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Abstract: Good Boussinesq equations will be considered in this work. First we apply three combined compact

schemes to approximate spatial derivatives of good Boussinesq equations. Then three fully discrete schemes are

developed based on symplectic scheme in time direction, which are sympletic-structure preserving. Meanwhile,

the convergence and conservation of the fully discrete schemes are analyzed. Finally, we present numerical

experiments to confirm our theoretical analysis. Both our analysis and numerical test indicate that the fully

discrete schemes are efficient in solving the spatial derivative mixed equation.

Keywords: Hamiltonian system; good Boussinesq equation; symplectic scheme; combined compact scheme;

conservation

1. Introduction

Boussinesq equations are important mathematical physical models in characterizing ocean mixing,
atmospheric convection, and intra-Earth convection, which play a key role in fields such as earth
sciences, meteorology, and oceanography fields. The study of Boussinesq equation is of great value
because it helps us to better understand the hydrodynamic behavior, especially in terms of thermal
convection, ocean currents, and atmospheric phenomena. In addition, the study of the Boussinesq
equation is essential for the development of numerical models for weather forecasting, climate research,
and oceanography. These studies have also helped uncover the fundamental principles that govern
fluid motion and heat transfer, contributing to advances in fields such as engineering, environmental
science, and geophysics. The GB equation and its various extensions have been extensively analyzed
in the existing literature, such as a closed form solution for the two soliton interaction in [1],a highly
complicated mechanism for the solitary waves interaction in [2],and the nonlinear stability and
convergence of some simple finite difference schemes in [3]. In recent works concerning the numerical
solution of PDE, a significant amount addresses the Schrödinger equation, see [4–9]. In [9],using a
combined compact difference method to solve Schrödinger equation and this scheme is Structure-
Preserving.This method originated from [10],it also can be found in[11–14]. In addition,many works
related to GB equations could be found in [15–21].Higher order Boussinesq equations have been
investigated by Z.L. Zou [22].

In solving PDEs numerically, high-order compact (HOC) schemes are often used to discretize
spatial derivatives.For example,HOC schemes have been applied to solve steady convection-diffusion
equation [12], nonlinear Schrödinger equation [9], Klein-Gordon-Schrö-dinger equation [23], and good
Boussinesq equation [17].Compared with general finite difference schemes, HOC schemes have the
advantages of smaller error and higher accuracy under the same calculation amount. However, for
PDEs with multiple order spatial derivatives, such as good Boussinesq equation utt = −uxxxx + uxx +(
u2)

xx, the advantages of classical HOC schemes are often offset. If multiple HOC schemes are used
to discretize multiple spatial derivatives simultaneously, it is necessary to perform multiple matrix
inverse operations, which will reduce the computational efficiency and affect the accuracy. In [9], Then
combined high-order compact (CHOC) scheme is used to approximate PDEs with multiple order
spatial derivatives and achieve some discrete conservation laws.
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In this paper, three CHOC schemes of good Boussinesq equation are derived. Applying Taylor
analysis to an equality combining the solution u and its first derivative, second derivative, and third
derivative yields the first three-point CHOC scheme. This scheme has 6th-order precision and has
extensive application. Then similarly, we propose the second three-point 8th-order scheme by using
a combination of the first,second,third derivatives of the solution. Since the two schemes have a
large amount of matrix operations and complex formulation, the third scheme is designed finally
by composing the solution and its second derivative, fourth derivative, which greatly simplifies the
matrix operations and ensures certain accuracy. In this scheme, through simpler computations, the
relationship between the solution and its fourth-order derivative, as well as the relationship between
the solution and its second-order derivative can be directly obtained, which can’t be done by first
two schemes in this paper. Finally we will use the three schemes to simulate a motion invariant, and
summarize the advantages and disadvantages of these schemes. At the same time, compared with
a three-point compact scheme with sixth order accuracy derived by Chu and Fan in 1998 [10], our
schemes are more accurate.

In this paper, we consider fully discrete schemes for linear good Boussinesq equation

∂2
t u = ∂2

xu − ∂4
xu, (1.1)

where 0 ≤ x ≤ L, t > 0, L is a constant. The following nonlinear good Boussinesq equation is also
numerically solved

∂2
t u = ∂2

xu − ∂4
xu + ∂2

x(u
2). (1.2)

We consider initial conditions and periodic boundary conditions as follows

u(t, 0) = u(t, L), u(0, x) = f1(x), ut(0, x) = f2(x), 0 ≤ x ≤ L. (1.3)

2. Establishment of the CHOC Scheme

In this paper, we introduce three schemes for discretization of spatial derivatives. To detail the
CHOC scheme, we introduce a uniform grid x0 < x1 · · · < xN with xj = x0 + jh and h = xL−x0

N , j =
1, 2, · · · , N. First, we introduce the simplest scheme (2.1) and (2.2)

α1

(
u
′
j+1 + u

′
j−1

)
+ u

′
j + β1h

(
u
′′
j+1 − u

′′
j−1

)
+ γ1

uj+1 − uj−1

h
= 0, (2.1)

α2

u
′
j+1 − u

′
j−1

h

+ u
′′
j + β2

(
u
′′
j+1 + u

′′
j−1

)
+ γ2

uj+1 − 2uj + uj+1

h2 = 0, (2.2)

where α1, β1, γ1 and α2, β2, γ2 are coefficients to be determined according to the accuracy of the
approximation. The three-point CHOC scheme for the combination of first and second derivatives
is to relate uj, u

′
j, u

′′
j to their neighbors uj−1, u

′
j−1, u

′′
j−1 and uj+1, u

′
j+1, u

′′
j+1. This scheme approximates

first-order derivative and second-order derivative of u separately using above combinations by Wang
and Kong et al [9].

By inserting Taylor expansion to equation (2.1)and(2.2), we can get the following Tables 1 and 2.

Table 1. Taylor series of scheme(2.1).

Term ujh−1 u
′
j u

′′
j h u

′′′
j h2 u(4)

j h3 u(5)
j h4 u(6)

j h5 u(7)
j h6 u(8)

j h7

α1u
′

j+1 0 α1 α1
α1
2!

α1
3!

α1
4!

α1
5!

α1
6!

α1
7!

α1u
′

j−1 0 α1 −α1
α1
2! − α1

3!
α1
4! − α1

5!
α1
6! − α1

7!
u
′

j 0 1 0 0 0 0 0 0 0

β1u
′′

j+1h 0 0 β1 β1
β1
2!

β1
3!

β1
4!

β1
5!

β1
6!

−β1u
′′

j−1h 0 0 −β1 β1 − β1
2!

β1
3! − β1

4!
β1
5! − β1

6!
γ1
h uj+1 γ1 γ1

γ1
2!

γ1
3!

γ1
4!

γ1
5!

