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Analysis of Complex Entities in Algebra B

Alejandro Jestis Bermejo Valdés

Riojan Health Service, Piqueras 98, 26006, Logrofio, La Rioja, Spain; ajpermejo@riojasalud.es

Abstract: We present an exploration of algebra B, a recently published unital and non-associative algebra. Unique
complex entities emerged from this algebra, distinct from both quaternion and complex number systems, which
we termed treons. We defined the treonic number system and established an isomorphism between this system
and the real vector space. Our findings revealed that the treonic representation maintained structural integrity
under the defined operations. Based on this foundation, we proceed to determine Euler identity for algebra B
within the treonic system. By presenting the fundamental definitions and properties of algebra B, we derived
a generalized version of Euler identity applicable within this algebra. This formula revealed the emergence
of hyperbolic trigonometric entities, extending the applicability of Euler identity beyond traditional complex
numbers. Our results provide a theoretical foundation for a deeper understanding of the properties and behaviors
of complex entities within this expanded algebraic framework, thus enabling new theoretical developments and
practical applications in the realms of advanced mathematics and theoretical physics.
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Introduction

The algebra B is a recently described algebraic structure by Alejandro Bermejo [1]; it is defined
as a non-associative and unital algebra with the potential to satisfy the definitional requirements of
Lie and Malcev algebras when the respective products of these latter algebras are defined using the
product of algebra B. However, an added quality of this algebra is the emergence of complex entities
with a structure different from existing ones. They appear similar to quaternions [2] lacking one
dimension, but they are not. They also resemble the set of complex numbers C? [3] with an additional
dimension, but they are not that either. Our study aims to investigate the structural properties of these
entities, which we refer to as "treons", and to establish an isomorphism between algebra B and the
treonic number system. We will demonstrate the mathematical correctness of representing elements
of algebra B in the form a; + asi + a3j, ultimately proving the existence of an isomorphism to R3.
Based on this, that is, on the possibility of expressing the elements of algebra B in the form of treons,
we seek to explore how Euler’s identity manifests in the context of algebra B. Euler’s identity (or
Euler’s formula), ¢’ = cos§ + isin#, is a cornerstone of complex analysis, illustrating the profound
relationship between exponential and trigonometric functions [4,5]. We find that the structure of this
identity in algebra B has a similar form, but with its own unique characteristics and differences.

1. Products in Quaternion and C? Algebras

The product of quaternions is defined as [2]:
(all az,as, 614) (blr b2/ b3/ b4> =

(a1by — aoby — azbz — agby, a1by + ayby + azby — aghs, a1b3 — arby + azby + agby, a1by + arbz — azby + aghy).

And the product in C2 is defined as [3,6]:

(a1,a2)(by,by) = (ayby — agby, a1by + azby).

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202406.1385.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 June 2024 d0i:10.20944/preprints202406.1385.v1

2 0f 8

2. Product in Algebra B
The product © in algebra B is defined as [1]:

(a1,a2,a3) ® (b1, b2, b3) = (a1by — axby — azbz, a1by 4 axby + azbo, a1bz + azby + azby).

Both the quaternionic product and the product in C? are different from the product in B. It is not
sufficient to nullify one or another component to derive algebra B from quaternions. Similarly, it does
not make sense to impose an additional dimension to C? to reach the product of algebra B. Therefore,
from algebra B, the complex elements that arise must be different from the complex elements of the set
C? and the quaternions.

3. Representations in Quaternion and C? Algebras

Quaternions can be represented as:
(a1,a2,a3,a4) = ay + axi + azj +agk, 2= =k = —1.
And complex numbers in C? as:
(a1,a0) = aqy + api, i = —1.
In algebra B, Bermejo proposes the presence of the representation [1]:
(a1,a2,a3) = a1 + azi + asj,
though he does not define it strictly, i.e., from an algebra isomorphism.

4. Defining Treons

Motivated by investigating this equivalent representation, we seek to demonstrate that this
representation is mathematically correct. This implies that there must exist an isomorphism between
the structure (a1, a3,a3) and a1 + ayi + azj; both referenced by Bermejo in his definition and analysis of
algebra B [1]. We assume that the field over which the algebra is defined is the real field R. Accordingly,
we will seek an isomorphism between the real field R® and the field of complex entities with structure
a1 + azi + azj which we will call "treons" or "treonic numbers" to differentiate from the term "trions"
used in various disciplines and from hypercomplex numbers called "ternions".

