 𝑦) is estimated by the coefficient 𝛾ଷ = 2.235. 
4. Randomization of the CSIDH Algorithm on Non-Cyclic Edwards Curves 

The PQC CSIDH algorithm is proposed by the authors [1] to solve the classical Diffie-Hellman 
key exchange problem. Isogenic curve mapping 𝐸 of order #𝐸 over a prime field 𝐹௣ into a curve 𝐸ᇱ is defined as the class-group action and is commutative. Compared to the known original CRS 
scheme (Couveignes [18] and Rostovtsev et al. [2]) on ordinary curves, the use of isogenies of 
supersingular curves allowed us to speed up the algorithm and obtain the smallest known key size 
(512 bits with a security level of 128 bits in [1]). 

Let the curve 𝐸 of order #𝐸 contain points of small odd orders 𝑙௞, 𝑘 = 1,2, … , 𝐾. Then there 
exists an isogenic curve 𝐸ᇱ of the same order #𝐸  as a mapping of degree 𝑙𝑘: 𝐸 → 𝐸′ = [𝑙𝑘] ∗ 𝐸 . 
Repetition of this operation 𝑒௞  times is denoted as [𝑙௞௘ೖ] ∗ 𝐸. The values of the exponents of the 
isogenies 𝑒௞ ∈ 𝑍 determine the length of the chain of isogenies of degree 𝑙௞. In [1] the interval of 
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exponent values is adopted [−𝑚 ≤ 𝑒௞ ≤ 𝑚], 𝑚 = 5, 𝐾 = 74, which provides a security level of 128 
bits during attacks on a quantum computer. Negative values of the exponent 𝑒௜ mean transition to 
the supersingular curve of quadratic twist. 

Non-interactive key exchange using the Diffie-Hellman scheme involves steps [1]: 
1. Parameter selection. For small prime odd 𝑙௞  is calculated 𝑛 = ∏ 𝑙௞௄௞ୀଵ  where the value 𝐾  is 

determined by the security level, a suitable field modulus 𝑝 = 2௠ ∏ 𝑙௞௄௞ୀଵ − 1, 𝑚 ≥ 3, and the 
starting elliptic curve 𝐸଴ are chosen; 

2. Public key computation. Alice uses her secret key 𝛺஺ = (𝑒ଵ, 𝑒ଶ, … , 𝑒௄)  constructs an isogenic 
mapping 𝛩஺ = [𝑙ଵ௘భ, 𝑙ଶ௘మ, … , 𝑙௄௘಼] and computes the isogenic curve 𝐸஺ = 𝛩஺ ∗ 𝐸଴ as her public 
key. Bob, based on the secret key 𝛺஻  and function 𝛩В performs the same computation and 
obtains his public key 𝐸஻ = 𝛩஻ ∗ 𝐸଴ These curves are defined by their parameters with exact 
isomorphism; 

3. Key exchange. The protocol here is similar to Step 2 with a change 𝐸଴ → 𝐸஻ for Alice and 𝐸଴ →𝐸஺ for Bob. Knowing Bob’s public key, Alice calculates 𝐸஻஺ = 𝛩஺ ∗ 𝐸஻ = 𝛩஺𝛩஻ ∗ 𝐸଴. Bob’s similar 
action gives the result 𝐸஺஻ = 𝛩஻ ∗ 𝐸஺ = 𝛩஻𝛩஺ ∗ 𝐸଴ , coinciding with the first one due to the 
commutativity of the group operation. As a shared secret we take J-invariant of the curve 𝐸஺В (𝐸ВА). 
Below we give a modification of Alice’s computation algorithm according to Section 3 [1] using 

isogenies of quadratic and twisted supersingular Edwards curves. 

Algorithm 1. Evaluation of the class-group action on quadratic and twisted supersingular Edwards curves. 

Input: 𝑑஺ ∈ 𝐸஺, 𝜒(𝑑) = 1 and a list of integers 𝛺஺ = (𝑒ଵ, 𝑒ଶ, … , 𝑒௄). 
Output: 𝑑஻ such that [𝑙ଵ௘భ, 𝑙ଶ௘మ, … , 𝑙௄௘಼] ∗ 𝐸஺ = 𝐸஻, where 𝐸஺,஻: 𝑥ଶ + 𝑎𝑦ଶ = 1 + 𝑎𝑑஺,஻𝑥ଶ𝑦ଶ. 

1. WHILE some 𝑒௜ ≠ 0 DO 
2. Sample a random 𝑥 ∈ 𝐹௣; 

3. Set 𝑎 ← 1, 𝐸஺: 𝑥ଶ + 𝑦ଶ = 1 + 𝑑஺𝑥ଶ𝑦ଶ IF ଵି௫మଵିௗ௬మ is a square in 𝐹௣; 

4. ELSE 𝑎 ← −1, 𝐸஺: 𝑥ଶ − 𝑦ଶ = 1 − 𝑑஺𝑥ଶ𝑦ଶ; 
5. Let 𝑆 = {𝑖|𝑎𝑒௜ > 0}. IF 𝐺 = ∅ then start over to Line 2 while 𝑎 ← −𝑎; 
6. Let 𝑛 = ∏ 𝑙௜௜∈ௌ  and compute 𝑅 ← ௣ାଵଶ௡ 𝑃, 𝑃 ← 𝑃(𝑥, 𝑦); 
7. FOR each 𝑖 ∈ 𝑆 DO 

8. Compute 𝑄 ← ௞௟೔ 𝑅; 

9. IF 𝑄 ≠ (1,0) compute an isogeny 𝜙: 𝐸஺ → 𝐸஻ with ker 𝜙 = 𝑄; 
10. Set 𝑑஺ ← 𝑑஻, 𝑅 ← 𝜙(𝑅), 𝑒௜ ← 𝑒௜ − 𝑎; 
11. Skip 𝑖 in 𝑆 and 𝑛 ← ௡௟೔ IF 𝑒௜ = 0; 

12. RETURN 𝑑А. □ 

Compared to Algorithm 2 in [1], Algorithm 1 adapted to quadratic and twisted supersingular 
Edwards curves, makes modifications that are discussed in [11]. In this section, we present an analysis 
of the speed gains of the randomized algorithm [12] compared to the algorithm [1]. 

The CSIDH algorithm [1] is constructed in such a way that the computation of isogenic chains 
according to functions 𝛩஺,В = [𝑙ଵ௘భ, 𝑙ଶ௘మ, … , 𝑙௄௘಼] are performed in two stages: first the set is formed 𝑆 with key exponents 𝑒௞ of one sign, then, after zeroing of all 𝑒௞, of the other. At each stage, the 
kernels and parameters of exactly |𝑒௞| of isogenic curves of isogenies of degrees 𝑙௞ constructed on 
curves of the same class (𝐸ௗ or 𝐸ିଵ,ିௗ). This gives rise to the threat of a side-channel attack based on 
measuring the time of these computations, proportional to the length of the |𝑒௞| and degree 𝑙௞ of 
each chain [𝑙௞௘ೖ]. In this regard, most articles on this topic [19,20] consider different variants of 
“constant time CSIDH” in which the secret exponents are 𝑒௞ are built up to an upper bound 𝑚 by 
fictitious chains of isogenies. Such protection is achieved by significant redundancy and slowing 
down the algorithm by half. 

