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Abstract: Good Boussinesq equations will be considered in this work. First we apply three combined compact
schemes to approximate spatial derivatives of good Boussinesq equations. Then three fully discrete schemes are
developed based on symplectic scheme in time direction, which are sympletic-structure preserving. Meanwhile,
the convergence and conservation of the fully discrete schemes are analyzed. Finally, we present numerical
experiments to confirm our theoretical analysis. Both our analysis and numerical test indicate that the fully

discrete schemes are efficient in solving the spatial derivative mixed equation.
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1. Introduction

Boussinesq equations are important mathematical physical models in characterizing ocean mixing,
atmospheric convection, and intra-Earth convection, which play a key role in fields such as earth
sciences, meteorology, and oceanography fields. The study of Boussinesq equation is of great value
because it helps us to better understand the hydrodynamic behavior, especially in terms of thermal
convection, ocean currents, and atmospheric phenomena. In addition, the study of the Boussinesq
equation is essential for the development of numerical models for weather forecasting, climate research,
and oceanography. These studies have also helped uncover the fundamental principles that govern
fluid motion and heat transfer, contributing to advances in fields such as engineering, environmental
science, and geophysics. The GB equation and its various extensions have been extensively analyzed
in the existing literature, such as a closed form solution for the two soliton interaction in [1],a highly
complicated mechanism for the solitary waves interaction in [2],and the nonlinear stability and
convergence of some simple finite difference schemes in [3]. In recent works concerning the numerical
solution of PDE, a significant amount addresses the Schrodinger equation, see [4-9]. In [9],using a
combined compact difference method to solve Schrodinger equation and this scheme is Structure-
Preserving.This method originated from [10],it also can be found in[11-14]. In addition,many works
related to GB equations could be found in [15-21].Higher order Boussinesq equations have been
investigated by Z.L. Zou [22].

In solving PDEs numerically, high-order compact (HOC) schemes are often used to discretize
spatial derivatives.For example, HOC schemes have been applied to solve steady convection-diffusion
equation [12], nonlinear Schrodinger equation [9], Klein-Gordon-Schré-dinger equation [23], and good
Boussinesq equation [17].Compared with general finite difference schemes, HOC schemes have the
advantages of smaller error and higher accuracy under the same calculation amount. However, for
PDEs with multiple order spatial derivatives, such as good Boussinesq equation Uy = —Uxxxx + Uxx +
(u?) « the advantages of classical HOC schemes are often offset. If multiple HOC schemes are used
to discretize multiple spatial derivatives simultaneously, it is necessary to perform multiple matrix
inverse operations, which will reduce the computational efficiency and affect the accuracy. In [9], Then
combined high-order compact (CHOC) scheme is used to approximate PDEs with multiple order
spatial derivatives and achieve some discrete conservation laws.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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In this paper, three CHOC schemes of good Boussinesq equation are derived. Applying Taylor
analysis to an equality combining the solution u and its first derivative, second derivative, and third
derivative yields the first three-point CHOC scheme. This scheme has 6th-order precision and has
extensive application. Then similarly, we propose the second three-point 8th-order scheme by using
a combination of the first,second,third derivatives of the solution. Since the two schemes have a
large amount of matrix operations and complex formulation, the third scheme is designed finally
by composing the solution and its second derivative, fourth derivative, which greatly simplifies the
matrix operations and ensures certain accuracy. In this scheme, through simpler computations, the
relationship between the solution and its fourth-order derivative, as well as the relationship between
the solution and its second-order derivative can be directly obtained, which can’t be done by first
two schemes in this paper. Finally we will use the three schemes to simulate a motion invariant, and
summarize the advantages and disadvantages of these schemes. At the same time, compared with
a three-point compact scheme with sixth order accuracy derived by Chu and Fan in 1998 [10], our
schemes are more accurate.

In this paper, we consider fully discrete schemes for linear good Boussinesq equation

0?u = 02u — dtu, (1.1)

where 0 < x < L,t > 0, L is a constant. The following nonlinear good Boussinesq equation is also

numerically solved
Y Pu = 32u — otu + 32 (u?). (1.2)

We consider initial conditions and periodic boundary conditions as follows
u(t,0) =u(t,L), u(0,x) = f1(x),u:(0,x) = fo(x),0 < x < L. (1.3)
2. Establishment of the CHOC Scheme

In this paper, we introduce three schemes for discretization of spatial derivatives. To detail the
CHOC scheme, we introduce a uniform grid xo < x1 - - < xy with xj = xo + jhand h = =20, j =
1,2,-- -, N.First, we introduce the simplest scheme (2.1) and (2.2)

’ ’ / " " uj+1 — u]'—l

o1 (1/{]'_;’_1 + Z/l]'_l) + uj + .Blh (uj+1 - ”]’—1) + ’Y]# = 0, (21)
”,‘+1 - ”/'71 " " " Ujp1 — 2+ Ujyq

[1%) % + u]' + ﬁz <uj+l + uj*l) + Y2 ! h2] ! = 0, (22)

where a1, 81,71 and ap, B2, 72 are coefficients to be determined according to the accuracy of the
approximation. The three-point CHOC scheme for the combination of first and second derivatives
is to relate uj, u;, u;f to their neighbors uj—1, ”}—1/ ”;',—1 and Ujy1, u; 1 u}’ 1 This scheme approximates
first-order derivative and second-order derivative of u separately using above combinations by Wang
and Kong et al [9].

By inserting Taylor expansion to equation (2.1)and(2.2), we can get the following Tables 1 and 2.