We define treons as:

a1 + azi + azj,

such that a;,ap,a3 € Rand i? = j2 = —1.
We assumed that the treonic elements a; + api 4 a3j are elements of an arbitrary algebra A.

5. Addition and Product in Treons

The addition + in A is:
(a1 + agi + asj) + (by + bpi + bzj) = (a1 + b1) + (ax + by)i + (a3 + b3)j,
and the product ® in A is:
(a1 + agi + a3j) @ (by + bai + bsj) = (ayby — aby — azbs) + (a1by + axby )i+ (a1bs + azby)j + azibsj + asjbsi.

Note that we have not imposed a definition, but have simply grouped the terms in the addition + by
factoring out i and j without altering their action on the right on the elements of the field. We have
also considered the distributive property of the product ® over +.
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6. Isomorphism with R3

Now, we analyze R3: The addition + in algebra B is defined as:
(a1,a2,a3) + (b1, b2, b3) = (a1 + by, a2 + b2, a3 + b3).
While the product © in B was previously defined as:
(a1,a2,a3) ® (by, by, by) = (a1by — axby — asbs, a1by + axby + azby, a1bs + asby + azby).
Under this product operation, an expression of the type a3jbyi can be expressed as [1]:

azj © byi = azbyj © i
= (a3b2)((0,0,1) ® (0,1,0))
— 13b5(0,1,1)
= (0,a3by, a3b)
= a3by(0,1,0) + azb,(0,0,1)

= azbyi + a3b2j.

Since in algebra B [1] we have the property of orthomulearity, ai ©® bj = 0, expressions of the type a,ibsj
would remain:
a2ib3j = aybsi @j =0.

Taking into account that under the product in B, a3jbyi = asbyi + azbyj and ayibsj = 0, then,
(a1 4 azi+ asj) @ (by + bai + bsj) = (ayby — axby — asbs) + (a1by + axby + azby )i+ (a1bs + azby +azby)j.
This has a preserved structure with respect to the product in B:

(a1,a2,a3) © (b1, bz, b3) = (a1b1 — agby — asbs, a1by + agby + asby, a1bs + asby + azby ).

Thus, for (cy,c,c3) = c1 + cai + c3j, such that (c,co,c3) € R® and (¢ + c2i + c3j) € A, we can
consider:
1= Re(c), Cr = Iml(c)/ 3 = ImZ(C)/

where Re(c) is the real part of ¢, Im;(c) is the first imaginary part of ¢, and Imy(c) is the second
imaginary part of c.
With this, we have sufficient data to define an isomorphism & such that:

d: AR
®(ay + azi + azj) = (a1, a,a3).

7. Verification of Isomorphism Properties

7.1. Preservation of Addition

@ ((a1 + azi + asf) + (by + bai + b3j)) =
@(m + by + (112 + bg)i—l— ({13 + b3)j) = (111 +b1,ap + by, a3 + b3).

7.2. Preservation of Product

@((a1 + agi + asj) ® (b + bai + baj)) =
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@((a1b1 — azby — agbs) + (a1b + azby + asby )i + (a1bs + azby + asby)j) =
(a1by — agby — aszbs, a1by + axby + azba, a1bz + azby + azby).
7.3. Isomorphism Verification
7.3.1. Morphism Verification
® is an algebra morphism (homomorphism) if [7-9]:

1) ®:A—B,

@((ﬂl + ari + ngj) &® (bl + byi + bgj)) = <I>((a1,a2, ag,) ® @(b],bz, b3)),

and moreover:
2) didy =idp,

where id 4 is the identity under the product ® in A, and idp is the identity under the product © in B.
The first condition holds:

D((ay + azi + a3j) @ (by + bpi 4 bsj)) = (a1by — axby — azbs, a1by + axby 4 azby, a1bz + azby + azby),

D(ay,az,a3) © D(by, b, b3) = (a1by — aby — azbz, a1by + axby + azby, a1bs + azby + azby),

where we used ®(a;)P(b;) = (ax + 0i + 0) (b; + 0i + 0f) = axb;.
The second condition also holds:
®did 4 = idp,

The identity in A is defined asid4 = (1 + 0i 4 0j):
(a1 + azi + a3j) @ (1+0i +0f) = (1 + 0i + 0f) ® (a1 + azi + azj) = (a1 + azi + asj),

Therefore:
P(1+0i+0j) = (1,0,0).