We propose in [12] another method for solving the problem is the randomization of the path of 
isogenic chains. The idea is that any random coordinate of the 𝑥 of an elliptic curve always generates 
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a random point 𝑃 = (𝑥, 𝑦) of one of the two curves of a pair of quadratic twist pair (1) or (2). Then 
instead of trying (unsuccessfully with probability ½) to find a point of a curve of a given class and 
succeeding with probability 1, we determine the class of curve (in our case it is the curve 𝐸ௗ (1) or 𝐸ିଵ,ିௗ (2), one of which the point belongs to 𝑃 = (𝑥, 𝑦)). Then we calculate the first isogenic curve in 
this class 𝐸(ଵ) = [𝑙௞] ∗ 𝐸(଴)  isogeny degree 𝑙௞  corresponding to the sign of the exponent 𝑒௞ . The 
selection 𝑙௞ is randomized, and the value |𝑒௞| is decreased by one. In the next step with a new value 
of the parameter 𝑑(ଵ) the random point 𝑃 = (𝑥, 𝑦) of one of the curves 𝐸ௗ or 𝐸ିଵ,ିௗ, the isogeny 
kernel of the randomly chosen degree is determined 𝑙௞ and the parameter 𝑑(ଶ) of the chain. The 
process continues until all 𝑒௞ = 0. The corresponding randomized CSIDH Algorithm 2 is given 
below. 

Algorithm 2. Randomized evaluation of the class-group action on quadratic and twisted supersingular 
Edwards curves. 

Input: 𝑑஺ ∈ 𝐸஺, 𝜒(𝑑) = 1 and a list of integers 𝛺஺ = (𝑒ଵ, 𝑒ଶ, … , 𝑒௄). 
Output: 𝑑஻ such that [𝑙ଵ௘భ, 𝑙ଶ௘మ, … , 𝑙௄௘಼] ∗ 𝐸஺ = 𝐸஻, where 𝐸஺,஻: 𝑥ଶ + 𝑦ଶ = 1 + 𝑑஺,஻𝑥ଶ𝑦ଶ. 

1. Let 𝑆଴ = {𝑘|𝑒௞ > 0}, 𝑆ଵ = {𝑘|𝑒௞ < 0}, 𝑛଴ = ∏ 𝑙௞௞∈ௌబ , 𝑛ଵ = ∏ 𝑙௞௞∈ௌభ ; 
2. WHILE some 𝑒௞ ≠ 0 DO 

3. Sample a random 𝑥 ∈ 𝐹௣; 

4. Set 𝑎 ← 1, 𝑠 ← 0, 𝐸஺: 𝑥ଶ + 𝑦ଶ = 1 + 𝑑஺𝑥ଶ𝑦ଶ IF 𝜒 ቀ ௫మିଵௗ௫మିଵቁ = 1; 
5. ELSE 𝑎 ← −1, 𝑠 ← 1, 𝐸஺: 𝑥ଶ − 𝑦ଶ = 1 − 𝑑஺𝑥ଶ𝑦ଶ; 
6. Compute 𝑦-coordinate of the point 𝑃 = (𝑥, 𝑦) ∈ 𝐸஺; 
7. Compute 𝑅 ← ௣ାଵଶ௡ೞ 𝑃; 

8. Sample a random 𝑙௞|𝑘 ∈ 𝑆௦; 
9. Compute 𝑄 ← ௡ೞ௟ೖ 𝑅; 

10. IF 𝑄 ≠ (1,0) compute kernel 𝐺 of 𝑙௞-isogeny 𝜙: 𝐸஺ → 𝐸஻; 
11. ELSE start over to Line 3; 
12. Compute 𝑑஻ of curve 𝐸஻, 𝑑஺ ← 𝑑஻, 𝑒௞ ← 𝑒௞ − 𝑠; 
13. Skip 𝑘 to 𝑉௦ and set 𝑛௦ ← ௡ೞ௟ೖ  IF 𝑒௞ = 0; 

14. RETURN 𝑑А. □ 

Here instead of one set 𝑆 in Algorithm 1 two sets 𝑆଴ and 𝑆ଵ are formed, in which the numbers 
of isogeny degrees corresponding to the key positions are recorded 𝛺஺ with positive and negative 
exponents 𝑒௞, respectively. At any random choice of 𝑥 is coordinate we obtain a random point 𝑃 =(𝑥, 𝑦), belonging to the curve (1) or (2). Its multiplication by four in Step 7 gives a point of 𝑅 of odd 
order. The scalar multiplication in Step 9 calculates the point of the 𝑄 of the isogeny kernel, then the 
coordinates of all points of the kernel 𝐺.are calculated. Finally, in Step 12, according to (8), we 
calculate the parameter 𝑑′ of the isogenic curve 𝐸ᇱ. 

Note that in classical CSIDH there is already a guaranteed level of protection against the type of 
side channel attack described above. It is determined by the sign of the secret exponent𝑒௞of the key. 
Since each component of [𝑙௞]  function 𝛩  computation time [𝑙௞ାଵ]  and [𝑙௞ିଵ]  is the same, the 
probability of the analyst’s success even in the conditions of error-free values of 𝑙௞ is equal to 2ି௄ =2ି଻ସ (for the data of [1]). For the average length of ௠ାଵଶ = 3 chain of isogenies of each degree 𝑙௞ the 
total length of the chain of isogenies of the function is 𝛩 = 3 ∙ 74 = 222  steps. Let 𝑝ଵ  be the 
probability of error-free determination of degree 𝑙௞ by the analyst at one step of the randomized 
CSIDH protocol, then its probability of success can be estimated by the value 2ି଻ସ𝑝ଵଶଶଶ, 𝑝ଵ < 1. For 
example, at 𝑝ଵ = ଵଶ the analyst’s probability of success is 2ିଶଽ଺, and at 𝑝ଵ = ଷସ this probability is close 
to the value 2ିଵ଺ହ that is well below the safety level 2ିଵଶ଼. Various modifications of the proposed 
randomization method are possible with insertions of single dummy exponents into the sample 
components of the [𝑙௞] functions 𝛩 that will not introduce redundancy into the calculations. Note 
that one mistake of an analyst destroys all his labor-intensive work. 
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Algorithm 2 does not include the computation of the isogenic function 𝜙(𝑥, 𝑦), which gives an 
estimate of the speed gain of Algorithm 2 𝛾ଷ = 2.235. The following gain 𝛾ସ = 2 randomization 
method provides that instead of choosing one of the curves (1) or (2) with probability ½ in Algorithm 
2, any choice is good. There is also an approximate gain 𝛾ହ = 2 compared to “constant time CSIDH” 
in which close to half of the isogenies are fictitious, which is not the case in Algorithm 2. 

Finally, we’ll justify the gain 𝛾଺ = 2 due to parallel computations in two cryptosystems with 
isomorphic curves. This article is described for the first time. The idea is that in classes B and C for 
any Edwards curve (1) and (2) with parameter 𝑑 there exists an isomorphic curve with parameter 𝑑ିଵ . Fixing the starting curve 𝐸଴ , we construct chains of isogenies of all degrees of the first 
cryptosystem with the secret key 𝛺ଵ. The second cryptosystem with the secret key 𝛺ଶ can be easily 
constructed on the set of all curves isomorphic to the first one. For this purpose, another starting 
curve is chosen by inverting the parameter 𝑑 of any curve of the first cryptosystem. These two sets 
of curves do not intersect, and it is possible to solve two problems simultaneously instead of one, 
which doubles the computational performance. In addition, parallel computing removes the threat 
of side-channel attacks altogether and makes the “constant time CSIDH” redundancy meaningless. 