Table 1. Taylor series of scheme(2.1).

’ " "

Term wh™  u;  wh  u; h? u]@)h3 u](-s)h4 u]@h5 14](-7)h6 u}s)h7

j j j
! i3 i3 I3 3 3 o
a0 wmoowm %% % % % %
aqtj_g 0 ap —ap o -3 at -5 o -7
1
Uj 0 1 0 0 0 0 0 0 0
! B1 Ba Bi B B
181”]‘+1h 0 B1 B1 T'ﬁ ? 47!3 ? ?3
" 1 1 1 1 1
—Pru;_4h 0 b1 B = 3 -T 5T —&
M+ 7 mo% il ) i Gl 7 i
SN U T TR T B
X 0 yu O Y12 0 Y13 0 Y14 0
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Table 2. Taylor series of scheme(2.2).

Term  ujh™?2 u;.h_1 u, u;h u](-4)h2 u}s)h3 14](-6)h4 u]@h5 14](-8)h6

j j
a a2 193 [L5) [L5) 193 [L9]
i 0 o a0 ot 3t T 5t 3 7t

a _ 1 I 1 a _n ay

M 0 &2 a2 2! 3! Y 51 6! 7!
"

Uj 0 1 0 0 0 0 0 0

" B2 B2 B2 B2 B2

Bauj 4 0 B2 B2 or 3 a 50 o

" B2 B2 B2 B2 B2

—Patj_y 0 P2 —P2 o —5r ar 5 o
Bup o m (CEE S i i 7 #

—2Bu; 27 0 0 0 0 0 0 0 0
z 0 0 yaz 0 Y22 0 Y23 0 Y24

To make this scheme with sixth order convergence, above coefficients must satisfy the following
algebraic equations:

yin =2(a1+71)+1=0,
yi2 =1 +2(B1+3) =0, (2.3)
y13:2(%+%+%) =0

and

Y1 =2(aa+B2) + 12 +1=0,
yn=%2+p+% =0 (2.4)
}/232%4-%4-%:0.

The solutions of above equations are

AP W
1= 16,/31f TRLRET
and 9 .
= -, = -, = —3'
=g B2 g2

Therefore, schemes(2.1) and (2.2) are in the spacific forms

1 / / h ” " 15

E (71/lj+1 + 161/[; + 71/lj_1) — R <Mj+1 — u]'_l) = ﬁ (T/lj+1 — T/lj_]_), (25)
9 ’ ’ 1 " " ” 3

@ (”j+l — Ll]-_1> — g (u]'+1 — 8u] —+ uj—l) = ﬁ (uj+1 — Zu] + uj_l). (26)

After conducting a thorough analysis, it is determined that this scheme has a relatively limited
applicability. Its usage often necessitates complex matrix operations, and it is insufficient for differential
equations involving certain high-order derivatives. For Good Boussinesq equation under study in this
paper, a fourth-order spatial derivative is involved. To get the numerical solutions of Good Boussinesq
equations, we need the discretization of dtu and d2u. Here, we adopt the combination of function
values of u and its first-order derivative, second-order derivative to represent fourth-order spatial
derivative

36 21 !/ ! 3 " "
B ) B ) - A ) e
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Under periodic boundary conditions, by combining (2.5) and (2.6) we have
! r "
L1 L1
16 7 u 1 -1 4 0 1 -1 uy
-1 1 -1 1 up
1 7 16 7 2 h 0 2 B 15 0
16 716 7 || 16 10 1| ,” 167 10 1 | una
7 7 16d| N1 1 -1 0 N-1 1 -10 un
un L UNn
! "
L1 !
0 1 -19) -8 1 1 21 1 in
-1 1 1 -8 1 1 21 u
9 0 2 1 8 2 3
I e B )
8h -10 1|, 8 1 -81 |[,” h 1 -2 1 || un-1
1 -10 N-1 1 1 -8 "N 1 —2dL uy
Un Un
where
16 7 0 1 -1 0 1 -1
117167 hl-101 15 | -10 1
An = ¢ o A= R P2 e yan .
7 16 7 -10 1 -10 1
7 7 16 1 -10 1 -10
0 1 -1 -8 1 1 -2 1 1
-10 1 1 -8 1 1 21
9 1 3
Azl:% ,Azzz_g 'A23:h2
-10 1 1 -8 1 1 21
1 -1 0 1 1 -8 1 1 -2
Therefore, we can represent it in the following form:
AUy + AUy = AU 28)
AUy + AUy = AU

By solving (2.8), we can obtain: Uy = G-U, Uy, = H-U,G = A71B,H = AIC, where A =
A11An — ApAg, B = ApnAiz — ApAgz, C = A1 Ay — Ay Aqz. For (2.7) we have
(4)

!

Uy Wy
(4) -2 1 1 u 0 1 -1 / 01 1 I
Uy 3 1 -2 1 uz 71 -1 0 1 U 3 10 1 Uy
CEA B RN A e EENENE A E
u@ 1 -2 1 || una 10 1|4 1 01|y
N-1 1 1 -2 uN 1 -1 0 Nfl 1 10 N/71
u](\‘]‘) Uy Uy
where
01 1
B 3 10 1
1_—ﬁ :
1 01
1 10

By substituting Uy = G - U, Uyxy = H - U into it, above expression can be represented as follows

12 56
iU = —?A23 U4 —AnG-U+BH-U.

