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Abstract: Focusing on the problem of identifying and classifying aero-engine models, this paper 

measures the infrared spectrum data of aero-engine hot jets using a telemetry Fourier transform 

infrared spectrometer. Simultaneously, infrared spectral data sets with the six different types of 

aero-engines are created. For the purpose of classifying and identifying infrared spectral data, a 

CNN architecture based on the continuous wavelet transform peak seeking attention mechanism 

(CWT-AM-CNN) is suggested. This method calculates the peak value of middle wave band by 

continuous wavelet transform, and the peak data is extracted by the statistics of the wave number 

locations with high frequency. Attention mechanism is used for the peak data, and the attention 

mechanism is weighted to the feature map of the feature extraction block. The training set, 

validation set and prediction set are divided in the ratio of 8:1:1 for the infrared spectral data sets. 

For three different data sets, CWT-AM-CNN proposed in this paper is compared with the classical 

classifier algorithm based on CO2 feature vector and the popular AE, RNN and LSTM spectral 

processing networks. The prediction accuracy of the proposed algorithm in the three data sets is as 

high as 97%, and the lightweight network structure design not only guarantees high precision, but 

also has a fast running speed, which can realize the rapid and high-precision classification of the 

infrared spectral data of the aero-engine hot jets. 

Keywords: Infrared Spectral detection; FT-IR; Aero-engine hot jet; deep learning; Attention 

Mechanism 

 

1. Introduction 

Aircraft fault detection requires rapid identification of aero-engine models, and infrared 

spectroscopy provides a solution. A method for determining a substance's chemical makeup and 

molecular structure is called infrared spectroscopy (IR) [1–3]. This method measures the wavelength 

and intensity of the absorbed or emitted light and generates a particular spectrum diagram by taking 

advantage of the energy level transition that occurs in material molecules when exposed to infrared 

radiation. Therefore, the chemical bond and structure of the substance are analyzed and judged. This 

technology been studied importantly in environmental monitoring [4], refuse classification [5], 

biochemistry [6] and other fields.  

Varied types of aero-engines will create varied gas compositions and emissions during 

combustion. The categorization features of aero-engines are frequently connected to fuel type, 

combustion mode, and emission characteristics. The vibrations and rotations of these molecules form 

a specific infrared absorption and emission spectrum. Fourier Transform Infrared Spectrometer (FT-

IR Spectrometer) [7–9] is an important means to measure infrared spectrum. Interferogram is 
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obtained through interferometer. Based on Fourier transform, the interferogram is reduced to 

spectrogram. In this paper, FT-IR is used to cover a wider spectral range(The spectral range of the 

hyperspectrum is usually from the visible region (0.4-0.7µm) to the short-wave infrared (SWIR) 

region (nearly 2.4µm), and the spectral coverage of the FT-IR spectrometer used in this experiment is 

2.5~12µm.) and the spectral data implies molecular type and structure information, so the richer and 

finer characteristic information of FT-IR is the data basis for classification and recognition in this 

paper. At the same time, hyperspectral detection usually uses a dispersive spectrometer to measure 

the continuous narrow-band spectrum in the visible region. Different from hyperspectral detection, 

FT-IR has a larger luminous flux. This method can complete the interferometer measurement of 

optical signals in the range of 2.5~12µm and convert them into spectral data in a few seconds. Since 

passive FT-IR can gather data in any direction and perform fast target analysis as well as continuous, 

long-distance real-time monitoring, it is frequently employed to identify air contaminants. This 

method is more suitable for the measurement of the hot jet spectrum of aero-engines. 

The research on image recognition methods has been mature [10,11]. While, for spectral data 

classification methods, spectral classification methods of hyperspectral data provide us with a 

reference approach, which is divided into classical methods and deep methods. Li[12] summarized 

that the classical method of spectral classification is to transform data into new feature space and 

retain identification information through data projection, including principal component analysis 

(PCA), independent component analysis (ICA), linear discriminant analysis (LDA), one-dimensional 

discrete wavelet transform (1D-DWT), etc. With the rapid development of deep learning in recent 

years, various feature extraction frameworks have emerged in an endless stream. Deep learning 

methods for spectral classification mainly include convolutional neural network (CNN), recurrent 

neural network (KNN), Transformer[13] and variants of the above methods. AUDEBERT[14], 

RASTI[15] summarized that deep learning methods mainly include supervised learning methods 

(1DCNN, RNN, recursion and convolution) and unsupervised learning methods (AE and PCA). For 

the method of spectral feature extraction in deep learning networks, Lu[16] adopted five 

convolutional layers 1DCNN, Chen[17] and Kemker[18] adopted automatic encoder (AE) and 

stacked autoencoder (SAE), Ding [19] adopted graph convolutional network, Li[20] combined 

spectral convolution and dictionary learning. Ashraf[21] constructed BERT induction, and 

Hamouda[22] used spectral digits and minimum redundancy and maximum correlation selection. 