Reducing for simplicity the estimate 𝛾ଷ and taking 𝛾ଷ = 2, we obtain from the results of this 
section a partial estimate of the computational speed gain of the CSIDH algorithm 𝛾ଷ𝛾ସ𝛾ହ𝛾଺ = 2ସ. 
Thus, the final lower speedup estimate of the CSIDH algorithm modified in [9–15] is no less than ∏ 𝛾௞଺௞ୀଵ ≥ 2ଽ . In the following sections, we consider further modifications of CSIDH and their 
performance evaluations. 

5. Optimization of Isogeny Degree Set in CSIDH 

In this section, we optimize the distribution of isogeny degrees {𝑙௞} in [14] and evaluate the 
gains 𝛾଻ of this optimization in comparison with the CSIDH model [1]. 

We found that 74 degrees 𝑙௞ isogenies in [1] with the value of 𝑙୫ୟ୶ = 587 runs only a fraction 
of all minimal prime numbers from 3 to 587, the total number of which is 106. In other words, 32 
values of prime numbers are not included in the list of degrees 𝑙௞ in the model [1], which means 
discontinuities (gaps) in the set of {𝑙௞}. With an average cost of each degree of 8 bits, a rough estimate 
of the cost of the removed degrees is 32 ∙ 8 = 256 bits. These losses are unnecessary and generate a 
slowdown of the algorithm at excessively high degrees of isogenies. 

We set a task to analyze possible distributions of sets of prime numbers of the set 𝐿 = {𝑙௞}௄ with 
size 𝐾 and to find variants of optimization (compaction) of this distribution. According to the table 
of prime numbers up to 587, the complete set 𝐿 = {𝑙௞}ே = {3,5,7, … ,587} contains 𝑁 = 106 all prime 
numbers. 

Let’s call the set of prime numbers ordered in ascending order {𝑙௞}௄ is optimal if at known  𝑙୫୧୬ =  𝑙௠ and 𝐾 product ∏ 𝑙௞௄ା௠ିଵ௞ୀ௠ = max. It follows from the definition that the optimal set of 
prime numbers is dense (without skips) with elements {𝑙௠, 𝑙௠ାଵ, … , 𝑙௄ା௠ିଵ}𝐿. It is constructed as a 
segment of length 𝐾 of ordered prime numbers. Removing at least one number (except the extreme 
numbers) from the middle of the segment gives a non-optimal set {𝑙௞}௄𝐿. Removal of one of the 
extreme numbers  𝑙௠,  𝑙௠௔௫ of the segment gives two different optimal sets of size 𝐾 − 1. Any subset 
(segment of length 𝐾) of the complete set 𝐿 is an optimal set. A non-optimal set contains skips that 
violate the condition ∏ 𝑙௞௄ା௠ିଵ௞ୀ௠ = max. 

The complete set 𝐿 = {𝑙௞}ଵ଴଺ = {3,5,7, … , 587}ଵ଴଺ is optimal by definition. Removing 32 numbers 
from it gives a set {𝑙௞}௄ୀ଻ସ that is far from optimal. This set {𝑙௞} in [1]. We associate the notion of 
optimality exclusively with the maximization of the product of elements of the set. 

Let’s divide 𝐿  into subsets 𝐿ℎ = {𝑙௞}௄೓, ℎ = 1, … ,6  which includes prime numbers in the 
hundreds of numbers with numbers ℎ. For the first hundred, for example, we have the subset 𝐿1 ={3,5,7, … ,97}௄భ, where 𝐾ଵ = 24. For all six subsets 𝐿ℎ these numbers 𝐾௛ are given in the second row 
of Table 1. 
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Table 1. Distribution of the number 𝐾௛ prime numbers in subsets 𝐿ℎ and their products 𝐵௛ within 
hundreds with numbers ℎ. 

h 1 2 3 4 5 6 𝐾௛ 24 21 16 16 17 12 𝐵௛ 119.795 151.245 127.623 135.192 149.782 109.134 

Each degree 𝑙௞ in binary form has a log(𝑙௞) bit. For all products of numbers 𝑙௞ in subsets 𝐿ℎ 
we calculate the bit length 𝐵௛ = ∑ log(𝑙௞)௟ೖ∈௅௛  of the degrees of isogenies. The values 𝐵௛ are given 
in the third row of Table 1. These results allow us to draw interesting conclusions. First, the sum of 
all bits of the third row ∑ 𝐵௛଺௛ୀ଴ = 792.772 = 793 bits, defining the product of all 106 prime numbers {3, … ,587}, has a redundancy of 283 bits compared to the minimum lower threshold of 510 bits (4𝑛 >2ହଵଶ) [1] security requirements. Second, prime numbers in the 5th and 6th hundreds (𝐿5 and 𝐿6) can 
be removed, since ∑ 𝐵௛ସ௛ୀଵ = 533.855 = 534 bits, which satisfies with a margin of 24 bits the 
requirement 4𝑛 >  2ହଵଶ. Ignoring the last two columns of Table 1, we obtain 77 values of the elements 
of the optimal set of {𝑙௞}௄ୀ଻଻ = {3, … ,397} of prime numbers. Further, we propose to remove the 3 
lowest degrees in the first hundred {3,5,7} and construct the optimal set of isogeny degrees 𝐿𝑜𝑝𝑡 ={11,13, … ,397}଻ସ of the same size 74 as in [1]. This preserves the length 𝐾 = 74 of the secret key. 
Given the equality log(3 ∗ 5 ∗ 7) = 6.714, the product n of all 𝑙௞ of the optimal set 𝐿𝑜𝑝𝑡 is evaluated 
by a binary number of length 528 bits. Adding 2 bits, we obtain the estimate log𝑝 = 530 bit. For the 
distribution 𝐿𝑜𝑝𝑡 we can adjust Table 1: in column ℎ = 1 of the table we should put the values of 𝐾ଵ = 21, 𝐵ଵ = 113.081 and the last two columns of the table should be deleted. Then ∑ 𝐾௛ସ௛ୀଵ =74, ∑ 𝐵௛ସ௛ୀଵ = 527.141 = 528  bits, log𝑝 = 530  bit. Such an optimal distribution of degrees {𝑙௞} 
isogenies ensures that the minimal security threshold of 512 bits of the algorithm is exceeded by 18 
bits. 

Note that the reserve of 18 bits can be used up by removing the two maximum isogeny degrees 
397 and 389 for a total cost of 18 bits and taking 𝑙୫ୟ୶ = 383. However, this requires reducing the 
length 𝐾 ← 𝐾 − 2 of the secret key by two. 

The main advantage of the set of isogeny degrees proposed here 𝐿𝑜𝑝𝑡 over the one used in [1] 
is a significant (by a factor of 1.5) decrease of 𝑙୫ୟ୶ = 587  up to 𝑙୫ୟ୶ = 397  with an optimal 
distribution of prime numbers. The real gain requires experimental estimation of the complexity of 
CSIIDH implementation at such a radical reduction of the value of 𝑙୫ୟ୶. 

So, a linear estimate of the gain in computational speed due to the optimization of the isogeny 
degree distribution is equal to 𝛾଻ = 1.5. Together with the total gain of the previous sections, we 
obtain a speedup of the CSIIDH algorithm by a factor of 1.5 ∗ 2ଽ ≅ 770 times. 

