
Article Not peer-reviewed version

Securing IPv6 Neighbor Discovery

Address Resolution with Voucher-Based

Addressing

Zachary T Puhl and Jinhua Guo *

Posted Date: 24 June 2024

doi: 10.20944/preprints202406.1561.v1

Keywords: IPv6; security; networking; NDP; neighbor discovery; privacy; voucher-based addressing

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3513101
https://sciprofiles.com/profile/421531

Article

Securing IPv6 Neighbor Discovery Address
Resolution with Voucher-Based Addressing
Zachary T. Puhl and Jinhua Guo

University of Michigan-Dearborn; Dearborn, MI, United State; zpuhl@umich.edu
* Correspondence: jinhua@umich.edu

Abstract: The majority of local IPv6 networks continue to remain insecure and vulnerable to neighbor spoofing
attacks. The Secure Neighbor Discovery (SEND) standard and its concomitant Cryptographically Generated
Addressing (CGA) scheme were accepted by large standards bodies to codify practical mitigations. SEND and
CGA have never seen widespread adoption due to their complexities, obscurity, costs, compatibility issues,
and continued lack of mature implementations. In light of their poor adoption, research since their
standardization has continued to find new perspectives and proffer new ideas. The orthodox solutions for
securing Neighbor Discovery have historically struggled to successfully harmonize three core ideals:
simplicity, flexibility, and privacy preservation. This research introduces Voucher-Based Addressing, a low-
configuration, low-cost, and high-impact alternative to IPv6 address generation methods. It secures the
Neighbor Discovery address resolution process while remaining simple, highly adaptable, indistinguishable,
and privacy-focused. Applying a unique concoction of cryptographic key derivation functions, link-layer
address binding, and neighbor consensus on the parameters of address generation, resolved address bindings
are verifiable without the need for complex techniques that have hindered the adoption of canonical
specifications.

Keywords: IPv6; security; networking; NDP; neighbor discovery; spoofing; privacy; voucher-based
addressing

1. Introduction

The Neighbor Discovery Protocol (NDP) for Internet Protocol version 6 (IPv6) was first
introduced in 1996 by [1], revised in 1998 by [2], and published in its current version in 2007 as [3]. It
is a protocol extension of ICMPv6 [4] used by neighboring nodes in a local network to discover each
others’ presence, to detect routers, to self-determine addresses, to resolve each others’ link-layer
addresses, and to maintain details about the reachability of known, active neighbors. A relevant and
focal weakness of NDP is the potential for malicious neighbor spoofing attacks, whereby a malevolent
neighbor can insert itself into the path of traffic between two other neighbors by intercepting and
falsifying Neighbor Discovery Address Resolution (NDAR) messages. The category of threat vectors
exploited by these spoofing-related traffic redirections is labeled “on-path” attacks (historically: Man
In The Middle, or MITM, attacks). On-path attacks are a critical concern for network administrators
because confidentiality, integrity, and availability may all be compromised by interception of traffic
at a local scope, where the least amount of network traffic is likely to be encrypted or otherwise
secured.

The Secure Neighbor Discovery (SEND; RFC 3971 [5]) and Cryptographically Generated
Addresses (CGA; RFC 3972 [6]) specifications were conceived to address the neighbor spoofing
problem and other NDP security concerns. Mitigation of on-path attacks with SEND and CGAs has
been well established for some time now, but these mitigations have never received widespread
adoption in practice. Considering the arcaneness and obscurity of IPv6 outside of academia,
networking enthusiast communities, or IETF circles, SEND and CGA descend into an even greater
shroud of obscurity that unfortunately keeps them beyond the purview of the mainstream.
Furthermore, any existing implementations of SEND and CGA are immature, having little to no

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202406.1561.v1
http://creativecommons.org/licenses/by/4.0/

 2

backing or validation [7], and each implementation brings wildly varying effects on network
performance across different systems [8].

Keeping in mind the mistakes of the past and the paths already paved, a new solution should be
proposed for preventing NDP-driven on-path attacks. This solution should do so while remaining
viable and efficient for all adopting devices, with a conception that necessitates the balance of three
key aspects: privacy, flexibility, and simplicity. This research presents the Voucher-Based Addressing
specification (VBA; also Voucher-Based Addresses, VBAs) to satisfy this requirement.

VBA is a low-complexity, high-impact, privacy-conscious, optional proposal that secures local
networks from NDP-driven on-path threats via an alternative address generation technique. Interface
link-layer addresses are bound to sets of deterministic IP addresses, in a process which can be
repeated by local neighbors to perform address verification. By coupling link-layer identifiers and
network-layer identifiers together, the common NDAR procedure for resolving this type of binding
can guarantee that only legitimate bindings are used and statefully maintained. All generated
addresses appear random to off-link nodes and potential trackers, which ensures node privacy,
especially for mobile nodes. Locally distributed vouchers play a key role in controlling, obfuscating,
and adjusting the parameters used to create and verify these resultant VBAs.

A key purpose of this research is to produce an alternative to the widely accepted SEND and
CGA standards–rather than augment, replace, or survey them–in order to foster new perspectives or
to renew interest in solving these longstanding IPv6 security issues. Starting with Section II, this work
provides more background about the problem it attempts to solve and collates some other research
which has been done to solve relevant NDP issues. A conceptual overview for VBAs is given in
Section III. Relevant benchmarks and other experimental, implementation-based results are then
described in Section IV. Section V includes a subsequent discussion of some of the miscellaneous
practicalities of this work. Section VI then concludes by outlining some potential future research and
summarizing the implications of this work.

2. Background & Motivation

Like many early and formative internet protocols, security unfortunately became an
afterthought in the design of NDP: presumably sacrificed based on the need for protocol
optimizations that matched the performance of more limited hardware constraints of the era. The
widespread adoption of NDP occurred before its threat models were formally cataloged in RFC 3756
[9] and before the specification of Secure Neighbor Discovery in RFC 3971 [5] with its complementary
Cryptographically Generated Addresses in RFC 3972 [6]. Arkko et al. in 2002 [10] first detailed the
various vulnerabilities of Neighbor Discovery: neighbor spoofing, Router Advertisement spoofing,
bogus prefix denial-of-service attacks, Duplicate Address Detection attacks, and attacks based on
falsely advertised configurations. Many of these remain trivial to execute in normative networks as
shown by Anbar et al. as recently as 2016 [11], almost a decade after the final revision of the NDP
specification. These problems linger in modern IPv6 deployments, which unfortunately do not
receive measurable security attention and considerations as compared to their IPv4 counterparts.

Among its list of insecurities, NDP harbors a dangerous capability for a neighbor spoofing
threats, leading to trivial on-path attacks. By successfully advertising a spoofed link-layer address
binding with a victim IP address, an attacker can redirect frames from neighbors to itself, allowing it
to inspect and capture private packet data on the forwarding path before then forwarding it to its
original unicast target. This initial spoof and redirection is sometimes termed “cache poisoning” to
express that each misled neighbor falsely caches a binding (i.e., association) between a neighbor IP
address and a malicious link-layer address, rather than a genuine target’s link-layer address. If an
attacker successfully spoofs link-layer address bindings for both target IP addresses in a local
exchange, then it can insert itself on-path between the two communicating neighbors and
transparently observe passing network traffic. Any upper-layer protocol without encryption then
becomes susceptible to this attack, having atrocious privacy and security implications at the local
network scope where traffic has the highest chance to be unencrypted and insecure.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 3

2.1. Classic Neighbor Spoofing Attacks

The ‘classic’ neighbor spoofing attack targets two nodes who have established existing and
Reachable-state cache entries between them. In its simplest form, it overhears an Address Resolution
transaction and follows the completed exchange with an overriding advertisement packet to the
target of the attack. RFC 4861 [3] makes a note about nodes receiving unsolicited Neighbor
Advertisements: “The Override flag MAY be set to either zero or one. In either case, neighboring
nodes will immediately change the state of their Neighbor Cache entries for the Target Address to
STALE, prompting them to verify the path for reachability. If the Override flag is set to one,
neighboring nodes will install the new link-layer address in their caches. Otherwise, they will ignore
the new link-layer address, choosing instead to probe the cached address.”

Such a mechanism is put in place to allow the target of Neighbor Discovery proxying to assert
its own link-layer address as being reachable on-link directly, rather than letting traffic slowly
meander to it through the proxy indirectly. Due to this tradeoff made by the NDP protocol
specification, this advertised override forces the target node to update the link-layer address binding
for the victim to the spoofed address.

