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Abstract: Serum biochemical indicators serve as vital proxies that reflect the physiological state and functions
of different organs. The genetic parameters and molecular mechanisms underlying serum biochemical
indicators of sheep (Ovis aries) have not been well understood. Therefore, the aim of the present study was to
identify genetic architecture and genomic loci underlying ten serum biochemical indicators in sheep, including
alanine transaminase, aspartate transferase, lactate dehydrogenase, cholesterol, glucose, phosphorus, calcium,
creatinine, urea concentrations and total protein levels. We implemented genetic parameter estimations and
GWAS for each trait in 422 Akkaraman lambs. Overall, low to moderate heritability estimates were found, in
the range 0.14-0.55. Additionally, low to high genetic correlations were observed among traits. In total, 23 SNP
loci were associated with serum biochemical indicators leading to 19 genes . These are SPTAI, MGST?2,
CACUL1, IGFBP7, PARD3, PHBI1, SLC15A5, TRIM35, RGS6, NUP93, CNTNAP2, SLC7A11, B3GALT5, DPP10,
HST2S5T1, NRP1, LRP1B, MAP3K9, ENSOARG00020040484.1 as well as LOCI101103187, LOC101117162,
LOC105611309 and LOC101118029. To our knowledge, these data provide the first association between SPTA1
and serum cholesterol and between ENSOARG00020040484.1 and serum glucose. The current findings provide
a comprehensive inventory of the relationships between serum biochemical parameters, genetic variants, and
disease-relevant characteristics. This information may facilitate the identification of therapeutic targets and
fluid biomarkers and establish a strong framework for comprehending the pathobiology of complex diseases
as well as providing targets for sheep genetic improvement programmes.

Keywords: serum biochemical indicators; Ovis aries; GWAS; QTL; genetic correlation; heritability

1. Introduction

Animal blood components reflect their immune system and metabolism of nutrients. Serum is
the fluid and solute fraction of blood that lacks erythrocytes, platelets, leukocytes, and clotting factors
[1]. Serum contains a wide range of nutrients, including proteins, electrolytes, antigens, antibodies,
hormones, and exogenous elements not needed for clotting. Serum is also required for the body's
delivery of nutrients, preservation of the homeostasis of the intracellular environment, and
electrolyte and acid-base balance [2,3].

Serum biochemical indicators serve as vital proxies that reflect the physiological state and
functions of different organs. As molecular phenotypic biomarkers, they are commonly employed as
general indicators to assess an organism's immunological status and overall health conditions [4-6].
Many of these parameters appear to have moderate to high heritability in various species including
human, pigs, and horses [7-9]. Correspondingly, these traits were expected to be under tighter genetic
control compared to the associated diseases and complex traits, since they are directly linked to the
biochemical pathways, which might provide valuable information about the underlying biological
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control [7,10,11]. Therefore, identifying the genetic architecture responsible for their variability may
contribute to a better understanding of the biological processes involved in various diseases and
complex traits that are linked to these molecular phenotypes.

Animal welfare and health status have paramount importance for all livestock enterprises
since any deviation from good health might have adverse effects on the profitability, productivity,
and sustainability of production systems [12]. Mounting evidence suggest that serum biochemical
parameters have a wide range of associations with disease resistance, resilience, immune functions,
productivity, and feed efficiency in various livestock species [7,13-17]. Ruminant production in
particular holds significant relevance in addressing two fundamental global challenges: 1) enhancing
the food security and nutrition for an expanding global population and 2) addressing the imperative
of climate change mitigation [18,19]. However, conventional breeding strategies fall short of meeting
expectations, especially for those traits that are difficult and costly to measure directly including traits
that are expressed later in life such as disease resistance, immunity, and longevity [5,20]. Nonetheless,
the economic benefits of prioritizing disease resistance and robustness through genome-based
selection are suggested to surpass the potential drawbacks of slower genetic progress in other traits
in livestock [21]. Strong relationships between serum biochemical parameters and other economically
important traits in livestock would allow those parameters to be used as indicators of indirect
selection on many traits, which is expected to mitigate the limitations of a conventional breeding
scheme.

Due to the rapid emergence of high-throughput sequencing and genotyping technologies,
GWAS has become a widely used statistical approach to discover QTL related to complex traits in
various species including human, pigs, cattle, goat, and sheep [4,7,22-25]. Genome-based selection
methods are suggested to speed up the genetic progress in selection schemes by reducing generation
interval and increasing accuracy and intensity of selection in livestock production systems [26-30].
Sheep play a significant role in ensuring food security and sustainable production within the
livestock species, thanks to their resilient adaptability and robust characteristics [19]. Furthermore,
various studies suggest sheep as a more suitable model than rodents for the investigation and
developing treatment for several human clinical conditions [31,32]. Therefore, dissection of the
genetic basis underlying serum biochemical traits observed in sheep is a potential approach to design
a comprehensive marker-assisted selection program to prioritize sustainability, enhance resilience,
and support animal model development. To date, various genomic loci were associated with serum
biochemical parameters in human as well as in livestock such as pigs, cattle and ducks [4,5,7,10,33,34].
However, only one study has been identified that specifically investigates the genomic heritabilities
and QTL associated exclusively with serum protein levels in sheep [12].