γ1
6!

γ1
7!

γ1
8!

− γ1
h uj+1 −γ1 γ1 − γ1

2!
γ1
3! − γ1

4!
γ1
5! − γ1

6!
γ1
7! − γ1

8!
Σ 0 y11 0 y12 0 y13 0 y14 0
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Table 2. Taylor series of scheme(2.2).

Term ujh−2 u
′
jh

−1 u
′′
j u

′′′
j h u(4)

j h2 u(5)
j h3 u(6)

j h4 u(7)
j h5 u(8)

j h6

α2
h u

′

j+1 0 α2 α2
α2
2!

α2
3!

α2
4!

α2
5!

α2
6!

α2
7!

− α2
h u

′

j−1 0 −α2 α2 − α2
2!

α2
3! − α2

4!
α2
5! − α2

6!
α1
7!

u
′′

j 0 0 1 0 0 0 0 0 0

β2u
′′

j+1 0 0 β2 β2
β2
2!

β2
3!

β2
4!

β2
5!

β2
6!

−β2u
′′

j−1 0 0 β2 −β2
β2
2! − β2

3!
β2
4! − β2

5!
β2
6!

γ2
h2 uj+1 γ2 γ2

γ2
2!

γ2
3!

γ2
4!

γ2
5!

γ2
6!

γ2
7!

γ2
8!

−2 γ2
h2 uj −2γ2 0 0 0 0 0 0 0 0

γ2
h2 uj−1 γ2 −γ2

γ2
2! − γ2

3!
γ2
4! − γ2

5!
γ2
6! − γ2

7!
γ2
8!

Σ 0 0 y21 0 y22 0 y23 0 y24

To make this scheme with sixth order convergence, above coefficients must satisfy the following
algebraic equations: 

y11 = 2(α1 + γ1) + 1 = 0,

y12 = α1 + 2
(

β1 +
γ1
3!
)
= 0,

y13 = 2
(

α1
4! +

β1
3! +

γ1
5!

)
= 0,

(2.3)

and 
y21 = 2(α2 + β2) + γ2 + 1 = 0,

y22 = α2
3 + β2 +

γ2
12 = 0,

y23 = α2
5! +

β2
4! +

γ2
6! = 0.

(2.4)

The solutions of above equations are

α1 =
7

16
, β1 = − 1

16
, γ1 =

15
16

,

and
α2 =

9
8

, β2 = −1
8

, γ2 = −3.

Therefore, schemes(2.1) and (2.2) are in the spacific forms

1
16

(
7u

′
j+1 + 16u

′
j + 7u

′
j−1

)
− h

16

(
u
′′
j+1 − u

′′
j−1

)
=

15
16h

(
uj+1 − uj−1

)
, (2.5)

9
8h

(
u
′
j+1 − u

′
j−1

)
− 1

8

(
u
′′
j+1 − 8u

′′
j + u

′′
j−1

)
=

3
h2

(
uj+1 − 2uj + uj−1

)
. (2.6)

After conducting a thorough analysis, it is determined that this scheme has a relatively limited
applicability. Its usage often necessitates complex matrix operations, and it is insufficient for differential
equations involving certain high-order derivatives. For Good Boussinesq equation under study in this
paper, a fourth-order spatial derivative is involved. To get the numerical solutions of Good Boussinesq
equations, we need the discretization of ∂4

xu and ∂2
xu. Here, we adopt the combination of function

values of u and its first-order derivative, second-order derivative to represent fourth-order spatial
derivative

u(4)
j = −36

h4

(
uj+1 − 2uj + uj−1

)
+

21
h3

(
u
′
j+1 + u

′
j−1

)
− 3

h2

(
u
′′
j+1 + u

′′
j−1

)
. (2.7)
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Under periodic boundary conditions, by combining (2.5) and (2.6) we have

1
16


16 7 7
7 16 7

. . . . . . . . .
7 16 7

7 7 16




u
′
1

u
′
2
...

u
′
N−1

u
′
N

−
h

16


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0




u
′′
1

u
′′
2
...

u
′′
N−1

u
′′
N

=
15

16h


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0




u1
u2
...

uN−1
uN



9
8h


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0




u
′
1

u
′
2
...

u
′
N−1

u
′
N

−
1
8


−8 1 1
1 −8 1

. . . . . . . . .
1 −8 1

1 1 −8




u
′′
1

u
′′
2
...

u
′′
N−1

u
′′
N

=
3
h2


−2 1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2




u1
u2
...

uN−1
uN


where

A11 =
1

16


16 7 7
7 16 7

. . . . . . . . .
7 16 7

7 7 16

, A12 = − h
16


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0

, A13 =
15

16h


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0



A21 =
9

8h


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0

, A22 = −1
8


−8 1 1
1 −8 1

. . . . . . . . .
1 −8 1

1 1 −8

, A23 =
3

h2


−2 1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2


Therefore, we can represent it in the following form:{

A11Ux + A12Uxx = A13U

A21Ux + A22Uxx = A23U
(2.8)

By solving (2.8), we can obtain: Ux = G · U, Uxx = H · U, G = A−1B, H = A−1C, where A =

A11A22 − A12A21, B = A22A13 − A12A23, C = A11A23 − A21A13. For (2.7) we have
u(4)

1

u(4)
2
...

u(4)
N−1

u(4)
N

=−36
h4


−2 1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2




u1
u2
...

uN−1
uN

+ 21
h3


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0




u
′
1

u
′
2
...

u
′
N−1

u
′
N

−
3

h2


0 1 1
1 0 1

. . . . . . . . .
1 0 1

1 1 0




u
′′
1

u
′′
2
...

u
′′
N−1

u
′′
N

,

where

B1 = − 3
h2


0 1 1
1 0 1

. . . . . . . . .
1 0 1

1 1 0

.

By substituting Ux = G · U, Uxx = H · U into it, above expression can be represented as follows

∂4
xU = −12

h2 A23 · U +
56
3h2 A21G · U + BH · U. (2.9)

Let M = B · H + 56
3h2 A21 · G − 12

h2 A23. We will have the following schemes to the spatial derivatives

{
∂4

xU = M · U,

∂2
xU = H · U.

