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Abstract: Serum biochemical indicators serve as vital proxies that reflect the physiological state and functions 
of different organs. The genetic parameters and molecular mechanisms underlying serum biochemical 
indicators of sheep (Ovis aries) have not been well understood. Therefore, the aim of the present study was to 
identify genetic architecture and genomic loci underlying ten serum biochemical indicators in sheep, including 
alanine transaminase, aspartate transferase, lactate dehydrogenase, cholesterol, glucose, phosphorus, calcium, 
creatinine, urea concentrations and total protein levels. We implemented genetic parameter estimations and 
GWAS for each trait in 422 Akkaraman lambs. Overall, low to moderate heritability estimates were found, in 
the range 0.14–0.55. Additionally, low to high genetic correlations were observed among traits. In total, 23 SNP 
loci were associated with serum biochemical indicators leading to 19 genes . These are SPTA1, MGST2, 
CACUL1, IGFBP7, PARD3, PHB1, SLC15A5, TRIM35, RGS6, NUP93, CNTNAP2, SLC7A11, B3GALT5, DPP10, 
HST2ST1, NRP1, LRP1B, MAP3K9, ENSOARG00020040484.1 as well as LOC101103187, LOC101117162, 
LOC105611309 and LOC101118029. To our knowledge, these data provide the first association between SPTA1 
and serum cholesterol and between ENSOARG00020040484.1 and serum glucose. The current findings provide 
a comprehensive inventory of the relationships between serum biochemical parameters, genetic variants, and 
disease-relevant characteristics. This information may facilitate the identification of therapeutic targets and 
fluid biomarkers and establish a strong framework for comprehending the pathobiology of complex diseases 
as well as providing targets for sheep genetic improvement programmes. 

Keywords: serum biochemical indicators; Ovis aries; GWAS; QTL; genetic correlation; heritability 
 

1. Introduction 

Animal blood components reflect their immune system and metabolism of nutrients. Serum is 
the fluid and solute fraction of blood that lacks erythrocytes, platelets, leukocytes, and clotting factors 
[1]. Serum contains a wide range of nutrients, including proteins, electrolytes, antigens, antibodies, 
hormones, and exogenous elements not needed for clotting. Serum is also required for the body's 
delivery of nutrients, preservation of the homeostasis of the intracellular environment, and 
electrolyte and acid-base balance [2,3]. 

Serum biochemical indicators serve as vital proxies that reflect the physiological state and 
functions of different organs. As molecular phenotypic biomarkers, they are commonly employed as 
general indicators to assess an organism's immunological status and overall health conditions [4-6]. 
Many of these parameters appear to have moderate to high heritability in various species including 
human, pigs, and horses [7-9]. Correspondingly, these traits were expected to be under tighter genetic 
control compared to the associated diseases and complex traits, since they are directly linked to the 
biochemical pathways, which might provide valuable information about the underlying biological 
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control [7,10,11]. Therefore, identifying the genetic architecture responsible for their variability may 
contribute to a better understanding of the biological processes involved in various diseases and 
complex traits that are linked to these molecular phenotypes. 

Animal welfare and health status  have paramount importance for all livestock enterprises 
since any deviation from good health  might have adverse effects on the profitability, productivity, 
and sustainability of production systems [12]. Mounting evidence suggest that serum biochemical 
parameters have a wide range of associations with disease resistance, resilience, immune functions, 
productivity, and feed efficiency in various livestock species [7,13-17]. Ruminant production in 
particular holds significant relevance in addressing two fundamental global challenges: 1) enhancing 
the food security and nutrition for an expanding global population and 2) addressing the imperative 
of climate change mitigation [18,19]. However, conventional breeding strategies fall short of meeting 
expectations, especially for those traits that are difficult and costly to measure directly including traits 
that are expressed later in life such as disease resistance, immunity, and longevity [5,20]. Nonetheless, 
the economic benefits of prioritizing disease resistance and robustness through genome-based 
selection are suggested to surpass the potential drawbacks of slower genetic progress in other traits 
in livestock [21]. Strong relationships between serum biochemical parameters and other economically 
important traits in livestock would allow those parameters to be used as indicators of indirect 
selection on many traits, which is expected to mitigate the limitations of a conventional breeding 
scheme. 

Due to the rapid emergence of high-throughput sequencing and genotyping technologies, 
GWAS has become a widely used statistical approach to discover QTL related to complex traits in 
various species including human, pigs, cattle, goat, and sheep [4,7,22-25]. Genome-based selection 
methods are suggested to speed up the genetic progress in selection schemes by reducing generation 
interval and increasing accuracy and intensity of selection in livestock production systems [26-30]. 
Sheep play a significant role in ensuring food security and sustainable production within the 
livestock species, thanks to their resilient adaptability and robust characteristics [19]. Furthermore, 
various studies suggest sheep as a more suitable model than rodents for the investigation and 
developing treatment for several human clinical conditions [31,32]. Therefore, dissection of the 
genetic basis underlying serum biochemical traits observed in sheep is a potential approach to design 
a comprehensive marker-assisted selection program to prioritize sustainability, enhance resilience, 
and support animal model development. To date, various genomic loci were associated with serum 
biochemical parameters in human as well as in livestock such as pigs, cattle and ducks [4,5,7,10,33,34]. 
However, only one study has been identified that specifically investigates the genomic heritabilities 
and QTL associated exclusively with serum protein levels in sheep [12]. 