Transformer framework structure is the most popular deep learning structure at present, and it is 

also a popular research topic in hyperspectral data processing in recent years. However, Transformer 

replaces computing efficiency with high memory consumption, which needs to take up more 

memory resources and does not match the computing power of edge computing platform. In 

contrast, lightweight network design is needed for our infrared spectral data to achieve a balance 

between accuracy and efficiency. The wide application of 1DCNN in spectral feature extraction and 

appropriate memory and time efficiency make 1DCNN the preferred choice for the network structure 

in this paper. 

Because of the extraordinary lack of public data sets, the infrared spectral data of six different 

models of aero-engine hot jets are measured by outfield experiment and three spectral data sets are 

made according to the measurement distance and the different environment. In this paper, a 

convolutional neural network framework based on continuous wavelet transform peak seeking 

attention mechanism is designed for the extraction of spectral features and the realization of multi-

classification tasks. In order to compare the accuracy of the deep learning method and the traditional 

classification algorithm, this paper designs the characteristic spectral vector based on CO2, an 

important component of the aero-engine hot jet, and combines it with the classifier to compare the 

classification accuracy of CWT-AM-CNN with the traditional classifier method. To compare the 

effectiveness of deep learning method of spectral data, CWT-AM-CNN is compared with the popular 

AE, RNN and LSTM spectral processing networks. 

The contribution of this paper is summarized in the following three points: 

1. This paper utilizes the infrared spectrum detection method of aero-engine hot jet as the 

foundation for aero-engine identification and input of data source. The hot jet is a significant 
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infrared radiation feature of an aero-engine, and the infrared spectrum offers molecular-level 

information about substances. Thus, employing this approach for categorization is more 

scientifically valid. 

2. In this paper, a new benchmark data set is developed. The data set is obtained from the field 

environment. The dataset consists of three sub-datasets, including a 443 spectral data set with a 

resolution of 1cm−1, a 1371 spectral data set with 1cm−1 and 0.5cm−1 resolution and a large dataset 

of 1814 spectral data. The data set covers the infrared spectrum in the wavelength range of 2.5~12 

μm, including six types of different aero-engine models (including turbine engine and turbofan 

engine). 

3. This paper provides a deep learning framework for classification of aero-engine hot jet infrared 

spectra. A convolutional neural network based on peak seeking attention mechanism is 

designed. The backbone network consists of three feature extraction blocks with the same 

structure, batch normalization layer and maximum pooling layer. In the part of attention 

mechanism based on peak seeking, the spectral peak value is detected by continuous wavelet 

transform method and the peak wave number of high frequency occurs is counted. The attention 

mechanism weights the peak value obtained by statistics and acts on the feature map of the trunk 

CNN. The structure of the network is light, and the classification accuracy and operation 

efficiency can be taken into account. 

The structure of this paper consists of five parts. The first section reviews the method of spectral 

feature extraction, and briefly describes the method, contribution and structure of this paper. In the 

second section, the detailed structure and algorithm details of the attention mechanism convolutional 

neural network designed in this paper are described. In the third section, the data set used in the 

experiment is designed, and the design of the outfield experiment, the data preprocessing and the 

composition of the spectral data set are described in detail. In the fourth section, the experiment and 

results are analyzed, and the performance results are used to evaluate and analyze the experiment, 

and the traditional classifier methods and the current popular spectral processing network methods 

are compared. The fifth section summarizes the thesis. 

2. Spectral Classification Network Structure Design 

In this section, the CNN based on peak seeking attention mechanism designed by infrared is 

described, which consists of four parts: overall network structure design, backbone network design, 

peak-based attention mechanism and network training method. 