In step 1 of Figure 1, Node A is the solicitor who asks for the link-layer to IP address binding
from the address fe80::b. Since Node A does not know the target’s link-layer address yet (and thus
where to forward frames), a solicited-node multicast address is used instead which utilizes the last
24 bits of the target IP address. Any node can be subscribed to the solicited-node multicast group
without authorization, so in the Figure both Node B (the legitimate target) and Node C (the listening
threat actor) receive the multicast NS packet. Notice that in step 1 Node A also includes an “SLLAO”
NDP option with its NS in order to let receivers know the reverse path on the link-layer to find fe80::a
(i.e., the MAC address 11-22-33-44-55-aa).

Figure 1. A classic Neighbor Discovery neighbor spoofing (traffic redirection; on-path) attack. After
the normative address resolution process completes in steps 1 and 2, the listening malicious Node C
sends a spoofed Neighbor Advertisement in step 3 to override the Link-Layer Address value in Node
A’s Neighbor Cache. Node A now unknowingly harbors a “poisoned” cache entry.

In step 2, Node B receives the NS, pre-caches the link-layer binding from the SLLAO, and
responds with its legitimate MAC address in a unicast advertisement packet to Node A at fe80::a.
After some brief delay, Node C sends a spoofed unicast Override NA in step 3 with its own link-layer
address (11-22-33-44-55-cc) as the reported binding for fe80::b. Note that Node C does not need to
await this NDAR process in order to send an Override NA if it already knows the link-layer address
of Node A.

Node A has now been poisoned: it subsequently updates its Neighbor Cache for fe80::b to the
spoofed link-layer address because of the Override, for which there is no authentication requirement.
Packets destined for fe80::b will now be sent to Node C, who can read and interact with the data

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 4

before forwarding it down the path to Node B, where it will be received without knowledge that
Node C had any interaction with it. If Node C repeats this process oppositely with Node B’s traffic
en route to Node A, then a completely transparent and two-way on-path attack is successfully set up.
Node C would achieve a complete arbitration of the traffic stream between Nodes A and B..

2.2. Eager Neighbor Spoofing Attacks

A less well-known and much more powerful cache poisoning aĴack opportunity exists in an
optimization related to Neighbor Solicitations. The Source Link-Layer Address Option (SLLAO) stub
can be included with NS messages to indicate the intended link-layer address binding of the IP source
address on the NS packet. This is done so that receiving nodes will not be required to reverse-probe
the sender’s IP address for a link-layer address binding during NDAR transactions.

The NDP specification in RFC 4861 [3] reads: “If the [NS] is being sent to a solicited-node
multicast address, the sender MUST include its link-layer address (if it has one) as a Source Link-
Layer Address option. Otherwise, the sender SHOULD include its link-layer address (if it has one) as
a Source Link-Layer Address option. Including the source link-layer address in a multicast [NS] is
required to give the target an address to which it can send the [NA].” This optimization to NDP
allows NDAR transactions to occur much faster, but weakens the protocol due to its blind trust of
senders and subsequent automatic caching. Since NS packets are generally the first contact in an NDP
transaction, there is no straightforward way to recognize and mitigate this ‘eager’ aĴack unless the
NS occurs for an IP address that already has a binding within a target’s Neighbor Cache.

Figure 2 demonstrates the simplicity and potency of a more eager neighbor spoofing aĴack: only
two steps are required and the poisoning can begin from the very start of an apparently legitimate
and innocuous NDP transaction. In step 1, malicious Node C creates a solicited-node multicast
Neighbor Solicitation with a spoofed IP Source Address of fe80::b (Node B’s address). The target
address of address resolution is not important, but the aĴacker will need to aim the NS at the
multicast group for which it knows the target node (Node A) is a member, while trying to avoid
sending the NS to the victim (Node B). By random chance, this will almost always be the case anyway
for a 24-bit address suffix used to derive a solicited-node multicast address. When Node A receives
the NS packet, it will preemptively cache the link-layer address found in the SLLAO and bind it to
the IP Source Address of the packet; so Node A creates the entry [fe80::b → 11-22-33-44-55-cc].

Figure 2. A more subversive, ‘eager’ approach to preemptively poisoning a target’s Neighbor Cache
without requiring any prior interaction. Nodes receiving SLLAO stubs on certain NDP messages are
dictated by the protocol specification to accept them as-is for the sake of protocol optimization. This
optimization is performed so that NS receivers can respond with unicast messages to the sending
link-layer address without needing reverse address resolution and without a multicasted response.

In step 2, Node A happily advertises itself through a unicast NA message as fe80::a with its
legitimate MAC address 11-22-33-44-55-aa, as part of an expected and normal NDAR response. Node
C is now free to receive data frames originally intended for Node B, transparently forwarding them,
blocking them, or modifying them in-transit. It is also important to note that this aĴack can be
effective in NDP augmentations requiring a Nonce field to be aĴached to NS/NA packets, because
this eager poisoning can dishonestly forge any Nonce value as a virtue of being the NDAR initiator
(i.e., solicitor).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 5

2.3. Motivating AĴack Commonalities
There exists a glaring commonality between all of these various NDP aĴack surfaces presenting

an opportunity for on-path aĴacks: caching. Regardless of how the cached value is updated or
exposed to poisoning, the efficacy of the aĴack relies solely on making a ‘bad’ update to the target’s
Neighbor Cache. AĴacks successfully poisoning a target’s Neighbor Cache often then only need to
maintain the malicious entries through the normative NUD process. This observation reveals that by
merely guarding the cache at the target node, through some form of sender validation or challenge-
response authentication, aĴacks resulting in false updates to (or creations of) Neighbor Cache entries
can be mitigated altogether.

This research proposes an alternative to securing NDP against neighbor spoofing aĴacks that
relies on this idea. It identifies and applies what should be considered three crucial aspects for the
adoption of any amendment to Neighbor Discovery: simplicity, flexibility, and privacy preservation.
Voucher-Based Addressing is thus introduced as a possible candidate to mitigate the neighbor
spoofing threat in local networks.

3. Voucher-Based Addressing

3.1. Terminology

A glossary of terms and acronyms related to Voucher-Based Addressing is necessary to index,
organize, and comprehend the many different aspects of its proposal. To acquire more prerequisite
context, please see Section 2.1 of the NDP specification in RFC 4861 [3] for definitions of the following
terms: neighbor, node, interface, link, address, router, host, on-link, off-link, IP, ICMP, packet, target,
Neighbor Unreachability Detection (NUD), Neighbor Cache (NC), and all NDP ICMP packet types
(Redirect, RS, RA, NS, and NA).

Table 1. Related and necessary terminology as a reference for this research.

SEND SEcure Neighbor Discovery (RFC 3971 [5]).

CGA Cryptographically Generated Address (RFC 3972 [6]).

NDAR Neighbor Discovery Address Resolution (see Section 7.2 of RFC 4861 [3]).

LLID A shorthand representation for the terms "Link Layer Address" or "Link Layer

Identifier". Both terms are synonymous and describe any individual link-layer

identifier for a network interface. This work generally uses this term

synonymously with MAC addresses.

SLLAO Source Link-Layer Address Option. An NDP option indicating an LLID, typically

of the NDAR initiator.

TLLAO Target Link-Layer Address Option. An NDP option indicating an LLID, typically

of the NDAR target.

SLAAC Stateless Address Autoconfiguration (RFC 4862 [12]).

VBA Could mean one of two things depending on context:

 Voucher-Based Addressing (such as "the VBA-enabled subnet" or "VBA

mandates this").

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 6

 Voucher-Based Address (such as "a VBA" or "using VBAs"). A unicast IPv6

address generated by a mixture of Link Voucher details, network interface

details, and subnet details. The term "VBA" might be used in lieu of "IP address",

but an IP address may also be a VBA. There is no special value contained within

an IP address to indicate that it is a VBA.

LV An NDP Link Voucher option. A data payload distributed by a responsible

neighbor. Its details are statefully maintained on receiving neighbors and are used

in both generating and verifying VBAs.

VB The Voucher Bearer, a neighbor that is solely responsible for dissemination of the

current voucher through NDP LV options. This node is authorized by any

potential guards and infrastructure to transmit Router Advertisements or Redirect

messages with LV options attached.

IEM Interface Enforcement Mode. An interface-level, mutable operating mode which

controls interface VBA generation and verification behaviors.

Binding Used primarily to describe a coupling between two types of addresses on different

layers of the OSI Reference Model [13]. In the case of VBA, it is usually used in

reference to link-layer identifiers as bound to network-layer identifiers.