(2.10)
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Next, we will give second CHOC scheme with eighth order accuracy with the combination of
first, second and third derivatives relating uj, u

′
j, u

′′
j , u

′′′
j to their neighbors uj−1, u

′
j−1, u

′′
j−1, u

′′′
j−1 and

uj+1, u
′
j+1, u

′′
j+1, u

′′′
j+1. Generalization of (2.1) and (2.2) to the case of three derivatives jields similarly

the next CHOC scheme

α1

(
u
′
j+1 + u

′
j−1

)
+ u

′
j + β1h

(
u
′′
j+1 − u

′′
j−1

)
+ ω1h2

(
u
′′′
j+1 + u

′′′
j−1

)
+ γ1

uj+1 − uj−1

h
= 0, (2.11)

α2

u
′
j+1 − u

′
j−1

h

+u
′′
j+β2

(
u
′′
j+1 + u

′′
j−1

)
+ ω2h

(
u
′′′
j+1 − u

′′′
j−1

)
+ γ2

uj+1 − 2uj + uj+1

h2 = 0, (2.12)

α3

u
′
j+1 + u

′
j−1

h

+ u
′′′
j + β3

u
′′
j+1 − u

′′
j−1

h

+ ω3

(
u
′′′
j+1 + u

′′′
j−1

)
+ γ3

uj+1 − uj−1

h3 = 0, (2.13)

where α1, β1, ω1, γ1 and α2, β2, ω2, γ2 and α3, β3, ω3, γ3 are coefficients to be determined according to
the accuracy of the approximation. By Taylor expansion of equation(2.11),(2.12) and (2.13) we can get
Tables 3–5.

Table 3. Taylor series of scheme(2.11).

Term ujh−1 u
′
j u

′′
j h u

′′′
j h2 u(4)

j h3 u(5)
j h4 u(6)

j h5 u(7)
j h6 u(8)

j h7

α1u
′

j+1 0 α1 α1
α1
2!

α1
3!

α1
4!

α1
5!

α1
6!

α1
7!

α1u
′

j−1 0 α1 −α1
α1
2! − α1

3!
α1
4! − α1

5!
α1
6! − α1

7!
u
′

j 0 1 0 0 0 0 0 0 0

β1u
′′

j+1h 0 0 β1 β1
β1
2!

β1
3!

β1
4!

β1
5!

β1
6!

−β1u
′′

j−1h 0 0 −β1 β1 − β1
2!

β1
3! − β1

4!
β1
5! − β1

6!
ω1u

′′′

j+1h2 0 0 0 ω1 ω1
ω1
2!

ω1
3!

ω1
4!

ω1
5!

ω1u
′′′

j−1h2 0 0 0 ω1 −ω1
ω1
2! −ω1

3!
ω1
4! −ω1

5!
γ1
h uj+1 γ1 γ1

γ1
2!

γ1
3!

γ1
4!

γ1
5!

γ1
6!

γ1
7!

γ1
8!

− γ1
h uj+1 −γ1 γ1 − γ1

2!
γ1
3! − γ1

4!
γ1
5! − γ1

6!
γ1
7! − γ1

8!
Σ 0 y11 0 y12 0 y13 0 y14 0

Table 4. Taylor series of scheme(2.12).

Term ujh−2 u
′
jh u

′′
j u

′′′
j h u(4)

j h2 u(5)
j h3 u(6)

j h4 u(7)
j h5 u(8)

j h6

α2
h u

′

j+1 0 α2 α2
α2
2!

α2
3!

α2
4!

α2
5!

α2
6!

α2
7!

− α2
h u

′

j−1 0 −α2 α2 − α2
2!

α2
3! − α2

4!
α2
5! − α2

6!
α2
7!

u
′′

j 0 0 1 0 0 0 0 0 0

β2u
′′

j+1 0 0 β2 β2
β2
2!

β2
3!

β2
4!

β2
5!

β2
6!

β2u
′′

j−1 0 0 β2 −β2
β2
2! − β2

3!
β2
4! − β2

5!
β2
6!

ω2u
′′′

j+1h 0 0 0 ω2 ω2
ω2
2!

ω2
3!

ω2
4!

ω2
5!

−ω2u
′′′

j−1h 0 0 0 −ω2 ω2 −ω2
2!

ω2
3! −ω2

4!
ω2
5!

γ2
h2 uj+1 γ2 γ2

γ2
2!

γ2
3!

γ2
4!

γ2
5!

γ2
6!

γ2
7!

γ2
8!

− 2γ2
h2 uj −2γ2 0 0 0 0 0 0 0 0

γ2
h2 uj−1 γ2 −γ2

γ2
2! − γ2

3!
γ2
4! − γ2

5!
γ2
6! − γ2

7!
γ2
8!

Σ 0 0 y21 0 y22 0 y23 0 y24
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Table 5. Taylor series of scheme(2.13).

Term ujh−3 u
′

jh
−2 u

′′

j h−1 u
′′′

j u(4)
j h u(5)

j h2 u(6)
j h3 u(7)

j h4 u(8)
j h5

α3
h2 u

′

j+1 0 α3 α3
α3
2!

α3
3!

α3
4!

α3
5!

α3
6!

α3
7!

α3
h2 u

′

j−1 0 α3 −α3
α3
2! − α3

3!
α3
4! − α3

5!
α3
6! − α3

7!
u
′′′

j 0 0 0 1 0 0 0 0 0

β3u
′′

j+1h−1 0 0 β3 β3
β3
2!

β3
3!

β3
4!

β3
5!

β3
6!

−β3u
′′

j−1h−1 0 0 −β3 β3 − β3
2!

β3
3! − β3

4!
β3
5! − β3

6!
ω3u

′′′

j+1 0 0 0 ω3 ω3
ω3
2!

ω3
3!

ω3
4!

ω3
5!

ω3u
′′′

j−1 0 0 0 ω3 −ω3
ω3
2! −ω3

3!
ω3
4! −ω3

5!
γ3
h3 uj+1 γ3 γ3

γ3
2!

γ3
3!

γ3
4!

γ3
5!

γ3
6!

γ3
7!

γ3
8!

− γ3
h3 uj−1 −γ3 γ3 − γ3

2!
γ3
3! − γ3

4!
γ3
5! − γ3

6!
γ3
7! − γ3

8!
Σ 0 y31 0 y32 0 y33 0 y34 0

To make these schemes of eighth order, they must satisfy the algebraic equations:

y11 = 2(α1 + γ1) + 1 = 0

y12 = α1 + 2
(

β1 + ω1 +
γ1
3!
)
= 0

y13 = 2
(

α1
4! +

β1
3! +

ω1
2! + γ1

5!

)
= 0

y14 = 2
(

α1
6! +

β1
5! +

ω1
4! + γ1

7!

)
= 0

(2.14)

and 

y21 = 2
(
α2 + β2 +

γ2
2!
)
+ 1 = 0

y22 = 2
(

α2
3! +

β2
2! + ω2 +

γ2
4!

)
= 0

y23 = 2
(

α2
5! +

β2
4! +

ω2
3! + γ2

6!

)
= 0

y24 = 2
(

α2
7! +

β2
6! +

ω2
5! + γ2

8!

)
= 0

(2.15)

and 

y31 = 2(α3 + γ3) = 0

y32 = 2
( α3

2! + β3 + ω3 +
γ3
3!
)
+ 1 = 0

y33 = 2
(

α3
4! +

β3
3! +

ω3
2! + γ3

5!

