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Abstract: Wheeled mobile robot dynamics and suitable controller design are challenging but 

rewarding fields of study. By understanding the dynamics of wheeled mobile robots, it could be 

possible to design suitable hybrid control schemes for wheeled mobile robots. Since hybrid control 

schemes involve combining individual control methods to create a more effective overall control 

strategy. This can be done in a variety of ways, such as using fuzzy linear quadratic Gaussian 

control. We were therefore inspired to create dynamic models and their controller designs for the 

wheeled mobile robot by examining the dynamics of the wheeled mobile robot. The novelty of the 

current paper is to hybridize the different control schemes for wheeled mobile robots in order to get 

better performance. Entire systems models were simulated in a MATLAB/SIMULINK environment. 

The results obtained for the settling time response by FLQG were 87.1% over LQG; this study 

compared the effectiveness of current and previous FLQG controllers in external disturbances and 

found peak amplitude improvements of 71.25%. Therefore, the proposed controller is suitable for 

use with the wheeled mobile robot. 

Keywords: wheeled mobile robot; optimisation; position; orientation; Lorenz law of attraction 

 

1. Introduction 

Inequalities in global food supply have left 821 million people undernourished, according to the 

Food and Agriculture Organization (FAO) [1]. The introduction of sophisticated technology is key to 

feeding the world’s population, and can help simplify solutions to meeting the world’s food needs. 

Wheeled mobile robots are an example of such cutting-edge technologies [2]. Agriculture-related 

industries make extensive use of wheeled mobile robot systems (WMRS). Over the past thirty years, 

there has been ongoing research on, and development of, wheeled mobile robots (WMRs) [3]. The 

primary driving force behind this sustained interest has been the multitude of real-world uses that 

mobile robots can provide because of their adaptability to operating in vast, potentially dangerous 

and unstructured environments. In particular [4–6], WMRs have been used in munitions handling, 

material transportation, vacuum cleaners, entertainment, industry, hospitals, education, rescue, mine 

detection, monitoring of nuclear facilities and warehouses for material inspection and security 

objectives, and planetary exploration [7]. It is evident from this list of its many applications that WMR 

research is, by its very nature, multidisciplinary. Numerous scholars have devised techniques for the 

kinematic and dynamic simulation of mobile robots on wheels. A thorough investigation of this topic 

was undertaken by [8]. Specifically, kinematic modelling and dynamic modelling – which are similar 

to those of stationary robot manipulators – lack a consistent formulation. Kinematic and dynamic 

modelling is well-established in the literature on wheeled mobile robots; for example, kinematic 

models are obtained by coordinate transformations, while dynamic models are obtained using 
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Lagrange and Newton-Euler. Therefore, a combination of the two approaches with mobile robots will 

be the subject of future research to bring together the two disparate literatures. This work to develop 

dynamic models of the mobile robot was motivated by studies of the dynamics of the wheeled mobile 

robot. Although the methodologies differ, the outcome of this work is presented in a manner similar 

to that of [9,10]. The skid-steering mobile robot (SSMR) model was used to define wheel dynamics, 

Lagrangian was used to derive the mobile robot’s dynamics, and fuzzy logic linear quadratic 

Gaussian (LQG) controllers were proposed to regulate and robustly control the wheeled mobile 

robotic dynamic. Examination of a Jacobian matrix is the primary method used by researchers to 

quantify the kinematic performance of a robotic kinematic [11]. Conversely, dynamic performance 

can be defined as the wheel’s perceived acceleration capability of the actuators or of the wheel itself 

[12]. In robotics literature, less attention has been paid to the dynamics analysis of mobile robots [13–

16]. Using the methodologies from the dynamics of wheeled mobile robotics to analyse the 

performance of mobile robots is the next step in achieving an optimal design. The dynamic model of 

the wheel is formulated as a skidding mobile robot system. Finally, the theorem of the Lorenz system 

was formulated and analysed in relation to the WMRS controller framework. The remainder of this 

paper is arranged as follows: section 2 describes the literature reviews, section 3 presents the 

mathematical models and control theory design applied in the development of the model, and section 

4 describes and discusses the modelling outcomes. Conclusions from the study are presented in 

section 5. 

2. Literature Review 

Wheeled and legged robots are the main categories of mobile robots. Legged robots have an 

edge on uneven terrain and are faster on smooth surfaces, while wheeled mobile robots (WMRs) are 

more energy-efficient and easier to construct, making them suitable for potential industry 

applications. However, multi-joint limb actuation is more complex. The work of [17–19] aims to 

optimise a control system algorithm for robotic assets using a multi-generic decision-making 

technique, focusing on internal actions within the system, to determine the best robotic system for 

agricultural monitoring tasks. The study proposes an adaptive control method using reinforcement 

learning to solve the nonlinear state tracking problem and input time delay system in wheeled mobile 

robots [20]. It presents a delay matrix function and Lyapunov functionals, and defines adaptive laws 

for the controller and critic neural networks. A discrete-time linear-quadratic regulator with integral 

control, known as an LQR predictive controller, was developed for MIMO time-delay processes, 

successfully treating large, non-minimum phase modes and integrating stable and unstable output 

anomalies at random. 

Model predictive control (MPC) is an advanced control algorithm that uses a model of the plant 

to predict future behaviour and optimise control actions. While MPC offers many advantages, there 

are also some drawbacks associated with its use in a wheeled mobile robot, such as computational 

complexity, model accuracy, sensitivity to disturbances, limited handling of constraints and 

tuning complexity [21–23]. Adaptive MPC is an advanced control technique that has attracted 

significant attention in recent years due to its ability to handle complex systems with uncertainties 

and time-varying parameters. However, like any control technique, adaptive MPC also has certain 

drawbacks that should be considered when using it in wheeled mobile robot applications. These 

drawbacks are increased computational complexity, sensitivity to noise and disturbances, limited 

convergence rate, potential overfitting and the requirement for persistent excitation [24]. 

In order to alter the behaviour of systems by leveraging past outputs to affect future inputs, 

feedback control is a commonly utilised technique in engineering and other domains [25,26]. When 

applied to mobile robot dynamics, feedback control systems have many benefits, but they also have 

certain disadvantages, including time delay, instability, noise amplification, complexity and expense. 

Systems with unknown dynamics can be controlled using nonlinear control techniques such as 

sliding mode control. Although it has a number of benefits, including resistance to disturbances and 

changes in parameters, it also has some disadvantages that restrict its use in specific situations. High 

control effort, chattering, sensitivity to noise, low bandwidth, implementation difficulty and a lack of 
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robustness to unmodelled dynamics are examples of such shortcomings [27–29]. In variable structure 

control systems, super slide mode control is a technique that enhances a system’s robustness and 

performance. Its foundation is the concept of creating a sliding surface in the system’s state space and 

then creating a control law that compels the system to move along it. However, it can also cause a 

chattering phenomenon: when the system state quickly flips between the two sides of the sliding 

surface, chattering occurs. In certain wheeled mobile robot applications, this might result in high-

frequency oscillations in the control signal, which is undesirable. Stability is possible with super slide 

mode control, but if the sliding surface is not appropriately engineered, the system could behave 

erratically and become unstable. 

Convolutional neural networks do not require human supervision for image classification and 

identifying important features in images [30]. However, when applied in wheeled mobile robotic 

dynamics, the system is faced with the following problems: high computational requirements, a large 

amount of labelled data, a large memory footprint, interpretability challenges, limited effectiveness 

for sequential data, a tendency to be much slower, and a requirement for extensive training [31]. 

A proportional integral derivative (PID) controller is a control mechanism widely used in 

various industries to regulate processes and maintain desired outputs [32]. While PID controllers 

offer numerous advantages, they have certain drawbacks that limit their effectiveness in certain 

scenarios. These include limited performance in nonlinear systems, sensitivity to noise and 

disturbances, integral windup, derivative kick, tuning complexity and limited adaptability. 