Since in algebra Bwe have idg = (1,0,0), it is verified that ® is an algebra morphism between A and B.

For @ to be an isomorphism, ® must be both a monomorphism and an epimorphism [7,8,10].

7.3.2. Monomorphism Verification (Injectivity)
Assuming ®(a) = ®(b). Then:

<I>(a1 + ari + a3j) = q)(b1 + byi + b3]) & (al,az,ag) = (bl,bz, b3).

This implies that:
m =by, ay="by, az=bs.

Therefore:
a1 + azi + azj = by + bai + b3j.

Thus, ® is an monomorphism.
Through the kernel, we can equally verify this. We define the kernel of ® as the set of elements in
A that map to the identity element of addition in B [7,8,10]. In our case:

Ker(®) = {a € A| P(a) = 0}.
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For a = ay + api + a3j, we have ®(a) = (a1, ay, a3). Therefore:
®(a) =0 = (ay,a2,a3) = (0,0,0).
This implies that:
alzo/ azzol 11320.
Therefore:
a=0+0i+0j=0.

Thus, the only element in the kernel of @ is the identity element of addition in A.

The fact that ker(®) is trivial (i.e., ker(®) = {0}) implies that the homomorphism is injective
[7,8,10].
7.3.3. Epimorphism Verification (Surjectivity)

To verify that @ is an epimorphism, we considered any (a1, a;,a3) € R3. There exists a treon
aj + azi + azj € A such that:
<1>(a1 + ari + El3j) = (611, ap, ng).

Thus, ® is surjective, as by definition every element in R3 has a preimage in A. Thus, by definition, it
is an epimorphism.

O

With all this, we have the necessary tools to tackle the search for Euler’s identity in the context of
algebra B. The isomorphism of algebras allows us to conduct a well-defined analysis of algebra B in
the form of treons. With these, we proceed to deduce the form of Euler’s identity in our algebra.

8. Analysis of Treons and Their Complex Conjugates

8.1. Definition of a Complex Entity

Considering Bermejo’s work on algebra B [1], a complex entity can be described as:
b=1b1-(1,0,0) +b2-(0,1,0) + b3 - (0,0,1) = (by, b, b3),

where by = R(b), by = $1(b), and bz = 3(b). R(b) is the real part of b, I (b) is the first imaginary
part of b, and 3, (b) is the second imaginary part of b. It should be noted that the definition is equivalent
to the one we articulated in Section 6: Isomorphism with R3.

8.2. Definition of the Complex Conjugate
The complex conjugate, b*, was obtained by changing i = (0,1,0) or j = (0,0,1) [1] to their
respective additive inverses in algebra B. Thus:

b i) = by - (1,0,0) — by - (0,1,0) + b3 - (0,0,1),
b)) = by - (1,0,0) + by - (0,1,0) — b3 - (0,0,1),
b i) = by(1,0,0) — b,(0,1,0) — bs(0,0,1),

where b(*i) denotes conjugation in i, and b"*1) denotes conjugation in j.
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8.3. Powers of a Complex Entity
We define the product b?> = b © b as:

b* = (b1, by, b3) © (b1, by, b3) = (by-by — by by — b3 b3, by -by+by-by +bs by, by - b3+ bz - by + b3 - by).

Hence, simplifying the notation:
b2 = by - by = byby.

Thus, b? becomes:
b? = (b3 — b3 — b3,2b1by + bybs, 2b1bs + bsby),

where we use the notation 2b to denote b + b.
We define higher powers as follows:

b = (bOb)©b = (b3 — b3 — b3,2b1by + bybs, 2b1bs + b3by) @ b,
= ((bob)©b) @b,
P=((bob)ob)ob)®b,

and so on.
We also define the quantity (b?) = b ® b1*ii), Therefore:

(b%) = (by, by, b3) @ (by, b, b3) i) = (|b|?,2b1by + babs, 2b1b3 + bsby),

where [b|> = b? + b3 + b3, which we call the "squared norm" of the vector. Note that |b|? results from
the definition of the product of the vector b with its complex conjugate (*;;), as in the field of complex
numbers [11]. However, in algebra B, this quantity appears in the first component (the real component)
of the vector.