6. CSIKE Algorithm 

The classical non-interactive Diffie-Hellman algorithm is based on the use of two public keys. 
The same problem of generating a shared secret can be solved in a protocol with one transmission 
session and one recipient’s public key, which is more secure. To do this, Alice generates a shared 
secret, encrypts it with Bob’s public key, and sends him the encrypted key. On receipt, Bob decrypts 
it with his secret key. This protocol is called key encapsulation. It involves the steps [21]: 
1. Secret key generation 𝑘. Alice uses a random number sensor to find the secret encapsulation vector 𝛺௞ = (𝑒ଵ, 𝑒ଶ, … , 𝑒௄), constructs the class function of the class group action 𝛩௞ = [𝑙ଵ௘భ, 𝑙ଶ௘మ, … , 𝑙௄௘಼] 

and computes an isogenic curve 𝐸௞ = 𝛩௞ ∗ 𝐸଴, whose parameter 𝑑𝑘 is taken as the secret key 𝑑௞ = 𝑘. 
2. Key encapsulation. It’s Alice’s procedure for encrypting the key 𝑘 with Bob’s public key 𝐸஻. To 

do this, Alice computes an isogenic curve 𝛩௞ ∗ 𝐸஻ = 𝐸௞஻. The parameter 𝑑௞஻ of this curve is sent 
to Bob. 

3. Key decapsulation. Bob’s decryption of the curve 𝐸௞஻ with his secret key 𝛺஻ is reduced to his 
computation of an isogenic curve 𝛩஻ ∗ 𝐸௞஻ = 𝐸௞ where the mapping 𝛩஻  is constructed by 
inversion of all signs of the exponents of Bob’s secret key 𝛺஻ → (−𝛺஻). 
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In [13], we propose the original CSIKE algorithm as a modification of CSIDH, replacing Alice’s 
secret key with a secret vector 𝛺𝑘, with which she computes a curve 𝐸௞ = 𝛩௞ ∗ 𝐸଴ and the shared 
secret key 𝑑௞ = 𝑘. Alice then encrypts it with Bob’s public key 𝐸஻. and computes the curve 𝐸௞஻ =𝛩௞ ∗ 𝐸஻ = 𝛩௞ ∗ 𝛩В ∗ 𝐸଴. Bob decapsulates his cipher using a multiplicative inverse function 𝛩В (such 
that 𝛩஻ ∗ 𝛩В = 𝐈, where 𝐈 = [1,1, … ,1]|௄ ), thereby restoring the curve 𝐸௞ = 𝛩௞ ∗ 𝐸଴ . As the key of 
encapsulation by both parties, we can take J-invariant of the curve 𝐸௞. 

We consider a simple model of the implementation of the CSIKE algorithm on quadratic and 
twisted supersingular Edwards curves that form pairs of quadratic twist curves with order 𝑝 + 1. 
Such curves exist only at 𝑝 ≡ −1 mod 8  and have order #𝐸 = #𝐸௧ = 𝑝 + 1 = 𝑐𝑛(𝑛 − 𝑜𝑑𝑑), 𝑐 ≡0 mod 8. Let such a pair of curves contain kernels of order 3, 5, and 7. At the value 𝑛 = 105 of the 
minimal prime 𝑝 = 8𝑛 − 1 = 839, then the order of these curves #𝐸 = 8𝑛 = 840. The parameter 𝑑 
of the whole family of 418 quadratic Edwards curves can be taken as squares 𝑑 = 𝑟ଶ mod 𝑝 , 𝑟 =2, … ,419. Of these, 66 pairs of quadratic and twisted supersingular Edwards curves are found with 
parameters 𝑎 = ±1 and 𝜒(𝑎𝑑) = 1. Table 2 summarizes the values of the parameter 𝑑 for pairs of 
quadratic 𝐸𝑑 and twisted 𝐸−1,−𝑑 supersingular Edwards curves. They are written as squares 𝑑 =𝑟ଶ mod 𝑝 , 𝑟 = 2, … ,419  in ascending order 𝑟 . In this example, the relative proportion of 
supersingular Edwards curves is close to 16%. Note that for each curve in Table 2, there is at least one 
isomorphic curve with a parameter 𝑑ିଵ and the same J-invariant (2). 

Table 2. Values of 66 parameters 𝑑 of quadratic and twisted supersingular Edwards curves (𝑎 =±1) at 𝑝 = 839 and #𝐸 = 840. 

144 * 289 * 784  2 * 61 * 258 * 508 * 365  488 * 30  705  
742  56  259 * 180 * 329  135  640  32  38 * 28 * 90  
564  772 * 286 * 40  610  98  475  63  511  43 * 795  
414 * 76 * 752 * 800  405 * 666 * 112 * 413  200  236 * 433 * 
15 * 683 * 293 * 750  808  578 * 288  636 * 514 * 276  773 * 

243 * 45  788 * 172 * 777  427  21 * 810  552  420  230  
* A set of 33 parameters that have mutually inverse pairs of parameters for parallel computing. 

For the first quadratic curve 𝐸ௗ(଴) = 𝐸ଵସସ from Table 2, we can construct 3-, 5-, and 7-isogenies 
and find the parameters 𝑑(௜) of a chain of isogenic curves 𝐸ௗ(௜), 𝑖 = 0,1,2, … , Т such that 𝑑(்) = 𝑑(଴). 
Period 𝑇 of the chain of isogenies divides the number 66 = 2 ∙ 3 ∙ 11 of all supersingular Edwards 
curves. The calculations of the parameters of 𝑑(௜)  chains of respectively 3-, 5-, and 7-isogenies 
quadratic supersingular Edwards curves are useful only for illustrating the properties of chains of 
isogenies of quadratic twist pair curves and we omit them in this article. We only note that the period 
of the 3-isogeny 𝑇ଷ = 33,  and the other two 𝑇ହ = 𝑇଻ = 11.  The fragments of isogenic chains of 
quadratic supersingular Edwards curves in the tables are read from left to right, for twisted ones—
from right to left. At each step 𝑖 isogeny of degree 𝑙 = 2𝑠 + 1 coordinates 𝛼ଵ, … , 𝛼௦, 𝑠 = (𝑙 − 1)/2 
points of the kernel, after which the parameter of the 𝑑(௜ାଵ) of the isogenic curve 𝐸ௗ(௜ାଵ) according to 
(8) is calculated. Calculation of the isogenic function 𝜙(𝑥, 𝑦), according to Algorithm 1 of Section 5 is 
not necessary. 

Example 5.1. Suppose Alice has generated a secret vector 𝛺௞ = (7, −5,8), which by isogenic mapping 𝛩௞ =[3଻, 5ିହ, 7଼] at the first stage transforms it into a shared secret key 𝑘 i.e., calculates the curve 𝐸௞ = 𝛩௞ ∗ 𝐸଴. 

Then at the second stage, she encrypts this key with Bob’s public key. 𝑑஻. Let Bob’s secret 𝛺஻ =(−8,6, −5), respectively, its function of the class-group action 𝛩஻ = [3ି଼, 5଺, 7ିହ]. Let us perform 
their key computations 𝑘, 𝑑஻. As the starting curve of the chain of isogenies, we take the curve 𝐸ௗ(଴) =𝐸ଵସସ. Then 𝐸௞ = 𝐸଴ ∗ 𝛩௞, 𝐸஻ = 𝐸଴ ∗ 𝛩஻. 