LL2IP Used to shorten the phrase "link-layer-address-to-IP-address" when discussing

address bindings.

KDF Key Derivation Function, as defined in Section 3 of RFC 8018 [14].

Hextet A 16-bit aggregation; data that is 16 bits in size.

3.2. Threat Model
In the projected threat model for the local network, threat actors are only interested in stealthy

on-path aĴacks resulting from neighbor spoofing exploitation. Modeled threat actors are not
concerned with network disruptions or denial of service aĴacks; they would prefer to remain quiet
and unseen. For the most part, the success of an on-path aĴack arbitrating and examining unicast
messages is dependent upon the threat actor remaining undiscovered on the path between two victim
nodes in the first place. This model assumes that no two LLIDs within the target broadcast domain
can be the same value or be spoofed in the network without obvious disruptions to network activity.
It also simultaneously assumes an insecure link layer.

For external networks, the threat model includes risks to the privacy of an interface
communicating off-link. Nodes can be remotely tracked, targeted, and even exploited through their
unique, global unicast addresses if they are not sufficiently rotated. If an address generation
mechanism incorporates link-layer information and does not obscure it in some way, then aĴacks can
be launched against addresses based on what might be revealed from link-layer information. Lastly,
address assignment schemes which do not encourage or permit regular primary address rotations
are subjected to these threats and can be a valuable aĴack vector for targeting victims.

3.3. Design Goals & Overview
MAC spoofing aĴacks as presented in Section 3.B of [15] are a driving factor of why Voucher-

Based Addressing functions in the first place. When two nodes share the same link-layer identifier in

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 7

a switched network, frames will unreliably be forwarded to one of them based on who most recently
communicated through the switch. A flip-flopping of frame delivery at the link layer causes a
confusion of higher-level protocols and will most likely result in a denial of service aĴack on the
legitimate node owning the MAC, thus disrupting the network. With this context, the principle of
MAC address uniqueness per broadcast domain can be established.

During the address resolution process, the goal is to associate a target IP address with its
underlying link-layer address to which frames can be forwarded and switched. When LLIDs become
determining factors for higher-layer abstractions, such as IP addresses in the case of VBA, then
‘bindings’ are created between the LLIDs and the abstractions. Since VBA generation depends on
both these bindings and the principle of MAC address uniqueness at the per-interface scope, VBA
verifications are considered valid proofs of MAC address ownership so long as the interface remains
present on-link. The verification process is employed at specific times during NDAR transactions,
independently mirroring the VBA generation process.

Verifications are parameterized by (1) various inputs which identify the target node during
NDAR (the IP and MAC addresses from NDP packets), and (2) inputs which lie beyond the control
of the target node. Such external information resides within locally disseminated Link Voucher
details agreed upon by all neighbors. Due to the utilization of LL2IP bindings in both generating and
verifying VBAs, it is impossible to forge an association of an IP address to an LLID that cannot be
bound to it. Enforcing binding verification secures the NDAR process against issues of LL2IP binding
impersonation and thus against neighbor spoofing threats.

Creating an IP address which incorporates verbatim the direct value of the LLID would suffice
if the goals of bindings in VBA only included validating address ownership. For example, EUI-64 is
a long-established address assignment methodology that employs direct implantation of an LLID in
assigned addresses. This would create an easily verifiable LL2IP binding for each interface, but it
would not incorporate a focus on privacy because the LLID of the interface is publicly exposed and
the address remains fixed. Additionally, EUI-64 is a one-to-one LL2IP binding, whereas VBA seeks
to derive many IP addresses for each LLID.

To meet the need for privacy, simplicity, and flexibility in generating new, obscure IP addresses
during SLAAC self-addressing, VBA employs a trivial hashing process. Using techniques based on
hash functions ensures that any LLID of an arbitrary length can be reliably bound to an irreversible
address suffix that is a desirable and fixed length. However, simply hashing an LLID will still only
manifest a one-to-one binding. Many formalized IPv6 address generation schemes already offer ways
to derive many privacy-focused addresses on a single interface (e.g., Section 5 and Appendix A.3 of
RFC 7217 [16]). Addresses generated through these schemes are intentionally obfuscated to preserve
the privacy of the node, unless reversing parties are aware of all input parameters used by the
deterministic address generation function. VBA solves this one-to-one addressing problem by
employing a variant of salted hashing and key derivation functions.

VBA strikes a careful balance of (1) keeping off-link nodes unaware of local voucher information,
and (2) ensuring on-link nodes are aware of all parameters used to generate any neighbor’s IP
address(es). Off-link parties cannot derive a target’s bound LLID because they cannot receive NDP
messages from the target’s broadcast domain, nor can they determine the binding from any paĴerns
within the target’s address itself. VBAs will always appear random as a consequence of utilizing the
outputs of deterministic hash functions.

3.4. Address Generation & Verification
To gain a further advantage, this work elevates simple hashing techniques to the use of key

derivation functions (KDFs), enabling a set of one-to-many LL2IP bindings and also enforcing a
minimum address computation time. KDFs accept input iteration values specifying how many times
the driving pseudo-random function (or underlying hash function) must be iterated before producing
a final result. In VBA generation, various inputs that specifically identify the target node, as well as
the chosen iterations count, are computed by a known KDF into a hash value. The input iterations
count is then obscured and planted into the generated VBA adjacent to a slice of the resultant hash,
such that the following three components are an inherent value exchanged by any NDAR transaction:
(1) the target's reported LLID and IP address (i.e., VBA itself); (2) a portion of the KDF's hash output

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 8

(embedded within the VBA); and (3) the iterations count that was supplied when computing the KDF
hash (also embedded within the VBA).

Interfaces using the VBA generation procedure during SLAAC therefore enforce that all three
aforementioned items are bound together and conveyed to neighbors, alongside on-link voucher
details, to produce the same output VBA during verification. Each increment or decrement of the
iterations count value produces an entirely new, seemingly random address with no correlation to
another VBA produced from a different iterations count value. Nodes falsifying any information
during the NDAR process will be rejected in communication by neighbors who cannot successfully
verify the illegitimate bindings.

VBAs are composed of three key components in order from most-significant to least-significant
byte: the 64-bit subnet prefix, a 16-bit Z value indicating the encoded iterations (L) value used to
compute the address, and a 48-bit hash-derived address suffix (H). If the subnet is less than 64 bits in
length, then the remaining gap between the end of the subnet prefix and the beginning of Z is always
populated with pseudo-random noise by the generating node. VBA generation is not compatible with
networks whose subnet prefixes exceed 64 bits in length. A VBA contains only a partial conveyance
of the information required for neighbors to reconstruct and therefore verify the address binding.
Figure 3 provides a simple visual representation of how an IPv6 address is partitioned.

Figure 3. The overall structure of a Voucher-Based Address.

The interface identifier for all VBAs, also called the Suffix, embeds two important details for
verification. A 16-bit Z value is calculated as a bitwise complement of the XOR of the 16-bit L value
(the iterations count used in the KDF function K) and the first hextet of the current voucher seed
value. The Z value is used to ensure the same input iterations count value, L, will be unique across
different voucher seeds to provide enhanced address privacy.

The L value is a significant member of the generated VBA: this parameter controls how many
times the KDF function specified in the voucher is iterated to produce the resulting hash value from
which H is derived. Increasing this value increases both the work required to verify the VBA and the
work necessary to discover potential collisions with H. H is the other value embedded in the VBA
which consists of 48 bits acquired from computing the resulting KDF function with L iterations. The
first 8 bytes of the resultant KDF hash are used in formulating the Suffix of the VBA, where its first
hextet (bytes 1 and 2) is replaced with the Z value as shown in Figure 4.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 9

Figure 4. The Voucher-Based Address generation procedure is used via SLAAC to generate all initial
interface addresses from the interface on Host A. Router X is a Voucher Bearer authorized by local
administrative policy to delegate Link Voucher information to its neighbors.

The address generation algorithm is detailed procedurally as follows:
1. A node connects to a network and discovers link VBA compatibility from a Link Voucher option

obtained upon router solicitation.
2. The local L value is chosen based on (1) node preference, (2) intended VBA difficulty, or (3)

random selection. The Link Voucher contains instructions for KDF parameters and algorithm
selection as well as the 128-bit seed value to use.