9. Derivation of Euler’s Identity

9.1. Step 1: Power Series

We perform the following power series expansion [12]:

2 pt B0 pl B2 B b"
LaTatutatattar

where ! denotes some kind of "factorial" in the field F of algebra B [1]; therefore, the multiplication
of the factorial corresponds to the multiplication - defined for the elements of the field. On the other
hand, we have: 0 is the identity element of addition in F, 1 is the identity element of multiplication in
F, 2 is the successor of 1, 3 is the successor of 2, and so on. We also define: 0! =1,1!' =1, 1° = (1,0,0),
and b' = b. Assuming that the field F is the real field R, then Y0 % represents the Taylor series
expansion of eP [12,13].

9.2. Step 2: Taylor Series for e

We utilize the powers of the components of b multiplied by their corresponding imaginary units
to perform a Taylor series expansion [13], considering algebra B over the real field R. For the case of
the first imaginary component, we have:

b _ oo (i2)" (i) | (ib2)' | (ib2)* | (ib2)? (iby)"
=) T E e T T T Tt

0

(b2(0,1,0))* | (b2(0,1,0))° 4 (2(0.1,0)"

=(1,0,0) +b,(0,1,0) + o1 30 = Y
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Note that (iby)? = (b2(0,1,0))? = (1,0,0) and (iby)! = b,(0,1,0) = (iby).
9.2.1. Analyzing the Powers of (0,1,0)
i =(1,0,0) = ids (id denotes the identity element of the product ® in algebra B),
i' =(0,1,0),
i2=(0,1,0) ®(0,1,0) = (—=1,0,0) = —ido,
3= (( ,1,0)@ (0,1,0)) ® (0,1,0) = (—1,0,0) ® (0,1,0) = (0, —1,0) = —i = i*,
i*=(0,-1,0)®(0,1,0) = (— 1,0,0) —idg,
i# = (-1,0,0)®(0,1,0) = (0, -1,0) = i*,
i6:( )@(010)_14_( 1,0,0) = —ido,
i’ = (- 100)@(010)—1—1
The sequence is cyclic and has the form, from the second power: —ide, —i, —ide, —i, —ide, —i.

Therefore, the power series expansion becomes:

) 00 (1 \N bZ b4 b6 b3 b5
e = MZ,) =id@+bzi—id@< 2424 22

0 20 4! 6! 3! 5!

= id + bpi — ide cosh(by) — isinh(by),
where cosh() and sinh() denote hyperbolic cosines and sines [14], respectively.

9.2.2. Analyzing the Powers of (0,0,1)

jO = (1,0,0) = ide,

it =(0,0,1),

#=1(0,0,1)®(0,0,1) = (=1,0,0) = —ide,

i#=1((0,0,1)®(0,0,1)) ®(0,0,1) = (~1,0,0) ® (0,0,1) = (0,0, -1) = —j = j*,
i*=(0,0,—-1) ®(0,0,1) = (—1,0,0) = —ide,

> =(-1,0,0)©(0,0,1) = (0,0,-1) = j,

j6 (0,—1,0)®(0,0,1) = i* = (=1,0,0) = —ide,

i7 =(-1,0,0)©(0,0,1) = j° = j*.

Thus:
el = id., 4 bsj — ide cosh(bs) — jsinh(b3).

For the full vector, with its two imaginary components, we have:
eOr+baitbsf) — ob1(id 4 byi — ide cosh(by) — isinh(by)) (ide + bsj — ide cosh(bs) — jsinh(bs)).

O

This demonstrates that Euler’s identity in algebra B, or equivalently in the algebra of treons,
possesses a structure that preserves the connection between the exponential function and trigonometric
functions. However, instead of the standard sine and cosine functions, hyperbolic sine and hyperbolic
cosine functions appear.

Conclusions

We demonstrated that the treonic number system is a valid representation of algebra B and
established an isomorphism between R? and the algebra of treons. By preserving both the addition
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and product operations, our isomorphism confirmed the structural integrity of algebra B in this new
representation.

Using the isomorphism between algebra B and treons, we have systematically extended the clas-
sical Euler’s identity to the domain of algebra B. We demonstrated how the exponential function and
its associated trigonometric identities can be formulated within this broader context. The significance
of this work lies in its ability to expand the applicability of Euler’s identity and the understanding
of complex entities beyond traditional complex numbers and algebras, opening new avenues for
exploring higher-dimensional algebraic structures with significant implications.

Furthermore, we demonstrated the emergence of hyperbolic trigonometric entities within this
new Euler’s identity applied to algebra B. This finding underscores the potential of Euler’s identity
to encompass a broader range of mathematical phenomena, which could lead to new theoretical
developments in advanced mathematics.
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