To simplify the record in the algorithm for calculating the isogenic curve 𝐸௞ = 𝐸଴ ∗ 𝛩௞ we will 
use only the parameters 𝑑(௜) which completely defines the curves 𝐸ௗ(௜)(𝑒௞ > 0) and 𝐸ିଵ,ିௗ(௜) (𝑒௞ < 0) 
as pairs of quadratic twists. In the parameter chain 𝑑(௜) below we write in parentheses the degree of 
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isogeny, above the arrow the number of steps with the exponent sign 𝑒௞. For example, according to 
the function 𝛩௞ = [3଻, 5ିହ, 7଼] and the curve 𝐸ௗ(଴) = 𝐸ଵସସ  without resorting to the randomization 
method (see Section 4), Alice computes a chain of 𝑑଴ = 144(7)  ଼ ሱ⎯⎯ሮ 258(5)  ିହ ሱ⎯⎯⎯ሮ 112(3)  ଻ ሱ⎯⎯ሮ 286 = 𝑘. (14)

So, the shared secret key 𝑘 = 286 . Similarly, Bob calculates his public key based on the 
curve 𝐸ଵସସ and a function 𝛩஻ = [3ି଼, 5଺, 7ିହ] 𝑑଴ = 144(5)  ଺ ሱ⎯⎯ሮ 788(7)  ିହ ሱ⎯⎯⎯ሮ 258(3)  ି଼ ሱ⎯⎯⎯ሮ 514 = 𝑑஻. (15)

So Bob’s public key 𝑑В = 514. Then, in the second encapsulation step, Alice encrypts Bob’s 
public key with the secret key 𝑘 = 286 and calculates 𝐸஻௞ = 𝐸஻ ∗ 𝛩௞. 𝑑஻ = 514(3)  ଻ ሱ⎯⎯ሮ 683(5)  ିହ ሱ⎯⎯⎯ሮ 38(7)  ଼ ሱ⎯⎯ሮ 259 ⇒ 𝑑஻௞ = 259. (16)

Finally, in the third step of decapsulation, Bob from the curve 𝑑஻௞ = 259 removes his secret key 
using the inverse function 𝛩஻ = [3଼, 5ି଺, 7ହ] 𝑑଴ = 259(7)  ହ ሱ⎯⎯ሮ 578(5)  ି଺ ሱ⎯⎯⎯ሮ 38(3)  ଼ ሱ⎯⎯ሮ 286  ⇒ 𝑑௞ = 286. (17)

He ends up with a shared secret key 𝑘 = 286 calculated for him by Alice. To avoid ambiguity 
when obtaining isomorphic curves, J-invariant (3) is taken as the encapsulation key by both parties 𝐽(𝑑௞) = 525 curve 𝐸ଶ଼଺. 

The above example gives a concise illustration of the CSIKE algorithm. Its efficiency increases 
significantly after using the randomization method (see Section 4). For example, Alice’s computation 
of the encapsulation key 𝑘. based on the secret vector 𝛺఑ = (7, −5,8) can be realized by a pseudo-
random chain of isogenic curves in 20 steps 𝑑଴ = 144(3)  ଶ ሱ⎯⎯ሮ 405(5)  ିଵ ሱ⎯⎯⎯ሮ 15(7)  ଵ ሱ⎯⎯ሮ 488(5)  ିଵ ሱ⎯⎯⎯ሮ 43(7)  ଶ ሱ⎯⎯ሮ 508(5)  ିଵ ሱ⎯⎯⎯ሮ 289(3)  ଶ ሱ⎯⎯ሮ 43(7)  ଷ ሱ⎯⎯ሮ ଷ ሱ⎯⎯ሮ 405(5)  ିଵ ሱ⎯⎯⎯ሮ 15(3)  ଵ ሱ⎯⎯ሮ 243(5)  ିଵ ሱ⎯⎯⎯ሮ 293(7)  ଷ ሱ⎯⎯ሮ 636(3)  ଵ ሱ⎯⎯ሮ 286 ⇒ 𝑑௞ = 𝑘 = 286. (18)

This result is, understandably, the same as the first result above. In Table 2, exactly half of the 
parameters 𝑑  are marked with asterisks. These 33 values are included in the period 𝑇 = 33  3-
isogeny and form a set of parameters 𝑑∗ of the first cryptosystem with the starting curve 𝐸ଵସସ (or 
any other curve of this set 𝑑∗). In our example, all isogenic curves belong to this set. The parameters 
not labeled in Table 2 form the set of 33-parameter 𝑑ିଵ isomorphic curves, on which we can build a 
second cryptosystem independent of the first one with the possibility of parallel computation. For 
example, from the starting curve with 𝑑∗ = 144 parameter inversion we come to an isomorphic 
curve 𝐸଻଴ହ of the second cryptosystem (see Table 2). Further, by specifying different secrets 𝛺௞ଵ and 𝛺௞ଶ in the two cryptosystems, we can double the key length (512 → 1024 bit in CSIDH). Parallel 
computation, moreover, makes a side-channel attack hopeless. Note also that this possibility arises 
when only classes of non-cyclic Edwards curves (1) and (2) are used. □ 

We can conclude that the CSIKE algorithm and modifications of the CSIDH algorithm proposed 
in our works [13] on quadratic and twisted supersingular Edwards curves provide an efficient and 
secure alternative to various variants of “Constant time CSIDH” [19,20] with lower estimates in 
computational speed up to 1.5 ∙ 2ଽ. Computation of odd degree isogenies in coordinates (𝑊: 𝑍) [4], 
allows us to realize the fastest computations to date in the construction of PQC protocols CSIDH, 
CSIKE, and similar. Examples of such implementation for simple models of CSIDH and CSIKE 
algorithms are given in [9–15]. The possibility of refusing to compute the isogenic function 𝜙(𝑅) of 
a random point 𝑅, which more than doubles the speedup of the algorithm, is justified. The above 
results cast doubt on the assertion of the author of [22] about the insufficient efficiency of the CSIDH 
algorithm. The largest computational costs in the algorithms are associated with scalar 
multiplications of random points, the costs of which require rather experimental evaluation. 
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7. CRS Encryption Scheme on Isogenies of Ordinary Non-Cyclic Edwards Curves 

The presentation of Castryck et al. [1] of the PQC CSIDH algorithm cites the CRS scheme as the 
first proposed scheme on isogenies of ordinary elliptic curves [2]. Its remarkable properties are the 
commutativity of isogenic transitions, flexibility, and simplicity due to the use of prime field 
arithmetic 𝐹௣. The CSIDH algorithm already uses the technology of supersingular elliptic curves, 
which is justified by the relatively faster implementation of the algorithms. For example, it is noted 
that CRS encryption is prohibitively slow and can take several minutes at a security level of 128 bits 
[1]. 

In [15], we attempted to find reasons for the slowness of the CRS scheme compared to CSIDH 
and found only immeasurable redundancy in the choice of cryptosystem parameters [2,3]. Then, 
dealing with the modeling and modification problems of CSIDH, we constructed a prime 4-isogenous 
model of the CRS scheme with degrees {3,5,7,37}  with our modifications [15]. Since the set of 
ordinary elliptic curves is approximately ඥ𝑝 times wider than the set of supersingular curves, we 
should expect that their advantages would be discovered as well. Indeed, such advantages turned 
out to be the growth of the number of degrees of isogenies at a given or close modulus of the 𝑝 field, 
and the presence of four parallel independent cryptosystems instead of two in CSIDH, which doubles 
the speed of the CRS scheme algorithm comparably to CSIDH. 