Akkaraman sheep is an adaptive fat-tailed breed representing an extensive share of Turkey’s
sheep population and spread through diverse terrain, from harsh, semi-arid regions to the mild
climates with comparatively moderate productivity characteristics [24]. Recently, the genome of the
breed has also been characterized against various world-wide sheep breeds to understand genomic
relationships [35]. The large spread of the populations, close genomic relationships with various
sheep breeds and its hardy and robust nature indicate potential of the breed’s physiology for
sustainable production under increased temperatures and extreme environmental conditions due to
global warming. Therefore, the aim of the present study was to identify the genetic architecture and
genomic loci underlying measurements of certain serum biochemical indicators in Akkaraman sheep
including alanine transaminase, aspartate transferase, lactate dehydrogenase, cholesterol, glucose,
phosphorus, calcium, creatinine, urea concentrations and total protein levels. Our findings are
expected to profoundly contribute insights into the genomic basis of complex serum biochemical
traits that are of clinical and physiological importance.

2. Materials and Methods

Authors have followed the ARRIVE guidelines and EU regulations on animal research
throughout the research process with animals of the study [36]. The approval of the Local Ethics
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Committee of the Experimental Animals of the Ministry of Agriculture and Forestry in Turkey, with
a file number of 20 November 2020/183 was taken for the studied population.

2.1. Animal population and blood serum indicators

The experimental population consisted of 422 Akkaraman lambs (252 female and 170 males) of
the prior study population described in [24]. Briefly, animals are sourced from three commercial
farms located at the districts of Ankara, Turkey (39°41' N; 33°01" E). The region is characterized by its
harsh and cold winters, dry and parching heat during summers as well as meagre, poor-quality
grassland. A phenotypic selection was applied across generations where growth rate was considered
for mating designs. Animals were registered to the National Small Ruminant Breeding Program.
They were born between January-February 2021 and weaned between April-May 2021. Once weaned
101 of those animals were maintained in feedlot until the six months of age, while the remaining 321
were based on pasture grazing.

While collecting blood samples for the genotyping stage to EDTA-coated vacutainers at the six
months of age, a separate set of samples were collected to a yellow biochemical analysis tube with
gel and clot activator, reaching a total of 8-10 mL of blood sampled per animal. Yellow biochemical
analysis tubes were immediately centrifuged at 4100 rpm for 5-6 minutes and the serum was
separated from the clot and stored in -80°C freezer until use. Serum samples were later sent to a
private biochemistry lab for the measurements of alanine transaminase (ALT), aspartate transferase
(AST), lactate dehydrogenase (LDH), cholesterol (CHO), glucose (GLU), inorganic phosphorus (IP),
calcium (CA), creatinine (CRE), urea (UREA) concentrations and total protein (TPRO) levels. The
serum biochemical indicators were assessed with the chemical analyzer, Architect C8000, series
AS1242 (Abbott Diagnostics, USA).

The fixed environmental factors tested to be accounted for were sex (i.e., male and female), birth
type (i.e., singlets and twins), herd (i.e., three herds), feeding type (i.e., feedlot, pasture), and the age
of the lamb in days (covariate). The descriptive statistics, data cleaning, and model fitting were
exercised via the R statistical environment [37]. Phenotypic distributions of each trait were visually
inspected and outliers with observations deviating three standard deviations + mean for each trait
were excluded from further analyses. Furthermore, the heteroscedasticity of variances was tested
with the Breusch-Pagan test [38]. Additionally, since most of the serum biochemical parameters
showed skewed distributions, Box-Cox transformation was applied to the traits of interest preceding
model fitting, genetic parameter estimates and association analysis [39]. The descriptive statistics of
the phenotypic observations after the outliers removed are provided in Table S1. Phenotypic
correlations among the traits were obtained as pairwise Pearson’s correlation coefficients and they
were given in Table 1.

2.2. Genotyping and quality control

DNA of the studied animals was extracted from blood samples using a QIACube HT instrument
and Blood/Tissue DNA extraction kit following manufacturer’s protocol (Qiagen, Hilden, Germany).
After obtaining high quality DNA for each sample, genotyping was carried out with Axiom™ Ovine
50K SNP Genotyping Array on the GeneTitan™ Multi-Channel Instrument following the
manufacturer’s guide (Axiom™ 2.0 Assay 96-Array Format Manual Workflow, ThermoFisher
Scientific, Waltham, MA, USA). A quality control (QC) followed genotyping, where SNPs that have
minor allele frequency and call rate below 0.05 and 0.95 respectively, deviate from HWE (0.05/SNP
numbers) and mapped to sex chromosomes were excluded from further analysis. Additionally,
animals with too high heterozygosity (FDR<1%), call rate below 0.90 and identity by state (IBS) above
0.95 were set to be omitted while no animals were lost at this stage. 40,868 SNPs passed the QC
criteria. All QC process was undertaken with ‘GenABEL’ R package [40].
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2.3. Estimation of genetic parameters