2.1. Overall Network Design 

Convolutional Neural Networks (CNNs) structures commonly used at present include LeNet-

5[23], AlexNet[24], VGG[25], GoogleNet[26], ResNet[27], etc., all of which achieve high accuracy in 

the classification of ImageNet data sets. However, the commonality feature of these algorithms is that 

by increasing the depth of the network, the accuracy of the calculation results is exchanged with more 

excessive consumption of computing resources. Our spectral data adopts the file type of prn, which 

is expressed as two-dimensional point set data of horizontal wave number and vertical brightness 

temperature spectrum. The data are characterized by a single piece of data with many data points 

and few dimensions. Choosing a network model that is too deep will reduce the efficiency of the 

algorithm and consume a lot of computing resources. In hyperspectral spectral processing, 1DCNN 

is often used as the extraction method of spectral data features, so we design a spectral classification 

network with 1DCNN as the basic structure of spectral data processing. 

The CWT-AM-CNN developed in this paper, as depicted in Figure 1, is composed of three 

modules: backbone network, feature extraction block, peak seeking algorithm block and attention 

mechanism block. When the network is in the training stage, the infrared spectrum and its label 

information are input, and the feature extraction block is first entered to extract the feature map. At 

the same time, the peak seeking block is input to detect the peak value. The peak detection results are 

assigned to the attention mechanism, and the attention weight is assigned to the feature map. When 
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the network is in the prediction stage, the prediction data set is entered into the network, and the 

classification results and performance results are obtained. 
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Figure 1. CWT-AM-CNN classification network of aero-engine hot jet infrared spectrum. 

2.2. Backbone Network Design 

Before data entry, we need to unify the spectral data with different resolutions, because the aero-

engine hot jet is composed of high-temperature gas, and the radiation characteristics of high-

temperature gas are more obvious in the medium-wave band (400-4000cm−1), so we focus on cutting 

the data in the medium-wave band. The 0.5 cm−1 resolution data are downsampled and data amounts 

in the mid-wave band are adjusted to ensure the consistency of the model data input. 

We define the three components of the backbone network as feature extraction blocks. Each 

feature extraction block, as presented in Figure 2, consists of one-dimensional convolution layer, 

Batch Normalization layer and Maximum pooling layer. 

Conv1D+ReLU

BatchNormalization

MaxPooling1D
 

Figure 2. Feature extraction block. 

①One-dimensional convolutional layer (Cov1D layer): The convolutional layer is a means of 

feature extraction for convolutional neural networks, and the convolutional layer is complete with 

linear and translation invariant operations. Through convolution operation, we can extract the 

features of the data, enhance some features of the original signal, and reduce the noise. 
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The convolution between two functions can be defined as 𝑓, 𝑔:ℝ𝑑 → ℝ: 

(𝑓 ∗ 𝑔)(𝒙) = ∫ 𝑓(𝒛)𝑔(𝒙 − 𝒛)𝑑𝒛                            (1) 

Convolution can be understood as the overlap between two functions when the function is 

flipped and shifted by x. For two-dimensional tensors, convolution can be written as: 

(𝑓 ∗ 𝑔)(𝑖, 𝑗) =∑ ∑ 𝑓(𝑎, 𝑏)𝑔(𝑖 − 𝑎, 𝑗 − 𝑏)
𝑏

𝑎
                    (2) 

Among them,(𝑎, 𝑏)is the index of 𝑓，(𝑖 − 𝑎, 𝑗 − 𝑏)is the index of 𝑔. 

②Batch Normalization(BN)[28] is commonly used to accelerate convergence and solve the 

gradient dispersion of deep neural networks. The BN layer can be represented as a learnable network 

layer with parameters(γ、β).With the introduction of BN, the network can learn to recover the feature 

distribution that the original network needs to learn. 

Assuming that the input from a small batch ℬ is 𝐱 ∈ ℬ, BN can be converted to 𝐱 according to 

formula (3): 

BN(x) = 𝛾 ⊙
x−𝜇

^
ℬ

𝜎
^
ℬ

+ 𝛽                            (3) 

Among them,𝝁
^

ℬis the sample mean of the small lot ℬ, 𝝈
^

ℬ is the sample standard deviation of 

the small lot ℬ. After applying BN, the mean value of the generated small batches is 0 and the unit 

variance is 1.𝛾 is the scale parameter, while 𝛽 is the shift parameter. These two parameters need to 

be learned. 