In this survey article, we only consider aspects related to the encryption model and omit the 
multifunctionality of the scheme described in the original article [15]. 

The order of an elliptic curve 𝐸 over a prime field 𝐹௣ is defined as #𝐸 = 𝑝 + 1 − 𝑡, where 𝑡 is 
the trace of the Frobenius endomorphism equation |𝑡| ≤ 2ඥ𝑝. For a curve of quadratic twist 𝐸௧ this 
order #𝐸௧ = 𝑝 + 1 + 𝑡 is symmetric concerning the mean value 𝑝 + 1. For the supersingular curve 𝑡 = 0 and the orders of both curves 𝑝 + 1 coincide and the sets of isogeny degrees are the same, but 
the signs of the exponents of the degrees are reversed, as in CSIDH. In the case of ordinary curves, 
the orders of the quadratic twist pairs differ by 2𝑡, then there exist different degrees of isogenies on 
curves of two classes related as quadratic twist pairs with different orders. This is the main specificity 
of ordinary curves. The exponents of the degrees of isogenies of these two curves, as in CSIDH, have 
opposite signs. The alternation of the degrees of isogenies according to the randomization method is 
random, and the simplicity of the transitions of the chain of isogenies from one class of non-cyclic 
Edwards curves (1) and (2) to another is achieved by the fact that their parameters are additively 
inverse: (𝑎, 𝑑) ↔ (−𝑎, −𝑑) (see Section 2). 

By analogy with CSIDH, it is not difficult to form general parameters of CRS—similar 
cryptosystem on isogenies of ordinary Edwards curves of order #𝐸 ≡ 0mod8 over a field with 
modulus 𝑝 ≡ 7mod8 . Let 𝑛଴ = ∏ 𝑙௞௄௞ୀଵ  and 𝑁 = 8𝑛଴  is the order of a quadratic supersingular 
Edwards curve over a field with modulus 𝑝଴ = 𝑁 − 1. Setting the values of the Frobenius trace 𝑡 =±8𝑚, 𝑚 = 1,2,3, … we determine the sum 𝑝଴ ± 8𝑚 = 𝑝, equal to a prime number 𝑝. Then over the 
field 𝐹௣ there exists a quadratic ordinary Edwards curve (1) of order #𝐸ௗ = 8𝑛଴ and a twisted curve 
(2) of order #𝐸ିଵ,ିௗ = 𝑁 ± 16𝑚 = 8𝑛ଵ. 

For example, for the set of degrees of isogenies {𝑙௞} = {3,5,7}, 𝑛଴ = 105, 𝑁 =  840, 𝑝଴ = 839, then 
at 𝑚 = 3 we obtain a prime number 𝑝 = 839 + 24 = 863. Thus the orders of the curves of the pair 
of quadratic twists are #𝐸ௗ = 840 = 8 ∙ 3 ∙ 5 ∙ 7 and #𝐸ିଵ,ିௗ = 𝑁 + 48 = 888 = 8 ∙ 3 ∙ 37, 𝑛ଵ = 111 =3 ∙ 37. 

Other variants of calculating the ordinary Edwards curve parameters are given in [15]. Thus, we 
have four degrees of isogenies {𝑙௞} = {3,5,7,37}, the first three of which are factors of order 840 of the 
quadratic curve (1), and degrees 3 and 37 share order 888 of the twisted curve (2) over the field 𝐹 ଺ଷ 
and the trace of the Frobenius endomorphism equation 𝑡 = −24. For the first curve (1), the signs of 
the exponents of the isogenies are 𝑒௞ > 0, and for the curve (2) 𝑒௞ < 0. Here degree 3 is bidirectional 
(admits both signs), and degrees 5 and 7 (𝑒௞ > 0) and 37 (𝑒௞ < 0) are unidirectional. 

With a relatively small field modulus 𝑝 = 863  it is not difficult to find the estimated ඥ𝑝 
parameters 𝑑 of all curves (1) with order 840. Since they are squares, a complete search modulo 𝑝 
of all 𝑐 = 2,3, … ,431, and 𝑑 = 𝑐ଶ yields the set of all 62 values of the parameters d of the ordinary 
Edwards curves (1) and (2) given in Table 3. All curves together, respectively, are 124. Here the 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 June 2024                   doi:10.20944/preprints202406.1600.v1

https://doi.org/10.20944/preprints202406.1600.v1


 12 

 

number of parameters is even since for each curve there exists an isomorphic curve with parameter 𝑑 ↔ 𝑑ିଵ and the same J-invariant (3). For example, 169ିଵ = 623, 𝐽(169) = 𝐽(623) = 826. Then there 
are 31 non-isomorphic curves (1), the same number of curves (2). Isogenies of all degrees have a prime 
period 𝜋 = 31. 

Table 3. The array of 62-parameter values of 𝑑 quadratic and twisted ordinary Edwards curves (𝑎 =±1) at 𝑝 = 863, #𝐸ௗ = 840, #𝐸ିଵ,ିௗ = 888 (𝑡 = 24). 

169 * 400 * 729  161 * 818  210 * 436 * 309  43 * 665 * 840 * 
19  779  111  308  253 * 116  705 * 503 * 32  573  472 * 
71  616 * 618 * 444 * 302 * 192  486  318 * 852 * 231  728 * 

300  113 * 311 * 858 * 673 * 725  589  75  684  551 * 307  
688  843  339  623  706  281  181 * 27 * 186 * 652 * 130  
835 * 409  345  283 * 596  326 * 236          
* A set of 31 parameters that have mutually inverse pairs of parameters for parallel computing. 

All parameter values of Table 3 can be found by computing chains of any degree isogeny {3,5,7,37} in period 𝜋 = 31. For example, let us compute the chain of 3-isogenies of the quadratic 
curve (1) in the same way as in [10] for CSIDH on supersingular curves of order 840 over the field 𝐹 ଷଽ. Choosing the first curve in Table 3 as the starting curve, we obtain for the curve (1) 𝑑(଴) = 169(3)  ଵ ሱ⎯⎯ሮ 503(3)  ଵ ሱ⎯⎯ሮ 318(3)  ଵ ሱ⎯⎯ሮ 652(3)   ଵ ሱ⎯⎯ሮ 181(3)   ଵ ሱ⎯⎯ሮ 551(3)  ଵ ሱ⎯⎯ሮ 326(3)  ଵ ሱ⎯⎯ሮ 161(3)  ଵ ሱ⎯⎯ሮ 618(3)  ଵ ሱ⎯⎯ሮ 436(3)  ଵ ሱ⎯⎯ሮ 302(3)  ଵ ሱ⎯⎯ሮ ଵ ሱ⎯⎯ሮ 186(3)   ଵ ሱ⎯⎯ሮ 665(3)  ଵ ሱ⎯⎯ሮ 400(3)  ଵ ሱ⎯⎯ሮ 43(3)  ଵ ሱ⎯⎯ሮ 858(3)  ଵ ሱ⎯⎯ሮ 835(3)  ଵ ሱ⎯⎯ሮ 210(3)  ଵ ሱ⎯⎯ሮ 705(3)  ଵ ሱ⎯⎯ሮ 311(3)  ଵ ሱ⎯⎯ሮ 27(3)  ଵ ሱ⎯⎯ሮ 728(3)  ଵ ሱ⎯⎯ሮ 

 ଵ ሱ⎯⎯ሮ 616(3)  ଵ ሱ⎯⎯ሮ 840(3)  ଵ ሱ⎯⎯ሮ 472(3)   ଵ ሱ⎯⎯ሮ 283(3)  ଵ ሱ⎯⎯ሮ 444(3)  ଵ ሱ⎯⎯ሮ 113(3)  ଵ ሱ⎯⎯ሮ 673(3)   ଵ ሱ⎯⎯ሮ 852(3)   ଵ ሱ⎯⎯ሮ 253(3)  ଵ ሱ⎯⎯ሮ 169 =  𝑑(ଷଵ)(3) . 
(19) 

The number above Arrow 1 denotes one step of the 3-isogeny chain of the quadratic ordinary 
Edwards curve (1) with exponent 𝑒௞ > 0. Under the value of the parameter 𝑑(௜) in parentheses, we 
write the degree of isogeny. 