Akkaraman sheep is an adaptive fat-tailed breed representing an extensive share of Turkey’s 
sheep population and spread through diverse terrain, from harsh, semi-arid regions to the mild 
climates with comparatively moderate productivity characteristics [24]. Recently, the genome of the 
breed has also been characterized against various world-wide sheep breeds to understand genomic 
relationships [35]. The large spread of the populations, close genomic relationships with various 
sheep breeds and its hardy and robust nature indicate potential of the breed’s physiology for 
sustainable production under increased temperatures and extreme environmental conditions due to 
global warming. Therefore, the aim of the present study was to identify the genetic architecture and 
genomic loci underlying measurements of certain serum biochemical indicators in Akkaraman sheep 
including alanine transaminase, aspartate transferase, lactate dehydrogenase, cholesterol, glucose, 
phosphorus, calcium, creatinine, urea concentrations and total protein levels. Our findings are 
expected to profoundly contribute insights into the genomic basis of complex serum biochemical 
traits that are of clinical and physiological importance. 

2. Materials and Methods 

Authors have followed the ARRIVE guidelines and EU regulations on animal research 
throughout the research process with animals of the study [36]. The approval of the Local Ethics 
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Committee of the Experimental Animals of the Ministry of Agriculture and Forestry in Turkey, with 
a file number of 20 November 2020/183 was taken for the studied population. 

2.1. Animal population and blood serum indicators 

The experimental population consisted of 422 Akkaraman lambs (252 female and 170 males) of 
the prior study population described in [24]. Briefly, animals are sourced from three commercial 
farms located at the districts of Ankara, Turkey (39°41' N; 33°01' E). The region is characterized by its 
harsh and cold winters, dry and parching heat during summers as well as meagre, poor-quality 
grassland. A phenotypic selection was applied across generations where growth rate was considered 
for mating designs. Animals were registered to the National Small Ruminant Breeding Program. 
They were born between January-February 2021 and weaned between April-May 2021. Once weaned 
101 of those animals were maintained in feedlot until the six months of age, while the remaining 321 
were based on pasture grazing. 

While collecting blood samples for the genotyping stage to EDTA-coated vacutainers at the six 
months of age, a separate set of samples were collected to a yellow biochemical analysis tube with 
gel and clot activator, reaching a total of 8-10 mL of blood sampled per animal. Yellow biochemical 
analysis tubes were immediately centrifuged at 4100 rpm for 5-6 minutes and the serum was 
separated from the clot and stored in -80°C freezer until use. Serum samples were later sent to a 
private biochemistry lab for the measurements of alanine transaminase (ALT), aspartate transferase 
(AST), lactate dehydrogenase (LDH), cholesterol (CHO), glucose (GLU), inorganic phosphorus (IP), 
calcium (CA), creatinine (CRE), urea (UREA) concentrations and total protein (TPRO) levels. The 
serum biochemical indicators were assessed with the chemical analyzer, Architect C8000, series 
AS1242 (Abbott Diagnostics, USA). 

The fixed environmental factors tested to be accounted for were sex (i.e., male and female), birth 
type (i.e., singlets and twins), herd (i.e., three herds), feeding type (i.e., feedlot, pasture), and the age 
of the lamb in days (covariate). The descriptive statistics, data cleaning, and model fitting were 
exercised via the R statistical environment [37]. Phenotypic distributions of each trait were visually 
inspected and outliers with observations deviating three standard deviations ± mean for each trait 
were excluded from further analyses. Furthermore, the heteroscedasticity of variances was tested 
with the Breusch–Pagan test [38]. Additionally, since most of the serum biochemical parameters 
showed skewed distributions, Box-Cox transformation was applied to the traits of interest preceding 
model fitting, genetic parameter estimates and association analysis [39]. The descriptive statistics of 
the phenotypic observations after the outliers removed are provided in Table S1. Phenotypic 
correlations among the traits were obtained as pairwise Pearson’s correlation coefficients and they 
were given in Table 1. 

2.2. Genotyping and quality control 

DNA of the studied animals was extracted from blood samples using a QIACube HT instrument 
and Blood/Tissue DNA extraction kit following manufacturer’s protocol (Qiagen, Hilden, Germany). 
After obtaining high quality DNA for each sample, genotyping was carried out with Axiom™ Ovine 
50K SNP Genotyping Array on the GeneTitan™ Multi-Channel Instrument following the 
manufacturer’s guide (Axiom™ 2.0 Assay 96-Array Format Manual Workflow, ThermoFisher 
Scientific, Waltham, MA, USA). A quality control (QC) followed genotyping, where SNPs that have 
minor allele frequency and call rate below 0.05 and 0.95 respectively, deviate from HWE (0.05/SNP 
numbers) and mapped to sex chromosomes were excluded from further analysis. Additionally, 
animals with too high heterozygosity (FDR<1%), call rate below 0.90 and identity by state (IBS) above 
0.95 were set to be omitted while no animals were lost at this stage. 40,868 SNPs passed the QC 
criteria. All QC process was undertaken with ‘GenABEL’ R package [40]. 
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2.3. Estimation of genetic parameters 

Univariate and bivariate analyses of linear animal mixed model were implemented respectively 
to obtain genomic heritability estimates and pairwise genetic correlations among the serum 
biochemical traits, which are presented in Table 2. The model description and variance-covariance 
structure of the estimations, which are carried out using ‘sommer’ R package is detailed below [41]:  