)
= 0

y34 = 2
(

α3
6! +

β3
5! +

ω3
4! + γ3

7!

)
= 0

(2.16)

Their unique solutions are

α1 =
19
32

, β1 = −1
8

, ω1 =
1

96
, γ1 = −35

32

and
α2 =

29
16

, β2 = − 5
16

, ω2 =
1
48

, γ2 = −4

and
α3 = −105

16
, β3 =

15
8

, ω3 = − 3
16

, γ3 =
105
16

respectively. Therefore, the scheme (2.11),(2.12) and (2.13) has in the following specific form:

1
32

(
19u

′
j+1 + 32u

′
j + 19u

′
j−1

)
− h

8

(
u
′′
j+1 − u

′′
j−1

)
+

h2

96

(
u
′′′
j+1 + u

′′′
j−1

)
=

35
32h

(
uj+1 − uj−1

)
(2.17)
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(
29u

′
j+1 − 29u

′
j−1

)
16h

−

(
5u

′′
j+1 − 16u

′′
j + 5u

′′
j−1

)
16

+
h
(

u
′′′
j+1 − u

′′′
j−1

)
48

=
4
(
uj+1 − 2uj + uj−1

)
h2 (2.18)(

105u
′
j+1 + 105u

′
j−1

)
−16h2 +

(
15u

′′
j+1 − 15u

′′
j−1

)
8h

−

(
3u

′′′
j+1 − 16u

′′′
j + 3u

′′′
j−1

)
16

=
105

(
uj+1 − uj−1

)
−16h3 (2.19)

This three-point scheme possesses eighth-order accuracy and involve three derivatives, so it is more
applicable and allows for greater accuracy in comparison to (2.1) and (2.2).

Next, we adopt the combination of function values of u and its first three derivatives to represent
fourth-order spatial derivative

u(4)
j =−72

h4

(
uj+1 − 2uj + uj−1

)
+

183
4h3

(
u
′
j+1 − u

′
j−1

)
− 39

4h2

(
u
′′
j+1 + u

′′
j−1

)
+

3
4h

(
u
′′′
j+1 − u

′′′
j−1

)
(2.20)

By Combining (2.17), (2.18), (2.19) and (2.20) we obtain
u(4)

1

u(4)
2
...

u(4)
N−1

u(4)
N

=−72
h4


−2 1 0 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2




u1
u2
...

uN−1
uN

+ 183
4h3


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0




u
′
1

u
′
2
...

u
′
N−1

u
′
N

−
39

4h2


0 1 1
1 0 1

. . . . . . . . .
1 0 1

1 1 0




u
′′
1

u
′′
2
...

u
′′
N−1

u
′′
N



+ 3
4h


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0




u
′′′
1

u
′′′
2
...

u
′′′
N−1

u
′′′
N


(2.21)

19
32


32
19 1 1
1 32

19 1

. . . . . . . . .
1 32

19 1
1 1 32

19




u
′
1

u
′
2
...

u
′
N−1

u
′
N

−
h
8


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0




u
′′
1

u
′′
2
...

u
′′
N−1

u
′′
N

+
h2

96


0 1 1
1 0 1

. . . . . . . . .
1 0 1

1 1 0




u
′′′
1

u
′′′
2
...

u
′′′
N−1

u
′′′
N



= 35
32h

 0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0

 u1
u2
...

uN−1
uN


(2.17*)

29
16h


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0




u
′
1

u
′
2
...

u
′
N−1

u
′
N

−
5

16


− 16

5 1 1
1 − 16

5 1

. . . . . . . . .
1 − 16

5 1
1 1 − 16

5




u
′′
1

u
′′
2
...

u
′′
N−1

u
′′
N

+
h

48


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0




u
′′′
1

u
′′′
2
...

u
′′′
N−1

u
′′′
N



= 4
h2

 −2 1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2

 u1
u2
...

uN−1
uN


(2.18*)
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−105
16h2


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0




u
′
1

u
′
2
...

u
′
N−1

u
′
N

+
15
8h


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0




u
′′
1

u
′′
2
...

u
′′
N−1

u
′′
N

−
3

16


− 16

3 1 1
1 − 16

3 1

. . . . . . . . .
1 − 16

3 1
1 1 − 16

3




u
′′′
1

u
′′′
2
...

u
′′′
N−1

u
′′′
N



= − 105
16h3

 0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0

 u1
u2
...

uN−1
uN


(2.19*)

where

B11 =
19
32


32
19 1 1
1 32

19 1

. . . . . . . . .
1 32

19 1
1 1 32

19

, B12 = −h
8


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0

, B13 =
h2

96


0 1 1
1 0 1

. . . . . . . . .
1 0 1

1 1 0



B14 =
35

32h


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0

, B21 =
29

16h


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0

, B22 = − 5
16


− 16

5 1 1
1 − 16

5 1

. . . . . . . . .
1 − 16

5 1
1 1 − 16

5



B23 =
h

48


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0

, B24 =
4
h2


−2 1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2

, B31 = − 105
16h2


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0



B32 =
15
8h


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0

, B33 = − 3
16


− 16

3 1 1
1 − 16

3 1

. . . . . . . . .
1 − 16

3 1
1 1 − 16

3

, B34 = − 105
16h3


0 1 −1
−1 0 1

. . . . . . . . .
−1 0 1

1 −1 0


Therefore, we can represent it as follows

B11Ux + B12Uxx + B13Uxxx = B14U

B21Ux + B22Uxx + B23Uxxx = B24U

B31Ux + B32Uxx + B33Uxxx = B34U

(2.22)

In light of solving (2.22), we can obtain: Ux = G∗ · U, Uxx = H∗ · U, Uxxx = I · U, G∗ = D−1D1, H∗ =

D−1D2, I = D−1D3. D = B11B22B33 + B12B23B31 + B13B21B32 − B11B23B32 − B12B21B33 − B13B22B31,
D1 = B14B22B33 + B14B23B31 + B13B21B34 − B11B23B34 − B14B21B33 − B13B24B31, D2 = B11B22B34 +

B12B24B31 + B14B21B32 − B13B24B31 − B14B21B33 − B11B23B34,
D3 = B11B22B34 + B12B24B31 + B14B21B32 − B11B24B32 − B12B21B34 − B14B22B31. substituting Ux =

G∗ · U, Uxx = H∗ · U, Uxxx = I · U into (2.21) gives that

∂4
xU = −18

h2 B24 · U − 366
h4 B12G∗ · U +

936
h4 B13H∗ · U − 6

h2 B12I · U (2.23)
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let M∗ = 936
h4 B13H∗ − 366

h4 B12G∗ − 18
h2 B24 − 6

h2 B12I. we will get the following discrete schemes of the
spatial derivative: {

∂4
xU = M∗ · U

∂2
xU = H∗ · U

(2.24)