For the curved curve (2) with 𝑒௞ < 0 there also exists a 3-isogeny of the same period 𝜋 =31 𝑑(଴) = 169(3)  ିଵ ሱ⎯⎯⎯ሮ 253(3)  ିଵ ሱ⎯⎯⎯ሮ 852(3)  ିଵ ሱ⎯⎯⎯ሮ 673(3)  ିଵ ሱ⎯⎯⎯ሮ 113(3)   ିଵ ሱ⎯⎯⎯ሮ 444(3)  ିଵ ሱ⎯⎯⎯ሮ 283(3)  ିଵ ሱ⎯⎯⎯ሮ 472(3)  ିଵ ሱ⎯⎯⎯ሮ 840(3)  ିଵ ሱ⎯⎯⎯ሮ  ିଵ ሱ⎯⎯⎯ሮ 616(3)  ିଵ ሱ⎯⎯⎯ሮ 728(3)  ିଵ ሱ⎯⎯⎯ሮ 27(3)  ିଵ ሱ⎯⎯⎯ሮ 311(3)  ିଵ ሱ⎯⎯⎯ሮ 705(3)  ିଵ ሱ⎯⎯⎯ሮ 210(3)   ିଵ ሱ⎯⎯⎯ሮ 835(3)  ିଵ ሱ⎯⎯⎯ሮ 858(3)  ିଵ ሱ⎯⎯⎯ሮ 43(3)  ିଵ ሱ⎯⎯⎯ሮ  ିଵ ሱ⎯⎯⎯ሮ 400(3)  ିଵ ሱ⎯⎯⎯ሮ 665(3)  ିଵ ሱ⎯⎯⎯ሮ 186(3)  ିଵ ሱ⎯⎯⎯ሮ 302(3)  ିଵ ሱ⎯⎯⎯ሮ 436(3)  ିଵ ሱ⎯⎯⎯ሮ 618(3)  ିଵ ሱ⎯⎯⎯ሮ 161(3)   ିଵ ሱ⎯⎯⎯ሮ 326(3)  ିଵ ሱ⎯⎯⎯ሮ 

 ିଵ ሱ⎯⎯⎯ሮ 551(3)  ିଵ ሱ⎯⎯⎯ሮ 181(3)  ିଵ ሱ⎯⎯⎯ሮ 652(3)  ିଵ ሱ⎯⎯⎯ሮ 318(3)  ିଵ ሱ⎯⎯⎯ሮ 503(3)  ିଵ ሱ⎯⎯⎯ሮ 169 = 𝑑(ଷଵ)(3) , 
(20) 

having a reverse order of alternation of isogenic curves (the last chain and (19) are read in reverse 
order). The number above the arrow (–1) means one step of the isogenic curve (1) with negative 
parameters. Do not forget that the pair of twist curves 𝐸ௗ and 𝐸ିଵ,ିௗ here are orders of 840 and 888, 
respectively. For any other degree of isogeny, we can construct similar (19) and (20) chains of isogenic 
curves of period 𝜋 = 31 with the same set of parameters 𝑑(௜), but with different orders of alternation. 
In Table 3, these 31 parameters 𝑑 are marked with asterisks. This is the set of parameters 𝑑 of the 
first cryptosystem. Inverting each parameter 𝑑∗ we get unlabeled 31 parameters 𝑑 of the second 
cryptosystem. As in Section 6 when describing CSIKE (CSIDH), here we also have two isomorphic 
cryptosystems with the possibility of parallel computation. 

A remarkable property of ordinary curves in comparison with supersingular curves is the 
existence of two more isomorphic cryptosystems. The idea is prime: we can swap the orders of the 
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quadratic (1) and twisted (2) ordinary Edwards curves. The corresponding cryptosystem will be 
called dual. 

Let the orders of the curves (1) and (2) over the field 𝐹 ଺ଷ #𝐸ௗ = 888, #𝐸ିଵ,ିௗ = 840. For a dual 
cryptosystem, we can compute an array of parameter values 𝑑 instead of the brute-force method for 
Table 3. Let us find just one curve (1) with an order #𝐸ௗ = 888 and parameter 𝑑 = 6. Let us compute 
a 37-isogeny chain like (19) with a starting value 𝑑 = 6, and its values marked with an asterisk are 
entered in the first three rows of Table 4. In the same sequence, in the next three rows of the array, 
we will write the inverted values of the 𝑑ିଵ of the isomorphic curves (not marked with an asterisk). 
The upper and lower parts of Table 4 form equal-sized sets of the parameters of the 𝑑  of two 
isomorphic dual cryptosystems. 

Table 4. The grouped array of 62-parameter values of 𝑑 quadratic and twisted ordinary Edwards 
curves (𝑎 = ±1) at 𝑝 = 863, #𝐸ௗ = 888, #𝐸ିଵ,ିௗ = 840 (𝑡 = 24). 

6 * 678 * 703 * 212 * 611 * 420 * 248 * 159 * 821 * 562 * 538 * 
546 * 12 * 581 * 136 * 654 * 464 * 438 * 313 * 361 * 191 * 392 * 
837 * 29 * 199 * 246 * 683 * 695 * 751 * 24 * 553 *     
144  849  685  460  613  150  87  38  226  453  470  
49  72  254  514  128  478  664  670  153  122  284  

697  744  425  214  513  488  732  36  103      
* A set of 31 parameters that have mutually inverse pairs of parameters for parallel computing. 

So, using an ordinary instead of supersingular Edwards curve, we get four independent 
cryptosystems instead of two, which in parallel computing provides a 4-fold gain in cryptosystem 
performance compared to classical CSIDH. Parallel computation must make it impossible to realize 
side channel attack and redundancy in “constant time CSIDH” meaningless. Redundant 
cryptosystems can be used both for the 4-fold increase of key length in encapsulation algorithms and 
for simplification of the algorithm (reducing the number of isogeny degrees at fixed key length). 

Let us consider an example of the implementation of the Diffie-Hellman secret-sharing 
algorithm on the first cryptosystem with 31 parameters 𝑑∗ from Table 4. In our model with isogenies 
of degrees {3,5,7,37}, to equalize the selection probabilities of the quadratic twist pair curves, we 
assume all degrees are unidirectional, then in the secret keys of degrees {5,7}  we attribute the 
quadratic curve (𝑒௞ > 0) and degrees {3,37}௧ to the twisted curve (𝑒௞ < 0). Let’s take Alice’s secret 
keys 𝛺஺ = (−2,5,1, −4) and Bob’s 𝛺஻ = (−1,3,3, −5) Let’s compute for 12 randomly chosen isogeny 
steps for each of their public keys. 