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝒆𝒆 

𝑽𝑽 =  �
𝒁𝒁𝒊𝒊𝑮𝑮𝝈𝝈𝒖𝒖𝒊𝒊

𝟐𝟐 𝒁𝒁𝒊𝒊′ + 𝑰𝑰𝝈𝝈𝒆𝒆𝒊𝒊
𝟐𝟐 ⋯ 𝒁𝒁𝒊𝒊𝑮𝑮𝝈𝝈𝒖𝒖𝒊𝒊

𝟐𝟐 𝒁𝒁𝒊𝒊′ + 𝑰𝑰𝝈𝝈𝒆𝒆𝒊𝒊
𝟐𝟐

⋮ ⋱ ⋮
𝒁𝒁𝒊𝒊𝑮𝑮𝝈𝝈𝒖𝒖𝒊𝒊,𝒋𝒋𝒁𝒁𝒋𝒋

′ + 𝑰𝑰𝝈𝝈𝒆𝒆𝒊𝒊,𝒋𝒋 ⋯ 𝒁𝒁𝒋𝒋𝑮𝑮𝝈𝝈𝒖𝒖𝒊𝒊,𝒋𝒋
𝟐𝟐 𝒁𝒁𝒋𝒋′ + 𝑰𝑰𝝈𝝈𝒆𝒆𝒋𝒋

𝟐𝟐
� 

y is the vector of observations; 𝜷𝜷 is the vector of significant fixed effects to be accounted for in the 
model (i.e., significant environmental factors after model fitting); 𝒖𝒖 and 𝒆𝒆 the random effects of 
additive genomic breeding values and residual errors that are assumed to be drawn from a MVN (0, 
𝑮𝑮𝝈𝝈𝒖𝒖𝟐𝟐) and MVN (0, 𝑰𝑰𝝈𝝈𝒆𝒆𝟐𝟐) respectively; 𝑿𝑿 and Z here are the matrices mapping fixed effects and the 
breeding values to the observations of the traits focused. 𝝈𝝈𝒖𝒖𝟐𝟐 and 𝝈𝝈𝒆𝒆𝟐𝟐 presented here are the additive 
genetic variance and environmental variances for each trait of interest while appended ‘i’ and ‘j’ are 
the specific traits recorded for each animal that handled for bivariate analyses. Finally, I is an identity 
matrix and G is the genomic relationship matrix (GRM) obtained by the ‘Model 1’ described by [42]. 
Fixed environmental effects were not included in bivariate analysis to avoid convergence problems. 
The (co)variance components of the models for univariate and bivariate analyses were estimated with 
Newton-Raphson optimization approach to the direct inversion (DI) based restricted maximum 
likelihood (REML) using the GRM provided [43,44]. Standard errors of genetic correlations were 
estimated with the delta method by a second order Taylor series expansion [45]. Table 2 provides the 
estimated heritabilities (on diagonal), genetic correlations (below diagonal) and phenotypic 
correlations (above diagonal). 

2.4. Genome-wide Association Studies (GWAS) 

Following the genetic parameter estimation, univariate genome-wide association studies were 
implemented for each trait by using the linear mixed model and GRM described above to avoid bias 
and minimize false positive rates due to population stratification and cryptic relatedness [46,47]. The 
same significant environmental factors were used, and the SNPs were fitted as fixed factors 
consecutively one at a time, each assuming a trend for the copy number of the minor allele (i.e., ‘0’ 
for homozygous major allele, ‘1’ for heterozygotes and ‘2’ for homozygous minor allele), for holding 
additivity. Details of the mixed model-based association test and its previous applications can be 
found in [24,47]. Concisely, it is an animal mixed model approach to family-based association tests 
that accommodates a GRM weighted with allele frequencies, to avoid inflation of the test statistics 
because of possible population stratification and relatedness as originally proposed by [47]. 
Following the association tests, the inflation factor (λ) and the Quantile-Quantile plots of the p-values 
were obtained. The ‘genomic control’ correction was utilized to adjust for any possible inflation of 
the test statistics by setting λ to 1 [48]. The p-values of the SNPs were illustrated as ‘−log10 (p-value)’ 
on Manhattan plots for each trait, considering the corresponding chromosome, while two significance 
thresholds were imposed to detect genome-wide significant (i.e., solid line) and genome-wide 
suggestive significance (i.e., dashed line). To prevent false associations due to multiple testing, 
Bonferroni correction was applied to the significance thresholds. This correction involved dividing 
the initial significance level of 0.05 by the total number of SNPs passing quality control (40,868 SNPs) 
for genome-wide significance, while this value was multiplied with the number of chromosomes to 
obtain the representative chromosome-wide significance. Thus, the genome-wide significance 
threshold was 1.223×10−6 and the chromosome-wide was 3.181×10−5, which are 5.91 and 4.50 
respectively on the −log10 (p-value) scale on the Manhattan plots. All the steps of genome-wide 
association analysis for each trait were carried out using the ‘GenABEL’ R package [40]. 
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2.5. Functional annotation analysis 

Genomic positions and nearby genes related to associated SNPs were retrieved from the 
Oar_v4.0 genome assembly on NCBI Genome Data Viewer [49]. Genes that directly contained 
significant SNPs were suggested as candidates. However, when the SNP was not within a described 
gene, the area of the chromosome covering nearly ± 500 Kbp from the identified SNP was scanned 
for the nearest candidate gene with a reasonable explanation. Identified genes were functionally 
enriched to recover biological information and KEGG (Kyoto Encyclopedia of Genes and Genomes) 
pathways involved by using The Database for Annotation, Visualization, and Integrated Discovery 
(DAVID) Bioinformatics Resources 2021 [50,51]. Where the sheep genome suffers from the lack of 
annotation, the orthology among species was exploited to annotate relevant genes from other species 
such as cattle, mice, and humans. The biological processes of the identified genes were given with 
their Gene Ontology (GO) terms and can be further detailed on QuickGO by EMBL’s European 
Bioinformatics Institute [52]. Finally, the animal QTL Database was scanned to identify whether 
detected SNPs in this study were previously associated with any serum biochemical traits [53]. 