3. The KDF salt is created as a variable-length concatenation of a few different inputs, in the order
specified by the list below. The adjective 'raw' dictates specifically binary values, not
hexadecimal string notations of said values.

a. The raw LLID of the network interface on which VBAs are being generated, in network byte
order. Since the salt value has a varying length, this is not required to be an IEEE 802 MAC
address. It must only represent the LLID to which the VBA(s) is to be bound and which will be
provided to verifying nodes during NDAR transactions.

b. The string "vba".
c. The raw Prefix (subnet prefix) value, in network byte order. This must match the prefix that

will be prepended to the final VBA given during the NDAR processes.
2. The final address Suffix is computed:
a. The first 16 bits are the bitwise complement of an XOR between the node-selected iterations

count L and the first hextet of the known voucher seed.
b. The least significant 48 bits are 6 sequential bytes from the computed KDF hash H, skipping its

first hextet (two bytes).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 10

When enabled and enforced by a receiving interface’s Interface Enforcement Mode, the
verification process uses the information embedded within the IP address that is provided during an
NDAR exchange. VBA verification simply mirrors the generation of the reported VBA locally; Figure
5 illustrates this process. If the reconstructed address of the target node does not match the IP address
reported in the NDAR transaction, then the VBA is invalid and communication with the node is
denied according to the verifier’s IEM seĴing. The Link Voucher (‘LV’ in the Figure) is always
retrieved from the state preserved on the verifying interface, and never from an external source that
is not the acting Voucher Bearer. If the verification procedure fails due to a voucher mismatch
between nodes A and B, then there is most likely either (1) a synchronization problem, (2) malicious
activity, or (3) an issue with multiple vouchers being distributed simultaneously.

Figure 5. The VBA verification procedure. The generation process is repeated at the verifier using
various values known about the neighbor and the current voucher parameters.

During Moment 1 from the Figure, Node A can choose to aĴach a Source Link-Layer Address
Option (SLLAO) to its solicitation, which will cause Node B to verify its binding with the IP Sender
Address from the NS packet. The Z’ function returns the L value (iterations count) embedded within
Node B's address. This function is the opposite of Z from the address generation process: it uses an
input address to determine L rather than using an input L to determine an encoded hextet. Despite
the different inputs, the naming alludes to the opposite purposes for each function.

VBA does liĴle to modify Neighbor Discovery, instead opting to change the behavior and
decision-making processes of its underlying software implementations. Figure 6 expresses the
application of these changes in a practical scenario, where both nodes are required to engage their
VBA verification processes between certain NDAR events. In summary, VBA requires modifications
to the following NDP behaviors on VBA-enabled interfaces:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 11

 Any new LLIDs on neighbors have an impossibly low chance of organically producing the same
VBA as one already cached by verifying neighbors. Such an unlikelihood implies that any
Neighbor Advertisement (NA) packets targeting an already-cached IP address which is not in
the INCOMPLETE state must be ignored if an included Target Link Layer Address Option
(TLLAO) aĴempts to update the cache entry state or change its binding to a different LLID. This
will prevent threat actors from maliciously triggering costly VBA verification processes where
they are not necessary.

 The value of an LLID within a Neighbor Solicitation (NS) packet must likewise never update
any existing cache entry for the given IP Source Address. This is because it is a statistical
improbability for any known VBA to have been genuinely formed from a different LLID when
the voucher has not changed.

 Any supposed urgent updates about underlying details for a known VBA are unnecessary. The
Override flag in received NAs must not be able to freely update the underlying LLID or state of
any cache entry. Some devices might wish to support a more lax AGVL IEM which allows
compatibility with static unicast addresses on-link. In the case where the IEM is set to AGVL,
the Override flag in NAs should not be ignored, in order to let static addresses immediately
notify neighbors of a change in their interface LLIDs.
VBA verification is a 'shim' software process–a small functionality added as a process between

two existing procedures–that prescreens incoming requests to insert or update cached bindings
according to the normative Neighbor Discovery process. In Figure 6, Host B calls upon the verification
shim of a verifying neighbor, Host A, in Moment 4. If the shim rejects the binding from entering or
updating the Neighbor Cache, then Host A will be denied from properly forwarding data frames to
the advertising Host B. This is because a cache entry in the REACHABLE state does not exist and will
not be created. Prefiltering in such a manner immediately eliminates any threat actor’s opportunity
to forge NDAR messages or to redirect traffic maliciously.

Figure 6. VBA processes do not modify the typical Neighbor Discovery process or exchange. Instead,
software local to each interface, if equipped, will act to verify received IP addresses during NDAR
transactions based on the interface’s selected Enforcement Mode.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 12

Employing the verification shim results in repeated KDF computations that could impact
performance significantly for systems with minimal resources, so the shim must be optimized and
called as seldom as possible. For the sake of optimization, NUD exchanges must not call upon the
shim when none of the NDAR parameters (i.e., the IP address or the LLID) are being changed.
Incoming NDAR messages failing VBA verification must be immediately ignored, and NC entries
must not be created or updated as a result of their receipt. Nodes likewise must not respond to any
packets failing the verification process.

There are a few situations when address resolution packets cannot be optimized and must
explicitly pass through the VBA verification shim for approval:
 An NS, RS, or RA packet is received with an SLLAO aĴached and an NC entry for the IP Source

Address is not already present.
 An NA or Redirect packet is received for a Target Address whose NC entry is in the

INCOMPLETE state.
 An NA packet is received and the Override flag is set, and the receiving interface is using the

AGVL IEM.
The above list is perhaps not all-inclusive and does not consider other extensions to NDP which

may allow certain messages to modify or insert cache entries. Except for forward progress indications
through NUD, NDAR transactions of any type seeking to update or create any active NC entry must
be pipelined through the verification shim first, depending on the current IEM.

3.5. Interface Enforcement Modes
Each interface employing VBA must have the option at all times to set a single local Interface

Enforcement Mode (IEM) which determines its handling of NDP messages and VBA. IEMs are a
flexibility feature allowing a granular, per-interface seĴing that adjusts the behaviors of each interface
in real-time. They are designed to be changeable at any time and for any reason, no maĴer the
operating state of the interface. The IEMs, in order of increasing strictness, are:
 Address Awareness Disabled (AAD): The interface must disable any generation or verification

of addresses during NDAR transactions. It must completely withdraw from any activity related
to VBA, with the exception that it can still listen for and capture the current voucher state.

 Address Generation Only (AGO): The VBA generation and process is followed during SLAAC
self-assignment, but the interface’s address verification shim must be disabled for all NDAR
transactions.

 Address Generation and Verification with Levels (AGVL): VBA generation and verification is
performed, but any failure to verify a neighbor must not be strictly enforced. Purported LL2IP
bindings which fail to verify are instead tagged in the Neighbor Cache as “Unsecured” entries,
and those which do successfully verify are tagged as “Secured”. Secured responses are always
preferred over Unsecured ones, which permits verified bindings to receive sole connection
priority without denying communication to neighbors whose VBAs do not successfully verify
(and for which a Secured response does not exist).

 Address Generation and Verification (AGV): Any purported binding which does not verify must
be dropped immediately from the Neighbor Cache. Interfaces opting to use this mode will
guarantee themselves protection against neighbor spoofing threats, because they will only ever
be able to receive IPv6 packets from valid VBAs. Flexibility with neighbors in mixed networks
where some nodes do not have VBA capabilities is consequently revoked.

3.6. Link Voucher Structure & Rules
The Link Voucher is an optional aĴachment to NDP Router Advertisement and Redirect

messages from a responsible Voucher Bearer. Link Vouchers dictate the parameters used by the local
network’s neighbors to generate and verify VBAs. By agreeing on these shared, distributed
parameters during address generation, all neighbors are able to independently incorporate the same
information to verify each other’s addresses. Establishing a link-local baseline for VBA generation
parameters in the voucher enhances node privacy, because off-link nodes will not know all of the
address inputs.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 13

Figure 7 shows the binary structure of the Link Voucher NDP option and all its descriptive field
names. Each field is completed, either statically or by the Voucher Bearer, as such:

Type
The unique NDP Option Type identifier for Link Vouchers is 63.
Length
The total length of the LV from the Type through its end, inclusive, in units of 8 octets.
Expiration
A 16-bit big-endian value storing the amount of time in seconds that the Link Voucher option

should be considered legitimate when an update has not been received from the VB. This value is
recommended to be set between 3,600 (1 hour) and 43,200 (12 hours) seconds. SeĴing the value any
lower or higher results in issues with over-rotations and under-rotations, respectively; two situations
which can easily cause denial of service aĴacks when abused.