BN maintains the amplitude of change in the middle layer during training, through the active 

centralization of each layer. While adjust the mean and size by re-adjusting 𝝁
^

ℬ and 𝝈
^

ℬ
2 , can help 

smooth the middle layer change. The 𝝁
^

ℬ and 𝝈
^

ℬ
2are shown in equation (4): 

𝝁
^

ℬ =
1

|ℬ|
∑ 𝐱𝐱∈ℬ

𝝈
^

ℬ
2 =

1

|ℬ|
∑ ⬚𝐱∈ℬ (𝐱 − 𝝁

^

ℬ)
2 + 𝜖

                       (4) 

Where, the constant 𝜖＞0。 

BN can train the model with a larger initial learning rate to achieve fast convergence. When the 

convergence rate is very slow, gradient explosion, etc., BN can be used. At the same time, the use of 

BN behind the convolution layer can normalize the value of each spatial position. 

③Maximum pooling layer: Pooling is a method of downsampling in CNN, which can reduce 

the amount of data processing while retaining useful information. Operations such as convolution 

layer, pooling layer, and activation function layer can be understood as mapping raw data to the 

hidden layer feature space. 

④Extension layer: Splice learned feature maps. 

⑤Fully Connected layer (FC layer) : The purpose of the FC layer is to transform the acquired 

distributed feature representation into the corresponding sample label space. The FC layer integrates 

the features together and outputs them as one value, which greatly reduces the influence of the 

feature position on the classifier. 

2.3. Attention Mechanism based on Peak Seeking 

The attention mechanism based on peak seeking is mainly composed of two parts, one part is 

the peak seeking algorithm, the other part is the attention mechanism. The peak seeking algorithm is 

used to analyze the infrared spectral data in the mid-wave band. In the part of attention mechanism, 

peak features are input, Global Average Pooling (GAP) is added, and attention weights are calculated 

and applied to the feature map of the backbone network. Figure 3 shows the composition diagram of 

the attention mechanism module based on peak seeking. The left figure is the peak seeking algorithm 

block, and the right figure is the attention mechanism block. 
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(a)                              (b) 

Figure 3. Composition diagram of attention mechanism module based on peak seeking: (a) represents 

peak seeking algorithm block, (b) represents attention mechanism block. 

2.3.1 Peak Seeking Algorithm Block 

Continuous Wavelet Transform (CWT) is a classical peak detection method that uses wavelet 

transform to analyze signals at multiple scales to detect peaks at different scales. 

The continuous wavelet coefficient 𝑊(𝑎, 𝑏) is calculated as follows: 

𝑊(𝑎, 𝑏) = ∫ ⬚
∞

−∞
𝑥(𝑡)Ψ∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡                       (5) 

Where, 𝑥(𝑡)  is the original signal, which is generally the continuous time signal, Ψ(𝑡) 

represents the complex conjugate of the wavelet function, the scaling parameter 𝑎 is used to control 

the broadening or compression of the wavelet function in time and frequency, and the translation 

parameter 𝑏 is used to control the translation of the wavelet function in time. This formula is the 

result of the transformation of the original signal with the wavelet function under different scales and 

translations. 

We describe the algorithm running flow of the peak seeking algorithm block in the form of 

pseudo-code: 

Algorithm 1 : Peak seeking algorithm and peak statistics. 

Input: Spectral data. 

Output: Peak data. 

① Trim the mid-wave band of spectral data (400-4000cm−1). 

② Data smoothing. 

③ Set the threshold and scale parameters of continuous wavelet change. 

④ Count the wave number with peak value. 

⑤ Extract the wave number position with high frequency according to the proportion of 

threshold value. 

⑥ According to the peak wave number position, for each data, the adjacent points are extracted 

as the peak data points. 

⑦ Output the peak data for each spectral data. 