A fuzzy PID controller combines the principles of fuzzy logic and PID control to enhance the 

performance of control systems. While it offers several benefits, there are certain disadvantages 

associated with its use. These are computational complexity, tuning difficulty, a lack of an 

analytical framework, limited adaptability and knowledge dependency. Despite these drawbacks, 

fuzzy PID controllers remain a valuable tool in certain applications, particularly when dealing with 

complex nonlinear systems where traditional control techniques may not be applicable [33]. 

The PID-LQR controller is a control algorithm that is widely used in various industries. 

However, like any control technique, it has certain drawbacks that should be considered in its 

implementation. It is sensitive to model uncertainties, the controller is heavily reliant on an accurate 

mathematical model of the plant or system being controlled, and if the model is not accurate or if 

there are significant disturbances or unmodelled dynamics, the controller’s performance can 

deteriorate or even become unstable. Furthermore, the PID-LQR controller requires careful tuning of 

its parameters to achieve optimal performance. This tuning process can be challenging and time-

consuming, requiring expertise in control theory and a deep understanding of the system being 

controlled [34]. 

A proportional integral derivative linear quadratic Gaussian (PID-LQG) controller is a control 

algorithm that combines the benefits of PID control with the optimal control theory of LQG. While 

PID control is simple and widely used, it can be limited in its ability to handle complex systems and 

disturbances. LQG control, however, provides a more systematic approach to controller design, but 

can be computationally expensive and requires a detailed model of the system. Fuzzy LQR (FLQR) 

control is a control technique that combines the advantages of fuzzy logic and linear-quadratic 

regulator (LQR) control. However, like any control technique, FLQR control has its drawbacks. 

Nevertheless, it remains a powerful technique for controlling linear and nonlinear systems. It offers 

a systematic approach to controller design and can provide excellent performance when the system 

model is accurate and the disturbances are limited. In terms of performance, it has very promising 

applications with the wheeled mobile robot in order to achieve excellent regulation and robustness 

[35,36]. 

3. Dynamic Models and the Controller Design of a Wheeled Mobile Robot 

3.1. Development of a Kinematic Model of a Four-Wheeled Mobile Robot for Agricultural Applications 

Case study and assumptions 

Assumptions in dynamic model development are principles, simplifications and 

approximations that make the model tractable and computationally feasible, while capturing real-
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world system characteristics. Common assumptions depend on the model’s nature and modelling 

objectives [8]. The importance of assumptions in wheeled mobile robot model design lies in their 

ability to simplify the problem, capture the essential characteristics, enable analysis and simulation, 

facilitate design decisions, assess the model’s limitations, and enable comparisons and 

benchmarking. Careful consideration of these assumptions is crucial for developing accurate and 

reliable models that can guide the design and development of effective wheeled mobile robots. The 

assumptions in this study were: 

• linearity: assuming that the system behaves in a linear manner, where the output is directly 

proportional to the input, this simplifies the mathematical analysis and allows for the use of 

linear techniques 

• time-invariance: assuming that the system’s behaviour does not change over time, this means 

that the system’s properties and characteristics remain constant throughout the modelling 

period 

• homogeneity: assuming that the system’s behaviour is uniform throughout its spatial domain, 

this means that the system’s properties and characteristics are the same at all points in space 

• determinism: assuming that the system’s behaviour is fully determined by its initial conditions 

and inputs, this excludes the influence of random or stochastic factors 

• perfect knowledge: assuming that all relevant information about the system is known and 

available for modelling purposes, this includes complete knowledge of the system’s structure, 

parameters and boundary conditions. 

Agriculture, a major economic sector, contributes 6.4 % of global productivity and employs a 

significant workforce. In view of concerns about food security, population growth and climate 

change, innovative approaches such as wheeled mobile robots are being explored. Figure 1 shows a 

wheeled mobile robot in use in agricultural areas. This wheeled mobile is dynamic since it observes 

the entire plant’s health status as it moves along. 

 

Figure 1. A wheeled mobile robot in dynamic action in the field [8]. 

Following the literature review, kinematical models of a wheeled mobile robot were developed 

(Figure 2). Based on the kinematical models of a wheeled mobile robot, state space was generated. 

The kinematical models of wheeled mobile robots then required regulation, and the optimal 

controllers were selected for this. If the gain obtained was optimal, it was directly provided to the 

dynamical models of the wheeled mobile robot. Subsequently, data were collected from the dynamic 
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models of the wheeled mobile robot for analysis purposes. If the gain was not optimal, the controller 

design was examined again, with the tuned and relaunched system checked until the desired optimal 

gain was obtained. 

 

Figure 2. Scheme for the present work. 

Considering only the kinematic equation model of the SSMR (Figure 3), the following velocity 

constraint was obtained: 

𝑣𝑦 + 𝑥𝐼𝐶𝑅𝜃̇ = 0 (1) 

Where 𝑥𝐼𝐶𝑅 is inertia centre, 𝑣𝑦 is vertical velocity of the robot, and 𝜃̇ is angular velocity of the 

mobile robot. 

Equation (1) is not integrable and is consequently a nonholonomic constraint. It can therefore be 

rewritten in the form [− sin 𝜃  cos 𝜃 𝑥𝐼𝐶𝑅 ][𝑥̇ 𝑦 ̇  𝜃̇] = 𝐴(𝑞)𝑞̇ = 0 , where equation (1) is used. Since the 

generalised velocity is always in the null space of A, the last equation is not integrable. Consequently, 

it describes a nonholonomic constraint that can be rewritten in the Pfaffian form: 

[−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑥𝐼𝐶𝑅][𝑋̇ 𝑌̇ 𝜃̇] = 𝐴(𝑞)𝑞̇ = 0 (2) 

𝑞̇ = 𝑆(𝑞)𝜂 (3) 
Where 𝑆(𝑞)𝜂 is state space variable matrix. 

Rearranging the kinematics models, the state space equation below was finally achieved: 

𝑆(𝑞) = [
cos 𝜃 𝑥𝐼𝐶𝑅 sin 𝜃
sin 𝜃  − 𝑥𝐼𝐶𝑅 cos 𝜃

 
] (4) 

The input matrix is the following equation: 

𝛽 = [
𝑉𝑥
𝜔
] = 𝑟 [

𝜔𝐿 + 𝜔𝑅
2

−𝜔𝐿 + 𝜔𝑅
2𝑐

] (5) 

Where 𝛽 is velocity vectors of both linear and angular velocity. 

Then the dynamic properties of the SSMR were described, since the dynamic effects play an 

important role in such vehicles. This is caused by unknown lateral skidding ground interaction 

forces. First, the wheel forces depicted in Figure 3 were examined. 
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Figure 3. Forces acting on one wheel [8]. 