Reserved
Reserved for future use. This field is set to zero by senders and ignored by receivers.
Timestamp
A 64-bit value representing the local system time of the sender at the moment the Link Voucher

option is constructed.
VoucherID
A pseudo-random 32-bit value which uniquely identifies a persistent Link Voucher instance.

This must never change between distributions of the same unique voucher.
Seed
A 128-bit pseudo-random value used as an input in local VBA generation. This value must be

the same for each voucher instance identified by a VoucherID, and it cannot be equal across different
VoucherID values.

Algorithm Type
A Type-Length-Value field specifying exactly which type of key derivation function to use in

VBA generation and its corresponding baseline difficulty.
ECDSA PublicKey & Signature

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 14

Figure 7. The binary structure and fields of the Link Voucher NDP option. This is only considered
valid by receivers when attached to Router Advertisement and Redirect packets.

A variable-length field representing a unique public-key value held by the Voucher Bearer
issuing the Link Voucher option. It is used to sign the LV option and to authenticate any updates to
future LV option details. The exact mechanism of public key management is beyond the scope of this
paper. More specifically, this field contains a DER-encoded ECDSA [17] public key of type
SubjectPublicKeyInfo according to Section 2 of RFC 5480 [18] . The public key structure is followed
immediately by an adjacent DER-encoded ECDSA signature, derived using the private key
corresponding to PublicKey. The ECDSA signature is computed over a series of sequential octets,
constructed in the following order:
4. The 16-bit Expiration value.
5. The 64-bit Timestamp value.
6. The 32-bit VoucherID value.
7. The 128-bit Seed value.
8. The variable-length contents of the Algorithm Type value, including its Type and Length values.

The algorithm used in signature computation is ecdsa-with-SHA256, as defined in Section 3.2 of
RFC 5758 [19]. The signature must be a DER-encoded ASN.1 structure of the type ECDSA-Sig-Value
(Section 2.2.3 of RFC 3279 [20]). The final field appears as the two adjacent DER structures from Figure
8.

Padding
Any extra padding set on the datagram to round its total length to an even 8-octet boundary.

This field is always set to zero and is ignored by receivers.

Figure 8. The adjacent DER structure definitions for encoding the ECDSA PublicKey and Signature
values in a Link Voucher option.

3.7. Algorithm Type Options
There are three default key derivation algorithms that must be included with all basic

implementations of VBA. An Algorithm Type option is a value within LV options that is formaĴed
as a Type-Length-Value (TLV) object, where Type is a numeric identifier uniquely representing a
chosen KDF, Length is the width of the total Algorithm Type stub in units of 4 octets, and Value is a
compact, binary data format that is zero-padded to the nearest 32-bit (4-octet) boundary. Future
versions or extensions of VBA might wish to add and formalize new KDF algorithms and their
corresponding Type identifiers.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 15

Figure 9. The basic binary structure of a TLV field that is used in the Algorithm Type field of a Link
Voucher option. The Type and Length fields are a maximum width of 16 bits. The angle brackets to
the sides of the Value field indicate a variable length field.

The list of the three default KDF Algorithm Type choices is given below:
PBKDF2_SHA256
The Password-Based Key Derivation Function (PBKDF2) is defined in Section 5.2 of RFC 8018

[14]. It is a CPU-bound KDF, use of which might result in significant computation speed disparities
between embedded systems and high-performance hardware. It is included primarily for portability,
universality, and ease of implementation.

Type: 1
Length: Always 2
Value:
ITERATIONS_FACTOR
A 16-bit integer representing the multiplier of an input KDF iterations count, specified in big-

endian format. This value is required to be greater than zero, and receivers of zero values will simply
assume ‘1’ instead. This linear scaling factor can be used by a voucher to amplify the baseline cost of
computing the PBKDF2 KDF across all neighbors.

Padding
16 bits (2 octets) of padding initialized to zero and ignored by receivers.

Argon2d
The Argon2 algorithm is specified in Section 3 of RFC 9106 [21]. It is a Memory-bound KDF

providing significantly less disparate address computation speeds across varying hardware than
CPU-bound algorithms like PBKDF2. VBA explicitly opts to use Argon2d instead of Argon2i or
Argon2id because the generation of VBAs does not require any resistance to side-channel aĴacks.
Implementations of VBA should always prefer to employ this Algorithm Type over others when there
is no specific reason to opt for another Type, provided all participating neighbors have Argon2d
support.

The iterations count value is used as the t input value for Argon2d computations. The Argon2 t
parameter indicates the number of passes and is used to increase the algorithm's running time
regardless of MemorySize. To give the parameters in the Value field more weight, t is reduced from the
KDF’s input L value as follows:

t := (L >> 8) + 1
The Argon2 parameters for Secret Value K and Associated Data X are neither used nor

distributed by the LV for any reason, and the Tag Length T for Argon2d is set statically to a fixed
value of 32. These predefined values assure the Argon2 computation will scale according to a specific
projection as the input L value increases.

Type: 10
Length: Always 2
Value:
Parallelism
An 8-bit integer determining how many degrees of parallelism (i.e., lanes) are allowed to run

during KDF computation. A value of zero is not acceptable and will instead default to one by
receivers.

MemorySize
A 24-bit integer representing the number of kibibytes (KiB) used as space for the KDF

computation. This value should be carefully controlled and if possible should take into consideration
the computing resources across the link on which the voucher will be distributed. This value is
required to be a minimum of 8 * Parallelism, and cannot be set to zero. Receivers will need to adjust
the minimum MemorySize value accordingly if the value specified does not meet the minimum
threshold for the actual degree of Parallelism being used.

Scrypt
The Scrypt KDF algorithm is specified in Section 6 of RFC 7914 [22]. It is a Memory-bound KDF

that, similar to Argon2, provides less disparate address computation durations across varying
hardware than CPU-bound KDF techniques. The iterations count L value is used in part for both the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 16

N and r inputs for Scrypt computations. The Scrypt N parameter indicates the resource cost of
running the computation and is required to be a power of 2. The r Scrypt parameter indicates the
desired block size. Actual values are computed through the following conversion:

r (Parallelism) := MAX{ 16, (L & 0xFF00) >> 4 } << SCALING_FACTOR
N (Cost) := MAX{ 2, 1 << (L & 0x00FF) } << SCALING_FACTOR
The Scrypt parameter dkLen (derived key length) is set to a fixed value of 32 and cannot differ

between implementations. The parallelization parameter p is always set to one and also must not
differ between implementations.

Type: 20
Length: Always 2
Value:
SCALING_FACTOR
An 8-bit integer seĴing the difficulty scaling of the Scrypt algorithm. This value must only be 0

through 5 inclusive. Receivers must always limit the maximum SCALING_FACTOR to 5 regardless
of whether the received value exceeds 5.

Padding
its (3 octets) of padding initialized to zero and ignored by receivers.

4. Prototypes & Results
4.1. Minimum Difficulties

An average laptop was used to generate a set of VBAs for each VBA Algorithm Type option and
to evaluate the time taken by each KDF algorithm for each input iterations count. The testing
hardware is not important because all results are relative to one another; that is, since all tests are
performed on the same device, their relationships will manifest similar ro how they would across
other hardware. With a partial VBA generation reference implementation based on the work in
Section III, it is possible to create an application which can spawn VBAs on-the-fly based on any set
of dynamic or precompiled parameters.

Using the minimal key derivation function costs for each default algorithm, Figure 10 shows a
mostly linear trajectory for the results of each test. As expected, an increase in the input iterations
count value is linearly associated with the time taken to compute the VBA. Deviations in the graph
are spurious events generated by an active CPU on the testing device switching between various
scheduled tasks through the underlying operating system. Even though the results of the graph are
not aggregate statistics, the relationships between the data and their interdependencies demonstrate
how VBA might perform in practice.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 17

Figure 10. The three default key derivation functions are employed and benchmarked in VBA
generation procedures with their minimum possible baseline difficulty settings. Each increase in the
iteration count for each KDF expectedly shows mostly linear increases in address generation times.
All outliers and deviations from the observable linear pattern are due to spurious slowness of the
local processor on which these tests were run.

Argon2 key derivation is highly preferred as the default Algorithm Type for VBA Link Vouchers,
because its minimal baseline seĴings allow for a memory-bound KDF to require relatively liĴle time
to compute addresses. This allows link Voucher Bearers to have a suitable origin to start from when
determining the desired level of baseline computational difficulty of VBA generation on the local
network. Both PBKDF2 and Scrypt share a similar baseline relationship with the iterations count
used: about every 20-25 thousand additional required iterations results in 5 more milliseconds of
computation time during address generation and verification.