2.3.2. Attention Mechanism 

Attention Mechanism(AM) consists of three parts: Query、Key and Value. Suppose there is a 

query 𝐪 ∈ ℝ𝑞  and M key-value pairs (𝐤1, 𝐯1), … , (𝐤𝑚, 𝐯𝑚) , where 𝐤𝑖 ∈ ℝ
𝑘, 𝐯𝑖 ∈ ℝ

𝑣 , the attention 

aggregation function is expressed as a weighted sum of values: 

𝑓(𝐪, (𝐤1, 𝐯1), … , (𝐤𝑚, 𝐯𝑚)) = ∑ 𝛼(𝐪, 𝐤𝑖)𝐯𝑖 ∈ ℝ
𝑣𝑚

𝑖=1
                   (6) 

Among them, the attention weight (scalar) of the query 𝐪 and key 𝐤𝑖 is mapped into a scalar 

by the two vectors of the attention score function 𝛼, and then obtained by softmax operation: 
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𝛼(𝐪, 𝐤𝑖) = softmax⁡(𝑎(𝐪, 𝐤𝑖)) =
exp(𝑎(𝐪,𝐤𝑖))

∑ ⬚𝑚
𝑗=1 exp⁡(𝑎(𝐪,𝐤𝑗))

∈ ℝ                 (7) 

Figure 4 reflects the operation of the attention mechanism, in which attention score function is 

indicated 𝛼. Choosing different attention scoring functions 𝛼 leads to different attention gathering 

operations. 

α

α

α

Key

Attention scoring 
function

So
ftm
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Query
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×

+
Attention scoring 

weight

Output

Value

 

Figure 4. Attention mechanism operation diagram. 

We describe the action mode of the attention mechanism based on peak seeking in the network 

in the form of pseudo code: 

Algorithm 2: CNN with attention Mechanism. 

Input: Spectral data, peak data. 

Output: Prediction label for prediction data set. 

① Trim the mid-wave band of spectral data (400-4000cm−1) 

② The Adam optimizer with a learning rate of 0.00001 is adopted, and the number of iterations 

∈ is set to 500. 

③ Create a training and test data loader. 

④ for i = 1 to ∈ do: 

⑤ Using feature extraction block to extract shallow features from spectral data. 

⑥ Global average pooling of peak data and intensive layer calculation of attention weight. 

⑦ Apply the weight of attention mechanism to feature graph. 

⑧ The weighted feature graph continues to extract features. 

⑨ Calculate the Loss function, category and accuracy.  

⑩ End for 

⑪ Use trained models and data for prediction to obtain predictive labels. 

2.4. Network Training Method 

2.4.1. Optimizer 

The optimizer is a method for finding the optimal solution of the model. The commonly used 

optimizer such as gradient descent(GD) method includes standard gradient descent, stochastic 

gradient descent (SGD), batch gradient descent (BGD), GD method is slow to train and easy to fall 

into the local optimal solution, and adaptive learning rate optimization algorithms, including 

AdaGrad, RMSProp, Adam and AdaDelta. Among them, Adam optimizer is the most commonly 

used, which is suitable for many kinds of neural network structures, such as CNN, RNN, GANs and 

so on. 

Adaptive Moment Estimation (Adam)[35] uses exponential weighting to estimate momentum 

and second moments with winter averages. The state variables of Adam are: 

𝐯𝑡 ← 𝛽1𝐯𝑡−1 + (1 − 𝛽1)𝐠𝑡
𝐬𝑡 ← 𝛽2𝐬𝑡−1 + (1 − 𝛽2)𝐠𝑡

2                             (8) 
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Where 𝛽1 and 𝛽2 are non-negative weighted parameters, the 𝛽1 usually set to 0.9 and the 𝛽2 

usually set to 0.999. Standardized state variables can be derived using the formula below: 

𝐯
^

𝑡 =
𝐯𝑡

1−𝛽1
𝑡                                      (9) 

𝐬
^

𝑡 =
𝐬𝑡

1−𝛽2
𝑡                                     (10) 

As a result, the update formula of gradient is obtained: 

𝐠𝑡
′ =

𝜂𝐯
^
𝑡

√𝐬
^
𝑡+𝜖

                                    (11) 

Where, 𝜂 is the learning rate,  𝜖 is a constant which usually set to 10-6. 

A simple update is shown in formula 12: 

𝐱𝑡 ← 𝐱𝑡−1 − 𝐠𝑡
′                                (12) 

By combining momentum and root mean square propagation (RMSProp), Adam dynamically 

modifies the learning rate of each parameter, and dynamically adjusts the update step of parameters 

in the training process, which improves the convergence speed and stability. Moreover, Adam can 

achieve a excellent balance between computational complexity and performance, and can ensure 

good performance while having low computational complexity. 