Alice’s public key with randomly chosen curves and degrees is defined as 𝑑(଴) = 169(5)  ଵ ሱ⎯⎯ሮ 840(3)  ିଵ ሱ⎯⎯⎯ሮ 616(5)  ଵ ሱ⎯⎯ሮ 43(5)  ଵ ሱ⎯⎯ሮ 326(5)  ଵ ሱ⎯⎯ሮ 852(3)  ିଵ ሱ⎯⎯⎯ሮ 673= 𝑑(଺), (21)

𝑑(଺) = 673(37)  ିଵ ሱ⎯⎯⎯ሮ 472(7)  ଵ ሱ⎯⎯ሮ 551(37)  ିଵ ሱ⎯⎯⎯ሮ 503(5)  ଵ ሱ⎯⎯ሮ 472(37)  ିଵ ሱ⎯⎯⎯ሮ 27(37)  ିଵ ሱ⎯⎯⎯ሮ 835= 𝑑(ଵଶ) ⇒ ⇒ 𝑑஺ = 835. (22)

Bob’s similar calculations give 𝑑(଴) = 169(3)  ିଵ ሱ⎯⎯⎯ሮ 253(5)  ଵ ሱ⎯⎯ሮ 616(5)  ଵ ሱ⎯⎯ሮ 43(7)  ଵ ሱ⎯⎯ሮ 444(7)  ଵ ሱ⎯⎯ሮ 161(5)  ଵ ሱ⎯⎯ሮ 253 = 𝑑(଺), (23)𝑑(଺) = 253(7)  ଵ ሱ⎯⎯ሮ 186(37)  ିଵ ሱ⎯⎯⎯ሮ 161(37)  ିଵ ሱ⎯⎯⎯ሮ 652(37)  ିଵ ሱ⎯⎯⎯ሮ 253(37)  ିଵ ሱ⎯⎯⎯ሮ 444(37)  ିଵ ሱ⎯⎯⎯ሮ 616= 𝑑(ଵଶ) ⇒ ⇒ 𝑑஻ = 616. (24)
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As a result, the two parties have public keys 𝑑஺ = 835 and 𝑑஻ = 616. Next, Alice uses her secret 
key to compute 𝛺஺ = (−2,5,1, −4) curve 𝐸஻஺ 𝑑(଴) = 616(3)  ିଵ ሱ⎯⎯⎯ሮ 728(3)  ିଵ ሱ⎯⎯⎯ሮ 27(5)  ଵ ሱ⎯⎯ሮ 665(5)  ଵ ሱ⎯⎯ሮ 181(5)  ଵ ሱ⎯⎯ሮ 113(5)  ିଵ ሱ⎯⎯⎯ሮ 311= 𝑑(଺), (25)

𝑑(଺) = 311(5)  ିଵ ሱ⎯⎯⎯ሮ 186(7)  ଵ ሱ⎯⎯ሮ 840(37)  ିଵ ሱ⎯⎯⎯ሮ 311(37)  ିଵ ሱ⎯⎯⎯ሮ 858(37)  ିଵ ሱ⎯⎯⎯ሮ 186(37)  ିଵ ሱ⎯⎯⎯ሮ 161= 𝑑(ଵଶ) ⇒ ⇒ 𝑑஻஺ = 161. (26)

Bob’s symmetric calculus 𝑑(଴) = 835(5)  ଵ ሱ⎯⎯ሮ 618(3)  ିଵ ሱ⎯⎯⎯ሮ 161(5)  ଵ ሱ⎯⎯ሮ 253(5)  ଵ ሱ⎯⎯ሮ 616(7)  ଵ ሱ⎯⎯ሮ 652(7)  ଵ ሱ⎯⎯ሮ 858 = 𝑑(଺), (27)𝑑(଺) = 858(7)  ଵ ሱ⎯⎯ሮ 113(37)  ିଵ ሱ⎯⎯⎯ሮ 840(37)  ିଵ ሱ⎯⎯⎯ሮ 311(37)  ିଵ ሱ⎯⎯⎯ሮ 858(37)   ିଵ ሱ⎯⎯⎯ሮ 186(37)  ିଵ ሱ⎯⎯⎯ሮ 𝑑(ଵଶ)⇒ ⇒ 𝑑஺஻ = 161 

(28)

give the same result due to the commutativity of isogenies 𝑑஺஻ = 𝑑஻஺ = 161, which defines the 
quadratic curve 𝐸ଵ଺ଵ of the shared secret. As noted above, this value is unique (for a given starting 
curve). It is not required here in the shared secret 𝑘 = 161  to go to the J-invariant. Similar 
calculations with other starting curves and keys can be performed in parallel in other 3-independent 
cryptosystems to solve different problems. 

9. Discussion 

Let us summarize the main and composite results of the present and previous [9–15] works: 
1. The results obtain a lower estimate of the computational speed gain of the modified CSIDH 

algorithm on non-cyclic supersingular Edwards curves by a 𝛾 = 1.5 ∙ 2ଽ times; 
2. The transition from the class of complete Edwards curves to the classes of quadratic and twisted 

Edwards curves double the set of curves and does not require inversion of the parameter 𝑑 of 
the Edwards curves, which is evaluated by a partial gain estimate of a 2ହ times; 

3. The method of randomization of the CSIDH algorithm and avoiding the computation of the 
isogenic function 𝜙(𝑥, 𝑦) in the projective coordinates (𝑊: 𝑍) of Farashahi-Hosseini speeds up 
the algorithm more than 2ଷ times; 

4. Optimizing the isogeneity degrees of the CSIDH algorithm reduces the maximum isogeneity 
degree with a linear estimate of the algorithm speedup by a factor of 1.5; 

5. For every non-cyclic Edwards curve, there exists an isomorphic Edwards curve with an inverted 
parameter, which gives rise to the existence of two independent cryptosystems with parallel 
computation capability. This doubles the performance of the CSIDH algorithm and eliminates 
the threat of side-channel attacks. The CSIKE scheme also allows doubling the length of the 
secret key to 1024 bits; 

6. An original CSIKE key encapsulation scheme with one public key instead of two in CSIDH is 
proposed and modeled, which provides improved security of the algorithm; 

7. A model of Diffie-Hellman secret sharing on isogenies of degrees {3,5,7,37}  of non-cyclic 
Edwards curves is constructed for the CRS scheme of ordinary curves. It is shown that instead 
of two isomorphic cryptosystems in the CSIDH algorithm, the transition to a set of ordinary 
Edwards curves gives rise to four independent cryptosystems with parallel computation 
capability. This can double the above estimate of the computational speed gain up to 𝛾 = 3 ∙ 2ଽ. 
Although in [22] it is stated that a drawback of CSIDH is that it is still considered to be inefficient 

when compared to other algorithms, taking into account the optimization data of the algorithm, it 
can be assumed that the algorithm can be used on an equal basis with other PQC algorithms. 
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9. Conclusions 

Based on the results of these calculations, we can conclude that the integral improvement of the 
characteristics of PQC algorithms allows us to significantly increase the speed of the algorithm (about 
1,500 times). Taking into account the short key length and the increased speed of the algorithm, it is 
promising to use it to ensure secure exchange in embedded systems and systems with limited 
computing resources. In addition, the parallelization of computations allows for minimizing the 
exploitation of side-channel vulnerabilities. We believe that CSIDH and CRS technologies should not 
be contrasted but should be developed as promising technologies, taking into account the features 
and advantages of each of them. 

Future research is planned to investigate new approaches to form isogeny degree sets in CRS 
encryption and digital signature schemes. 
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