These two KDFs intentionally follow a similar progression with their minimal difficulties
because PBKDF2 is a CPU-bound KDF while Scrypt is a memory-bound KDF. Keeping these two
minimal baselines close will allow implementations to choose from a similar baseline difficulty for
each type (memory-bound or CPU-bound), and to make their further determinations from that
paĴern. It should be noted that the Scrypt KDF’s linearity slightly tapers into a gentle curve at higher
iterations count values. The reason for this fall-off is unclear but it does liĴle to affect any projections
of minimal baseline computation times.

Next, the same laptop was used to evaluate the individual relationships between iteration counts
at an arbitrarily high difficulty for each KDF. Results from each Figure should not be used to compare
one algorithm to another, as each algorithm’s ‘high’ difficulty seĴing was chosen independently from
the others. Instead, the results should serve to show how much time a considerably high cost for each
algorithm might require during generation and verification processes, even on an average laptop, in
relation to the individual, node-selected iterations counts used.

The input iterations count selected during each VBA generation can widely change the aggregate
cost of securing an address on the network, whether advantageous or not. Importantly, selecting the
iterations count is in the control of the VBA-generating node. Neighbors who wish to ensure the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 18

legitimacy of a received LL2IP binding will be expending the same, symmetric amount of time and
energy to verify the binding.

4.2. Difficult PBKDF2_SHA256

Figure 11. A high difficulty setting with the PBKDF2_SHA256 algorithm (an ITERATIONS_FACTOR
of 256) shows a mostly linear relationship between baseline time required to generate a VBA and the
input iterations count. Data gathered is not an averaged composite of multiple runs. As the iterations
count increases, variations in baseline computation time increase.

4.3. Difficult Argon2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 19

Figure 12. A high difficulty setting with the Argon2 KDF (more specifically, Argon2d; with a
Parallelism of 32 and a MemorySize of 2,048) shows a mostly linear relationship between baseline
time required to generate a VBA and the input iterations count. Data gathered is not an averaged
composite of multiple runs. As the iterations count increases, variations in baseline computation time
increase. The scale of the Time axis is much smaller than the other KDFs used in this experiment.

4.4. Difficult Scrypt

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 20

Figure 13. A high difficulty setting with the Scrypt KDF (a SCALING_FACTOR at its maximum of 5)
shows a mostly linear relationship between baseline time required to generate a VBA and the input
iterations count. Data gathered is not an averaged composite of multiple runs. As the iterations count
increases, variations in baseline computation time increases and the linearity of the graph gently
curves downwards.

5. Discussion
5.1. Precomputing Address Collisions

Malicious Voucher Bearers controlling address generation parameters are not able to further any
goals aimed at neighbor spoofing aĴacks without infeasible time-memory tradeoffs. Control over
network-wide KDF parameters and the voucher seed affords the opportunity to minimize the
baseline difficulty of computing a hash collision, but only to an extent where the correct collision-
producing link-layer identifiers must yet be discovered for neighbors with dynamic addresses.

If the role of Voucher Bearer is successfully hijacked by a malicious neighbor, then a static seed
value with a minimal-cost KDF can be set according to the aĴacker’s whims. The aĴacker is able to
pre-compute a set of rainbow tables for all possible link-layer address bindings. However, selection
of an iterations count is determined at each network node, and is not controllable by the threat actor.
Therefore, indexing a set of predetermined results would require a repository of knowledge
containing derivations from all possible link-layer identifiers (48 bits for MAC addresses), multiplied
by the possible iteration values (a 16-bit value) for each generated network address.

2ସ଼ ∗ 2ଵ଺ = 2଺ସ = 18,446,744,073,709,552,000 ℎܽݏℎ݁ݏ
In the case specific to MAC addresses as link-layer identifiers: if each result stored only the

necessary 48 bits extracted from the derived KDF hash value, then storage requirements per hash
lookup in the rainbow table would total:

MAC Address (48 bits)
 + Iterations Count (16 bits)
 + Hash Result Slice (48 bits)
 = 112 bits or 14 bytes

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 21

For 2଺ସ rainbow table entries at 14 bytes each, 258,254,417,031,933,722,624 bytes, or about 224
EiB (exbibytes), of storage space would be required. 224 EiB is roughly equivalent to 2 million 128-
TiB enterprise-grade storage arrays in sequence: an incomprehensible amount of data. If each hash
were to require only 1 microsecond to compute, 8183.589 millennia of compute time would be
required to calculate all possible values, longer than any conceivable amount of time on a human
scale.

For more perspective, in an evenly distributed workload, 100,000 nodes would need to operate
at full throĴle for almost 82 years to generate all of the desired information. Finally, this data would
need to be readily cross-referenceable because finding a collision necessitates using a different input
link-layer address than the one used by the legitimate node, by principle of link-layer address
uniqueness on-link. All of these preemptive calculations assume the subnet prefix is also statically
precomputed with the typical link-local prefix value of FE80::/64. Any change of the subnet prefix
value requires an entirely new set of data at 224 EiB in size.

These aĴacks are clearly computationally infeasible. In the best interest of future-proofing VBA,
and to avoid any absurdities related to these considerations, all deployments should strongly
consider using Router Advertisement Guarding per [23] to assist in preventing these aĴacks.
Guarding against rogue vouchers disallows any and all hijacking and abates these concerns, because
the voucher seed will never be a fixed value.

5.2. Other Security Considerations
Networks requiring a mix of ephemeral addresses in parallel with static, stable addresses will

encounter difficulties with VBA. Preserving the state of a voucher long-term will not be a feasible
strategy to maintain stable addresses, since its preservation for any extended period grants more time
for threat actors to compute collisions. Assigning static addresses to nodes in a VBA-enabled network
can be accomplished using a couple approaches:
 Use the AGVL IEM on either all interfaces within the local network, or on interfaces known to

interact with the target static address(es) directly. The AGVL IEM will permit per-
implementation behaviors to strongly prefer Secured results of NDAR exchanges over
Unsecured ones. This option will remove any guarantees of address ownership or on-path aĴack
prevention from the static address(es), because a static address failing the VBA verification
process will be tagged in the Neighbor Cache as an Unsecured entry, at the same level of
preference and security as other addresses whose bindings fail to verify.

 If neighbors do not interact with the static address(es), then the only affected parties are the
node(s) with static assignments and the subnet gateway, which will likely route traffic to and
from the static address(es). If this is the case within the subnet, then only host-to-router NDAR
transactions will fail verification, so a static entry in the NC of the router should correlate each
LLID to each static IP address expected to use the gateway.
An additional concern specific to IPv6 networks is anycast addressing. Anycast addresses are

allocated from the unicast address space and are thus indistinguishable to nodes establishing
connections to them. NDAR exchanges with these targets may therefore respond with varying LLIDs
and cause VBA verification to be unreliable. For this reason, it is not recommended to utilize anycast
addresses, because the ownership of the address cannot be bound to any particular LLID. The IPv6
Addressing Architecture specification (RFC 4291 [24]) outlines a Required Anycast Address in
Section 2.6.1. VBA maintains compatibility with this requirement by disabling address verification
for per-prefix subnet anycast addresses. For example, a host using SLAAC to generate an address in
the subnet 2001:db8:700::/64 will disable VBA verification for the address 2001:db8:700::.
Lastly, considering the constraints of VBA verification, it is possible for a sending node NA to have
verified the VBA for some neighbor NB without the reverse being true, if NA.had not provided an
SLLAO during the initial NDAR exchange. NA can send packets to an application or service on NB
without requiring any response traffic in return. Nodes receiving unsolicited packets from neighbors,
for which no response is required or demanded by the sender, do not need to verify the sender’s
address binding. The receiving node may choose to verify the neighbor’s IP address if enforced by a
VBA implementation, but it is not required. VBA is specifically designed for the prevention of

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 22

neighbor spoofing attacks and is not concerned with policing incoming traffic that does not require
an NDAR exchange.

5.3. Built-in Transition Mechanisms
It is unrealistic to assume that VBA would be deployed simultaneously across all nodes in a local

network, because not every active node will receive compatibility at the same time. It is safe to assume
based on past adoption trends that most devices will never achieve operable VBA support. Therefore,
VBA comes predefined with an ability to operate in an intermediate environment where its full
support is lacking. The three factors driving this ability are (1) Interface Enforcement Mode options
for each participating interface, (2) localized changes to NDP occurring mostly in the software logic
and not to the protocol itself, and (3) processes that do not require complex interactions between
neighbors.