3. Results 

3.1. Phenotypic correlation and genetic parameter analyses between serum biochemical indicators 

Ten serum biochemical parameters were detected in this study, including ALT, AST, CHO, 
LDH, CA, IP, CRE, GLU, TPRO and UREA. The descriptive statistics for the serum biochemical 
indicators are listed in Supplementary Table S1. Table 1 shows the genetic and phenotypic 
correlations between serum biochemical indicators to provide context for the use of blood serum 
components in sheep breeding. A wide range of Pearson correlation coefficients were observed, 
ranging from −0.04 to 0.91, among serum biochemical indicators. Results showed that ALT, AST, 
CHO, and CA were strongly positively correlated, as were AST, LDH, TPRO, CRE, respectively. In 
contrast, traits such as IP and GLU were negatively correlated with UREA (Table 1). 

Table 1. Heritability, genetic and phenotypic correlations of serum biochemical indicators in 
Akkaraman sheep. 

Traits ALT AST CHO LDH CA IP CRE GLU TPRO UREA 

ALT 
0.21 ± 
0.11 

0.48 ± 
0.04 

0.18 ± 
0.04 

0.49 ± 
0.04 

-0.01 ± 
0.05 

0.22 ± 
0.04 

-0.01 ± 
0.05 

0.02 ± 
0.05 0.35 ± 0.04 0.09 ± 0.05 

AST 0.91 ± 
0.08 

0.14 ± 
0.10 

0.40 ± 
0.04 

0.53 ± 
0.04 

0.28 ± 0.04 0.18 ± 
0.04 

0.30 ± 0.04 0.14 ± 
0.05 

0.47 ± 0.04 0.27 ± 0.04 

CHO 
0.48 ± 
0.16 

0.77 ± 
0.12 

0.43 ± 
0.14 

0.35 ± 
0.04 0.19 ± 0.04 

0.26 ± 
0.04 0.20 ± 0.04 

0.19 ± 
0.04 0.54 ± 0.04 0.32 ± 0.04 

LDH 
0.82 ± 
0.08 

0.87 ± 
0.07 

0.70 ± 
0.13 

0.36 ± 
0.14 0.14 ± 0.05 

0.32 ± 
0.04 0.14 ± 0.04 

0.20 ± 
0.04 0.52 ± 0.04 0.07 ± 0.06 

CA -0.03 ± 
0.20 

0.64 ± 
0.12 

0.39 ± 
0.11 

0.36 ± 
0.14 

0.27 ± 0.13 0.11 ± 
0.05 

0.99 ± 0.01 0.24 ± 
0.04 

0.35 ± 0.04 0.28 ± 0.04 

IP 0.84 ± 
0.23 

0.88 ± 
0.33 

0.53 ± 
0.14 

0.80 ± 
0.15 0.37 ± 0.17 0.29 ± 

0.13 0.10 ± 0.05 0.19 ± 
0.04 0.36 ± 0.04 -0.10 ± 0.05 

CRE 
-0.04 ± 

0.22 
0.66 ± 
0.12 

0.42 ± 
0.11 

0.28 ± 
0.14 0.11 ± 0.06 

0.35 ± 
0.19 0.20 ± 0.11 

0.23 ± 
0.04 0.34 ± 0.04 0.29 ± 0.04 

GLU 0.13 ± 
0.23 

0.77 ± 
0.34 

0.54 ± 
0.19 

0.78 ± 
0.25 

0.61 ± 0.14 0.76 ± 
0.24 

0.62 ± 0.15 0.15 ± 
0.10  

0.23 ± 0.04 -0.11 ± 0.05 

TPRO 0.71 ± 
0.12 

0.81 ± 
0.09 

0.81 ± 
0.07 

0.98 ± 
0.08 

0.64 ± 0.09 0.80 ± 
0.13 

0.64 ± 0.10 0.59 ± 
0.17 

0.55 ± 0.14 0.21 ± 0.04 

UREA 
0.27 ± 
0.32 

0.73 ± 
0.17 

0.74 ± 
0.14 

0.29 ± 
0.34 0.76 ± 0.16 

-0.52 ± 
0.38 0.78 ± 0.15 

-0.63 ± 
0.46 0.59 ± 0.18 0.18 ± 0.11 
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Diagonal values represent the genomic heritability of the overlapping trait, where phenotypic correlations (± 
standard errors) were given above the diagonal and genetic correlations (± standard errors) below the diagonal. 

Narrow-sense genomic heritability estimates were presented on the diagonals in Table 1. 
Overall, low to moderate heritability estimates were found, with a range  0.14–0.55 for serum 
biochemical indicators (Table 1). The trait demonstrating highest heritability was TPRO (h2 = 0.55), 
while the serum concentration of AST had the lowest heritability (h2 =0.14). Heritabilities for the traits 
TPRO (0.55), CHO (0.43) and LDH (0.36) can be classified as moderate while ALT (0.21), AST (0.14), 
CA (0.27), IP (0.29), CRE (0.20), GLU (0.15) and UREA (0.18) as low estimates. Genetic correlations 
were estimated using the multivariate mixed linear models and they are shown in the lower 
diagonals in Table 1. The trait TPRO showed high genetic correlations with LDH, CHO, and AST (r 
= 0.98, 0.81 and 0.81, respectively). The serum concentration of UREA was found to have negative 
genetic correlations with the level of GLU, and IP, r = -0.63 and -0.52, respectively (Table 1). 