= 2.9)

LetM=B-H+ B%Azl -G — %Azg. We will have the following schemes to the spatial derivatives

iU =M-U,
(2.10)
2U=H-U.

d0i:10.20944/preprints202406.1509.v1
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Next, we will give second CHOC scheme with eighth order accuracy with the combination of
! " " " "

first, second and third derivatives relating uj,u;, u;, u; to their neighbors uj-1, u;._l, Ui, Ui and

R
Ujy1, u; Y u}, iy u;ﬁﬂ. Generalization of (2.1) and (2.2) to the case of three derivatives jields similarly
the next CHOC scheme
’ / ’ " " o f m m M]‘_H - M]‘_l
oy (”j+1 + ”j—1) +uj+ ﬁlh(uj+1 - ”1—1) + wih (”j+1 + “j—l) tn———— =0 (2.11)
u/' - ul‘f " " ” m m Uir) —2u; + u;
j+1 j j+1 ] j+1
%) A +u;+p2 (ujﬂ + u]',1> + wyh (u].Jrl - ujfl) +72 2 =0, (212
u;+1 + M},l " u;,Jrl — u}ll m " Ujyp — Ujq
a3 # + 1/[]' + ,33 # + w3 (qu + u]'71> + 73”173 = 0, (213)

where a1, B1, w1, 1 and ay, Bo, wo, v2 and a3, B3, w3, 3 are coefficients to be determined according to
the accuracy of the approximation. By Taylor expansion of equation(2.11),(2.12) and (2.13) we can get

Tables 3-5.
Table 3. Taylor series of scheme(2.11).
-1 ! " av) (4)73 (5)7,4 (6)15 (M 1.6 (8)17
Term ujh u; ujh ujh u; h uj h u; h uj h u; h
!
L 0 0 om of 5t b 5t o 7
7
iy 0 0 - o -5 o -5 o -7
1
”j 0 1 0 0 0 0 0 0 0
"
Pruj b 0 0 A B1 & & & & &
"
Buiah 00 - p - & & & &
nr
wluj+1h2 0 0 0 wq wq S < e &
"
w1 1hz 0 0 0 w1 —w1 5t -4 o -4
T N U T TR T B S
0 yu O Y12 Y13 0 Y14 0
Table 4. Taylor series of scheme(2.12).
-2 ! " " (4)72 (543 (6) 74 (7)1 5 (8) 16
Term u]h ujh u; u; h u; h u; h uj h u; h uj h
I
"
Uj 0 0 1 0 0 0 0 0 0
"
Pattj iy 0 0 p P 5 & & & &
"
Partj_y 0 0 B B & -G & & &
i
wzuth 0 0 0 wy wy 5 S & &t
"
wattj_4h 0 0 0 -—w wy -2 & -% &
i i1 LI T i & % ¥
—Bu; -2y, 0 0 0 0 0 0 0 0
-1 o -rn % % ® % % -# &
z 0 0 yxu 0 ) 0 Y23 0 Y4
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Table 5. Taylor series of scheme(2.13).
Term u]-h*3 u;-lf2 u;/hfl u;»” u](.4)h u]@ 2 u](.é)h3 u](.7) n* u](.g)h5
Bea 0w e ¥ 0% % % &% %
A T T I T
u; 0 0 0 1 0 0 0 0 0
B ht 0 0 B3 Bs b & & & il
—Bau;_qh! 0 0 -8 B -5 b ~& b -b
w3u;f;1 0 0 0 w3 w3 s 5t T 5
w3u}"71 0 0 0 w3  —ws 5 -3t & -4
Tuin 73 7 L S % ) 7 ¥
—Bui - o o—x K -F  F  -& 7 -#
X 0 Y31 0 Y32 0 Y33 0 Y34 0
To make these schemes of eighth order, they must satisfy the algebraic equations:
yin =2 +7)+1=0
y=a1+2(B1+wr+ %) =0
Co(u By @) g (2.14)
Y13 axttats
yu=2(%+8+9 4+ 1) =0
and
Y2 :2(0624-,324‘%) +1=0
yn=2(%+%+wm+%) =0
_o(m By @ ) g (2.15)
Y23 sttt o
yu=2(%+21+%1+8)=0
and
y31 =2(az +73) =0
yn=2(F +Bs+ws+ %) +1=0
_nfas , B3 ws | 13 _ (2.16)
va=2(3+ B+ 5+ %) =0
Their unique solutions are
“719[%71&]71 35
1= 55/P1= 7y 1—96/71— 32
and 2 5
= 37 = P - 12 — _4
=g P = e w2 = g
and

o 15,15 3105
3= 16/ 3_8/ 3= 16/’)’3_16

respectively. Therefore, the scheme (2.11),(2.12) and (2.13) has in the following specific form:

1 ! ! ! h " " h2 n n 35
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@%&H—Z%FJ__@%H54&5+5%4)+hoﬁﬂ—uFJ__4@H1_mﬁ+wq) 019
164 16 48 2 ‘
!/ !/ " " " " "
(HBuH1+JO&%%)4_(Buﬁl—15%70__(3%+1—16% +3u]' ) 05 )
— 1612 8h 16 — 1603 '

This three-point scheme possesses eighth-order accuracy and involve three derivatives, so it is more
applicable and allows for greater accuracy in comparison to (2.1) and (2.2).

