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Abstract: Molecular‐scale density fluctuations at equilibrium produce cavities in a liquid and can 

be  analyzed  to  shed  light  on  the  statistics  of  the  number  of molecules  occupying  observation 

volumes of  increasing  radius. An  information  theory  approach  led  to  the  conclusion  that  these 

probabilities should follow a Gaussian distribution function. This prediction has been confirmed by 

computer simulations in different liquid models if the size of the observation volume is not large. 

The reversible work of cavity creation is exactly linked to the probability of finding zero molecules 

in a given observation volume. The Gaussian  formula  for  the  latter probability  is scrutinized  to 

arrive at the enthalpy and entropy changes associated with cavity creation. The reversible work of 

cavity creation has a purely entropic origin due to the solvent‐excluded volume effect produced by 

the  inaccessibility  of  a  given  region  of  the  configurational  space.  The  consequent  structural 

reorganization of  liquid molecules  leads to exactly compensating enthalpy and entropy changes. 

These results are in line with those obtained in a direct statistical mechanical study by Lee. 

Keywords:  density  fluctuations,  maximum  entropy  principle,  Gaussian  distribution,  cavity 

distribution, solvent‐excluded volume effect 

 

1. Introduction 

A theoretical analysis of solvation (i.e., the transfer of a solute molecule from a fixed position in 

the gas phase to a fixed position in the liquid phase, according to the so‐called Ben‐Naim standard 

[1])  indicates  the need  to account  for  the process of  cavity  creation  in  the  liquid  [2–7]. The need 

descends from the recognition that, since a liquid is a condensed state of the matter, a suitable space 

(i.e., a  cavity) must be  created, at a  fixed position,  to host  the  solute molecule. This need  is well 

understood  by  theoreticians,  not  so  well  by  experimentalists.  The  latter  claim  that  any  liquid 

possesses a lot of void space, around 50% of the total volume, and so cavity creation should be un‐

necessary. However, the void volume in a liquid is partitioned in very small pieces whose dimensions 

do not allow the insertion of a real solute molecule [8–12] (i.e., the average dimensions of such small 

pieces depend on the diameter of liquid molecules, as can be soon grasped on thinking of the voids 

left in a box filled by tennis balls or by ping‐pong balls). The process of cavity creation can be studied 

solely by means of theoretical approaches, or computer simulations in suitable models of the different 

liquids. The reversible work associated with cavity creation  is a  large and positive quantity  in all 

liquids [2–7]. Moreover, it is widely recognized that the magnitude of the reversible work of cavity 

creation is larger in water with respect to the other common liquids [13–15], and is the ultimate cause 

of the poor solubility of nonpolar species in water [2–7]. 

A  statistical mechanical  analysis  of  cavity  creation,  performed  forty  years  ago  by  Lee  [16], 

indicates that: (a) the reversible work of cavity creation has an entropic origin because cavity creation 

causes a marked decrease in the number of configurations accessible to liquid molecules (i.e., one has 

to pick out solely the liquid configurations in which the desired cavity is present); the consequent 
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reduction in the size of the statistical ensemble leads to an entropy decrease in all liquids, and can be 

described as a solvent‐excluded volume effect; (b) there is a cavity enthalpy change, coming from a 

structural reorganization of  liquid molecules (i.e.,  the presence of  the cavity  is a perturbation  that 

pushes  the  liquid molecules  to assume positions which  render possible  the cavity existence);  this 

structural reorganization is distinct from the solvent‐excluded volume effect, and produces also an 

entropy change  that exactly compensates  the cavity enthalpy change  [16,17]. The purely entropic 

nature of cavity creation is a fundamental feature, holding for all the cavities that can be produced 

by molecular‐scale density fluctuations at equilibrium. 