3.2. Genome-wide association studies (GWAS) 

In the current study, 10 serum biochemical indicators of Akkaraman lambs, were selected as 
phenotypes for GWAS analysis. The univariate mixed model analysis was used to carry out genome-
wide association studies for serum biochemical indicators (see Supplementary Table S1). This 
involved iteratively fitting 40,439 SNPs one at a time and using a genomic relationship matrix. The 
corrected p-values of the SNPs were visualized with Manhattan plots present in Figure 1, where the 
values were converted to −log10 (p-value). Genome-wide significant signals in Manhattan plots were 
only observed for traits encompassing CHO, CA, CRE, GLU, LDH, and IP (Figure 1). The Q-Q plots 
(Supplementary Figure S1) showed that the model we used was reasonable, most of the observed p-
values were consistent with the expected values, and significant SNPs were found, indicating that 
the above association analysis results for serum parameter traits are reliable. All traits were forced to 
have a lambda (λ) of approximately 1 by correcting the p-values with the genomic control. 

a)  

b)
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c)  

d)

 

e)  

f)

 

g)  

h)

 

i)  

j)
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Figure 1. Manhattan plots for all serum biochemical indicators. Genome scaffolds sorted by length 
were numbered starting at 1. The red line denotes a genome-wide significance threshold 
(p = 1.223×10−6) and the dashed line denotes a suggestive (chromosome-wide) significance threshold 
(p = 3.181×10−5). 

The significant putative QTL with the candidate genes and the top associated SNPs within each 
region is shown in Tables 2 and 3. A total of 23 significant loci were identified, of which 6 were 
genome-wide (GW) significant associated with CHO, CA, CRE, GLU, LDH, and IP (Table 2) and 17 
were chromosome-wide significant (CW) associated with CHO, ALT, AST, CA, GLU, LDH, IP, TPRO, 
and UREA (Table 3). CHO has 4 putative QTLs distributed in 4 ovine chromosomes (OAR). For CHO, 
the top significant locus (rs415766081 with p-value = 1.022×10-06) was in the intron region of Spectrin 
alpha, erythrocytic 1 (SPTA1) gene. GW significant SNP for CA was identified on OAR17 
(rs427096440 with p-value = 8.033×10-07) in the vicinity of Microsomal glutathione S-transferase 2 
(MGST2) gene. The GW significant SNP for CRE (rs423178582 with p-value = 7.716×10-07) was 
identified on OAR22 which is 42 Kb apart from CDK2 associated cullin domain 1 (CACUL1) gene. 
The SNP rs428784360 (p-value = 1.207×10-07) GW significantly associated with GLU is located on the 
OAR2 (Table 2). This marker is located within the intron of the ENSOARG00020040484.1 gene. 
Another SNP (rs410665381 with a p-value = 1.216×10-06) is found to be GW associated with LDH. The 
locus was observed to be located at 267 Kb upstream of Insulin-like growth factor binding protein 7 
(IGFBP7) on OAR6. Finally, another GW significant SNP (rs404995480 with p-value= 6.902×10-07) was 
associated with IP within an intron of the gene Par-3 family cell polarity regulator (PARD3) on 
OAR13. Additional information on loci with GWS association are shown in Table 3. 

Table 2. Genome-wide significant SNP markers for serum biochemical indicators. 

Trait SNP Chr Oar_v4.0 

Position (bp) 

P-value MAF Effect 

size 

Candidate gene Distance 

CHO rs415766081 1 107,828,780 1.022×10-06 0.110 0.084 Spectrin alpha, erythrocytic 1 

(SPTA1) 

Intron 

variant 

CA rs427096440 17 17,753,256 8.033×10-07 0.414 0.004 Microsomal glutathione S-

transferase 2 (MGST2) 

~31 Kb 

upstream 

CRE rs423178582 22 37,960,974 7.716×10-07 0.157 0.068 CDK2 associated cullin domain 

1 (CACUL1) 

~42 Kb 

upstream 

GLU rs428784360 2 227,357,948 1.207×10-07 0.160 0.092 ENSOARG00020040484.1 Intron 

variant 

LDH rs410665381 6 72,632,996 1.216×10-06 0.129 0.117 Insulin-like growth factor 

binding protein 7 (IGFBP7) 

~267 Kb 

upstream 

IP rs404995480 13 17,678,848 6.902×10-07 0.388 0.063 Par-3 family cell polarity 

regulator (PARD3) 

Intron 

variant 

Chr= Chromosome; MAF= Minor allele frequency; CHO= Cholesterol; CA= Calcium; CRE= Creatinine; GLU= 
Glucose; LDH= Lactate dehidrogenase; IP= Phosphorus. 

Table 3. Chromosome-wide significant SNP markers for serum biochemical indicators. 

Trait SNP Chr 
Oar_v4.0 

Position (bp) P-value MAF 
Effect 
size Candidate gene Distance 

CHO rs415259159 11 36,648,365 1.536×10-05 0.417 0.047 Prohibitin 1 (PHB1) ~35 Kb 
upstream 

CHO rs408900631 3 198,343,644 2.820×10-05 0.432 0.047 Solute Carrier Family 15 
Member 5 (SLC15A5) 

~55 Kb 
downstream 
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CHO rs403535835 5 75,927,368 2.923×10-05 0.101 0.073 LOC101117162 ~19 Kb 
upstream 

ALT rs413251030 2 38,421,272 7.175×10-06 0.194 0.380 
Tripartite Motif Containing 

35 (TRIM35) 
~71 Kb 

downstream 

ALT rs421887664 7 80,842,728 3.158×10-05 0.158 0.439 
Regulator Of G-Protein 

Signaling 6 (RGS6) Intron variant 

AST rs405842437 14 24,175,813 1.453×10-05 0.449 0.013 Nucleoporin 93 (NUP93) Intron variant 