The active force Fi and reactive force 𝑁𝑖  are related to the wheel torque and gravity, 

respectively. It is clear that 𝐹𝑖 is linearly dependent on the wheel control input 𝜏𝑖 , namely: 

𝐹𝑖 =
𝜏𝑖
𝑟
 (6) 

It was assumed that the vertical force 𝑁𝑖 acts from the surface to the wheel. Considering the 

four wheels of the vehicle (Figure 4) and neglecting additional dynamic properties, the following 

equations of equilibrium were obtained: 

{
 
 

 
 
𝑁1𝑎 = 𝑁2𝑏
𝑁3𝑎 = 𝑁4𝑏

∑𝑁𝑖 = 𝑚𝑔

4

𝑖=1

 (7) 

 

Figure 4. Active and resistive forces of the vehicle [8]. 

where m denotes the vehicle mass and g is the gravity acceleration. Where 𝑝1, 𝑝2, 𝑝3, 𝑝4  are the 

position of robot wheels, 𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹𝑆1, 𝐹𝑆2, 𝐹𝑆3, 𝐹𝑆4, 𝐹𝑙1, 𝐹𝑙2, 𝐹𝑙3, 𝐹𝑙4, are forces on the wheels, M 
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moment of the wheels, 𝜏𝑟 , 𝜏𝑖 , torques of the wheels 𝑉𝑖  velocities of the wheel, V velocity of the 

mobile robot. Since there is symmetry along the longitudinal midline, the following was obtained: 

{
𝑁1 = 𝑁4 =

𝑏

2(𝑎 + 𝑏)
𝑚𝑔 

𝑁2 = 𝑁3 =
𝑎

2(𝑎 + 𝑏)
𝑚𝑔 

 (8) 

It was assumed that the vector 𝐹𝑠𝑖 results from the rolling resistant moment 𝜏𝑟𝑖 and the vector 

𝐹𝑙𝑖 denotes the lateral reactive force. These reactive forces can be regarded as friction forces. However, 

it is important to note that friction modelling is quite complicated since it is highly nonlinear and 

depends on many variables. Therefore, in most cases only a simplified approximation describing the 

friction 𝐹𝑓 as a superposition of Coulomb and viscous friction is considered. It can be written as: 

𝐹𝑓(𝜎) = 𝜇𝑐𝑁𝑠𝑔𝑛(𝜎) + 𝜇𝑣𝜎 (9) 

where σ denotes the linear velocity, N is the force perpendicular to the surface, and µ𝑐  and µ𝑣 

denote the coefficients of Coulumb and viscous friction, respectively. Since for the SSMR the velocity 

σ is relatively low, especially during lateral slippage, the relation µ𝑐𝑁 ≫ |µ𝑣𝜎|  is valid, which 

allowed the term µ𝑣𝜎 to be neglected to simplify the model. It is very important to note that the 

function of a kinematics system is not smooth when the velocity σ equals zero, because of the sign 

function sgn (σ). It is obvious that this function is not differentiable at 𝜎 =  0. Since the aim was to 

obtain a continuous and time-differentiable model of the SSMR, the following approximation of this 

function was proposed: 

𝑠𝑔𝑛̂(𝜎) =
2

𝜋
arctan(𝑘𝑠𝜎) (10) 

where 𝑘𝑠 ≫ 1 is a constant that determines the approximation accuracy according to the relation 

lim
𝑛→∞

2

𝜋
arctan(𝑘𝑠𝜎) = 𝑠𝑔𝑛(𝑥) (11) 

Based on the previous deliberations, the friction forces for one wheel can be written as: 

𝐹𝑙𝑖 = 𝜇𝑙𝑐𝑖𝑚𝑔𝑠𝑔𝑛̂(𝑣𝑦𝑖) (12) 

𝐹𝑠𝑖 = 𝜇𝑠𝑐𝑖𝑚𝑔𝑠𝑔𝑛̂(𝑣𝑥𝑖) (13) 
where µ𝑙𝑐𝑖 and µ𝑠𝑐𝑖 denote the coefficients of the lateral and longitudinal forces, respectively. Using 

the Lagrange-Euler formula with Lagrange multipliers to include the nonholonomic constraint (1), 

the dynamic equation of the robot can be obtained. Next, it was assumed that the potential energy of 

the robot 𝑃 𝐸 (𝑞)  =  0 because of the planar motion. Therefore, the Lagrangian L of the system 

equals the kinetic energy: 

𝐿(𝑞, 𝑞̇) = 𝑇(𝑞, 𝑞̇) (14) 
Considering the kinetic energy of the vehicle and neglecting the energy of rotating wheels, the 

following equation was developed: 

𝑇 =
1

2
𝑚𝑣𝑇𝑣 +

1

2
𝐼𝜔2 (15) 

where m denotes the mass of the robot and I is the moment of inertia of the robot about the COM. 

For simplicity, it was assumed that the mass distribution is homogeneous. Since 

𝑣𝑇𝑣 = 𝑣𝑥
2 + 𝑣𝑦

2 = 𝑋̇2 + 𝑌2̇ (16) 

substituting equation (16) into eqn. (15) can be rewritten in the following form: 

𝑇 =
1

2
𝑚(𝑋2̇ + 𝑌̇2) +

1

2
𝐼𝜃̇2 (17) 

After calculating the partial derivative of kinetic energy and its time derivative, the inertial forces 

could be obtained as 

𝑑

𝑑𝑡
(
𝜕𝐸𝑘
𝜕𝑞̇

) = [
𝑚𝑋̈
𝑚𝑌̈
𝐼𝜃̈

] = 𝑀𝑞̈ (18) 

where 

𝑀 = [
𝑚 0 0
0 𝑚 0
0 0 𝑚

] (19) 

Consequently, the forces that cause the dissipation of energy were considered. In accordance 

with Figure 2, the following resultant forces expressed in the inertial frame could be calculated: 
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𝐹𝑟𝑦(𝑞̇) = 𝑐𝑜𝑠𝜃∑𝐹𝑠𝑖(𝑣𝑥𝑖) − 𝑠𝑖𝑛𝜃∑𝐹𝑙𝑖(𝑣𝑦𝑖) (20)

4

𝑖=1

4

𝑖=1

 

𝐹𝑟𝑦(𝑞̇) = 𝑠𝑖𝑛𝜃∑𝐹𝑠𝑖(𝑣𝑥𝑖) + 𝑐𝑜𝑠𝜃∑𝐹𝑙𝑖(𝑣𝑦𝑖) (21)

4

𝑖=1

4

𝑖=1

 

The resistant moment around the centre of mass 𝑀𝑟 can be obtained as 

{
 
 

 
 𝑀𝑟(𝑞)̇ =  −𝑎 ∑ 𝐹𝑙𝑖(𝑣𝑦𝑖) + 𝑏 ∑ 𝐹𝑙𝑖(𝑣𝑦𝑖)

𝑖=2,4𝑖=1,4

+𝑐 [− ∑ 𝐹𝑠𝑖(𝑣𝑥𝑖) + ∑ 𝐹𝑠𝑖(𝑣𝑥𝑖)

𝑖=3,4𝑖=1,2

]

 (22) 

To define generalised resistive forces, the vector 

𝑅(𝑞̇) = [𝐹𝑟𝑥(𝑞̇) 𝐹𝑟𝑦(𝑞̇) 𝑀𝑟(𝑞̇)]
𝑇
 (23) 

was introduced. The active forces generated by the actuators which make the robot move can be 

expressed in the inertial frame as follows: 

𝐹𝑥 = 𝑐𝑜𝑠𝜃∑𝐹𝑖 (24)

4

𝑖=1

 

𝐹𝑦 = 𝑠𝑖𝑛𝜃∑𝐹𝑖

4

𝑖=1

 (25) 

The active torque around the common point was calculated as: 

𝑀 = 𝑐(−𝐹1 − 𝐹2 + 𝐹3 + 𝐹4) (26) 
Consequently, the vector F of active forces had the following form: 

𝐹 = [𝐹𝑥 𝐹𝑦 𝑀]
𝑇
 (27) 

Using (4), (26) and (27) and assuming that the radius of each wheel is the same, this gave 

𝐹 =
1

𝑟

[
 
 
 
 
 
 

𝑐𝑜𝑠𝜃∑𝜏𝑖

4

𝑖=1

 

𝑠𝑖𝑛𝜃∑𝜏𝑖 

4

𝑖=1

𝑐(−𝜏1 − 𝜏2 + 𝜏3 + 𝜏4)]
 
 
 
 
 
 

 (28) 