A pure IPv6 local network using the AGV IEM across its nodes will simply not be able to
communicate bidirectionally with any node(s) lacking VBA support. For example, bidirectional
traffic between a non-VBA node with dynamic addresses and an AGV IEM network gateway will be
dropped at the gateway due to its binding verification requirement. In the case of dual-stack local
networks, IPv4 traffic can be used as an insecure failsafe protocol when connecting nodes are
explicitly aware of a route in both protocol stacks, such as between a host and a gateway router. The
Happy Eyeballs algorithm from RFC 8305 [25] specifies a connection methodology that
simultaneously aĴempts IPv4 and IPv6 connections, preferring IPv6 communication where possible.
For local networks using AGV mode, the IPv6 network will appear unavailable and broken to
unsupporting node(s). Thus they might desirably fall back to using available IPv4 connections
instead. This strategy will permit a degree of communication with non-VBA nodes wherever IPv4
traffic is allowed.

Local IEMs on nodes communicating directly with incompatible neighbors can be adjusted to
beĴer accommodate the lack of verifiable bindings. For example, a VBA-enabled node corresponding
with a neighbor running an antiquated networking stack might opt to use the AGVL IEM. Doing so
would allow the VBA node to strongly prefer Secured devices for the rest of the network, such as the
default gateway, while still accepting Unsecured NDAR traffic that does not contain any superseding
Secured responses. In the case of a subnet router in a network with mixed VBA support, using the
AGVL IEM can again prove very advantageous for the sake of accommodation. Assuming most
nodes use VBAs and a few cannot, only those few nodes will remain at risk of neighbor spoofing
aĴacks.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 23

Figure 14. A mixed local network is shown where a single valid Link Voucher is delegated to VBA-
capable neighbors. Neighbors without VBA capabilities are shown in blue, VBA-aware neighbors are
shown in red, orange, yellow, and green for the IEMs AAD, AGO, AGVL, and AGV respectively.
Different links are shown between some hosts to indicate their connectivity and security within this
transitioning network. Traffic inbound to verifying nodes is generally considered secured.

5.4. Examining the Threat Model
The introduction of VBA satisfies the concerns listed in the original threat model from Section

III. VBA relies on the principle of LLID uniqueness on the same broadcast domain, and thus threat
actors cannot subversively spoof another node’s legitimate LLID without introducing obvious
network disruptions. Since all deterministic VBA generations depend upon the node’s supposed
LLID given during NDAR transactions, two nodes who cannot share the same LLID will never be
successfully verified by neighbors for the same IP address. Whether or not the link layer is secure,
VBAs are still necessary to validate bindings between IP and link-layer address components during
address resolution.

Likewise, threats from external, off-link nodes are mitigated by VBA because IP addresses are
the result of hashing algorithms, which generally produce pseudo-random outputs. External nodes
will not be aware of the voucher details incorporated into the final address: the stored state required
for address generation consists of local-only information, so the threat is abated. VBAs can also be
rotated to an entirely new, valid address by changing the work factor value (i.e., iterations count)
embedded within the address, even if no other parameters or voucher information has changed.

5.5. Simplicity, Privacy, & Flexibility
As the original goals of this research stated, the introduction of Voucher-Based Addressing aims

to maintain three core ideals: simplicity, privacy, and flexibility. In this brief section, the work of this
research will be fairly evaluated against these ideals, in order to determine its adoption potential. A
justification is fairly provided to explain why simplicity, privacy, and flexibility are indeed goals
achieved by VBA in practice.

Simplicity is the key to drawing audience aĴention to a protocol or idea; complexity can be
understandably intimidating. Solutions of the past which have found themselves too complex or

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 24

difficult to implement have been buried by the sands of time and relegated to a lifecycle filled with
only academic citations and no concrete manifestations. VBA is a simple scheme because it does not
require huge, mandatory impacts to NDP that cause disruptions in the network or at the node-to-
node level. With a mixture of Interface Enforcement Mode selections, a broadcasted Link Voucher
option, and already-present details about a node, addresses can be generated and verified using a
procedure that is easy to follow and implement. The address verification shim process is a small
snippet of software that carries the entire weight of VBA. It is modifiable with one simple per-
interface seĴing (the IEM).

Privacy is important to establish properly and consciously in proposals that determine the
unicast generation of interface IP addresses, whether local or global scope. It is also an afterthought
of many proposals and research which might be elegant and practical otherwise. VBA manifests
privacy in its ability to generate disposable, deterministic, outwardly pseudo-random addresses
while still providing enough information for on-link neighbors to reconstruct and validate them.
VBAs have no flags or other magic values which indicate that they are VBAs, adding to their
obscurity.

The VBAs assigned to a local interface stem from a one-to-many pairing of the interface LLID to
its assigned output address(es) coupled with a set of node-selected iterations counts. This means a
node is free at any time, even if the voucher parameters have not changed, to choose a new interface
identifier which shares no correlation to another chosen iterations count, defeating any address
tracking or activity correlation concerns between addresses. VBAs originating from the same input
parameters with varying iterations counts cannot be used to determine the internal state of the VBA
algorithm (and thus the details of the interface’s link-layer address or active voucher), because a
hashing algorithm generates the majority of the final address suffix. VBAs can be regenerated for
each subnet prefix, thus location tracking is not possible. Additionally, by the irreversible nature of
hashing functions, VBAs will not expose the underlying LLID of the generating interface, thus
alleviating device-specific vulnerability exploitation concerns and other privacy concerns from
leaked LLID values.

Finally, flexibility is a paramount concern for researchers seeking adoption of their proposals.
Any specification that mandates an immediate, wholesale, strict adherence to itself is bound to fail.
Networks are built to be dynamic, independent, and transitionable between various protocols and
specifications, and any particular node may be at its own stage in deployment of a software or
specification. Any proposal which ignores a simple transition capability will never be adopted
because forced compatibility violates any notion of flexibility. VBA employs IEMs to fulfill this need.
The various interface modes allow an operating neighbor to decide which policies to enforce based
on local seĴings or autoconfiguration alone, enabling per-interface choices about which rules to
adhere to.

6. Summary, Future Research, & Conclusion
There is no tangible velocity towards the adoption of a robust security solution for Neighbor

Discovery’s issues. It seems as though these security weaknesses have long been covered and patched
with a cocktail of willful ignorance and idle hands. SEND and CGA have proven over the course of
decades to be undesirable and too complicated or esoteric for most practical applications, in a realm
such as IPv6 that remains fearsomely alien to laymen. Network monitoring solutions require
consistent involvement and interference by administrators who ultimately ‘just want it to work’ so
they can have peace of mind. Other proposals to fix NDP’s weaknesses have either languished in
obscurity, are too complex, or fail to focus specifically on their practicalities and acknowledge their
own shortcomings.

The real fix to these weaknesses is to create and subsequently adopt effective NDP security
solutions which provide a trinity of aĴributes: simplicity, privacy, and flexibility. A solution lacking
one or more of these three properties will not be preserved in the long-term without painstaking
effort, as time has already proven. Voucher-Based Addressing seeks to establish itself as a proposal
touting these aĴributes and aiming to solve a specific problem, rather than ambitiously trying to
remediate all complex issues of the protocol at once.

In summary, VBAs bind input link-layer addresses to sets of privacy-focused, deterministic
output addresses that can be reconstructed by verifying neighbors to confirm a reported binding.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 25

Address generation and verification is constrained to some initial conditions set by a shared voucher
on the local network. Generated addresses appear outwardly random to off-link nodes and are easily
rotatable to other seemingly random values; yet on-link they provide all information required for
voucher-aware neighbors to verify them. Neighbor consensus of voucher parameters acts as an
enforceable handshake during the address resolution process. This process is not actively falsifiable
without introducing obvious network disruptions, thus preventing threat actors from subversively
intercepting or modifying traffic between neighbors in on-path aĴacks.

VBA is a simple, unique, transparent, privacy-conscious, and flexible standard for use in
Neighbor Discovery Protocol transactions. The proposal presented in this research maintains a high
level of abstraction and does not beget very much concrete and practical evidence of its practicality.
There is still, however, a very pressing need for a low-configuration, low-complexity technology to
fill the security void left by the absence of SEND and CGA adoption in the modern enterprise.

The intent of this research within the wider internet community is not to declare an ultimate
solution to the neighbor spoofing issues of NDP, though it may perhaps be a suitable baseline. Rather,
it is to draw aĴention to a longstanding security issue and to spur thought for future research to build
upon. Future developments based upon concepts herein might continue to focus on how they could
be refined or beĴer implemented, which vulnerabilities they introduce, any gaps in their theory or
practice, and how the cross-application of each technique could be applied otherwise. Researchers
are encouraged to explore more modern, alternative approaches to securing the NDP Address
Resolution process from neighbor spoofing threats.