A general theorem of statistical mechanics connects the reversible work of cavity creation to the 

logarithm  of  the probability  of  finding  no  liquid molecules  in  the  volume  corresponding  to  the 

desired cavity, P(0; v)  [18].  In order  to exploit  this connection, P(0; v) must be known. Pratt and 

colleagues  [19–21]  devised  an  elegant  information  theory  approach  to  arrive  at  P(0;  v),  by 

determining  the  probabilities  of  finding  the  centers  of  n molecules  P(n;  v)  inside  a  randomly 

positioned volume v, whose size corresponds to the solvent‐excluded volume of the desired cavity 

(i.e., a spherical cavity has a van der Waals radius rc, and a solvent‐excluded radius Rc = rc + rs, where 

rs is the van der Waals radius of the spherical solvent molecules; in other words, rc is the radius of the 

spherical volume  in which no part of  the solvent molecules can be  found, Rc  is  the  radius of  the 

spherical volume in which no center of the solvent molecules can be found [17]). Using a flat default 

model in an approach based on the maximum entropy principle [22] resulted in a discrete Gaussian 

distribution  for  the P(n; v) probabilities  [19]. This  theoretical  result  is  in  line with  the  fluctuation 

theory  in  statistical mechanics, where  a Gaussian  approximation holds  for  the  fluctuation  in  the 

number  of  particles  in  the  grand‐canonical  ensemble  [23]. Moreover,  it  has  been  supported  by 

computer simulations of liquid models. Indeed, the results of Monte Carlo simulations and molecular 

dynamics simulations on hard sphere fluids [24], Lennard‐Jones liquids [25], n‐hexane [26], dimethyl 

sulfoxide [26], and several models of water [19,27–29] proved that the P(n; v) probabilities are well 

described by Gaussian distributions  for not  so  large observation volumes  (i.e., when  the  ratio of 

observation volume radius to liquid molecule radius is smaller than two, the Gaussian distribution 

holds, regardless of the nature of the energetic interactions among liquid molecules). For instance, it 

has been shown that the so‐called monoatomic water model [30] is characterized by molecular‐scale 

density fluctuations that follow a Gaussian distribution up to a cavity radius Rc ≈ 4 Å [31]. It should 

be  clear  that  there  is no  compelling  reason  to expect  that  the P(n; v) probabilities  should obey a 

Gaussian distribution. Indeed, by increasing the radius of the observation volume in water models, 

there are large deviations from Gaussian values in the low‐number tail of the distribution [27–29,31–

33]. Moreover, a different distribution, called a binomial cell model, has been proposed to analyze 

molecular‐scale density fluctuations in water models [34]. 

Notwithstanding  the  studies  published  on  this matter,  the  basic  relationships  between  the 

probability distribution of number density  fluctuations and  cavity  thermodynamics have not yet 

spelled out  in detail, except  for  the analysis by one of us  [35]. The aim of  the present study  is  to 

demonstrate that  the entropic nature of  the reversible work of cavity creation emerges  in a direct 

manner by the P(0; v) formula provided by the Gaussian distribution. 

2. Theoretical foundation 

A  liquid possesses a huge ensemble of molecular configurations and a statistical mechanical 

description is unavoidable. Assuming that X is a multidimensional vector accounting for the position 

of each of the N spherical molecules of the liquid, the probability density function associated with a 

specific liquid configuration, in the NPT ensemble, is [17]: 

(X) = exp[‐H(X)/kT]/ exp[‐H(X)/kT]dX                        (1) 

where H(X) = E(X) + PV(X) is the enthalpy of the configuration X, E(X) is the total interaction 
energy of liquid molecules in the configuration X, V(X) is the volume of the configuration X, P is the 

pressure of the liquid, k is the Boltzmann constant, and the denominator is the isobaric‐isothermal 
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configurational partition  function. We are  interested  in the probability of cavity occurrence  in  the 

liquid or better in the probability that the centers of all the N spherical molecules of the liquid are 

located  outside  the  solvent‐excluded  volume,  v,  of  the  cavity.  This  probability  is  obtained  by 

integrating (X) of Equation (1) over all the configurations having the centers of all the N spherical 
molecules  in the volume <V>  ‐ v [2,35]. In performing the  integration,  it is  important to recognize 

that: (a) the location of the cavity, whose solvent‐excluded volume is v, has to be fixed, but arbitrarily 

in the liquid volume because the liquid density is uniform at equilibrium; (b) even though the total 

volume is not strictly constant in the NPT ensemble, it is right to consider that the total volume of a 

macroscopic system will assume, at equilibrium, values sharply close to the ensemble average value 