For above scheme, we find that matrix operation becomes complicated. To get the discrete form
of ∂2

xu and ∂4
xu according to the (2.11), (2.12) and (2.13), it requires many matrix operations, and

subsequent simulation of numerical solution will be more difficult. So we consider constructing a
direct combination of ∂2

xu, ∂4
xu and u to look for third CHOC scheme. This scheme will maintain

a 6th-order precision and can easily obtain the discrete forms of ∂2
xu and ∂4

xu, which will be more
pertinent and accurate This scheme has the following formulation

α1

u
′′
j+1 + u

′′
j−1

2

+ u
′′
j + β1h2

u(4)
j+1 + u(4)

j−1

2

 = γ1
uj+1 − 2uj + uj−1

h2 , (2.25)

α2

u
′′
j+1 − 2u

′′
j + u

′′
j−1

h2

+ u(4)
j + β2

u(4)
j+1 + u(4)

j−1

2

 = γ2
uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2

h4 . (2.26)

We insert Taylor expansions to (2.25) to obtain

LHS = u
′′
j + α1

u
′′
j+1 + u

′′
j−1

2

+ β1h2

u(4)
j+1 + u(4)

j−1

2


= u

′′
j + α1

(
u
′′
j +

h2

2!
u(4)

j +
h4

4!
u(6)

j + o
(

h6
))

+β1h2
(

u(4)
j +

h2

2!
u(6)

j +
h4

4!
u(8)

j +o
(

h6
))

= (1 + α1)u
′′
j +

(α1

2!
+ β1

)
h2u(4)

j +

(
α1

4!
+

β1

2!

)
h4u(6)

j + o
(

h6
)

,

RHS = γ1

(uj+1 − 2uj + uj−1

h2

)

= γ1

u
′′
j +

u(4)
j

12
h2 +

u(6)
j

360
h4

+ o
(

h6
)

.

To make the scheme with sixth order accuracy, the coefficients must satisfy the algebraic equations
1 + α1 = γ1

2!
α1
2! + β1 = γ1

4!
α1
4! +

β1
2! = γ1

6!

⇒


α1 = 14

61

β1 = − 3
244

γ1 = 75
61

Similarly, for(2.26)we have:

LHS = u(4)
j + α2

u(4)
j +

u(6)
j

12
h2 +

u(8)
j

360
h4

+ β2

u(4)
j +

u(6)
j h2

2!
+

u(8)
j h4

4!

+ o
(

h6
)

= (1 + α2 + β2)u
(4)
j +

(
α2

12
+

β2

2!

)
h2u(6)

j +

(
α2

360
+

β2

4!

)
h4u(8)

j + o
(

h6
)

RHS = γ2
uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2

h4 + o
(

h6
)

= γ2

(
25 − 23

4!
u(4)

j +
27 − 23

6!
h2u(6)

j +
29 − 23

8!
h4u(8)

j

)
+ o

(
h6
)
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To make the scheme with sixth order accuracy, coefficients must satisfy the algebraic equations
1 + α2 + β2 = 25−23

4! γ2
α2
12 + β2

2! = 27−23

6! γ2
α2

360 + β2
4! = 29−23

8! γ2

=⇒


α2 = 6

7

β2 = 5
7

γ2 = 18
7

Under periodic boundary conditions, for (2.25) and (2.26), we obtain

7
61


61
7 1 1
1 61

7 1

. . . . . . . . .
1 61

7 1
1 1 61

7




u
′′
1

u
′′
2
...

u
′′
N−1

u
′′
N

−
3h2

488


0 1 1
1 0 1

. . . . . . . . .
1 0 1

1 1 0




u(4)
1

u(4)
2
...

u(4)
N−1

u(4)
N

=
75

61h2


−2 1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2




u1
u2
...

uN−1
uN



6
7h2


−2 1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2




u
′′
1

u
′′
2
...

u
′′
N−1

u
′′
N

+
5

14


14
5 1 1
1 14

5 1

. . . . . . . . .
1 14

5 1
1 1 14

5




u(4)
1

u(4)
2
...

u(4)
N−1

u(4)
N

=
18
7h4


6 −4 −4
−4 6 −4

. . . . . . . . .
−4 6 −4

−4 −4 6




u1
u2
...

uN−1
uN


where let

A∗
11 =

7
61


61
7 1 1
1 61

7 1

. . . . . . . . .
1 61

7 1
1 1 61

7

, A∗
12 = − 3h2

488


0 1 1
1 0 1

. . . . . . . . .
1 0 1

1 1 0

, A∗
13 =

75
61h2


−2 1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2



A∗
21 =

6
7h2


−2 1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2

, A∗
22 =

5
14


14
5 1 1
1 14

5 1

. . . . . . . . .
1 14

5 1
1 1 14

5

, A∗
23 =

18
7h4



6 −4 1 1 −4
−4 6 −4 1 1
1 −4 6 −4 1

. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

. . . . . . . . . . . . 1
1 1 −4 6 −4
−4 1 1 −4 6


Therefore, we can represent it in the following form:{

A∗
11Uxx + A∗

12Uxxxx = A∗
13U

A∗
21Uxx + A∗

22Uxxxx = A∗
23U

(2.27)

With (2.27), we can readily derive Uxx and Uxxxx by expressions of U, respectively. This significantly
streamlines the matrix operations. By solving (2.27), we can obtain Uxx = G1 ·U, Uxxxx = H1 ·U, where
G1 = A−1

1 B, H1 = A−1
1 C, where A1 = A∗

11A∗
22 − A∗

12A∗
21, B1 = A∗

22A∗
13 − A∗

12A∗
23, C1 = A∗

11A∗
23 −

A∗
21A∗

13. For good Boussiensq equations, above scheme has higher spatial accuracy compared to the
scheme given in [11].

3. Establishment of the Full Discrete Schemes

Let τ be temporal stepsize and tn = nτ, n = 0, 1, 2, · · · , M, where M = T/τ. Denote the
approximation of u(x, tn) by un. Define the following operators
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δtun+ 1
2 =

un+1 − un

τ
, un+ 1

2 =
un + un+1

2
.

Let v = ut, the considered good Boussinesq equation can be written as

∂tv = ∂2
xu − ∂4

xu + ∂2
x(u

2).