Univariate and bivariate analyses of linear animal mixed model were implemented respectively
to obtain genomic heritability estimates and pairwise genetic correlations among the serum
biochemical traits, which are presented in Table 2. The model description and variance-covariance
structure of the estimations, which are carried out using ‘sommer’ R package is detailed below [41]:

y=XB+Zu+e

Z,GoL Z; +1o%, - Z,GoLZ;+ 10},

V= : :
z,Go,,Z; + Io,; - ZjGaf,i‘iZ]’- + Iogi

y is the vector of observations; f is the vector of significant fixed effects to be accounted for in the
model (i.e., significant environmental factors after model fitting); u and e the random effects of
additive genomic breeding values and residual errors that are assumed to be drawn from a MVN (0,
Go?2) and MVN (0, Io2) respectively; X and Z here are the matrices mapping fixed effects and the
breeding values to the observations of the traits focused. 6% and 62 presented here are the additive
genetic variance and environmental variances for each trait of interest while appended ‘i’ and ‘j" are
the specific traits recorded for each animal that handled for bivariate analyses. Finally, I is an identity
matrix and G is the genomic relationship matrix (GRM) obtained by the ‘Model 1" described by [42].
Fixed environmental effects were not included in bivariate analysis to avoid convergence problems.
The (co)variance components of the models for univariate and bivariate analyses were estimated with
Newton-Raphson optimization approach to the direct inversion (DI) based restricted maximum
likelihood (REML) using the GRM provided [43,44]. Standard errors of genetic correlations were
estimated with the delta method by a second order Taylor series expansion [45]. Table 2 provides the
estimated heritabilities (on diagonal), genetic correlations (below diagonal) and phenotypic
correlations (above diagonal).

2.4. Genome-wide Association Studies (GWAS)

Following the genetic parameter estimation, univariate genome-wide association studies were
implemented for each trait by using the linear mixed model and GRM described above to avoid bias
and minimize false positive rates due to population stratification and cryptic relatedness [46,47]. The
same significant environmental factors were used, and the SNPs were fitted as fixed factors
consecutively one at a time, each assuming a trend for the copy number of the minor allele (i.e., ‘0’
for homozygous major allele, ‘1’ for heterozygotes and ‘2" for homozygous minor allele), for holding
additivity. Details of the mixed model-based association test and its previous applications can be
found in [24,47]. Concisely, it is an animal mixed model approach to family-based association tests
that accommodates a GRM weighted with allele frequencies, to avoid inflation of the test statistics
because of possible population stratification and relatedness as originally proposed by [47].
Following the association tests, the inflation factor (A) and the Quantile-Quantile plots of the p-values
were obtained. The ‘genomic control” correction was utilized to adjust for any possible inflation of
the test statistics by setting A to 1 [48]. The p-values of the SNPs were illustrated as ‘~log10 (p-value)’
on Manhattan plots for each trait, considering the corresponding chromosome, while two significance
thresholds were imposed to detect genome-wide significant (i.e., solid line) and genome-wide
suggestive significance (i.e., dashed line). To prevent false associations due to multiple testing,
Bonferroni correction was applied to the significance thresholds. This correction involved dividing
the initial significance level of 0.05 by the total number of SNPs passing quality control (40,868 SNPs)
for genome-wide significance, while this value was multiplied with the number of chromosomes to
obtain the representative chromosome-wide significance. Thus, the genome-wide significance
threshold was 1.223x10%¢ and the chromosome-wide was 3.181x10-5, which are 5.91 and 4.50
respectively on the —logl0 (p-value) scale on the Manhattan plots. All the steps of genome-wide
association analysis for each trait were carried out using the ‘GenABEL’ R package [40].
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2.5. Functional annotation analysis

Genomic positions and nearby genes related to associated SNPs were retrieved from the
Oar_v4.0 genome assembly on NCBI Genome Data Viewer [49]. Genes that directly contained
significant SNPs were suggested as candidates. However, when the SNP was not within a described
gene, the area of the chromosome covering nearly + 500 Kbp from the identified SNP was scanned
for the nearest candidate gene with a reasonable explanation. Identified genes were functionally
enriched to recover biological information and KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways involved by using The Database for Annotation, Visualization, and Integrated Discovery
(DAVID) Bioinformatics Resources 2021 [50,51]. Where the sheep genome suffers from the lack of
annotation, the orthology among species was exploited to annotate relevant genes from other species
such as cattle, mice, and humans. The biological processes of the identified genes were given with
their Gene Ontology (GO) terms and can be further detailed on QuickGO by EMBL’s European
Bioinformatics Institute [52]. Finally, the animal QTL Database was scanned to identify whether
detected SNPs in this study were previously associated with any serum biochemical traits [53].

3. Results

3.1. Phenotypic correlation and genetic parameter analyses between serum biochemical indicators

Ten serum biochemical parameters were detected in this study, including ALT, AST, CHO,
LDH, CA, IP, CRE, GLU, TPRO and UREA. The descriptive statistics for the serum biochemical
indicators are listed in Supplementary Table S1. Table 1 shows the genetic and phenotypic
correlations between serum biochemical indicators to provide context for the use of blood serum
components in sheep breeding. A wide range of Pearson correlation coefficients were observed,
ranging from -0.04 to 0.91, among serum biochemical indicators. Results showed that ALT, AST,
CHO, and CA were strongly positively correlated, as were AST, LDH, TPRO, CRE, respectively. In
contrast, traits such as IP and GLU were negatively correlated with UREA (Table 1).