<V>. Thus one obtains: 

P(0; v) = P(N; <V> ‐ v) = (X) dX                          (2) 

                                          <V> ‐ v 

where  the  integration  domain  has  the  already  clarified meaning. The  calculation  of  P(0;  v) 

corresponds  to pick out only a very small  fraction of  the  total  liquid configurations,  i.e.,  the ones 

having  the  cavity  of  the  requested  solvent‐excluded  volume.  Such  a  selection  leads  to  a  drastic 

decrease in the number of molecular configurations accessible to the liquid, and so to an entropy loss 

for the liquid (i.e., entropy is an extensive thermodynamic function and its magnitude depends on 

the size of the statistical ensemble [16,18,23]). This entropy loss holds for any liquid, regardless of the 

energetic interactions occurring among the liquid molecules. 

Cavity  creation at a  fixed position  in a  liquid, keeping  fixed NPT,  causes an  increase  in  the 

average volume of the system by a quantity equal to the van der Waals volume of the cavity, vvdW. 

Nevertheless, the existence of a cavity of solvent‐excluded volume v implies that the spherical shell 

given by  the difference  (v  ‐ vvdW) becomes  inaccessible  to  the  centers of  liquid molecules.  It  is a 

solvent‐excluded  volume  effect  (i.e.,  a  geometric  effect)  because  it  is  a  constraint  for  all  the N 

molecules of the liquid whose centers, during their continuous translations, cannot enter the cavity 

solvent‐excluded  volume,  if  the  cavity  is  to  exist  (see  Figure  1).  The  inaccessible  shell  can  be 

approximated by the solvent accessible surface area of the cavity in all the solvents. It is interesting 

to note that a geometric entropy,  linearly proportional to the surface area of the solvent‐excluded 

volume, emerged in a theoretical approach based on a density field theory [36]. 

 
Figure 1. The creation of a cavity (i.e., the inner circle), at constant NPT, causes an increase in the volume 

of the liquid by a quantity corresponding to the van der Waals volume of the cavity. But, a spherical shell 

corresponding to the difference between the solvent‐excluded volume of the cavity and its van der Waals 

volume (i.e., the space between the outer circle and the inner one) becomes  inaccessible to the center of 

liquid molecules (the filled blue circle represents one liquid molecule), if the cavity is to exist. This is the 

solvent‐excluded volume effect associated with cavity creation. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 June 2024                   doi:10.20944/preprints202406.1466.v1

https://doi.org/10.20944/preprints202406.1466.v1


  4 

 

As underscored by Tolman [18], there is an exact statistical mechanical relationship between the 

occurrence probability of a constrained configuration of a thermodynamic system and the reversible 

work to produce that constrained configuration: 

P(0; v) = exp[‐W(0; v)/kT]                              (3) 

where W(0; v)  is  the reversible work  (i.e., the Gibbs free energy change)  to create a cavity of 

solvent‐excluded volume equal  to v, W(0; v) = Gc(v; Rc), where Rc  is  the solvent‐excluded cavity 

radius. Now, the assumption that molecular‐scale density fluctuations at equilibrium obey Gaussian 

statistics can be scrutinized to shed further light on the entropy loss associated with cavity creation. 

3. Gaussian fluctuations 

According  to  the  results  of  computer  simulations  of  several  liquids  [19–21,24–29,31],  the 

probability of finding the centers of exactly n molecules inside a randomly positioned observation 

volume v, when the liquid number density is   NAv/vm (i.e., NAv is the Avogadro’s number and vm 

is the molar volume of the liquid), and pressure and temperature are held constant, is well described 

by a Gaussian distribution, if the observation volume is not large (see above): Therefore, one has: 

P(n; v) = (2n2)‐1/2  exp(‐n2/2n2)                          (4) 

where n = n ‐ <n>, <n> is the average number of molecular centers in the volume v, <n> = v, 
and  n2  =  <n2>  =  <n2>  ‐  <n>2  is  the  variance  of  the Gaussian  distribution,  i.e.,  the mean  square 

fluctuation in the number of molecular centers inside the volume v. It is important to recognize that 

the first two moments of the Gaussian distribution are related to the number density and the radial 

distribution function of the liquid, respectively, quantities that are experimentally measurable [19–