To simplify the notation, a new torque control input τ was defined as 

𝜏 = [
𝜏𝐿
𝜏𝑅
] = [

𝜏1 + 𝜏2
𝜏3 + 𝜏4

] (29) 

where 𝜏𝐿  and 𝜏𝑅  denote the torques produced by the wheels on the left and right sides of the 

vehicle, respectively. Combining (26) and (27), this gives 

𝐹 = 𝐵(𝑞)𝜏 (30) 
where B is the input transformation matrix defined as: 

𝐵(𝑞) =
1

2
[
𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜃
−𝑐 𝑐

] (31) 

Next, using (1), (23) and (30), the following dynamic model was obtained: 

𝑀(𝑞)𝑞̈ + 𝑅(𝑞̇) =  𝐵(𝑞)𝜏 (32) 
It should be noted that (30) describes the dynamics of a free body only and does not include the 

nonholonomic constraint (2). Therefore, a constraint had to be imposed on (30). To this end, a vector 

of Lagrange multipliers, λ, was introduced as follows: 

𝑀(𝑞)𝑞̈ + 𝑅(𝑞̇) = 𝐵(𝑞)𝜏 + 𝐴𝑇(𝑞)𝜆 (33) 

For control purposes it would be more suitable to express (29) in terms of the internal velocity 

vector η. Therefore, (33) was multiplied from the left by 𝑆𝑇(𝑞), which resulted in: 

{
𝑆𝑇(𝑞)𝑀(𝑞)𝑞̈ + 𝑆𝑇(𝑞)𝑅(𝑞̇)

= 𝑆(𝑞)𝑇𝐵(𝑞)τ + ST(𝑞)𝐴𝑇(𝑞)𝜆
 (34) 

After taking the time derivative of (3), this gave: 

𝑞̈ = 𝑆̇(𝑞)𝜂 + 𝑆(𝑞)𝜂 ̇  (35) 
Next, using (33) and (3) in (31), the dynamic equations became 
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 𝑀̅̅̅𝜂̇ + 𝐶̅𝜂 + 𝑅̅ = 𝐵̅𝜏 (36) 
where 

𝐶̅ = 𝑆𝑇𝑀𝑆̇ = 𝑚𝑥𝐼𝐶𝑅 |
0 𝜃̇
𝜃̇ 𝑥𝐼𝐶𝑅̇

|  (37) 

𝑀̅ = 𝑆𝑇𝑀𝑆 = [
𝑚 0
0 𝑚𝑥𝐼𝐶𝑅

2 + 𝐼
] (38) 

𝑅̅ = 𝑆𝑇𝑅 = [
𝐹𝑟𝑥(𝑞̇)

𝑥𝐼𝐶𝑅𝐹𝑟𝑦(𝑞̇) + 𝑀𝑟
] (39) 

𝐵̅ = 𝑆𝑇𝐵 =
1

2
[
1 1
−𝑐 𝑐

] (40) 

3.2. Hybridisation Controller Design for a Wheeled Mobile Robot 

The principles and techniques of control theory are essential for the design, analysis, and 

optimization of feedback control systems to achieve the desired system behavior and performance. 

The control system could be standalone or hybridized based on the model complex. Individual 

control algorithms refer to standalone, single-technique control approaches, such as PID 

(proportional-integral-derivative) control, fuzzy logic control, adaptive control, optimal control, and 

robust control. They can be effective in handling specific types of control problems but may have 

limitations in handling more complex or uncertain systems. Individual control algorithms are 

generally simpler to design, implement, and tune compared to hybridized approaches. While 

hybridization can provide enhanced capabilities but at the cost of increased complexity, individual 

control algorithms offer a simpler and more targeted approach but may have limitations in handling 

certain control challenges. The choice between hybridization and individual control algorithms 

depends on the specific control problem, the desired performance characteristics, the complexity of 

the system, and the available resources for implementation and tuning. Hybridization can provide 

improved flexibility, robustness, and adaptability compared to individual control algorithms. The 

design of a hybrid control system requires more complexity to integrate the different components 

effectively. Hybridization is the combination of multiple control algorithms or techniques to achieve 

better performance or handle more complex systems. Hybridizing LQG with fuzzy control 

algorithms contributes to improved efficiency, increased driving range, enhanced regenerative 

braking, improved responsiveness and performance, flexibility in power management, increased 

reliability, and redundancy for wheeled mobiles for agricultural purposes. The goal of hybridizing 

LQG with fuzzy is to leverage the strengths of different control approaches and compensate for their 

individual weaknesses. 

In the controller design, the first step is to design the linear quadratic regulator controller (Figure 

5). If penalised gains from the LQR scenario are obtained, the penalised rate gain is identified. If not, 

go back to the LQR controller and adjust the penalised rate gain. If it is cheap, then the optimal gain 

values are passed to the fuzzy logic LQR controller framework. If not, then check whether an 

expensive penalised rate exists or not. If it is an expensive penalised rate, then the optimal gain values 

are passed to the fuzzy logic LQR controller framework. If not, it goes back to the LQR controller 

framework retuned. If the fuzzy logic LQR framework achieves the optimal penalisation rate, then it 

is optimised further and passed to the LQG framework. Based on the optimal gain, the LQG estimates 

the output parameters and adjusts the optimal gain in advance. After that, the greatest optimal 

controller gains are passed to the FLQG framework for its robust performance. Then, with wheeled 

mobile robot dynamics, the system is optimally regulated and robust. 
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Figure 5. Fuzzy-LQG controller scheme. 

The state feedback control (SFC) technique is based on the placement of the system poles. A gain 

matrix (K) and the state variables are used for the pole placement of the system. In SFC the poles of 

the closed-loop system may be placed in any chosen position. Nevertheless, for the methods of output 

feedback control, the poles of systems may be given to a definite point. In this technique, the state 

variables are implemented by a state feedback controller. The state variables of the system are 

feedback. All feedbacks multiplied by a state feedback gain matrix are compared with the reference 

input. The important point in the SFC design is to calculate K. The LQR controller is one of the most 

widely used methods for this. In the LQR controller, the optimal feedback parameters of the K matrix 

are taken by the cost function (J), which optimises the states, x(t) and the control signal u(t) of the 

system [8]: 

𝑢(𝑡) = −𝐾𝑥(𝑡) (41) 

𝐽 =
1

2
∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡 (42)
+∞

0

 

J depends on the matrix Q and R. Q and R are defined as a positive semi-defined matrix. 

Furthermore, the K gain matrix is determined based on Q and R. The control signal is shown below: 

𝑢(𝑡) = −𝑅−1𝐵𝑇𝑃(𝑡)𝑥 = −𝐾𝑥(𝑡) (43) 
where P is obtained by the differential equation of Riccati: 

𝑃𝐴 + 𝐴𝑇 − 𝑃𝐵𝑅−1𝑃 + 𝑄 = 0 (44) 
The K matrix is determined with P. It is the solution of the Riccati equation: 

𝐾 = 𝑅−1𝐵𝑇𝑃 = [𝑘1 𝑘2 𝑘3… . 𝑘𝑛] (45) 
n is the number of state variables. The LQR controller performance is dependent on the choice of 

weight matrices. In the literature, there are many different approaches for the choice of Q and R, for 

example Bryson’s Rule. A simple choice approach can be 𝑄 = 𝐼 and 𝑅 = 𝜌 𝐼. Furthermore, several 

optimisation algorithms can be used to obtain the optimal values of Q and R. 

A. Fuzzy linear quadratic regulator (FLQR) 

This controller is a combination of the optimal control approach (LQR) and the fuzzy control 

method. The fusion controller structure is used to design a linear fusion function (LFF). The LFF 

transforms the multiple variables into comprehensive error (E) and error change (EC), which 

simplifies the FLC controller. The FLC structure based on the LQR controller is illustrated in Figure 

6. 
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Figure 6. Block diagram of the FLQR controller in the WMRS system. 