Table 1. Heritability, genetic and phenotypic correlations of serum biochemical indicators in

Akkaraman sheep.
Traits ALT AST CHO LDH CA IP CRE GLU TPRO UREA
21+ 40 + Ao+ 49 + -0.01 = 22 £ -0.01 = 02+

ALT 00?111 00%§4+ 00?§4+ ()(;.1(?4+ %2)1; 00%§4+ %2)1; 00(.)5; 0.35+0.04 0.09+0.05
AST 0(.)?381 0;;1; 0(';.18 f 0(‘)?5’ : 0.28 + 0.04 0;83 4i 0.30 + 0.04 0(')%51 0.47 + 0.04 0.27 + 0.04
CHO Oﬁ ; 06?1721 0(‘;.1;’ ; 05’3 ; 0.19 + 0.04 O(fS 41' 0.20 + 0.04 chg f 0.54 +0.04 0.32 = 0.04
LDH Ofggi O('fg; Og?; 003;5 f 0.14 + 0.05 O(f’g f 0.14 +0.04 0('58 f 0.52 + 0.04 0.07 £ 0.06
CA %02?61 O(ff; 06?1911 06?’16 ; 0.27 +0.13 0(‘;351' 0.99 + 0.01 Oc'fs f 0.35 + 0.04 0.28 = 0.04
P 0(')%; O('fg; O(ff f 0(')?;)51 0.37+0.17 0(‘519; 0.10 + 0.05 O(fg f 0.36 + 0.04-0.10 + 0.05
CRE '%gti 0('&6; 0(.;.112: O(ff : 0.1 +0.06 O(ﬁ:'; 0.20 £ 0.11 0('33 4i 0.34 + 0.04 0.29 + 0.04
GLU O(‘g’ ; 0075 f 05?; ng; 0.61+0.14 00726 f 0.62+0.15 0[.;;;01 0.23 +0.04-0.11 + 0.05
TPRO 0(':1121 0(')?3; 0(')%; 0(.)?83 8i 0.64 + 0.09 Off; 0.64 + 0.10 0(')?1971 0.55 +0.14 0.21 + 0.04
UREA 027+ 073% 074 029+ 0 16 092 (0. 015 063 (5040180182011

0.32 0.17 0.14 0.34 0.38 0.46
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Diagonal values represent the genomic heritability of the overlapping trait, where phenotypic correlations (+
standard errors) were given above the diagonal and genetic correlations (+ standard errors) below the diagonal.

Narrow-sense genomic heritability estimates were presented on the diagonals in Table 1.
Overall, low to moderate heritability estimates were found, with a range 0.14-0.55 for serum
biochemical indicators (Table 1). The trait demonstrating highest heritability was TPRO (h? = 0.55),
while the serum concentration of AST had the lowest heritability (h?=0.14). Heritabilities for the traits
TPRO (0.55), CHO (0.43) and LDH (0.36) can be classified as moderate while ALT (0.21), AST (0.14),
CA (0.27), IP (0.29), CRE (0.20), GLU (0.15) and UREA (0.18) as low estimates. Genetic correlations
were estimated using the multivariate mixed linear models and they are shown in the lower
diagonals in Table 1. The trait TPRO showed high genetic correlations with LDH, CHO, and AST (r
= 0.98, 0.81 and 0.81, respectively). The serum concentration of UREA was found to have negative
genetic correlations with the level of GLU, and IP, r =-0.63 and -0.52, respectively (Table 1).

3.2. Genome-wide association studies (GWAS)

In the current study, 10 serum biochemical indicators of Akkaraman lambs, were selected as
phenotypes for GWAS analysis. The univariate mixed model analysis was used to carry out genome-
wide association studies for serum biochemical indicators (see Supplementary Table S1). This
involved iteratively fitting 40,439 SNPs one at a time and using a genomic relationship matrix. The
corrected p-values of the SNPs were visualized with Manhattan plots present in Figure 1, where the
values were converted to —log10 (p-value). Genome-wide significant signals in Manhattan plots were
only observed for traits encompassing CHO, CA, CRE, GLU, LDH, and IP (Figure 1). The Q-Q plots
(Supplementary Figure S1) showed that the model we used was reasonable, most of the observed p-
values were consistent with the expected values, and significant SNPs were found, indicating that
the above association analysis results for serum parameter traits are reliable. All traits were forced to
have alambda (A) of approximately 1 by correcting the p-values with the genomic control.
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Figure 1. Manhattan plots for all serum biochemical indicators. Genome scaffolds sorted by length
were numbered starting at 1. The red line denotes a genome-wide significance threshold
(p=1.223x10"°) and the dashed line denotes a suggestive (chromosome-wide) significance threshold
(p=3.181x10-9).