21]. Since we are interested in the probability of finding a cavity in the liquid, we need the probability 

P(0; v) of finding zero molecular centers in the volume v: 

P(0; v) = (2n2)‐1/2  exp(‐<n>2/2n2) = (2n2)‐1/2  exp(‐2v2/2n2)              (5) 

The  probability  of  cavity  occurrence  is  related  to  molecular‐scale  density  fluctuations  at 

equilibrium, underscoring that cavity creation is a special process, depending solely on the properties 

of the pure liquid. Introducing Equation (5) into Equation (3), one obtains: 

Gc(v; Rc) = (kT/2)ln(2n2) + (kT2v2/2n2)                      (6) 

Equation (6) indicates that Gc  1/n2, it is inversely proportional to the variance of the Gaussian 

distribution. The n2 value depends on the v size and can solely be determined by means of computer 

simulations on a molecularly detailed model of  the  liquid of  interest  [19–21]. For a cavity whose 

solvent‐excluded volume is suitable to host methane, Rc = 3.3 Å, <n> = 5.11, n2 = 1.39 [34], and using 

Equation (6), Gc = 26.1 kJ mol‐1 at 300 K, in line with computer simulation results [19,34]. We do not 

want  to  perform  calculations with  Equation  (6),  but  to  deepen  its  thermodynamic  features  and 

consequences. When  the  volume  of  interest  corresponds  to  the molar  volume  of  the  liquid,  the 

variance of the Gaussian distribution is proportional to the isothermal compressibility, n2  T [23], 

and this implies that Gc  1/T. The reversible work of cavity creation, measuring the entropy loss 

due to the solvent‐excluded volume effect, is inversely proportional to the isothermal compressibility 

of the liquid. This relationship was originally obtained by Pratt and colleagues [19–21]. Water has the 

smallest T value among all common liquids (i.e., at 25 °C, T(in atm‐1105) = 4.58 for water, 9.80 for 

benzene, 11.55 for c‐hexane, 16.27 for n‐hexane, 10.81 for carbon tetrachloride, 14.79 for methanol, 

and 10.26 for ethanol [17]), and, in fact, it has the largest Gc value for a given van der Waals cavity 

radius  among  all  common  liquids, as demonstrated by  computer  simulation  results  [13–15]. The 

isothermal  compressibility  is  a  macroscopic  thermodynamic  quantity,  and  a  closer  scrutiny  is 

necessary to single out the microscopic difference between water and the other liquids. 
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According  to statistical mechanics, T  is a measure of  the ensemble  fluctuations  in  the  liquid 

number density, T = vmn2/<n>2kT [23]. Water has the smallest T value among all common liquids 

mainly because the molar volume of water is the smallest among those of all common liquids: at 25 

°C and 1 atm, vm(in cm3 mol‐1) = 18.07 for water [37], 89.41 for benzene, 108.75 for c‐hexane, 131.62 for 

n‐hexane, 97.09 for carbon tetrachloride, 40.73 for methanol, and 58.68 for ethanol [38]. This fact stems 

from the effective size of liquid molecules. The effective size of water molecules is the smallest among 

those of all common liquids; at 25 °C, the effective hard sphere diameter is 2.80 Å for water [12], 5.26 

Å for benzene, 5.63 Å for c‐hexane, 5.92 Å for n‐hexane, 5.37 Å for carbon tetrachloride [38], 3.83 Å 

for methanol, and 4.44 for ethanol Å [17]. It is important to underscore that the effective hard sphere 

diameter of water molecules is smaller than their van der Waals diameter as a consequence of the 

bunching up effect caused by the strength of H‐bonds [39]. 