Applying CHOC scheme (2.10) to the spatial derivatives of above equation gives that

vt = −M · u + H · u + H · u2

= N · u + H · u2,

where N = H − M. By adopting symplectic midpoint scheme with second-order accuracy to above
equation, we have the following full discrete scheme

un+1 = un +
τ

2

(
vn + vn+1

)
, (3.1)

− τ

2
N · un+1 + vn+1 =

τ

2
N · un + vn +

τ

2
H ·

{(
u2

)n
+

(
u2

)n+1
}

. (3.2)

Similarly, using CHOC scheme (2.24) for the spatial derivatives yields that

vt = −M∗ · u + H∗ · u + H∗ · u2

= N∗ · u + H∗ · u2,

where N∗ = H∗ − M∗. we obtain the corresponding full discrete scheme

− τ

2
N∗ · un+1 + vn+1 =

τ

2
N∗ · un + vn +

τ

2
H∗ ·

{(
u2

)n
+

(
u2

)n+1
}

. (3.3)

Applying CHOC scheme (2.27) for the spatial derivatives gives that

vt = −H1 · u + G1 · u + G1 · u2

= N1 · u + G1 · u2,

where N1 = G1 − H1. we get the following full discrete scheme similarly

− τ

2
N1 · un+1 + vn+1 =

τ

2
N1 · un + vn +

τ

2
G1 ·

{(
u2

)n
+

(
u2

)n+1
}

. (3.4)

By combining (3.2), (3.3), (3.4) with (3.1), respectively, we always obtain the algebraic equation as
follows

A · Tn+1 = B · Tn + F
(

Tn+1, Tn
)

,

where A and B are some invertible tridiagonal matrices depending on the corresponding schemes,
Tn = [un , vn]⊺, and F is the corresponding nonlinear term.

For simplicity, we will denote the schemes corresponding to (3.2), (3.3) and (3.4) by CHOC-A,
CHOC-B and CHOC-C, respectively.

4. Conservation Laws of CHOC Schemes

Under periodic boundary condition (1.3) with L = 1, some good Boussinesq equations have
certain conservation laws. Below, we consider periodic domain [0, 1].
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Theorem 4.1. Let ∥·∥ denote the standard L2-norm for 1-periodic functions. Then along with ∂2
t u = −∂4

xu,
the quadratic functional

∥ut∥2 + ∥uxx∥2 (4.1)

is an invariant of motion.

Proof. According to (1.3), by multiplying both sides of ∂2
t u = −∂4

xu by ut and integrating it by parts,
we have ∫ 1

0
ut · uttdx =−

∫ 1

0
uxx · utxxdx. (4.2)

For (4.2), we take integration with respect to t to get

∫ t

0

∫ 1

0
ut · utt dx dt = −

∫ t

0

∫ 1

0
uxxutxx dx dt,

⇒
∫ 1

0
u2

t (x, t) dx +
∫ 1

0
u2

xx(x, t) dx =
∫ 1

0
u2

t (x, 0) dx +
∫ 1

0
u2

xx(x, 0) dx.

Therefore we get (4.1).

Theorem 4.2. For nonlinear Boussinesq equation (1.2), the following conservation law is satisfied

∫ 1

0
ut(x, t) dx =

∫ 1

0
v0(x) dx. (4.3)

If
∫ 1

0 v0(x) dx = 0, then we get the conservation law as follows

∫ 1

0
u(x, t) dx =

∫ 1

0
u0(x) dx. (4.4)

Proof. For t ∈ [0, T], integrate with respect to x on both sides of (1.2), we obtain

∫ 1

0
uttdx =

∫ 1

0
uxx − ∂4

xu + (u2)xxdx.

According to (1.3), the integration on right side of above equation is 0, i.e.

∫ 1

0
uttdx = 0.

Taking integration with respect to t yields that
∫ 1

0 ut(x, t)dx =
∫ 1

0 v0(x)dx, that is (4.3). If
∫ 1

0 v0(x) dx =

0, then
∫ 1

0 ut(x, t)dx = 0, which gives (4.4) by integration with respect to t.
First, we are interested in its discrete version of Theorem 4.1 and Theorem 4.2 under numerical

analysis for CHOC schemes. To this goal, we list some important properties of circulant matrices [9].
A matrix written in the form

Circ(c0, c1, c2 · · · cN−1) =


c0 c1 c2 · · · cN−1

cN−1 c0 c1 · · · cN−2

· · ·
. . .

. . .
. . . · · ·

c2 c3
. . .

. . . c1

c1 c2 · · · cN−1 c0


is said to be circulant matrix.
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All of the matrices Aij(i, j = 1, 2.), Bij(i, j = 1, 2, 3.), A∗
ij(i, j = 1, 2.) are circulant. There are a lot of

favourable characters of this kind of matrices.
We list some of them in the following which are useful in analyzing our schemes.

Proposition 4.3 ([9,23]). If A, B are circulant matrices with the same number of rows and columns, then we
have
(i) A + B, A − B, AB are circulant matrices.
(ii) If A−1 is well defined, then A−1 is also a circulant matrix.
(iii) A, B are commutators, that is AB = BA.
(iv) If A, B are symmetric and positive definite matrices, then AB = BA is a symmetric and positive definite
matrix.
(v) The eigenvalues of the circulant matrix above is λj = ∑N−1

k=0 cke−ikθj with the corresponding eigenvector

wj =
1
N

[
1, e−iθj , · · · , e−i(N−1)θj

]⊺
.

By Proposition 4.3, we can get the following proposition.

Proposition 4.4. For the matrices in the CHOC solvers (2.10), (2.24), (2.27), we have:
(i) A11, A22, −A23, B22, B33, A∗

11, A∗
22, A∗

23 are symmetric and positive definite.
(ii) A12, A13, A21, B12, B14, B21, B23, B34 are skew-symmetric.
(iii) B11, B13, B24, B31, B32, A∗

12, A∗
13, A∗

21 are symmetric.
(iv) A, A−1, D, A1, C1 are symmetric and positive definite, and D1, D3 are skew-symmetric, D2, B1 are
symmetric.
(v) M∗, H1 are symmetric and positive definite, and G, G∗, I, are skew-symmetric, H, M, H∗, G1, N, N∗, N1

are symmetric.
(vi) All of them are circulant.

Proof. The conclusions(i)–(iv) and (vi) can be observed or be verified from Proposition 4.3. The result
(v) can be derived from the last conclusion in Proposition 4.3 by finding their eigenvalues.

Theorem 4.5. Define
wn = (vn, vn) + (un, R · un),

where (u, v) is the standard unitary inner product in discrete level for finite dimensional sequence vectors,
vn =

[
vn

1 , vn
2 , · · · , vn

NX
]⊺, un =

[
un

1 , un
2 , · · · , un

NX
]⊺. R is the matrix coefficient in approximating fourth-order

spatial derivative expressed by M(2.10), M∗(2.24), H1(2.27). Then for CHOC solvers (2.10), (2.24), (2.27) to
solve ∂2

t u = −∂4
xu, the numerical solutions satisfy that

ωn+1 = wn. (4.5)

Moreover, to M∗(2.24), H1(2.27), there exists C such that C⊺ · C = R, therefore

wn = (vn, vn) + (C · un, C · un),

Proof. Since v = ut, we have vt = −uxxxx, then its discrete scheme is

vn+1 − vn

τ
= −Run+1 + Run

2
.