Next, we adopt the combination of function values of u and its first three derivatives to represent
fourth-order spatial derivative

4) 72 183/ / 39/ I 3/ m m
U *_ﬁ(”jﬂ —2uj+ujq) + B\t~ ”]’—1) - 44(}[2 Ui+ “j—1) + E(”j-i—l - ”j_l) (2.20)
By Combining (2.17), (2.18), (2.19) and (2.20) we obtain

(4)

uf g !
(4) -2 1 0 1 u 0 1 -1 ’ 01 1 I
) 7 1 -21 up 18 -1 0 1 U 39 10 1 Uy
- = e : + e .= .o .
. 4 Lot. . : 3 Lot. . : 2 .. .
u® h 121 ||uya | 4R -10 1 || 4h 1 01|
N-1 1 1 -2 uN 1 -1 0 N/*l 1 10 I\I,Tl
LW Un uN
N
"
u
-0 1 ~1q] W
-1 0 1 Uy
3
+ 17 T
71 0 1 u///
L1 -1 0 J| "N-1
(oY
(2.21)
- r ! " "
%1 1 5} S} 1
12 4 u/ ro0 1 —1 u// 01 1 u///
19 19 2 h -1 0 1 2 hz 10 1 2
- N . - ot oz -
32 1 2 1 & 8 10 1 " 96 1 01 "
R | R L1 —1 0 J| ¥N-1 1 1 0d| *N-1
1 l i " n
L 19 L uN MN MN
0 1 -1 Ui
-1 0 1 us
— 35 .
32h .ot . :
-1 0 1 UN-1
1 -1 0 UnN
(2.17%)
! " n
0 1 -1 u} _%6 ! ulll 0 1 -1 u}//
| ~10 1 it 5 ? -¥1 ity yl 1o ity
DU S S DT
16 101 || 1 “t6oq || 4 101 ||
1 -10 N-1 S N-1 1 -10 N-1
1 1 16 " 1z
MN 5 MN MN
-2 1 1 251
1 -2 1 Us

1 -2 1 || un

(2.18%)
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! " "
u u 16 1 u
0 1 —1q] 7 0 1 —19] h L p
105 10 1 Uy 19 10 1 Uy 3l P! Uy
+ = :
2 :
16h 10 " 8 “10 1 |,” 1 1 _16 J
1 -10 N-1 1 -10 N-1 3 N-1
u/ u// 1 1 _1376 uw
N N N
0 1 -1 5]
-1 0 1 U
105 .
1643 e . :
-1 0 1 UN-1
1 -1 0 UN
(2.19%)
where
32
2 1
119 » 0 1 -1 0 1 1
19 19 pl-1o1 p2|1o 1
Biu=2 o |Be=—g| - Biz=gc|
121 -10 1 1
) U x 1 -10 1 10
19
16
- 1
0 1 -1 0 1 -1 15 1
-10 1 -10 1 -3
35 29 5
B T ,Ba1 16 ,Bzz——l
-10 1 -1 0 1 1 -1 4
1 -10 1 -10 >k
1 1 -k
0 1 -2 1 0 1
1o 1 -2 1 -1 0
By = — S By = SR
P48 -4 2 S 16h2
1 1 -2

0 1 0 1
15101 *?6 1 -10
Bz = DU B3z = — S , B34 3
8h S SRR 16h S
1 -1 0 13 -1 0

Therefore, we can represent it as follows

By1Ux + BioUsy + BigUyxxy = Byl
B21 Uy + By Uy + B23 Uyyx = B24u (2-22)
B31 Ux + B32 uxx + B33 uxxx = B34u

In light of solving (2.22), we can obtain: Uy = G* - U, Uyy = H* - U, Uyrr =1- U, G* = DD, H* =
D 'Dy,I = D™'D3. D = B11BBss + B1aB2sBa1 + B13BaiB32 — B1iBa3Baz — B1aBoiBaz — BisByBay,
Dy = B14B2Bss + B14B23Bs1 + B13B21Bas — B11B23Bss — B14B21Bss — B13B24B31, D2 = B11B2oBay +
B12B24B31 + B14B21B32 — B13B24B31 — B14B21B3s — B11B23Bay,

D3 = B11B22Bss + B12B24B31 + B14B21Bs2 — B11B24Bsy — B12Bo1Bay — B14B22Bs;. substituting Uy =
G* - U, Uyy = H* - U, Uxxx = 1- U into (2.21) gives that

18 366 936 6

aiu:—;524 U~ 5 7BG’ - Ut S pBisH' - U — 5Bl - U (2.23)


https://doi.org/10.20944/preprints202406.1509.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2024 d0i:10.20944/preprints202406.1509.v1

9 of 23

let M* = %BBH* — %BHG* — %BM — h%BuI. we will get the following discrete schemes of the
spatial derivative:

(2.24)

AU=M*"-U
2U=H"-U

For above scheme, we find that matrix operation becomes complicated. To get the discrete form
of 9%u and dtu according to the (2.11), (2.12) and (2.13), it requires many matrix operations, and
subsequent simulation of numerical solution will be more difficult. So we consider constructing a
direct combination of d2u,d%u and u to look for third CHOC scheme. This scheme will maintain
a 6th-order precision and can easily obtain the discrete forms of 92u and 9%u, which will be more
pertinent and accurate This scheme has the following formulation

" () (4)
u'H—i—u b1ty Ujp) — 2Uj +Uj_q
a1 (l 5 +u + Bih? f =12 h2] =, (2.25)
/ " " (4) (4)
ui g —2u; +u; 4 Uiy tu Ujpp — 4 +6u; —4ui 1 +uj_p
" hz] j N 5 = qp J h4f ] 72 (2.26)