The significant putative QTL with the candidate genes and the top associated SNPs within each
region is shown in Tables 2 and 3. A total of 23 significant loci were identified, of which 6 were
genome-wide (GW) significant associated with CHO, CA, CRE, GLU, LDH, and IP (Table 2) and 17
were chromosome-wide significant (CW) associated with CHO, ALT, AST, CA, GLU, LDH, IP, TPRO,
and UREA (Table 3). CHO has 4 putative QTLs distributed in 4 ovine chromosomes (OAR). For CHO,
the top significant locus (rs415766081 with p-value = 1.022x10-06) was in the intron region of Spectrin
alpha, erythrocytic 1 (SPTA1) gene. GW significant SNP for CA was identified on OAR17
(rs427096440 with p-value = 8.033x107) in the vicinity of Microsomal glutathione S-transferase 2
(MGST2) gene. The GW significant SNP for CRE (rs423178582 with p-value = 7.716x107) was
identified on OAR22 which is 42 Kb apart from CDK2 associated cullin domain 1 (CACUL1) gene.
The SNP rs428784360 (p-value = 1.207x107) GW significantly associated with GLU is located on the
OAR2 (Table 2). This marker is located within the intron of the ENSOARG00020040484.1 gene.
Another SNP (rs410665381 with a p-value = 1.216x10-%) is found to be GW associated with LDH. The
locus was observed to be located at 267 Kb upstream of Insulin-like growth factor binding protein 7
(IGFBP7) on OAR®. Finally, another GW significant SNP (rs404995480 with p-value= 6.902x107) was
associated with IP within an intron of the gene Par-3 family cell polarity regulator (PARD3) on
OAR13. Additional information on loci with GWS association are shown in Table 3.

Table 2. Genome-wide significant SNP markers for serum biochemical indicators.

Trait SNP Chr Oar_v4.0 P-value MAF Effect Candidate gene Distance
Position (bp) size
CHO  rs415766081 1 107,828,780 1.022x100¢ 0.110 0.084 Spectrin alpha, erythrocytic 1 Intron
(SPTA1) variant
CA rs427096440 17 17,753,256 8.033x107  0.414 0.004 Microsomal glutathione S- ~31 Kb
transferase 2 (MGST2) upstream
CRE  rs423178582 22 37,960,974 7.716x10%7  0.157 0.068 CDK2 associated cullin domain ~42 Kb
1 (CACUL1I) upstream
GLU 15428784360 2 227,357,948 1.207x107  0.160 0.092 ENSOARG00020040484.1 Intron
variant
LDH  rs410665381 6 72,632,996 1.216x10%  0.129 0.117 Insulin-like  growth  factor ~267 Kb
binding protein 7 (IGFBP7) upstream
1P rs404995480 13 17,678,848 6.902x10%7  0.388 0.063 Par-3 family cell polarity Intron
regulator (PARD3) variant

Chr= Chromosome; MAF= Minor allele frequency; CHO= Cholesterol; CA= Calcium; CRE= Creatinine; GLU=
Glucose; LDH= Lactate dehidrogenase; IP= Phosphorus.

Table 3. Chromosome-wide significant SNP markers for serum biochemical indicators.

Trait SNP Chr O.af_v4.0 P-value = MAF Ef,f ect Candidate gene Distance
Position (bp) size
S ~35 Kb
CHO  rs415259159 11 36,648,365  1.536x10%5 0.417 0.047 Prohibitin 1 (PHBI)
upstream
Solute Carrier Family 15 ~55 Kb
-05
CHO 15408900631 3 198,343,644 2.820x10 0432 0.047 Member 5 (SLC15A5) downstream
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~19 Kb
CHO  rs403535835 5 75,927,368  2.923x10%  0.101 0.073 LOC101117162

upstream
Tripartite Motif Containing ~71 Kb
-06
ALT  rs413251030 2 38,421,272 7.175x10 0.194 0.380 35 (TRIM35) downstream
ALT  rsd21887664 7 80842728 3.158x10% 0158 0439  egulatorOfGProtein o o iant
Signaling 6 (RGS6)

AST  rs405842437 14 24,175,813  1.453x10%5 0.449 0.013 Nucleoporin 93 (NUP93) Intron variant
Contactin Associated Protein

-05 1
AST  1s423986212 4 109,758,783 3.111x10 0.269 0.014 2 (CNTNAP2) Intron variant
~56 Kb
CA 15421266853 8 39,031,937 1.967x10% 0.417 0.003 LOC105611309
downstream

Solute Carrier Family 7

Member 11 (SLC7A77) ~ [ron varant

CA rs408365736 17 19,135,137  2.576x10%5 0.077 0.006

Beta-1,3- 288 Kb
GLU  rs412782784 1 257,987,356  7.143x10-%¢  0.067 0.118 Galactosyltransferase 5 downstream
(B3GALT)5)
GLU  rs410943504 2 178724382 7.415x10% 0457 0.059 Dlpep“dyl(g;};f]lgfse Like 10 tron variant
Heparan Sulfate 2-O- 185 Kb
LDH 5402703943 1 63,683,463  1.665x10% 0.218 0.090 Sulfotransferase 1 downstream
(HST2ST1)
. ~44 Kb
LDH rs410138359 13 18,806,069  1.678x10-%% 0.169 0.087 Neuropilin 1 (NRP1)
downstream
LDL Receptor Related .
-06
1P rs420848991 2 168,420,121 4.201x10 0.191 0.077 Protein 1B (LRP1B) Intron variant
~74 Kb
TPRO rs423075621 8 963,780 2.017x10% 0.488 0.045 LOC101118029
upstream