AST rs423986212 4 109,758,783 3.111×10-05 0.269 0.014 Contactin Associated Protein 
2 (CNTNAP2) 

Intron variant 

CA rs421266853 8 39,031,937 1.967×10-05 0.417 0.003 LOC105611309 
~56 Kb 

downstream 

CA rs408365736 17 19,135,137 2.576×10-05 0.077 0.006 
Solute Carrier Family 7 
Member 11 (SLC7A11) Intron variant 

GLU rs412782784 1 257,987,356 7.143×10-06 0.067 0.118 
Beta-1,3-

Galactosyltransferase 5 
(B3GALT5) 

~288 Kb 
downstream 

GLU rs410943504 2 178,724,382 7.415×10-06 0.457 0.059 
Dipeptidyl Peptidase Like 10 

(DPP10) Intron variant  

LDH rs402703943 1 63,683,463 1.665×10-05 0.218 0.090 
Heparan Sulfate 2-O-

Sulfotransferase 1 
(HST2ST1) 

~185 Kb 
downstream 

LDH rs410138359 13 18,806,069 1.678×10-05 0.169 0.087 Neuropilin 1 (NRP1) ~44 Kb 
downstream 

IP rs420848991 2 168,420,121 4.201×10-06 0.191 0.077 
LDL Receptor Related 

Protein 1B (LRP1B) Intron variant 

TPRO rs423075621 8 963,780 2.017×10-05 0.488 0.045 LOC101118029 
~74 Kb 

upstream 

TPRO rs401111582 7 79,289,788 2.319×10-05 0.386 0.044 Mitogen-Activated Protein 3 
Kinase 9 (MAP3K9) 

Intron variant 

UREA rs403791299 18 48,405,490 5.277×10-06 0.432 1.971 LOC101103187 
~127 Kb 

upstream 
Chr= Chromosome; MAF= Minor allele frequency; CHO= Cholesterol; ALT= Alanine aminotransferase; AST= 
Aspartate aminotransferase; CA= Calcium; CRE: Creatinine; GLU: Glucose; LDH: Lactate dehidrogenase; IP: 
Phosphorus; TPRO= Total protein; UREA= Urea. 

4. Discussion 

Blood measurements known as serum biochemical indicators are widely used biomarkers for 
monitoring the physiological status of human and animals. These signals are utilized across the entire 
course of the disease, spanning from diagnosis to prognosis and the recovery, primarily in humans 
and increasingly in animals that may have exposed to different environmental and genetic triggers 
of disease susceptibility and adverse conditions. Therefore, these traits are frequently thought of as 
accurate representations of an animal's health and metabolism. Despite the utmost importance of the 
serum indicators such as lipids, proteins, enzyme activities, minerals and metabolites to the livestock 
production systems, exceptionally rare studies have investigated the underlying genetic architecture 
and mechanisms behind those complex traits [5,7,33,34]. In this investigation, we measured 10 serum 
biochemical indicators. Certain serum biochemical indicators demonstrated strong phenotypic and 
genetic correlations among each other. To the best of our knowledge and according to animal QTL 
database, no published study has systematically demonstrated the genetic parameters among some 
or all the 10 serum biochemical indicators and genomic loci using a GWAS of SNPs in lambs [53]. 
Additionally, only one study was observed to have focused on the genetic basis of protein levels in 
sheep [12]. The aim of the current study was to identify the underlying genetic architecture for blood 
serum indicators in lambs. ALT and AST averages were in the range with the previous reports for 
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Akkaraman lambs and other breeds such as Ba sheep, Karakul and Tzurcana ewes, Balami ewes, 
Lori-Bakhtiari and Mehraban sheep and Santa Inês ewes. On the other hand, similarly, low 
heritability estimate was detected for UREA in Santa Inês sheep [54,55]. 

Genetic variance in serum parameters plays a crucial role in understanding animals' ability to 
combat infections and stress. This insight can aid in devising better strategies to enhance disease 
resistance and resilience [7]. The identified low to moderate genomic heritability estimates for blood 
serum biochemical traits indicate the potential of genomic selection to result in a gradual 
improvement in breeding programs in sheep. In the present study, heritabilities were estimated for 
instance TPRO (0.55±0.14), UREA (0.18±0.11), LDH (0.36±0.14) and ALT (0.14±0.10) (Table 1), which 
indicates considerable genetic effects on these protein fractions and probably their potential use as 
biomarkers for genetic selection. This result differs from the reported studies in Lori-Bakhtiari sheep, 
where genomic heritability was found as low (0.00 ± 0.29) due to the limited number of animals, 
causing high standard errors of the heritability estimates [12]. Similarly, low heritability estimate was 
detected for UREA in Santa Inês sheep and in Holstein-Friesian cows [55,56]. Our study suggests a 
genomic heritability estimate for serum CA to be 0.27±0.13 in Akkaraman lambs, which is higher than 
that of described for cattle [56]. The current study is the first research focusing on the genetic 
parameters of a wide range of serum biochemical indicators for Akkaraman sheep while one of very 
first among global sheep populations. However, further research is still required to determine the 
genetic background of blood serum indicators precisely, as also indicated by the slightly high 
standard errors of the heritability estimates, which were caused by the relatively low number of 
animals studied. 