We insert Taylor expansions to (2.25) to obtain

]+1+ j—1
2

:u;,+a1 (u —|—2—?u] 4' ] ( )>+51h2<u§4)+2| ](6)_|_4' ](8) —|—0<h6)>
= (ron+ (o) + (G0 B )it +o(0),

Ui —2u;+uj_
RHSI’)/l( j+1 ] ] 1)

LHS = 1] + + Brh? f“

2

(4) (6)

u; uj
_ " Iy 4 6
= u]+—12h 360h +o(h )

To make the scheme with sixth order accuracy, the coefficients must satisfy the algebraic equations

61
51 _ M _ 3
sdtbi=4 = (P1=-31
& 1 _ 75
H+o=4 =6

Similarly, for(2.26)we have:

(6) (8) (6)12 (8) 4
_ @ @ Y g g @ Y Y 6
LHS = Uj —l—az(u] h 360h ) + B2 (uj + o + 1 +o(h )

= 1+ +p)u + <12+ﬁ2)h2 u® 4

h4

22w =260 =26 6
—72< 1 Uj + al huj 8l huj )—I—o(h)

Uisn —4u; 1+ 6u; —4u;_1+u;_
RHS:')/Z j+2 j+1 ] j—1 ] 2+0(h6>
3
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To make the scheme with sixth order accuracy, coefficients must satisfy the algebraic equations
2528 6
1+ar+po=57 a =7
@ _ 2728 _5
7+ &= o2 = P2=7
o 2 _ 20-23 _ 18
30 T % =Ts M T2=7
Under periodic boundary conditions, for (2.25) and (2.26), we obtain
el 1 1 ulll u§4)
7 r —
1 6 9 ! 01 1 NO) 21 1 ug
7 7 ) 342 10 1 2 75 1 -2 1 )
a5l s Fae!l :
61 18 1 || 488 101(,® 61h 1 -2 1 || un—
7 o N-1 L1 10 N-1 1 1 -2 UN
1 5 " (4)
7 Uy uy
- 4
uy 1 1)
-2 1 1 u// 114 u(4) 6 —4 —4 uq
1 -21 5 —4 6 —4 u
6 2 N 5 5 2 18 6 2
2 IR 14 S o L :
7h 1 -21 e 14 1 4 9 (4) 7h —4 6 —4 | UN—1
1 1 2 N-1 5 UN-1 —4 -4 6 UN
u 1 1 2] @
N - u
where let
g 1
16 01 1 —12 12 ) 1
a7 7 . 32 |1 01 AF 75 -
11 — 7 s 2 = T 750 P83 = 7075
61 e 488 oo 61h U5
[ 1 10 1 1 -2
1 19
re —41 1 —47
L -4 6 —4 1 1
B! 1 1 46 —41
-2 1 1 HEY
1 -21 5
AL = O AL = 2 . AL = 18]
21 7 7p2 SRR 7822 7y o 723 T gpd
1 -21 1 ¥
1 1 -2 > . oo
1 1 i |
1 1 —4 6 —4
L—4 1 1 —4 6
Therefore, we can represent it in the following form:
Aﬁ Ux + ATzuxxxx = Tg,u (2.27)
Aﬁl Uy + Azz Uxxxx = A§3u

With (2.27), we can readily derive Uy, and U, yy by expressions of U, respectively. This significantly
streamlines the matrix operations. By solving (2.27), we can obtain Uyy = Gy - U, Uyxxx = Hj - U, where
Gi = A7'B,H; = A['C where A; = A[jAS — ADA), Bl = ARAY; — ARpAS, G = A[jAL —
A3, Al;. For good Boussiensq equations, above scheme has higher spatial accuracy compared to the
scheme given in [11].

3. Establishment of the Full Discrete Schemes

Let T be temporal stepsize and t, = nt,n = 0,1,2,---,M, where M = T/t. Denote the
approximation of u(x, t,) by u". Define the following operators
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1 n n n+1

utt —y 1 u'+u

Sul = = ytti==__"
T 2

Let v = u;, the considered good Boussinesq equation can be written as
00 = Fu — dru 4 92 (u?).
Applying CHOC scheme (2.10) to the spatial derivatives of above equation gives that

vp=-M-u+H-u+H-u?
:N-u+H-u2,

where N = H — M. By adopting symplectic midpoint scheme with second-order accuracy to above
equation, we have the following full discrete scheme

un+1 =u" 4 g(vn _|_vn+1), (3.1)
+1
- %N-u”“ 4ot = %N-u” Fo' 4 %H- {(u2>n + (uz)" } 3.2)

Similarly, using CHOC scheme (2.24) for the spatial derivatives yields that

vp = —M*u+H"u+H* u?
= N*-u+ H* u?

where N* = H* — M*. we obtain the corresponding full discrete scheme

73 *  on+l n+1_I * N n I * 2\" 2n+1
2N u " +o —2N u'+v +2H {(u) +(u) . (3.3)

Applying CHOC scheme (2.27) for the spatial derivatives gives that

vt:—Hl~u+Gl-u+G1-u2
:N1~u+G1-u2,

where N; = G; — Hj. we get the following full discrete scheme similarly
T ot ontl _ T oon o, LA 2\" 2\ 1
2N1 u'" "t +o —2N1 u"+o +2G1 {(u) +<u> . (3.4)

By combining (3.2), (3.3), (3.4) with (3.1), respectively, we always obtain the algebraic equation as
follows
A- T}’l+l —B- Tn 4 F(Tn+1’ Tn)’

where A and B are some invertible tridiagonal matrices depending on the corresponding schemes,
T" = [u" ,v"]T, and F is the corresponding nonlinear term.