Mitogen-Activated Protein 3

. .
Kinase 9 (MAP3Kk9) ~ ronvariant

TPRO rs401111582 7 79,289,788  2.319x10-% 0.386 0.044

~127 Kb

UREA  rs403791299 18 48,405,490  5.277x100% 0.432 1.971 LOC101103187
upstream

Chr= Chromosome; MAF= Minor allele frequency; CHO= Cholesterol; ALT= Alanine aminotransferase; AST=
Aspartate aminotransferase; CA= Calcium; CRE: Creatinine; GLU: Glucose; LDH: Lactate dehidrogenase; IP:
Phosphorus; TPRO= Total protein; UREA= Urea.

4. Discussion

Blood measurements known as serum biochemical indicators are widely used biomarkers for
monitoring the physiological status of human and animals. These signals are utilized across the entire
course of the disease, spanning from diagnosis to prognosis and the recovery, primarily in humans
and increasingly in animals that may have exposed to different environmental and genetic triggers
of disease susceptibility and adverse conditions. Therefore, these traits are frequently thought of as
accurate representations of an animal's health and metabolism. Despite the utmost importance of the
serum indicators such as lipids, proteins, enzyme activities, minerals and metabolites to the livestock
production systems, exceptionally rare studies have investigated the underlying genetic architecture
and mechanisms behind those complex traits [5,7,33,34]. In this investigation, we measured 10 serum
biochemical indicators. Certain serum biochemical indicators demonstrated strong phenotypic and
genetic correlations among each other. To the best of our knowledge and according to animal QTL
database, no published study has systematically demonstrated the genetic parameters among some
or all the 10 serum biochemical indicators and genomic loci using a GWAS of SNPs in lambs [53].
Additionally, only one study was observed to have focused on the genetic basis of protein levels in
sheep [12]. The aim of the current study was to identify the underlying genetic architecture for blood
serum indicators in lambs. ALT and AST averages were in the range with the previous reports for
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Akkaraman lambs and other breeds such as Ba sheep, Karakul and Tzurcana ewes, Balami ewes,
Lori-Bakhtiari and Mehraban sheep and Santa Inés ewes. On the other hand, similarly, low
heritability estimate was detected for UREA in Santa Inés sheep [54,55].

Genetic variance in serum parameters plays a crucial role in understanding animals' ability to
combat infections and stress. This insight can aid in devising better strategies to enhance disease
resistance and resilience [7]. The identified low to moderate genomic heritability estimates for blood
serum biochemical traits indicate the potential of genomic selection to result in a gradual
improvement in breeding programs in sheep. In the present study, heritabilities were estimated for
instance TPRO (0.55+0.14), UREA (0.18+0.11), LDH (0.36+0.14) and ALT (0.14+0.10) (Table 1), which
indicates considerable genetic effects on these protein fractions and probably their potential use as
biomarkers for genetic selection. This result differs from the reported studies in Lori-Bakhtiari sheep,
where genomic heritability was found as low (0.00 + 0.29) due to the limited number of animals,
causing high standard errors of the heritability estimates [12]. Similarly, low heritability estimate was
detected for UREA in Santa Inés sheep and in Holstein-Friesian cows [55,56]. Our study suggests a
genomic heritability estimate for serum CA to be 0.27+0.13 in Akkaraman lambs, which is higher than
that of described for cattle [56]. The current study is the first research focusing on the genetic
parameters of a wide range of serum biochemical indicators for Akkaraman sheep while one of very
first among global sheep populations. However, further research is still required to determine the
genetic background of blood serum indicators precisely, as also indicated by the slightly high
standard errors of the heritability estimates, which were caused by the relatively low number of
animals studied.

Multiple candidate genes were identified in the present study (Table 2; Table 3). One of the most
striking results of our study is the enrichment of biological processes for the candidate genes that aid
disease response and immune system regulation. Many candidate genes suggested by our study are
predicted to be part of biological processes such as physiological response to stimulus (GO:0050896),
regulation of metabolic process (GO:0019222), immune system process (GO:0002376), regulation of
immune system process (GO: 0002682), immune response (GO:0006955), regulation of response to
stress (GO:0080134), cell communication (GO:0007154) and regulation of signaling (GO:0023051) in
various organisms. Additionally, some of those candidate genes were predicted to have molecular
functions such as catalytic and transferase activities as well as ion, small molecule, and enzyme
binding.