Multiple candidate genes were identified in the present study (Table 2; Table 3). One of the most 
striking results of our study is the enrichment of biological processes for the candidate genes that aid 
disease response and immune system regulation. Many candidate genes suggested by our study are 
predicted to be part of biological processes such as physiological response to stimulus (GO:0050896), 
regulation of metabolic process (GO:0019222), immune system process (GO:0002376), regulation of 
immune system process (GO: 0002682), immune response (GO:0006955), regulation of response to 
stress (GO:0080134), cell communication (GO:0007154) and regulation of signaling (GO:0023051) in 
various organisms. Additionally, some of those candidate genes were predicted to have molecular 
functions such as catalytic and transferase activities as well as ion, small molecule, and enzyme 
binding. 

A genome-wide associated SNP (rs415766081; p = 1.022×10-06; Table 2) was located in the intron 
of Spectrin alpha, erythrocytic 1 (SPTA1) gene on OAR1 for CHO. Cholesterol is a vital molecule for 
cellular processes such as membrane fluidity and permeability to gene transcription, growth and 
development and serving as backbone of steroid hormones and vitamin D analogs [57]. Spectrins are 
big, flexible proteins made up of head-to-head connections between α-β dimers, which combine to 
form the standard heterotetrameric spectrin structure. Functional annotation of SPTA1 shows that it 
is involved in fundamental biological processes such as actin cytoskeleton organization 
(GO:0030036), immune system process (GO:0002376), lymphocyte homeostasis (GO:0002260) and 
positive regulation of T-cell proliferation (GO:0042102) with molecular functions such as actin 
filament binding (GO:0051015) and calcium-ion binding (GO:0005509) in various mammals. KEGG 
enrichment also shows that it is involved in apoptosis. Together with the cytoskeletal network, the 
spectrin-based membrane skeleton primarily preserves the mechanical characteristics and integrity 
of the cell membrane [58]. Both actin filament organization and calcium have long been recognized 
for their critical role in serum cholesterol levels [59,60]. Spectrins are highly conserved across several 
species and were once thought to be only present in the human erythrocytic membrane [61]. 
Orthologues of this gene has been associated with increased B cell number, IgG levels and T cell 
number in mice [62]. 

Another genome-wide associated SNP on OAR17 was found 31 Kb apart of the microsomal 
glutathione S-transferase 2 (MGST2) gene for CA (Table 1). The MGST2 is a member of the 
superfamily designated MAPEG (membrane-associated proteins in eicosanoid and glutathione 
metabolism), and has a role in the interactions between proteins that detoxify foreign and 
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endogenous highly reactive lipophilic substances and proteins involved in the endogenous 
metabolism of reactive lipophilic intermediates (leukotrienes) [63]. Functional enrichment showed 
that the MGST2 is involved in biological processes such as Eicosanoid metabolic process 
(GO:0006690), specifically leukotriene metabolic process (GO:0006691) and glutathione biosynthetic 
process (GO:0006750) as well as response to stress (GO:0006950), defense response (GO:0006952) and 
inflammatory response (GO:0006954) in various mammals including sheep. MGST2 has been 
annotated by KEGG to be involved in the glutathione metabolism, drug metabolism, metabolic 
pathways, drug resistance, chemical carcinogenesis by receptor activation as well as fluid shear stress 
and atherosclerosis. Within the functionally varied MAPEG family, MGST2 is a mainly glutathione-
dependent peroxidase and cytoprotective glutathione S-transferase and has high homology with 
Leukotriene C4 Synthase (LTC4S) [63]. Eicosanoid metabolism, in terms of functional coupling of 
calcium-dependent phospholipase A2 (cPLA2) plays role in role in the regulation of intracellular Ca2+ 
concentration in different cells [64]. It is worth noting that an association between LTC4S promoter 
polymorphism and coronary artery calcium thickness was identified in women [65]. 

The genome-wide associated SNP for serum creatinine levels is located at 42 Kb upstream of 
CACUL1 (CDK2 associated cullin domain 1) on OAR22. CACUL1 is predicted to engage in a wide 
range of organic substance metabolic processes (GO: 0071704) such as proteolysis (GO: 0006508), 
positive regulations of cell population proliferation (GO:0008284) and protein kinase activity (GO: 
0045860) with its ubiquitin protein ligase and protein kinase binding activities. Serum creatinine, as 
a waste product of muscle metabolism, is one of the primary indicators of renal dysfunction or 
impaired filtration [66]. Various CDKs (cyclin-dependent kinases) has previously been associated 
with kidney functions including cell proliferation and filtration in human [67,68]. Additionally, a 
study in mice showed that increased expression of CDK2 protects podocytes (i.e., a layer of cells 
around glomerulus where filtration of blood takes place) from apoptosis while reduced expression 
of CDK2 leads to increased susceptibility to diabetic nephropathy [69]. 

The genome-wide associated SNP for serum glucose (rs428784360) was intronic to 
ENSOARG00020040484.1 (Table 2). This long noncoding RNA has not had much annotated function 
as yet. The only other gene nearby was LOC121818761, which has RNA evidence but little assigned 
function as yet. To our knowledge, this study is the first report linking these genes to blood glucose. 
Further work will be required to investigate their connection to blood glucose and diabetes. 