For simplicity, we will denote the schemes corresponding to (3.2), (3.3) and (3.4) by CHOC-A,
CHOC-B and CHOC-C, respectively.

4. Conservation Laws of CHOC Schemes

Under periodic boundary condition (1.3) with L = 1, some good Boussinesq equations have
certain conservation laws. Below, we consider periodic domain [0, 1].
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Theorem 4.1. Let ||-|| denote the standard L?-norm for 1-periodic functions. Then along with 0?u = —d%u,
the quadratic functional
loee 1 + e |2 (4.1)

is an invariant of motion.

Proof. According to (1.3), by multiplying both sides of 0?u = —d%u by u; and integrating it by parts,
we have

1 1
/ Up - Updx = — / Uy - UpprdX. (4.2)
0 0

For (4.2), we take integration with respect to ¢ to get

t 1
/ / Uy - Uy dx dt = / / UyxUpry dx dt,
= / u?(x,t) dx+/ uz,(x, t)dx—/ u?(x,0) dx+/ Uy (x,0) dx.
0
Therefore we get (4.1).

Theorem 4.2. For nonlinear Boussinesq equation (1.2), the following conservation law is satisfied

1 . LI ;
/0 u(x,t) x:/ v°(x)dx. (4.3)

0
If f x) dx = 0, then we get the conservation law as follows
1 1
/ u(x,t)dx = / u®(x) dx. (4.4)
0 0

Proof. For t € [0, T], integrate with respect to x on both sides of (1.2), we obtain

1 1
/ updx = / Uyy — Ot + (u?) yrdx.
0 0

According to (1.3), the integration on right side of above equation is 0, i.e.

1
/ uttdx =0.
0

Taking 1ntegrat10n with respect to f yields that fo u(x, t)dx = fo x)dx, that is (4.3). If f x)dx =
0, then fo us(x, t)dx = 0, which gives (4.4) by integration with respect to t.

First, we are interested in its discrete version of Theorem 4.1 and Theorem 4.2 under numerical
analysis for CHOC schemes. To this goal, we list some important properties of circulant matrices [9].
A matrix written in the form

o o S CON-1
CN-1 C0 €1 T CN-2
Circ(cg,c1,62 - - CN=1) =
2 c3 - - C1
C1 ¢ -+ CN-1 Co

is said to be circulant matrix.
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All of the matrices Aij(i,j =1,2), Bij(i,j =1,2,3), Al’fj(i,j = 1,2.) are circulant. There are a lot of
favourable characters of this kind of matrices.
We list some of them in the following which are useful in analyzing our schemes.

Proposition 4.3 ([9,23]). If A, B are circulant matrices with the same number of rows and columns, then we
have

(i) A+ B, A — B, AB are circulant matrices.

(ii) If A=V is well defined, then A~ is also a circulant matrix.

(iii) A, B are commutators, that is AB = BA.

(iv) If A, B are symmetric and positive definite matrices, then AB = BA is a symmetric and positive definite
matrix.

(v) The eigenvalues of the circulant matrix above is A; = Z,IC\]:_Ol cxe”

—ip; _i(N=1)e. 1T
wj:%[l,e 19],"',6 i(N-1)0; )

&6j with the corresponding eigenvector

By Proposition 4.3, we can get the following proposition.

Proposition 4.4. For the matrices in the CHOC solvers (2.10), (2.24), (2.27), we have:

(i) A1, Ap, —As, By, B3z, Ay, A3,, Ajq are symmetric and positive definite.

(ii) AlZ/ A13, A21, B12, B14/ B21, 323, B34 are skew—symmetric.

(iii) B11, B13, Ba4, B31, B3, ATZ’ AT3, A>2kl are symmetric.

(iv) A, A=Y, D, Ay, C; are symmetric and positive definite, and Dy, D3 are skew-symmetric, D, By are
symmetric.

(v) M*, Hy are symmetric and positive definite, and G, G*, I, are skew-symmetric, H, M, H*, G, N, N*, N
are symmetric.

(vi) All of them are circulant.

Proof. The conclusions(i)—(iv) and (vi) can be observed or be verified from Proposition 4.3. The result
(v) can be derived from the last conclusion in Proposition 4.3 by finding their eigenvalues.

Theorem 4.5. Define
w" = (o",0") + (u",R-u"),

where (u,v) is the standard unitary inner product in discrete level for finite dimensional sequence vectors,
o = [ol, vl o] T u = [ul,ull, - uly | T R is the matrix coefficient in approximating fourth-order
spatial derivative expressed by M(2.10), M*(2.24), H1(2.27). Then for CHOC solvers (2.10), (2.24), (2.27) to
solve a%u = —a;%u, the numerical solutions satisfy that

Wt = w". 4.5)
Moreover, to M*(2.24), H1(2.27), there exists C such that CT - C = R, therefore

w" = (0", 0"+ (C-u",C-u"),

Proof. Since v = u;, we have vy = —uyyyy, then its discrete scheme is
UnJrl — ot Run+1 + Ru"
T - 2 ‘

17un o vn+1+vn
- 2

By multiplying '’ = on both sides of above formula, we have

(Un+1 + Z]n)T (Un+1 _ vn) (UnJrl 4 7]n)T Ru”“ + Ru"

2T N 2 2
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Therefore we obtain that
<vn+1)T(0n+1) _ (v")T(U") — _(unJrl)TR_ (un+l) _ (u")TR- (u"),
”0”+1 T Z)n—i-l + un—l—l T R. un+1 — (U")T(Z)n) + (u")T(R . un),
()

that is w1 = w". Taking into symmetric positivity of M*(2.24), H1(2.27), there exists C such that

CT . C = R, which yields that
(u",R-u") = (C-u")T(C-u").