A genome-wide associated SNP (rs415766081; p = 1.022x10-06; Table 2) was located in the intron
of Spectrin alpha, erythrocytic 1 (SPTA1) gene on OARI1 for CHO. Cholesterol is a vital molecule for
cellular processes such as membrane fluidity and permeability to gene transcription, growth and
development and serving as backbone of steroid hormones and vitamin D analogs [57]. Spectrins are
big, flexible proteins made up of head-to-head connections between a-f dimers, which combine to
form the standard heterotetrameric spectrin structure. Functional annotation of SPTA1 shows that it
is involved in fundamental biological processes such as actin cytoskeleton organization
(GO:0030036), immune system process (GO:0002376), lymphocyte homeostasis (GO:0002260) and
positive regulation of T-cell proliferation (GO:0042102) with molecular functions such as actin
filament binding (GO:0051015) and calcium-ion binding (GO:0005509) in various mammals. KEGG
enrichment also shows that it is involved in apoptosis. Together with the cytoskeletal network, the
spectrin-based membrane skeleton primarily preserves the mechanical characteristics and integrity
of the cell membrane [58]. Both actin filament organization and calcium have long been recognized
for their critical role in serum cholesterol levels [59,60]. Spectrins are highly conserved across several
species and were once thought to be only present in the human erythrocytic membrane [61].
Orthologues of this gene has been associated with increased B cell number, IgG levels and T cell
number in mice [62].

Another genome-wide associated SNP on OAR17 was found 31 Kb apart of the microsomal
glutathione S-transferase 2 (MGST2) gene for CA (Table 1). The MGST2 is a member of the
superfamily designated MAPEG (membrane-associated proteins in eicosanoid and glutathione
metabolism), and has a role in the interactions between proteins that detoxify foreign and
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endogenous highly reactive lipophilic substances and proteins involved in the endogenous
metabolism of reactive lipophilic intermediates (leukotrienes) [63]. Functional enrichment showed
that the MGST2 is involved in biological processes such as Eicosanoid metabolic process
(GO:0006690), specifically leukotriene metabolic process (GO:0006691) and glutathione biosynthetic
process (GO:0006750) as well as response to stress (GO:0006950), defense response (GO:0006952) and
inflammatory response (GO:0006954) in various mammals including sheep. MGST2 has been
annotated by KEGG to be involved in the glutathione metabolism, drug metabolism, metabolic
pathways, drug resistance, chemical carcinogenesis by receptor activation as well as fluid shear stress
and atherosclerosis. Within the functionally varied MAPEG family, MGST2 is a mainly glutathione-
dependent peroxidase and cytoprotective glutathione S-transferase and has high homology with
Leukotriene C4 Synthase (LTC4S) [63]. Eicosanoid metabolism, in terms of functional coupling of
calcium-dependent phospholipase A2 (cPLA2) plays role in role in the regulation of intracellular Ca2+
concentration in different cells [64]. It is worth noting that an association between LTC4S promoter
polymorphism and coronary artery calcium thickness was identified in women [65].

The genome-wide associated SNP for serum creatinine levels is located at 42 Kb upstream of
CACUL1 (CDK2 associated cullin domain 1) on OAR22. CACULI is predicted to engage in a wide
range of organic substance metabolic processes (GO: 0071704) such as proteolysis (GO: 0006508),
positive regulations of cell population proliferation (GO:0008284) and protein kinase activity (GO:
0045860) with its ubiquitin protein ligase and protein kinase binding activities. Serum creatinine, as
a waste product of muscle metabolism, is one of the primary indicators of renal dysfunction or
impaired filtration [66]. Various CDKs (cyclin-dependent kinases) has previously been associated
with kidney functions including cell proliferation and filtration in human [67,68]. Additionally, a
study in mice showed that increased expression of CDK2 protects podocytes (i.e., a layer of cells
around glomerulus where filtration of blood takes place) from apoptosis while reduced expression
of CDK2 leads to increased susceptibility to diabetic nephropathy [69].

The genome-wide associated SNP for serum glucose (rs428784360) was intronic to
ENSOARGO00020040484.1 (Table 2). This long noncoding RNA has not had much annotated function
as yet. The only other gene nearby was LOC121818761, which has RNA evidence but little assigned
function as yet. To our knowledge, this study is the first report linking these genes to blood glucose.
Further work will be required to investigate their connection to blood glucose and diabetes.

Insulin-like growth factor binding protein 7 (IGFBP7) on OAR®, as a regulator of insulin-like
growth factors (IGFs), was suggested by our study as a genome-wide candidate for serum Lactate
dehydrogenase (LDH) levels in sheep. LDH is an enzyme found throughout cells in diverse living
organisms, participating in carbohydrate metabolism by facilitating the conversions of lactate and
pyruvate using the NAD+/NADH coenzyme system. The IGFBP7 takes part in diverse biological
processes such as the regulation of cell growth (GO:0001558), response to stimulus (GO:0048583),
signaling (0023051) as well as the regulation of steroid metabolic process (GO:0019218) and response
to corticosteroid (GO:0031969), glucocorticoid (GO:0051384), chemicals (GO:0042221) and steroid
hormones (GO:0048545). Its protein shows molecular functions such as insulin-like growth factor
binding and structural molecule activity. IGFBPs and IGFs has been consistently documented to play
a pivotal role in immune response of animals and human [70-72]. Elevated plasma IGFBP7 levels was
recently found to be correlated with chronic inflammation in human [73]. Simultaneously, IGFs are
known to have a regulatory role in glucose uptake, glycogen and lactate metabolisms, especially in
Warburg effect (i.e., increased rates of glucose uptake and preferential breakdown of glucose into
lactate, even when mitochondria are operating normally), where LDH is also a key enzyme [74,75].
Therefore, IGFBP7 as a regulator of IGFs can be suggested to have an indirect regulatory role in serum
LDH levels.