For the WMRS, the LFF is given as follows [33]: 

𝐹(𝑥) = [
𝐾𝜃1  𝐾𝜃2 𝐾𝜃3 0 0 
 0 0 𝐾𝜃1̇ 𝐾𝜃2̇ 

] (46) 

[
𝐾𝑅
𝐾𝐸
] = 𝐹(𝑋)𝑥𝑇 (47) 

{
𝐾𝑅 = 𝐾𝜃1 𝜃1 + 𝐾𝜃2 𝜃2
𝐾𝐸 = 𝐾𝜃1𝜃̇1 + 𝐾𝜃2 𝜃̇2

 (48) 

The Mamdani-type fuzzy model was developed with the aim of adjusting the closed-loop 

controller feedback gains. The input variables (KR and KE) and the output variable (Control signal-

U) are converted into linguistic variables as follows: NB – negative big, NM – negative medium, NM 

– negative small, Z – zero, PS – positive small, PM – positive medium and PB – positive big. 

Triangular membership functions are used for the graphical inference of the input and output 

variables. Table 1 presents the fuzzy rules applied to the controller of the wheeled mobile robot [32]. 

Table 1. Fuzzy rules. 

EC  

E NB NM NS  ZE  PS  PM  PB 

NB NB NB NB NM NM NS ZE 

NM NB NB NM NM NS ZE PS 

NS NB NM NM NS  ZE  PS  PM 

ZE NM NM NS  ZE  PS  PM PM 

PS NM NS  ZE  PS  PM PM PB 

PM NS  ZE  PS  PM PM PB PB 

PB ZE PS PM PB PB PB PB 

B. Linear quadratic Gaussian (LQG) 

In a linear dynamic system, 𝐾𝐹 estimates the system states from the information of input and 

output. Figure 7 shows the block diagram of the Kalman filter (𝐾𝐹). Noised signals (Wd, Wn) are 

combined with the linear dynamic system to improve the system construction needed by the 𝐾𝐹 

algorithm. 
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Figure 7. Block diagram of 𝐾𝐹. 

According to the added noised signal, the state-space model of wheeled mobile robot can be the 

system given as follows [31]: 

{
𝑋̇ = 𝐴𝑥 + 𝐵𝑢 +𝑊𝑑

𝑌 = 𝐶𝑥 + 𝐷𝑢 +𝑊𝑛
 (49) 

The dynamic equation of KF is added to the state space and is given by the equation [34]: 

{𝑋̇̂ = 𝐴𝑥̂ + 𝐵𝑢 + 𝐾𝑓(𝑦 − 𝑦̂)

𝑌 = 𝐶𝑥̂
 (50) 

The 𝐾𝐹 gain 𝐾𝑓 is calculated as the follows: 

𝐾𝑓 = 𝑃𝐶
𝑇𝑅−1 (51) 

P and R are algebraic constants calculated with the Riccati equation and the output covariance 

matrix, respectively. 𝑥̂ and 𝑦̂ are the estimated state variables and outputs, respectively. 

The error can be given: 

𝑒 = 𝑥̂ − 𝑥 (52) 
Using Eqs. (32) and (34), (35) is obtained. 

𝑒̇ = (𝐴 − 𝑘𝑓𝐶)𝑒 (53) 

An optimal 𝑘𝑓 gain matrix must be determined for the 𝑘𝐹 design. The structure of LQG is taken 

by adding 𝐾𝐹 to the LQR, as can be seen in Figure 9(b). The 𝐾𝐹 is obligatory if the state variables of 

the LQR needed to be estimated. LQG is an optimal controller method for some systems that have 

uncertainty. The 𝑘𝐹 is used to estimate the state variables according to the system input and the 

measured output variables. The state variables will be multiplied by the K matrix to generate the 

control signal (u): 

𝑢 = −𝑘𝑥̂ (54) 
If the control signal is applied to the state-space model and the noise signals added to the system, 

the closed-loop model is given as follows: 

𝑥̇ = 𝐴𝑥 − 𝐵𝐾(𝑥 − 𝑥̂) +𝑊𝑑 (55) 
The 𝐾𝐹 state-space model is: 

𝜀̇ = (𝐴 − 𝐾𝑓𝐶)𝜀 +𝑊𝑑 − 𝐾𝑓𝑊𝑛 (56) 

The new space model can be defined as: 

[
𝑥̇
𝜀̇
] = [

(𝐴 − 𝐵𝐾) 𝐵𝐾
0 (𝐴 − 𝐾𝑓𝐶)

] [
𝑥
𝜀
] + [

1 0
1 − 𝐾𝑓

] [
𝑊𝑑

𝑊𝑛
] (57) 

C. Fuzzy linear quadratic Gaussian controller (FLQG) 

This FLQG controller structure is based on the combination of the LQG controller and FLQR 

controller. However, for certain cases, the state variables are not measured for real experimental 

systems. However, it is possible to estimate the non-measurable state by using the measurement data 

if the system is observable [25]. Furthermore, an estimation of state variables may be preferred 

because of the noisy measurement data. The structure of FLQG is obtained by adding the KF to the 

FLQR, as can be seen in Figure 8. However, the KF is obligatory if some state variables needed for 

the FLQR are estimated. KF estimates the state variables according to the DLRIP system input and 

the measured output variables. The estimated state variables are the input of the FLQR controller. A 

block diagram of FLQG controller is shown in Figure 8. 
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Figure 8. Block diagram of the FLQG controller for the wheeled mobile robot system. 

Finally, the penalisation rate gains’ numerical values were obtained, as shown in Table 2. The 

scenarios are cheap or expensive, and ignore any other state; they only interest one state. The 

penalisation rate of all linear quadratic regulators is positive, whereas linear quadratic Gaussian 

penalisation rates are positive diagonally, but are negative in the upper and lower matrices. These 

values suggest that some states are at the saddle point (see section 3.4) because LQG is sensitive to 

the dynamic nature of the WMRS. It is good that the wheeled mobile robot is stable at its core, but is 

still sensitive to very small changes in the dynamics system. The negative values in the penalisation 

rate indicated that the position and orientation responses are saddle points near zero. The positive 

penalisation rate indicated that all states are convergent in the region around zero. 

Table 2. Results of penalisation rates. 

Scenarios  Penalisation rate (KR) Penalisation rate (KE) Eigen values (E) 

Cheap controller [300.1181  111.8052] [
100         − 100
−100       2274500

] [
−1152000
−3700

] 

Expensive controller [297.0804  110.9109] [
100         − 100
−100       2274500

] [
−1133600
−3700

] 

Ignore anyone state 

controller 
[297.0804  111.0010] [

100         − 100
−100       2274500

] [
−1135400
−3700

] 

3.3. Hybridization Control Gain Design 

This work determines an appropriate penalty rate gain, comprehends limits, and makes 

inferences in order to optimize controller design for agricultural drones. It creates a design method 

using fuzzy LQG control law, digitalizing classical LQG control law for use in contemporary 

applications, and controlling gain via feedback. Recalled equation (41) to equation (45) 

𝑡𝑐𝑚𝑑 = 𝐾𝑅𝑒(𝑡) + 𝐾𝐸𝑒(𝑡)                         (58) 

where 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) is the tracking error signal between the reference r(t) and the controlled 

system output, 𝑦(𝑡),  and 𝐾𝐸1, 𝐾𝐸2  are gains of LQG. This is first converted into the frequency 

domain to obtain 

𝑈(𝑆)𝑐𝑚𝑑 = 𝐾𝑅𝐸(𝑆) + 𝐾𝐸2𝐸(𝑆)                                                                                 (59) 
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and the associated Laplace transform is denoted by the capital variable. The bilinear transform 

can then be used to transfer this equation into the discrete-frequency domain with the variable z. 