Therefore, we obtain that
w" = (", ")+ (C-u",C-u").

Theorem 4.6. To nonlinear good Boussinesq equation (1.2) with periodic boundary condition, the schemes
CHOC-A, CHOC-B and CHOC-C satisfy the following discrete conservation law

O NX _
u'=nh)’ uf = ud (4.6)
j=1

provided that v° = 0.

Proof. Firstly, we consider schemes CHOC-A to solve nonlinear system (1.2) and have the following

formula
n+l _ . n " + ot n+l _ .on, © n+1 n T n\2 n+1 2
"t =u +T(2 0T =0 +2N(u +u)~|—2H (u™) +(u ) . 4.7)
By calculation, we obtain that
1 T 2 7! 2 1\2
"t =" 4 5 (E - 4N> {TNU" +2Nu" + H[(u") + (u"+ ) ] } (4.8)

Construct the following iterative algorithm

2 N1 2
n+1 n T T " ! ")? "
Uiy = +2<E_4N) {TNU 2N +H{(u) +(u(5> ]}’

o't +Un+l
+1 _ (k+1)
”?k+1) =u"+T (2 , (4.9)

n+1

wherek = 0,1, ... and Uy = u". Then we get that

: +1
lim u'(1k)

=y, lim o7t = oL, (4.10)
k—o0 k—o0

(k)

Considering v0 = 0 and the symmetry of N, H, we can obtain that vz‘]:;ll) =0v"=0, “’(11:}1) = u". The

limit (4.10) yields that v"*1 = 0, u"+1 = u”. The conservation identity (4.6) for the schemes CHOC-B
and CHOC-C can be derived similarity.
For linear good Boussinesq equation (1.1), we have the following equivalent Hamiltonian system

{”t - 4.11)

Ot = Uxx — Uxxxx,
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with the Hamiltonian function H = —% [ (v* + u2 + u3, + V*(u))dx. Thus we obtain the symlecitic
conservation law as follows

w(t) = /du Advdx = w(0). (4.12)

Symplectic schemes for Hamiltonian systems are proven to be more efficient than non-symplectic
schemes for long-time numerical computations and are widely applied to practical problems arising in
many fields of science and engineering which involves celestial mechanics, quantum physics, statistics
and so on (see [13,24-26]). Next, we will derive that the considered CHOC schemes are symplectic.

Theorem 4.7. To linear good Boussinesq equation (1.1), the schemes CHOC-A, CHOC-B and CHOC-C are
symplectic with the following conservation law

NX

_ _ 0

w" =h ;du;1 Ndof = w’. (4.13)
]:

Proof. To (3.2), scheme CHOC — A has the formula as follows

—%N E un-‘rl

E -ZE

u?l
Vﬂ

IN E
E 1E

Vn+1

Therefore through tedious calculations, scheme CHOC-A is symplectic. Similarity, the scheme CHOC-B
and CHOC-C are also symplectic.

5. Numerical Experiments

In this section, we present some numerical results to illustrate above theoretical analysis about
the CHOC schemes, mainly focusing on the convergence and discrete conservation laws for numerical
solutions of the good Boussinesq equation.

First, for the linear good Boussinesq equation, we take the initial value f(x) = sin(x) and exact
solution u(x,t) = sin(x) cos(\@t). Here, we focus on issues within a limited space-time domain

[0,277] x [0, T]. The Ly and Le norm of the errors between numerical solution and exact solution are
defined respectively as

7

2
lle" (h,T)||» = h%l(u]’? —u]’-‘) e (1, 1)l :mjax‘ll]-"—u}“

where U]” =u (xj, tn) is the exact solution and u" is the numerical solution. The convergence order in
the space and time directions is defined as orderl and order2 respectively

In(fle(hs, D[ /lletha, D) 1.5 _ Wlleth, 7)1/ le(h, 2)1)
ln(h1/h2) ! 11‘1(”[‘1/1’2)

First, we test the convergence order of CHOC — A, CHOC — B, CHOC — C and take different step
sizes in the direction to be considered, and takes very small step size in other direction.

Table 6 lists the error of numerical solution and exact solution under L, and L, norm, and the
spatial convergence order calculated by orderl for the three CHOC schemes by taking different spatial
step sizes. In order to make the error in the time direction relatively negligible, we take the time step

order]l =

size T = 104
Table 8 lists the error of numerical solution and exact solution under L, and L, norm, and the
time convergence order calculated by order2 when the three CHOC schemes take different time step
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size. In order to make the error in the spatial direction relatively negligible, takes the spatial step size
h = %—g. Next, Table 7 shows the ratio of numerical error in Table 6 calculated by

Numerical error by CHOC — B or CHOC — C
Numerical error by CHOA scheme '

Table 6. Numerical error of u]’-‘ with T = 10~4.