Finally, a putative QTN (rs404995480; p = 6.902x10-97; Table 2) was detected in the intron of Par-
3 Family Cell Polarity Regulator (PARD3) gene on OAR13 for IP. PARD3 is known to have significant
roles in cytoskeleton organization (GO:0007010), establishment of cell polarity (GO:0030010),
organelle organization (GO:0006996) and establishment of the localization in cell (GO:0051649) with
its molecular functions such as protein binding and phosphatidylinositol binding. It is annotated by
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KEGG to have roles in Rapl and chemokine signaling pathways, endocytosis, Hippo signaling
pathway as well as adherens and tight junctions. Inorganic phosphorus plays numerous metabolic
roles as a reactant (glycolysis, oxidative phosphorylation, glycogen phosphorolysis, and
mineralization) and product (nucleic acid synthesis, ATPases, GIPases, and phosphatases) and
recognized as a signaling molecule as well [76]. Many studies have suggested that PARD3 is
regulated by phosphorylation [77]. PARD3 is a PDZ-domain-containing scaffold protein that forms a
trimetric complex with PAR6 and atypical protein kinase C (aPKC) to regulate the initial cell polarity
cues. Cell polarity, the asymmetric distribution of proteins, organelles, and cytoskeleton, plays an
important role in development, homeostasis, and disease, which might be crucial during many types
of asymmetric cell division to set up functional asymmetries between daughter cells [78]. PARD3, as
a member of PAR complex, is one of the cell polarity complexes that can regulate vesicle transport
and control the localization of cytoplasmic proteins primarily by regulating the phosphorylation of
phospholipids called phosphoinositides [79]. Phosphoinositides in which one of the isomers is
phosphate, serve as docking sites for proteins at the cell membrane, and their state of phosphorylation
determines which proteins can bind [80].

Taken together, our results suggest 6 genome-wide and 17 chromosome-wide SNPs and 19
candidate genes as well as 4 uncharacterized regions to be underlying 10 serum biochemical
parameters. The relevant importance of suggested candidate genes to immune system, defense
response, cytoskeleton organization and other biological processes are mostly characterized in
various species. Simultaneously, our study revealed various genetic parameters and phenotypic
correlations for those serum biochemical indicators in sheep. None of the associated SNPs had
previously been linked to serum biochemical traits in sheep, mainly because there has been only one
study implemented GWAS for only protein levels in sheep. Therefore, results of this study can be
used to shed a light on the research of underlying molecular mechanisms behind serum biochemical
traits in sheep, which are directly related to welfare and health status of animals and indirectly of
high economic importance for sheep production systems. Additionally, since sheep can be observed
as a model organism to study welfare and diseases in human, our results also confer significance
medical research in human. In any case, further molecular and population-based validation studies
are required to prove causality of the associated SNPs and suggested genes for their use in sheep
genetic improvement programs, gene editing studies and targeted drug applications that aim better
immune system, health, and welfare both in human and sheep.

5. Conclusions

In this work, we reported for the first time GWAS together with genetic parameter estimations
for the level of serum biochemical indicators in sheep. Detection of QTL for serum biochemical
parameters, due to their strong relationship with many disorders, have a unique potential for disease
intervention and targeted drug applications. Our research offers genetic tools for additional
investigations into causal linkages for particular cases; nonetheless, mechanistic and experimental
investigations are necessary to identify the underlying cause chains behind these intricate
associations. In total, 23 SNP loci were associated with serum biochemical indicators leading to 19
candidate genes as well as 4 uncharacterised regions to be suggested for underlying 10 serum
biochemical parameters. These are SPTA1, MGST2, CACUL1, IGFBP7, PARD3, PHB1, SLC15A5,
TRIM35, RGS6, NUP93, CNTNAP2, SLC7A11, BBGALT5, DPP10, HST25T1, NRP1, LRP1B, MAP3K9,
ENSOARG00020040484.1 as well as LOC101103187, LOC101117162, LOC105611309 and
LOC101118029. The current findings provide a comprehensive inventory of the relationships between
serum components as well as genetic variants for disease-relevant characteristics. This information
may facilitate the identification of therapeutic targets and fluid biomarkers and establish a strong
framework for comprehending the pathobiology of complex diseases while highlighting specific loci
for targeted genome-editing or gene-knockout studies. However, more research is needed to identify
the specific functional mutations in linkage disequilibrium with the markers in this study. In
addition, the functional mutations will need to be validated and examined for potential correlated
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responses to selection, including production and reproduction traits as well as disease and parasite
resistance in sheep.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org. Figure S1: title; Table S1: Descriptive statistics of serum biochemical parameters
in Akkaraman sheep.
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