To conclude, the broad goal of introducing VBA is to define an alternative to SEND, CGAs, and
other monolithic approaches to solving the neighbor spoofing problem. This research aims to
pragmatically harmonize three important aĴributes: privacy, flexibility, and simplicity. It has set out
to molt the Neighbor Discovery security paradigm that has continued to depend upon sophisticated
Public Key Infrastructure, limiting infrastructure-only protocols, superfluous new data constructs,
unwieldy asymmetric cryptography, and centralized address registration authorities. This research
has defined a decentralized and empirical approach that mostly evades the aforementioned tar pits
and creates a new perspective. The problem of neighbor spoofing in IPv6 can indeed be solved in a
way that is comprehensible, privacy-focused, wholly transparent to end users, and not at all
disruptive to incompatible neighbors.

Supplementary Materials: The original implementation used in the study is openly available in a public
repository at hĴps://github.com/NotsoanoNimus/cpp-fiddles under the ‘vba-tests’ and ‘vba-collision-tests’
folders.

Author Contributions: Conceptualization, Z.P.; Investigation, Z.P.; Methodology, Z.P.; Project administration,
J.G. and Z.P.; Software, Z.P.; Supervision, J.G. and Z.P.; Validation, J.G. and Z.P.; Writing - original draft, Z.P.;
Writing - review, J.G. and Z.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing is not available as no new data were created as a result of this
research.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. W. A. Simpson and E. Nordmark, “Neighbor Discovery for IP Version 6 (IPv6),” no. 1970. in Request for

Comments. RFC Editor, Aug. 1996. [Online]. Available: https://www.rfc-editor.org/info/rfc1970
2. D. T. Narten, W. A. Simpson, and E. Nordmark, “Neighbor Discovery for IP Version 6 (IPv6),” no. 2461. in

Request for Comments. RFC Editor, Dec. 1998. [Online]. Available: https://www.rfc-editor.org/info/rfc2461
3. W. A. Simpson, D. T. Narten, E. Nordmark, and H. Soliman, “Neighbor Discovery for IP version 6 (IPv6),”

no. 4861. in Request for Comments. RFC Editor, Sep. 2007. [Online]. Available: https://www.rfc-
editor.org/info/rfc4861

4. M. Gupta and A. Conta, “Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) Specification,” no. 4443. in Request for Comments. RFC Editor, Mar. 2006. [Online]. Available:
https://www.rfc-editor.org/info/rfc4443

5. J. Kempf, J. Arkko, B. Zill, and P. Nikander, “SEcure Neighbor Discovery (SEND),” no. 3971. in Request for
Comments. RFC Editor, Mar. 2005. [Online]. Available: https://www.rfc-editor.org/info/rfc3971

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

 26

6. T. Aura, “Cryptographically Generated Addresses (CGA),” no. 3972. in Request for Comments. RFC Editor,
Mar. 2005. [Online]. Available: https://www.rfc-editor.org/info/rfc3972

7. P. Sumathi, S. Patel, and A. Prabhakaran, “A Survey on IPv6 Secure Link Local Communication Models,
Techniques and Tools,” 2017.

8. P. Sumathi, S. Patel, and Prabhakaran, “Secure Neighbor Discovery (SEND) Protocol challenges and
approaches,” in 2016 10th International Conference on Intelligent Systems and Control (ISCO), 2016, pp. 1–6.
doi: 10.1109/ISCO.2016.7726976.

9. J. Kempf, P. Nikander, and E. Nordmark, “IPv6 Neighbor Discovery (ND) Trust Models and Threats,” no.
3756. in Request for Comments. RFC Editor, May 2004. [Online]. Available: https://www.rfc-
editor.org/info/rfc3756

10. J. Arkko, T. Aura, J. Kempf, V.-M. Mäntylä, P. Nikander, and M. Roe, “Securing IPv6 neighbor and router
discovery,” WiSE 02 Proc. 1st ACM Workshop Wirel. Secur., Sep. 2002, doi: 10.1145/570681.570690.

11. M. Anbar, R. Abdullah, R. M. A. Saad, E. Alomari, and S. Alsaleem, “Review of Security Vulnerabilities in
the IPv6 Neighbor Discovery Protocol,” in Information Science and Applications (ICISA) 2016, K. J. Kim and
N. Joukov, Eds., Singapore: Springer Singapore, 2016, pp. 603–612.

12. D. T. Narten, T. Jinmei, and D. S. Thomson, “IPv6 Stateless Address Autoconfiguration,” no. 4862. in
Request for Comments. RFC Editor, Sep. 2007. [Online]. Available: https://www.rfc-editor.org/info/rfc4862

13. J. D. Day and H. Zimmermann, “The OSI reference model,” Proc. IEEE, vol. 71, no. 12, pp. 1334–1340, 1983,
doi: 10.1109/PROC.1983.12775.

14. K. Moriarty, B. Kaliski, and A. Rusch, “PKCS #5: Password-Based Cryptography Specification Version 2.1,”
no. 8018. in Request for Comments. RFC Editor, Jan. 2017. [Online]. Available: https://www.rfc-
editor.org/info/rfc8018

15. T. Kiravuo, M. Sarela, and J. Manner, “A survey of Ethernet LAN Security,” IEEE Commun. Surv.
TutorialsIEEE Commun. Surv. Tutor., vol. 15, no. 3, pp. 1477–1491, Jan. 2013, doi:
10.1109/surv.2012.121112.00190.

16. F. Gont, “A Method for Generating Semantically Opaque Interface Identifiers with IPv6 Stateless Address
Autoconfiguration (SLAAC),” no. 7217. in Request for Comments. RFC Editor, Apr. 2014. [Online].
Available: https://www.rfc-editor.org/info/rfc7217

17. D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic Curve Digital Signature Algorithm (ECDSA),” Int.
J. Inf. Secur., vol. 1, no. 1, pp. 36–63, Aug. 2001, doi: 10.1007/s102070100002.

18. T. Polk, R. Housley, S. Turner, D. R. L. Brown, and K. Yiu, “Elliptic Curve Cryptography Subject Public
Key Information,” no. 5480. in Request for Comments. RFC Editor, Mar. 2009. [Online]. Available:
https://www.rfc-editor.org/info/rfc5480

19. D. R. L. Brown, T. Polk, S. Santesson, K. Moriarty, and Q. Dang, “Internet X.509 Public Key Infrastructure:
Additional Algorithms and Identifiers for DSA and ECDSA,” no. 5758. in Request for Comments. RFC
Editor, Jan. 2010. [Online]. Available: https://www.rfc-editor.org/info/rfc5758

20. R. Housley, T. Polk, and L. E. B. III, “Algorithms and Identifiers for the Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” no. 3279. in Request for Comments.
RFC Editor, May 2002. [Online]. Available: https://www.rfc-editor.org/info/rfc3279

21. A. Biryukov, D. Dinu, D. Khovratovich, and S. Josefsson, “Argon2 Memory-Hard Function for Password
Hashing and Proof-of-Work Applications,” no. 9106. in Request for Comments. RFC Editor, Sep. 2021.
[Online]. Available: https://www.rfc-editor.org/info/rfc9106

22. C. Percival and S. Josefsson, “The scrypt Password-Based Key Derivation Function,” no. 7914. in Request
for Comments. RFC Editor, Aug. 2016. [Online]. Available: https://www.rfc-editor.org/info/rfc7914

23. G. V. de Velde, J. Mohácsi, E. Levy-Abegnoli, and C. Popoviciu, “IPv6 Router Advertisement Guard,” no.
6105. in Request for Comments. RFC Editor, Feb. 2011. [Online]. Available: https://www.rfc-
editor.org/info/rfc6105

24. D. S. E. Deering and B. Hinden, “IP Version 6 Addressing Architecture,” no. 4291. in Request for
Comments. RFC Editor, Feb. 2006. [Online]. Available: https://www.rfc-editor.org/info/rfc4291

25. D. Schinazi and T. Pauly, “Happy Eyeballs Version 2: Better Connectivity Using Concurrency,” no. 8305.
in Request for Comments. RFC Editor, Dec. 2017. [Online]. Available: https://www.rfc-
editor.org/info/rfc8305

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.1561.v1

https://doi.org/10.20944/preprints202406.1561.v1