By multiplying un+1−un

τ = vn+1+vn

2 on both sides of above formula, we have(
vn+1 + vn)⊺(vn+1 − vn)

2τ
= −

(
vn+1 + vn)⊺

2
· Run+1 + Run

2
.
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Therefore we obtain that(
vn+1

)⊺(
vn+1

)
− (vn)⊺(vn) = −

(
un+1

)⊺
R ·

(
un+1

)
− (un)⊺R · (un),(

vn+1
)⊺(

vn+1
)
+

(
un+1

)⊺(
R · un+1

)
= (vn)⊺(vn) + (un)⊺(R · un),

that is ωn+1 = ωn. Taking into symmetric positivity of M∗(2.24), H1(2.27), there exists C such that
C⊺ · C = R, which yields that

(un, R · un) = (C · un)⊺(C · un).

Therefore, we obtain that
wn = (vn, vn) + (C · un, C · un).

Theorem 4.6. To nonlinear good Boussinesq equation (1.2) with periodic boundary condition, the schemes
CHOC-A, CHOC-B and CHOC-C satisfy the following discrete conservation law

un = h
NX

∑
j=1

un
j ≡ u0 (4.6)

provided that v0 = 0.

Proof. Firstly, we consider schemes CHOC-A to solve nonlinear system (1.2) and have the following
formula

un+1 = un + τ

(
vn + vn+1

2

)
, vn+1 = vn +

τ

2
N
(

un+1 + un
)
+

τ

2
H
[
(un)2 +

(
un+1

)2
]

. (4.7)

By calculation, we obtain that

vn+1 = vn +
τ

2

(
E − τ2

4
N
)−1{

τNvn + 2Nun + H
[
(un)2 +

(
un+1

)2
]}

. (4.8)

Construct the following iterative algorithm

vn+1
(k+1) = vn +

τ

2

(
E − τ2

4
N
)−1{

τNvn + 2Nun + H
[
(un)2 +

(
un+1
(k)

)2
]}

,

un+1
(k+1) = un + τ

vn + vn+1
(k+1)

2

, (4.9)

where k = 0, 1, ... and un+1
(0) = un. Then we get that

lim
k→∞

un+1
(k) = un+1, lim

k→∞
vn+1
(k) = vn+1. (4.10)

Considering v0 = 0 and the symmetry of N, H, we can obtain that vn+1
(k+1) = vn = 0, un+1

(k+1) = un. The

limit (4.10) yields that vn+1 = 0, un+1 = un. The conservation identity (4.6) for the schemes CHOC-B
and CHOC-C can be derived similarity.

For linear good Boussinesq equation (1.1), we have the following equivalent Hamiltonian system{
ut = v,

vt = uxx − uxxxx,
(4.11)
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with the Hamiltonian function H = − 1
2

∫ (
v2 + u2

x + u2
xx + V2(u)

)
dx. Thus we obtain the symlecitic

conservation law as follows
w(t) =

∫
du ∧ dvdx = w(0). (4.12)

Symplectic schemes for Hamiltonian systems are proven to be more efficient than non-symplectic
schemes for long-time numerical computations and are widely applied to practical problems arising in
many fields of science and engineering which involves celestial mechanics, quantum physics, statistics
and so on (see [13,24–26]). Next, we will derive that the considered CHOC schemes are symplectic.

Theorem 4.7. To linear good Boussinesq equation (1.1), the schemes CHOC-A, CHOC-B and CHOC-C are
symplectic with the following conservation law

wn = h
NX

∑
j=1

dun
j ∧ dvn

j = w0. (4.13)

Proof. To (3.2), scheme CHOC − A has the formula as follows[
− τ

2 N E
E − τ

2 E

][
Un+1

Vn+1

]
=

[
τ
2 N E
E τ

2 E

][
Un

Vn

]

Therefore through tedious calculations, scheme CHOC-A is symplectic. Similarity, the scheme CHOC-B
and CHOC-C are also symplectic.

5. Numerical Experiments

In this section, we present some numerical results to illustrate above theoretical analysis about
the CHOC schemes, mainly focusing on the convergence and discrete conservation laws for numerical
solutions of the good Boussinesq equation.

First, for the linear good Boussinesq equation, we take the initial value f (x) = sin(x) and exact
solution u(x, t) = sin(x) cos

(√
2t
)

. Here, we focus on issues within a limited space-time domain
[0, 2π]× [0, T]. The L2 and L∞ norm of the errors between numerical solution and exact solution are
defined respectively as

∥en(h, τ)∥2 =

√
hΣ

j

(
Un

j − un
j

)2
, ∥en(h, τ)∥∞ = max

j

∣∣∣Un
j − un

j

∣∣∣,
where Un

j = u
(

xj, tn
)

is the exact solution and un
j is the numerical solution. The convergence order in

the space and time directions is defined as order1 and order2 respectively

order1 =
ln(∥e(h1, τ)∥/∥e(h2, τ)∥)

ln(h1/h2)
, order2 =

ln(∥e(h, τ1)∥/∥e(h, τ2)∥)
ln(τ1/τ2)

.

First, we test the convergence order of CHOC − A, CHOC − B, CHOC − C and take different step
sizes in the direction to be considered, and takes very small step size in other direction.

Table 6 lists the error of numerical solution and exact solution under L2 and L∞ norm, and the
spatial convergence order calculated by order1 for the three CHOC schemes by taking different spatial
step sizes. In order to make the error in the time direction relatively negligible, we take the time step
size τ = 10−4.

Table 8 lists the error of numerical solution and exact solution under L2 and L∞ norm, and the
time convergence order calculated by order2 when the three CHOC schemes take different time step
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size. In order to make the error in the spatial direction relatively negligible, takes the spatial step size
h = 2π

80 . Next, Table 7 shows the ratio of numerical error in Table 6 calculated by

Numerical error by CHOC − B or CHOC − C
Numerical error by CHOA scheme

.