Eliminating the denominator yields 

𝑈(𝑍)𝑐𝑚𝑑 = 𝐾𝑅𝐸(𝑍) + 𝐾𝐸2𝐸(𝑍) (60) 

A unique fuzzy logic version of Equation (….) will be developed for reliable system controllers, 

providing direct behavior insight and analytic structures for the easy prediction of actions, requiring 

good general rules. The fuzzy LQG control is developed from modern LQG. Based on the fuzzy 

control theory, the fuzzy relationship between the two LQG parameters (𝐾𝑅, and 𝐾𝐸) and the error e 

and error change rate 𝑒𝑧  can be established. According to different e and 𝑒𝑧 , the parameters 

(𝐾𝑅, and 𝐾𝐸)  can be self-adjusted online in order to ensure that the controlled object has good 

dynamic and static performance, meeting different control requirements. In general, fuzzy control 

has no knowledge database, does not have adaptive ability, and its flexibility and interactivity are 

not very good. Contrarily, automatic-tuned systems often cannot be directly used to control objects 

or production processes. So, the combination of fuzzy LQG will bring their respective advantages 

into play. 

𝑒𝑧 = 𝑍𝑟 − 𝑍  (61) 

Taking the time derivative for the above equation 

𝑒𝑧̇ = 𝑍𝑟̇ − 𝑍̇ (62) 

3.4. Dynamics of WMRS Characters Parameter Analysis 

Settling time (𝑇𝑆), i.e. the time required for the output to stabilise within a given tolerance band, 

is described mathematically as: 

𝑇𝑠 =

{
 
 

 
 
4

𝜎𝜔𝑛
, 0 < 𝜎 < 1 

∞ 𝜎 = 0 
6

𝜔𝑛
 𝜎 > 1

 (63) 

where 𝜎 is the damping ratio. 

Rise time (Tr) describes the time taken for the solution to increase from 0 % to 100 % of its ultimate 

value in under-damped systems, or from 10 % to 90 % of its final value in over-damped systems. 

Mathematically: 

𝑇𝑟 =
𝜋 − 𝜃

𝜔𝑑
 (64) 

Peak time (Tp) is the time required for the response to reach the peak value for the first time. 

Mathematically: 

𝑇𝑝 =
𝜋

𝜔𝑑
 (65) 

Peak overshoot, or maximum overshoot (Mp), is defined as the deviation of the response at peak 

time from the final value of response. It is expressed as: 

𝑀𝑝 = (𝑒
−(

𝜎𝜋

√1−𝜎2
)

) ∗ 100 (66) 

At steady state time (Tss), the rate of input is equal to the rate of elimination. 

The RMS formula is defined as the square root of the mean (average) of the squares of the values 

in a dataset. In simpler terms, it calculates the average of the squared values and then takes the square 

root of that average. This process effectively converts the varying quantity into a single, 

representative value that reflects its overall magnitude: 

𝑅𝑀𝑆 = √
1

𝑛
∑𝑥𝑖

2

𝑖

 (67) 

where RMS is the root mean square, n is the number of measurements from MATLAB simulation, 

and 𝑥𝑖is each state value of the WMRS dynamics system: 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 June 2024                   doi:10.20944/preprints202406.1465.v1

https://doi.org/10.20944/preprints202406.1465.v1


 15 

 

% =
𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑛𝑒𝑤 𝑣𝑎𝑙𝑢𝑒 

𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 
∗ 100 (68) 

3.5. Lorenz System and Its Analyses for the WMRS Controller Framework 

Based on the penalisation rate numerical values, it is necessary to look at the Lorenz law of 

attraction since, as reflected in Table 2, the values of the LQG are diagonally positive, but the upper 

and lower matrices are negative. It is therefore mandatory to relate them to the Lorenz law of 

attraction. The Lorenz law of attraction is considered a benchmark system in chaotic dynamics in that 

it displays extraordinary sensitivity to initial conditions and the strange attractor phenomenon. Even 

though the system tends to be stable, it is indeed possible to convert a strange attractor into a saddle 

point. Looking at the dynamics systems of WMRS after applying the controller’s penalisation rate, 

the following implications were identified. In order to observe the controller behaviours, let 𝑥̇ = 𝑓(𝑥) 

near 𝑥̂ where 𝑓(𝑥̂) = 0. The dynamics systems of the WMRS were obtained with the expense and 

costs of linear quadratic Gaussian (LQG), because it made the dynamics system a saddle point. Zoom 

into fixed point, the dynamics of the position and orientation in a linear region can be seen. Let us 

assume 

𝑥 = 𝑥̂ + ∆𝑥 (69) 
𝑑

𝑑𝑡
∆𝑥 = 𝑥̇ = 𝑓(𝑥̂ + ∆𝑥) = 𝑓(𝑥̇) +

𝐷𝑓

𝐷𝑥
(𝑥̂). ∆𝑥 +

1

2

𝐷2𝑓

𝐷𝑥2
 (𝑥̂). ∆𝑥2 +⋯ (70) 

Setting a higher order at zero, it gives: 
1

2

𝐷2𝑓

𝐷𝑥2
 (𝑥̂). ∆𝑥2 +⋯ = 0 (71) 

Then,
𝑑

𝑑𝑡
∆𝑥 ≈

𝐷𝑓

𝐷𝑥
(𝑥̂). ∆𝑥 → 𝑥̇ = 𝐴𝑥,

𝑑

𝑑𝑡
∆𝑥 = 𝐴𝑥 

𝑥(𝑡0 + 𝑡) = 𝑒
𝐴𝑡𝑥(𝑡0) (72) 

𝑥 = 𝑇𝑧 → 𝑧̇ = 𝑇−1𝑥̇ = 𝑇−1𝐴𝑇𝑧 → 𝑧̇ = 𝜆𝑧 (diagonal decoupled system) 𝐴𝑇 = 𝑇𝜆. 

where 𝑇 is the eigen vector of the WMRS dynamics. 

𝑥(𝑡) = 𝑇𝑒𝜆𝑡𝑇−1𝑥(0) (73) 

𝑧(0) = 𝑇−1𝑥(0) (74) 
This means that if any initial condition 𝑥(0) is taken, WMRS dynamics could be plotted in a 

time framework, showing how it would work with time using WMRS dynamics. 𝑇−1𝑥(0) is taking 

the initial condition map into an eigen values coordinate system, where it is necessary to advance the 

system 𝑧̇ = 𝜆𝑧, that is 𝑧(0)𝑧(𝑡)𝑇𝑒𝜆𝑡. Now that the system is in the eigen value coordinate system, it 

should be mapped into the original equation (45). To strengthen the concept, consider the response 

of the WMRS, which is obtained from its dynamic equations [16]: 

{

𝑥𝑟 = 𝑥(𝑡)

𝑦𝑟̇ = 𝑟𝑥(𝑡) − 𝑦𝑟 − 𝑥(𝑡)𝑧𝑟
𝑧𝑟̇ = 𝑥(𝑡)𝑦𝑟 − 𝑏𝑧𝑟

 (75) 

The objective is to find: 

{
𝑦𝑟(𝑡) → 𝑦(𝑡)
𝑧𝑟(𝑡) → 𝑧(𝑡)

 as 𝑡→∞. However, this approach does not work if 𝑧𝑟 is replaced by 𝑧(𝑡). 