Application of fundamental relationships of equilibrium thermodynamics to Equation (6) allows 

the derivation of the enthalpy and entropy changes associated with cavity creation: 

Hc = ‐T2[(Gc/T)/T]P = ‐(kT2/2)[ln(2n2) + (2v2/n2)]/TP = 

                = ‐(kT2/2n2)[1 ‐ ((2v2/n2)](n2/T)P + 2v2(/T)P              (7) 

and 

Sc = ‐(Gc/T)P = ‐(k/2)ln(2n2) ‐ (k2v2/2n2) + 

                ‐(kT/2n2)[1 ‐ ((2v2/n2)](n2/T)P + 2v2(/T)P                (8) 

In  performing  the  derivatives,  the  n2  quantity  has  been  considered  a  simple  function  of 

temperature  (i.e.,  not  a  composite  one),  and  the  v  quantity  has  been  considered  temperature 

independent  [35].  Equations  (7)  and  (8)  indicate  that:  (a)  the  cavity  enthalpy  change  is  totally 

counterbalanced  by  a  corresponding  term  in  the  cavity  entropy  change,  and  so  there  is  no  net 

enthalpic contribution to the reversible work of cavity creation; (b) the cavity entropy change has a 

second contribution, given by ‐Gc/T, that measures the solvent‐excluded volume effect associated 

with cavity creation in a liquid (i.e., the entropy loss due to the reduction in the size of the statistical 

ensemble of the liquid for the selection of the configurations possessing the desired cavity). The above 

sentences may  appear  a  circular  argument  [40], unless Equation  (7)  is  identified  as  the  enthalpy 

change due to cavity creation in an independent manner. 

In water the n2 quantity depends little on temperature because the isothermal compressibility 

of water is almost constant over the 0‐100 °C temperature range [37]. Thus, the derivative (n2/T)P 
should be a negligible quantity, and Equation (7) can be rearranged to: 

Hc  ‐(kT2v2/n2)(/T)P = kT22v2P/n2                      (9) 

where P = ‐(1/)(/T)P is the isobaric thermal expansion coefficient of the liquid. According 

to Equation  (9), Hc  P,  in  line with  the  relationship originally derived by Pierotti  [41],  in  the 

framework of scaled particle theory [42]. In the other liquids the quantity n2 depends on temperature, 

but the factor [1 ‐ (2v2/n2)] occurring in Equation (7) is expected to be small; thus, Equation (9) should 

be  a  not‐bad  approximation  for  all  liquids.  By  assuming  that  v  =  vm  and  using  the  statistical 

mechanical definition of the isothermal compressibility in Equation (9), the latter becomes: 

Hc = PTvm/T                                  (10) 

Both P and T are thermodynamic response functions [23], and it is reliable to associate them 

with a process such as cavity creation that implies a structural reorganization of the pure liquid. The 

liquid molecules  in  the  configurations  possessing  the  desired  cavity must  have  special  spatial 

distributions that produce changes in both enthalpy and entropy. This structural reorganization can 

be described by a proper function of P and T of the pure liquid because there is no solute molecule 
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inserted in the liquid when the cavity is created. On the basis of Equation (10), it is correct to state 

that  the  structural  reorganization  (which  is  distinct  from  the  solvent‐excluded  volume  effect) 

associated with cavity creation is characterized by a complete enthalpy‐entropy compensation. 

4. Conclusions 

Molecular‐scale density fluctuations at equilibrium obey Gaussian statistics  in several  liquids 

when  the  observation  volumes  are  not  large.  This makes  it  possible  to  arrive  at  an  analytical 

relationship  for  the  probability  of  finding  zero  molecules  in  a  solvent‐excluded  volume 

corresponding to the desired cavity [19–21]. A careful analysis of this relationship leads to formulas 

for the Gibbs free energy change, the enthalpy change and the entropy change associated with cavity 

creation. These formulas demonstrate that: (a) the Gibbs free energy cost of cavity creation is purely 

entropic  for  the  reduction  in  the  size  of  the  statistical  ensemble  caused  by  the  solvent‐excluded 

volume effect; (b) there is a complete enthalpy‐entropy compensation associated with the structural 

reorganization of solvent molecules upon cavity creation. This thermodynamic scenario matches the 

one determined by Lee [16], with a general statistical mechanical approach. 
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