Insulin-like growth factor binding protein 7 (IGFBP7) on OAR6, as a regulator of insulin-like 
growth factors (IGFs), was suggested by our study as a genome-wide candidate for serum Lactate 
dehydrogenase (LDH) levels in sheep. LDH is an enzyme found throughout cells in diverse living 
organisms, participating in carbohydrate metabolism by facilitating the conversions of lactate and 
pyruvate using the NAD+/NADH coenzyme system. The IGFBP7 takes part in diverse biological 
processes such as the regulation of cell growth (GO:0001558), response to stimulus (GO:0048583), 
signaling (0023051) as well as the regulation of steroid metabolic process (GO:0019218) and response 
to corticosteroid (GO:0031969), glucocorticoid (GO:0051384), chemicals (GO:0042221) and steroid 
hormones (GO:0048545). Its protein shows molecular functions such as insulin-like growth factor 
binding and structural molecule activity. IGFBPs and IGFs has been consistently documented to play 
a pivotal role in immune response of animals and human [70-72]. Elevated plasma IGFBP7 levels was 
recently found to be correlated with chronic inflammation in human [73]. Simultaneously, IGFs are 
known to have a regulatory role in glucose uptake, glycogen and lactate metabolisms, especially in 
Warburg effect (i.e., increased rates of glucose uptake and preferential breakdown of glucose into 
lactate, even when mitochondria are operating normally), where LDH is also a key enzyme [74,75]. 
Therefore, IGFBP7 as a regulator of IGFs can be suggested to have an indirect regulatory role in serum 
LDH levels. 

Finally, a putative QTN (rs404995480; p = 6.902×10-07; Table 2) was detected in the intron of Par-
3 Family Cell Polarity Regulator (PARD3) gene on OAR13 for IP. PARD3 is known to have significant 
roles in cytoskeleton organization (GO:0007010), establishment of cell polarity (GO:0030010), 
organelle organization (GO:0006996) and establishment of the localization in cell (GO:0051649) with 
its molecular functions such as protein binding and phosphatidylinositol binding. It is annotated by 
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KEGG to have roles in Rap1 and chemokine signaling pathways, endocytosis, Hippo signaling 
pathway as well as adherens and tight junctions. Inorganic phosphorus plays numerous metabolic 
roles as a reactant (glycolysis, oxidative phosphorylation, glycogen phosphorolysis, and 
mineralization) and product (nucleic acid synthesis, ATPases, GTPases, and phosphatases) and 
recognized as a signaling molecule as well [76]. Many studies have suggested that PARD3 is 
regulated by phosphorylation [77]. PARD3 is a PDZ-domain-containing scaffold protein that forms a 
trimetric complex with PAR6 and atypical protein kinase C (aPKC) to regulate the initial cell polarity 
cues. Cell polarity, the asymmetric distribution of proteins, organelles, and cytoskeleton, plays an 
important role in development, homeostasis, and disease, which might be crucial during many types 
of asymmetric cell division to set up functional asymmetries between daughter cells [78]. PARD3, as 
a member of PAR complex, is one of the cell polarity complexes that can regulate vesicle transport 
and control the localization of cytoplasmic proteins primarily by regulating the phosphorylation of 
phospholipids called phosphoinositides [79]. Phosphoinositides in which one of the isomers is 
phosphate, serve as docking sites for proteins at the cell membrane, and their state of phosphorylation 
determines which proteins can bind [80]. 

Taken together, our results suggest 6 genome-wide and 17 chromosome-wide SNPs and 19 
candidate genes as well as 4 uncharacterized regions to be underlying 10 serum biochemical 
parameters. The relevant importance of suggested candidate genes to immune system, defense 
response, cytoskeleton organization and other biological processes are mostly characterized in 
various species. Simultaneously, our study revealed various genetic parameters and phenotypic 
correlations for those serum biochemical indicators in sheep. None of the associated SNPs had 
previously been linked to serum biochemical traits in sheep, mainly because there has been only one 
study implemented GWAS for only protein levels in sheep. Therefore, results of this study can be 
used to shed a light on the research of underlying molecular mechanisms behind serum biochemical 
traits in sheep, which are directly related to welfare and health status of animals and indirectly of 
high economic importance for sheep production systems. Additionally, since sheep can be observed 
as a model organism to study welfare and diseases in human, our results also confer significance 
medical research in human. In any case, further molecular and population-based validation studies 
are required to prove causality of the associated SNPs and suggested genes for their use in sheep 
genetic improvement programs, gene editing studies and targeted drug applications that aim better 
immune system, health, and welfare both in human and sheep. 

5. Conclusions 

In this work, we reported for the first time GWAS together with genetic parameter estimations 
for the level of serum biochemical indicators in sheep. Detection of QTL for serum biochemical 
parameters, due to their strong relationship with many disorders, have a unique potential for disease 
intervention and targeted drug applications. Our research offers genetic tools for additional 
investigations into causal linkages for particular cases; nonetheless, mechanistic and experimental 
investigations are necessary to identify the underlying cause chains behind these intricate 
associations. In total, 23 SNP loci were associated with serum biochemical indicators leading to 19 
candidate genes as well as 4 uncharacterised regions to be suggested for underlying 10 serum 
biochemical parameters. These are SPTA1, MGST2, CACUL1, IGFBP7, PARD3, PHB1, SLC15A5, 
TRIM35, RGS6, NUP93, CNTNAP2, SLC7A11, B3GALT5, DPP10, HST2ST1, NRP1, LRP1B, MAP3K9, 
ENSOARG00020040484.1 as well as LOC101103187, LOC101117162, LOC105611309 and 
LOC101118029. The current findings provide a comprehensive inventory of the relationships between 
serum components as well as genetic variants for disease-relevant characteristics. This information 
may facilitate the identification of therapeutic targets and fluid biomarkers and establish a strong 
framework for comprehending the pathobiology of complex diseases while highlighting specific loci 
for targeted genome-editing or gene-knockout studies. However, more research is needed to identify 
the specific functional mutations in linkage disequilibrium with the markers in this study. In 
addition, the functional mutations will need to be validated and examined for potential correlated 
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responses to selection, including production and reproduction traits as well as disease and parasite 
resistance in sheep. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org. Figure S1: title; Table S1: Descriptive statistics of serum biochemical parameters 
in Akkaraman sheep. 
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