Taking into consideration the dynamics of the WMRS, let the errors of WMRS be: 

{

𝑒𝑥  = 𝑥 − 𝑥𝑟  
𝑒𝑦  = 𝑦 − 𝑦𝑟
𝑒𝑧  = 𝑧 − 𝑧𝑟

 (76) 

Then 𝑒𝑥 = 0, 𝑒𝑦̇ = 𝑦̇ − 𝑦𝑟̇, −(𝑦 − 𝑦𝑟) − 𝑥(𝑡)(𝑧 − 𝑧𝑟), where 𝑒𝑦 = 𝑦 − 𝑦𝑟, and 𝑒𝑧 = 𝑧 − 𝑧𝑟, which 

implies that 
𝑒𝑦̇ = 𝑒𝑦 − 𝑥(𝑡)𝑒𝑧 (77) 

𝑒𝑧̇ = 𝑥(𝑡)(𝑦 − 𝑦𝑟) − 𝑏(𝑧 − 𝑧𝑟) = 𝑥(𝑡)𝑒𝑦 − 𝑏𝑒𝑧 (78) 

𝑒𝑦̇𝑒𝑦 + 𝑒𝑧̇𝑒𝑧 = −𝑒𝑦
2 − 𝑥𝑒𝑦𝑒𝑧 + 𝑥𝑒𝑦𝑒𝑧 − 𝑏𝑒𝑧

2 (79) 

𝑑

𝑑𝑡
(
1

2
(𝑒𝑦

2 + 𝑒𝑧
2)) = −𝑒𝑦

2 − 𝑏𝑒𝑧
2 (80) 

Let 

𝑉 =
1

2
(𝑒𝑦

2 + 𝑒𝑧
2) (81) 
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where V is a positive definite 

𝑉 =
1

2
(𝑒𝑦

2 + 𝑒𝑧
2)𝑉̇ < 0 except at (0,0), 𝑉(𝑡) → 0 ⇒ 𝑒𝑦 → 0, and 𝑒𝑧 → 0. This confirms that the 

WMRS dynamics system is stable. 

4. Results and Discussion 

If the wheeled mobile robot dynamics are not taken into consideration, the system is unstable 

throughout the time frame (Figure 9). Thus, to be stable the system needs regulation and a robust 

controller. The amplitude is very large, which shows that the system is skidding in space when it 

meets sudden impacts. 

 

Figure 9. Step response without a controller. 

Figure 10 shows the response of the WMRS for the step input with the inclusion of the linear 

quadratic Gaussian (LQG). The optimal penalised rate gains push the WMRS velocity forwards until 

it reaches the desired amplitude. However, the controller must exert a huge force in order to push 

the WMRS velocity. Since the WMRS model itself is nonlinear, there is a large area behind the plant 

responses. These areas indicate the amount of energy required to regulate the WMRS during the 

dynamic nature of WMRS. Even if it is optimally penalised, it needs more robust optimal penalised 

gains. This large area is due to the fact that LQG controllers can be sensitive to changes in the system 

dynamics, which can make them difficult to tune for optimal performance and can be 

computationally expensive. This is because LQG controllers require a significant amount of 

computation to calculate the optimal control inputs, which can be a problem for applications that 

have limited computational resources for WMRS. 
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Figure 10. Step response for the LQG controller. 

Figure 11 shows the response of the WMRS for the step input with the inclusion of the linear 

quadratic regulator (LQR). The optimal penalised rate gains push the WMRS velocity forwards until 

it reaches the desired amplitude. However, the controller must exert a huge force in order to push 

the WMRS velocity. The controller is very sensitive to the dynamics system since the WMRS model 

itself is a dynamics system. For this reason, there is a large area behind the plant responses. These 

areas indicate the amount of energy required to regulate the WMRS during the dynamic nature of 

WMRS. The more dynamic the system, the less LQR controller performance is obtained. Since LQR 

controllers assume that the system being controlled is linear, this assumption does not hold true for 

dynamics systems. In such cases, LQR controllers may not provide optimal performance or may even 

become unstable. 

 

Figure 11. Step response for the LQR controller. 

Certain types of controllers, such hybridized controllers used in vehicle control or industrial 

automation in agriculture, are made to function dependably in harsh environmental circumstances. 

A controller’s performance, however, could be harmed by extremes in humidity, vibration, 

temperature, or other factors. Important things to think about are as follows: 

4.1. Temperature Extremes 

Elevated temperatures have the potential to overheat electronic components, resulting in 

decreased dependability and eventual malfunction. Very low temperatures can interfere with the 

functioning of electronic circuits and lead to problems with the mechanical parts of a mobile robot’s 

wheel. In order to ensure optimal performance, hybridized controllers are frequently engineered with 

working temperature ranges, such as -20°C to 60°C. 

4.2. Humidity and Moisture 

Excessive humidity or moisture exposure can lead to condensation inside the controller 

enclosure, which can cause component degradation and short circuits. To stop the entry of water and 

dust, controllers with the proper ingress protection (IP) ratings are utilized. Internal components may 

be shielded with conformal coatings and desiccants. 

4.3. Vibration and Shock 

The controller’s internal parts and connections may sustain mechanical damage as a result of 

strong vibrations or abrupt shocks. Rugged housings and shock-absorbing mountings are features of 
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controllers used in tough industrial environments or in wheeled mobile robot applications. Vibration 

problems are less common in solid-state architectures since they lack moving elements. 

4.4. Power Fluctuations 

Brownouts, spikes in voltage, or total power outages can cause component damage and interfere 

with the controller’s ability to function. In order to continue operating during brief power outages, 

controllers frequently include backup power sources and power conditioning built right in. 

In order to guarantee dependable functioning in harsh circumstances, hybridized controllers 

usually: 

• Designed with components and materials rated for the expected environmental stresses 

• Housed in rugged, sealed enclosures to protect internal electronics 

• Programmed with failsafe mechanisms and fault-tolerant control algorithms 

• Regularly tested and maintained to identify and address any degradation in performance 

Because of their strong construction and advanced control techniques, well-designed hybridized 

(Fuzzy-LQG) controllers can continue to operate efficiently even under the most adverse conditions. 

Figure 12 shows the performance of the hybridised controller. The response of the WMRS is 

stable without much energy loss. However, after some time, the controller effort increases negatively. 

This means that the controller’s effort is heavily penalised in order to achieve robust stability during 

dynamic motion. Owing to this, the plant’s response becomes robustly stable with a small amount of 

energy loss. It can be carefully observed from Figure 12 that after 20 seconds, the WMRS position and 

velocity shifted a little and remained stable throughout the numerical values. This is because the 

WMRS is no longer stable around zero, but instead stable in some numerical value region. In short, 

the region of convergence is not around zero. Due to the linear quadratic Gaussian (LQG) control 

design of the upper and lower matrices, the penalisation rate is negative, which can lead to instability 

in the minor system (products of both velocity and position). Negative gain values in the LQG 

controller can cause the system to exhibit undesirable behaviours such as oscillations, divergence or 

uncontrollable responses in the upper and lower matrices, but the effect is minor since the upper and 

lower matrices are obtained as the product of two states. Consequently, it leads to a saddle point, a 

region in which the states have dual properties (the state of convergence and the state of divergence). 

 

Figure 12. Cheap penalisation rate for linear motion. 
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The orientation and angular velocity of the WMRS are shown in Figure 13. Both orientation and 

angular velocities are effectively stable at a given controller effort. The controller effort is increasing 

due to the dynamic nature of the WMRS. Even if the controller gains are cheap, they could be robustly 

stabilised throughout the entire orientation and angular velocity. Thus, the cheap controller scenarios 

are more effective for the WMRS dynamics system. 

 

Figure 13. Cheap penalisation rate for angular motion. 

Initially, the WMRS response increases until it reaches zero, then remains stable throughout the 

period (Figure 14). Owing to the expensiveness of the controller gains, the response of the WMRS is 

stable without overshoot. The good news is the controller expensiveness, which makes the 

penalisation rate gain a non-zero, and it increases positively since the WMRS is in dynamic 

conditions. 

 

Figure 14. Expensive penalisation rate for angular motion. 