Table 6. Numerical error of un
j with τ = 10−4.

h scheme ∥en∥2 order ∥en∥∞ order
2π
5 CHOC − A 7.629 × 10−3 − 4.1841 ×

10−3
−

CHOC − B 7.4229 ×
10−4

− 3.9829 ×
10−4

−

CHOC − C 9.4958 ×
10−4

− 5.0952 ×
10−4

−

2π
10 CHOC − A 4.203 × 10−4 4.1816 2.3058 ×

10−4
4.1816

CHOC − B 9.4353 ×
10−6

6.2978 5.0628 ×
10−6

6.2977

CHOC − C 1.348 × 10−5 6.1384 7.2331 ×
10−6

6.1384

2π
15 CHOC − A 8.0998 ×

10−5
4.0609 4.5682 ×

10−5
3.9927

CHOC − B 7.9367 ×
10−7

6.1054 4.4533 ×
10−7

5.9952

CHOC − C 1.1673 ×
10−6

6.0338 6.5498 ×
10−7

5.9236

2π
20 CHOC − A 2.5403 ×

10−5
4.0307 1.4288 ×

10−5
4.0402

CHOC − B 1.3599 ×
10−7

6.1321 7.6726 ×
10−8

6.1129

CHOC − C 2.0994 ×
10−7

5.9636 1.1844 ×
10−7

5.9448

2π
25 CHOC − A 1.0361 ×

10−5
4.0190 5.8447 ×

10−6
4.0059

CHOC − B 3.2376 ×
10−8

6.4316 1.823 × 10−8 6.4406

CHOC − C 5.7932 ×
10−8

5.7701 3.262 × 10−8 5.7784

Table 7. The ratio of numerical error among different schemes of un
j with τ = 10−4.

h CHOC − B CHOC − C

rate eu
2 rate eu

∞ rate eu
2 rate eu

∞

2π
5 10.3 10.5 8.03 8.2

2π
10 44.5 45.5 31.2 31.9

2π
15 102.1 102.6 69.4 69.7

2π
20 186.8 186.2 121 120.6

2π
25 320 320.6 178.8 179.2
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Table 8. Verification of temporal convergence rate with h = 2π
80 .

τ scheme ∥en∥2 order ∥en∥∞ order
1

40 CHOC − A 5.5718 ×
10−6

− 1.1056 ×
10−5

−

CHOC − B 5.574 × 10−6 − 1.106 × 10−5 −
CHOC − C 5.574 × 10−6 − 1.106 × 10−5 −

1
80 CHOC − A 1.4094 ×

10−6
1.9831 2.8058 ×

10−6
1.9783

CHOC − B 1.4116 ×
10−6

1.9814 2.8101 ×
10−6

1.9764

CHOC − C 1.4116 ×
10−6

1.9814 2.8101 ×
10−6

1.9764

1
160 CHOC − A 3.5297 ×

10−7
1.9975 7.0373 ×

10−7
1.9953

CHOC − B 3.5515 ×
10−7

1.9908 7.0808 ×
10−7

1.9886

CHOC − C 3.5514 ×
10−7

1.9909 7.0806 ×
10−7

1.9887

1
320 CHOC − A 8.689 × 10−8 2.0223 1.7336 ×

10−7
2.0213

CHOC − B 8.907 × 10−8 1.9954 1.7772 ×
10−7

1.9943

CHOC − C 8.9065 ×
10−8

1.9955 1.777 × 10−7 1.9944

1
640 CHOC − A 2.0124 ×

10−8
2.1103 4.0162 ×

10−8
2.1099

CHOC − B 2.2307 ×
10−8

1.9974 4.4534 ×
10−8

1.9966

CHOC − C 2.2301 ×
10−8

1.9978 4.4511 ×
10−8

1.9972

Secondly, for the linear principal part of the good Boussinesq equation, we simulate the discrete
conservation law (4.5) in time interval [0, 15], which is measured by the following approximate motion
invariant error ωn − ω0.

Thirdly, consider nonlinear good Boussinesq equation (1.2) with exact solitary wave solution as
follows

u(x, t) = −A sech2
[(

P
2

)
(ξ − ξ0)

]
, ξ = x − ct, (x, t) ∈ [−50, 50]× [0, 1],

where 0 < P < 1, A = 3P2

2 , ξ0 =
(
1 − P2)1/2. Below we take a moderate amplitude A = 0.5 , ξ0 = 0,

and take step sizesh = 0.5 , τ = 0.01. We simulate the discrete conservation law (4.6) in time interval
[0, 15], which is measured by the following approximate motion invariant error un − u0.

Finally, we give three-dimensional waveform diagrams of exact solution and numerical solution
of three schemes. We also give a comparison between the numerical solution and the exact solution.

6. Conclusions

In this paper, for a kind of good Boussinesq equation, we construct three combined high-order
compact symplectic schemes, that is CHOC − A ,CHOC − B, and CHOC − C. The schemes sat-
isfy discrete conservation laws corresponding to structure-preserving property of good Boussinesq
equation.

In numerical experiment, we first test the convergence order of CHOC − A, CHOC − B, CHOC −
C by taking different step sizes in the direction to be considered, and taking very small step size in
other direction. In Table 6, we test the spatial convergence order of CHOC − A, CHOC − B, CHOC −C.
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We can observe that the scheme CHOC − A is of four order accuracy in space. The schemes CHOC − B
and CHOC − C are of six order accuracy in space. From Table 7 we can observe that the ratio of
numerical error of CHOC − B is bigger than the scheme CHOC − C. In Table 8, we test the time
convergence order of CHOC − A, CHOC − B and CHOC − C. We can observe that the schemes are of
two order in time.

Second, from the approximate motion invariant error simulation in Figures 1–3, we can see that
the three schemes satisfy the discrete conservation law (4.5) for linear good Boussinesq equation.

Next, observe Figures 4–6. We find that the errors are small enough, in other words, the three
schemes satisfy the conservation law (4.6) for nonlinear good Boussinesq equation(1.2).

Finally, we use the three schemes to numerically simulate the solitary wave solutions of nonlinear
good Boussinesq equation(1.2). From Figures 7–10, we can observe that the numerical solutions fit the
waveform of exact solution well.
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Figure 1. Approximate motion invariant error diagram for CHOC − A when h = 2π
80 , τ = 0.001.
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Figure 2. Approximate motion invariant error diagram for CHOC − B when h = 2π
80 , τ = 0.001.
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Figure 3. Approximate motion invariant error diagram for CHOC − C when h = 2π
80 , τ = 0.001.
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Figure 4. un error diagram for CHOC − A when h = 0.5, τ = 0.01.
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Figure 5. un error diagram for CHOC − B when h = 0.5, τ = 0.01.
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Figure 6. un error diagram for CHOC − C when h = 0.5, τ = 0.01.

Figure 7. When h = 0.5 , τ = 0.01, three-dimensional waveform diagrams of the CHOC− A, CHOC− B
and CHOC − C schemes, and three-dimensional waveform diagram of the exact solution.
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Figure 8. when h = 0.5, at time T = 1. The exact solution VS numerical solution of CHOC − A.
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Figure 9. when h = 0.5, at time T = 1. The exact solution VS numerical solution of CHOC − B.
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Figure 10. when h = 0.5, at time T = 1. The exact solution VS numerical solution of CHOC − C.
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