h scheme le"||2 order [[e" || oo order
It [ CHOC-A |7629%x103 - 41841  x -
1073
CHOC — B | 7.4229 X = 3.9829 X -
1074 1074
CHOC —C | 9.4958 N 5.0952 N
104 104
o CHOC— A | 4203x10~%* 4.1816 239?8 x 41816
10~
CHOC —B | 9.4353 X 6.2978 5.0628 X 6.2977
10 10
CHOC—C | 1.348x10° 6.1384 72%?1 X 6.1384
10~
i CHOC — A | 8.0998 x  4.0609 45682 X 3.9927
10> 105
CHOC —B | 7.9367 X 6.1054 4.4533 X 5.9952
1077 1077
CHOC—-C | 1.1673 X 6.0338 6.5498 X 5.9236
10 1077
o CHOC — A | 2.5403 x  4.0307 1.4288 X  4.0402
10-° 10-°
CHOC —B | 1.3599 X 6.1321 7.6726 X 6.1129
1077 10-8
CHOC —C | 2.0994 X 5.9636 1.1844 X 5.9448
1077 107
o CHOC—-A | 1.0361 x  4.0190 5.8447 x  4.0059
10> 10-°
CHOC — B 32?6 X 6.4316 1.823 x 108 6.4406
10~
CHOC —C | 5.7932 x  5.7701 3262 x 1078 57784
10-8

Table 7. The ratio of numerical error among different schemes of u;l with T = 1074,

h CHOC — B CHOC —C
rate e} rate e, rate e} rate e,
= 103 105 8.03 8.2
= 445 455 312 31.9
i 102.1 1026 69.4 69.7
o 186.8 186.2 121 120.6

%g 320 320.6 178.8 179.2
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Table 8. Verification of temporal convergence rate with 1 = 28—75.

T scheme [le™]|2 order [|e"]| oo order
1 CHOC—A |55718 x -— 11056  x —
10-° 105
CHOC—B |5574x10°% — 1.106 x 107>  —
CHOC—-C |5574x107¢ — 1.106 x 107> —
= CHOC — A | 1.4094 x 19831 2.8058 x 19783
10-° 10-°
CHOC — B | 14116 x 19814 2.8101 x  1.9764
10-° 10-°
CHOC—C | 14116 x  1.9814 2.8101 x 19764
10~ 10
o CHOC — A | 35297 x  1.9975 7.0373 x  1.9953
1077 107
CHOC—-B | 3.5515 X 1.9908 7.0808 X 1.9886
1077 107
CHOC —-C | 3.5514 X 1.9909 7.0806 X 1.9887
107 107
0 CHOC—A | 8689x10°% 20223 17%?6 x  2.0213
10~
CHOC —B | 8907 x10~8  1.9954 1.7772 X 1.9943
1077
CHOC - C 89g§5 X 1.9955 1.777 x 10~7  1.9944
10~
. CHOC — A | 2.0124 x  2.1103 4.0162 x  2.1099
10-8 10-8
CHOC —B | 2.2307 X 1.9974 4.4534 X 1.9966
108 108
CHOC —C | 2.2301 X 1.9978 44511 X 1.9972
10-8 10-8

Secondly, for the linear principal part of the good Boussinesq equation, we simulate the discrete
conservation law (4.5) in time interval [0, 15], which is measured by the following approximate motion
invariant error w" — °.

Thirdly, consider nonlinear good Boussinesq equation (1.2) with exact solitary wave solution as

follows
u(x,t) = —Asech? [(5) (¢— CO)} , =x—ct, (xt)€[-50,50]x][0,1],
where0 < P <1, A= %, Co = (1 — P2)1/2. Below we take a moderate amplitude A = 0.5, ¢y =0,
and take step sizesh = 0.5, 7 = 0.01. We simulate the discrete conservation law (4.6) in time interval
[0,15], which is measured by the following approximate motion invariant error u — 10,
Finally, we give three-dimensional waveform diagrams of exact solution and numerical solution
of three schemes. We also give a comparison between the numerical solution and the exact solution.

6. Conclusions

In this paper, for a kind of good Boussinesq equation, we construct three combined high-order
compact symplectic schemes, that is CHOC — A ,CHOC — B, and CHOC — C. The schemes sat-
isfy discrete conservation laws corresponding to structure-preserving property of good Boussinesq
equation.

In numerical experiment, we first test the convergence order of CHOC — A,CHOC — B,CHOC —
C by taking different step sizes in the direction to be considered, and taking very small step size in
other direction. In Table 6, we test the spatial convergence order of CHOC — A, CHOC — B, CHOC —C.
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We can observe that the scheme CHOC — A is of four order accuracy in space. The schemes CHOC — B
and CHOC — C are of six order accuracy in space. From Table 7 we can observe that the ratio of
numerical error of CHOC — B is bigger than the scheme CHOC — C. In Table 8, we test the time
convergence order of CHOC — A, CHOC — B and CHOC — C. We can observe that the schemes are of
two order in time.

Second, from the approximate motion invariant error simulation in Figures 1-3, we can see that
the three schemes satisfy the discrete conservation law (4.5) for linear good Boussinesq equation.

Next, observe Figures 4-6. We find that the errors are small enough, in other words, the three
schemes satisfy the conservation law (4.6) for nonlinear good Boussinesq equation(1.2).

Finally, we use the three schemes to numerically simulate the solitary wave solutions of nonlinear
good Boussinesq equation(1.2). From Figures 7-10, we can observe that the numerical solutions fit the
waveform of exact solution well.
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Exact vs Numerical solution
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Figure 8. when /1 = 0.5, at time T = 1. The exact solution VS numerical solution of CHOC — A.
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Figure 9. when 1 = 0.5, at time T = 1. The exact solution VS numerical solution of CHOC — B.
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Figure 10. when h = 0.5, at time T = 1. The exact solution VS numerical solution of CHOC — C.
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