As the WMRS response approaches zero, it falls until it stabilises for the duration of the 

observation (Figure 15). The WMRS response is stable and free of overshoot due to the high cost of 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 June 2024                   doi:10.20944/preprints202406.1465.v1

https://doi.org/10.20944/preprints202406.1465.v1


 20 

 

the controller improvements. As the controller is costly and the WMRS operates in dynamic 

situations, the WMRS response is easily steady. The stability was granted with the expense and costs 

of innermost controller gains (LQG and LQR). The controllers allow the state to be zero for the whole 

time, but the benefit is that the controller is trying to stabilise all the states, regardless of the dynamics 

of the WMRS, which is why the controller gains non-zero and positive values the whole time. 

 

Figure 15. Expensive penalisation rate for linear motion. 

This study expands the LQR (linear quadratic regulator, solved by optimisation), LQG (linear 

quadratic Gaussian), and fuzzy logic controllers to create an estimate of the states when fewer 

measurements are available (and yet observable) for the WMRS estimators. If the states are stable, 

then the estimate for the states approaches the state values. The combination of LQR and LQG results 

in a controller that can be optimised to find these parameters independently, at least without the 

effect of noise or disturbances. If these optimised penalisation rates are passed to the fuzzy logic 

controllers, the fuzzy logic controller is made more robust by the system. After applying the entire 

system to WMRS internally, the innermost controller gains are sensitive and easily exposed to the 

dynamics system. To make this clearer, the Lorenz law of attractions is applied, which is obtained 

based on the application of the penalisation rate to the system. The position of the WMRS is 

demonstrated in Figure 16. The position was zoomed in on the x and y axes in order to understand 

the nature of the WMRS dynamics system. It has been predicted that the position of the wheeled 

mobile robot system will experience saddle points near zero. Around the zero (saddle) points there 

are often optimisation problems in WMRS, but they can be used to identify potential solutions. For 

example, in the case of WMRS dynamic variables, a saddle point can be used to identify a point where 

the WMRS dynamic is neither a maximum nor a minimum, but instead is a point of inflection. The 

saddle points develop because the upper and lower matrices are negative; however, the controller 

gains push the state to a stable region. These show the robustness of a combination of the three 

controllers (LQR, LQG and fuzzy logic) applied to WMRS, where the states of WMRS can be 

stabilised. 
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Figure 16. Lorenz attraction for the WMRS position along the x and y axes. 

The position of the WMRS dynamics system was zoomed in on the x and z axes in order to 

understand the nature of the WMRS system (Figure 17) on the x and z axes. Around zero, the dynamic 

state of the WMRS becomes critical. The fact that this happens means that the inner (LQR and LQG) 

controllers are sensitive to very small changes in the dynamics of WMRS, and that in a dynamic 

system of WMRS, a critical point is a point where the WMRS system’s state does not change over 

time. However, the penalised rate gains obtained are trying to push the states near the region of 

convergence (stable). 

 

Figure 17. Lorenz attraction for the WMRS position along the x and z axes. 

To comprehend the nature of the WMRS system, the position of the WMRS dynamics system 

was magnified on the y and z axes (Figure 18). This point implies that the WMR system’s behaviour 

changes from stable to unstable. The WMRS dynamic state reach a crucial point at about zero. Since 

then, extremely slight variations in the WMRS dynamics cause the LQR and LQG controllers to 

become sensitive. This implies that a critical point in a dynamical WMRS system is a point at which 

the state of the WMRS system remains constant across time. 
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Figure 18. Lorenz attraction for the WMRS position along the y and z axes. 

Table 3 shows the WMRS parameters characteristic for the respective controllers. The steady 

state error performance of FLQG over both LQR and LQG is 99.77 % and 99.76 %, respectively. The 

peak amplitude performance of FLQG is 77% over LQR, and 76.9 % over LQG. The settling time 

response by FLQG is 87.2 % over LQR, and 87.1 % over LQG whereas the rise time response of FLQG 

over LQR and LQG is 68.8 % for both. 

Table 3. Characteristics of WMRS parameters. 

Specifications Error by LQR Error by LQG Error by FLQG 
%FLQG over 

LQR 

%FLQG over 

LQG 

Steady state error [%] 0.001 0.000998 0.0000023 99.77 99.76 

Peak amplitude [m/sec] 0.1 0.0998 0.023 77 76.9 

Settling time [sec] 0.782 0.781 0.1 87.2 87.1 

Rise time [sec] 0.439 0.439 0.137 68.8 68.8 

Overshoot [%] 0 0 0 0 0 

Table 4 shows the simulation results of Rms for FLQG cheap control and for FLQG expensive 

control. 

Table 4. WMRS response at different input parameters. 

Parameters 

Error FLQG cheap control Error FLQG expensive control 

Position 

[cm] 

Orientation 

[rad]  

Velocity 

[m/sec] 

Angular 

velocity 

[rad/sec] 

Position 

[cm] 

Orientation 

[rad]  

Velocity 

[m/sec] 

Angular 

velocity 

[rad/sec] 

Step input 0.3493 0.3498 0.02088 0.02088 0.0006608 0.0006642 0.0005642 0.0005642 

Double pulse 

input 
0.3493 0.3498 0.02088 0.02088 0.0006608 0.0006642 0.0005642 0.0005642 

Square input 0.3493 0.3498 0.02088 0.02088 0.0006608 0.0006642 0.0005642 0.0005642 

In a quantitative comparison of the performance of previous (FLQG) and current (FLQG) 

controllers under external disturbances, the steady state error improvements in the current work 

compared with the previous work were 99.97 % better, whereas peak amplitude improvements were 

71.25 % better than the previous work (Table 5). The settling time of the current work is a 99.6 % 

improvement over the previous work with the same controller algorithms. 

Table 5. Quantitative comparison of the previous work and current work. 
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Specifications FLQG [37] FLQG %FLQG over FLQG [37] 

Steady state error [%] 0.01 0.0000023 99.97 

Peak amplitude [%] 0.08 0.023 71.25 

Settling time [sec] 23.75 0.1 99.6 

5. Conclusions 

In this paper, the dynamics models of a wheeled mobile were developed and its controller 

designed. The controllers were hybridised (linear quadratic regulator, linear quadratic Gaussian and 

fuzzy logic) controllers, since controllers share their good qualities in order to make robust responses 

to the WMRS dynamics. The frameworks of the proposed controllers were verified using Lorenz’s 

law of attraction. In terms of controller performance, the LQR controller played a greater role in 

stabilising the WMRS dynamics system since it was considered the innermost loop. Based on the LQR 

controller penalisation rate, LQG estimated the dynamic nature of the WMRS. After effectively 

estimating the dynamic states of the WMRS fuzzy logic controller, it activated its membership 

function. Based on this controller performance, the dynamic of the WMRS is robustly stable and 

regulated. From these results, it is inferred that the response of the position was stable at saddle points 

(near zero), whereas the velocity of the WMRS was fully stable near zero. This occurred because of 

the nature of the LQR and LQG controllers. These controllers are very sensitive to small changes in 

state dynamics. However, they were later adjusted by fuzzy logic controllers. The settling time 

response by FLQG was 87.2 % over LQR, and 87.1 % over LQG, whereas the rise time responses of 

FLQG over both LQR and LQG were both 68.8 %. This implies that hybridisation controllers were 

more effective for WMRS dynamics. Rms FLQG for cheap control was 0.3493 cm and 0.3493 rad in 

position and orientation, respectively. A velocity response of 0.02088 m/sec and angular velocity 

response of 0.02088 rad/sec errors FLQG were obtained by applying cheap controller scenarios, 

whereas for expensive control the responses errors for position and orientation were 0.0006608 cm 

and 0.0006642 rad respectively, and the velocity responses error were 0.0005642 m/sec and angular 

velocity response error 0.0005642 rad/sec. For this performance, the WMRS was stable and well 

regulated, therefore the proposed controller is excellent for the WMRS system dynamics in 

agricultural applications. 
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