2.4.2. Loss Function 

The cross-entropy loss function is usually used for classification tasks, which is used to describe 

the difference of the sample probability distribution and to measure the difference between the 

learned distribution and the real distribution. The cross-entropy loss function can be expressed as: 

Loss = −
1

𝑁
∑ ∑ 𝑦𝑖,𝑘ln⁡ 𝑝𝑖,𝑘

𝐾−1

𝑘=0

𝑁−1

𝑖=0
                      (13) 

Where, K represents the number of tag values and N represents the number of samples, the 𝑦𝑖,𝑘 

indicates the real label of the 𝑖th sample is 𝑘,and 𝑝𝑖,𝑘 represents the probability that the sample 𝑖 is 

predicted to be the 𝑘 tag value. The smaller the value of cross entropy, the better the prediction effect 

of the model. At the same time, cross-entropy is often used together with softmax in classification. 

Softmax sums up the classification predicted values of the output results to 1, and then calculates the 

loss by cross-entropy. 

2.4.3. Activation Function 

Rectified Linear Unit (ReLU) is a commonly used nonlinear activation function. Relu controls 

the input of data. If the input is less than or equal to zero, the output will be zero. If the input is a 

positive number, the output will be the same as the input value. Relu can be expressed as: 

f(x)=max(0,x)                                  (14) 

The function of ReLU activation function is to introduce nonlinear transformation, so that the 

neural network has the ability to grasp more complex patterns and features. Its main advantages are 

that the calculation is simple, there is no gradient disappearance problem, and it can accelerate the 

convergence and improve the generalization ability of the model. 

3 Spectral Dataset 

The third section briefly describes the production process of aero-engine hot jet infrared spectral 

data set, including design of aero-engine spectrum measurement experiment, data preprocessing and 

data set production. 
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3.1. Design of Aero-Engine Spectrum Measurement Experiment 

Initially, outfield measurement experiment were conducted to acquire infrared spectrum data 

from six types of aero-engines. The experiment utilized two FT-IR spectrometers: the EM27 and the 

telemetry FT-IR spectrometer created by the Aerospace Information Research Institute. The precise 

specifications of the two devices are displayed in Table 1: 

Table 1. Parameters of the FT-IR spectrometers used for the experiment. 

Name 
Measurement 

Pattern 

Spectral 

Resolution 

(cm−1) 

Spectral 

Measurement 

Range (µm) 

Full Field of 

View Angle 

EM27 Active/Passive 
Active: 0.5/1 

Passive: 0.5/1/4 
2.5~12 

30 mrad (no 

telescope) (1.7°) 

Telemetry 

Fourier 

Transform 

Infrared 

Spectrometer 

Passive 1 2.5~12 1.5° 

Meanwhile, the infrared spectrum measurement of aero-engine hot jet is arranged on the spot 

as shown in figure Figure 5: 

 

Figure 5. Site layout of outfield measurement experiment for infrared spectrum of aeroengine hot jet. 

The aero-engine hot jet is mainly composed of gases. The infrared spectrum of the hot jet 

measured by the outfield experiment is not only determined by the radiation of the mixed gas itself, 

but also a complex result of the comprehensive action of many factors. Environmental temperature, 

humidity and measurement distance are the influencing factors of the experiment. Thus, we recorded 

the parameters of environmental conditions during the experiment as shown in Table 2: 
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Table 2. Table of experimental aero-engines and environmental factors. 

Aero-Engine Serial 

Number 

Environmental 

Temperature 

Environmental 

Humidity 

Detection 

Distance 

Turbofan engine 1 19℃ 58.5%Rh 5m 

Turbofan engine 2 16℃ 67%Rh 5m 

Turbojet engine 14℃ 40%Rh 5m 

Turbojet UAV 30℃ 43.5%Rh 11.8m 

Turbojet UAV with 

propeller at tail 
20℃ 71.5%Rh 5m 

Turbojet manned 

aircraft 
19℃ 73.5%Rh 10m 

The spectrum of gas is affected by many complex factors, such as pressure, temperature, 

humidity and environment. Among them, the environmental temperature will affect the response of 

the spectrometer, resulting in the inconsistency before and after the spectrogram; the environmental 

humidity will affect the intensity of the spectrum and the width of the characteristic spectrum; the 

observation distance indicates the atmospheric transmission on the measurement path. The 

atmosphere will absorb and attenuate the spectrum. The transmission of solar radiation and surface 

thermal radiation in the atmosphere is influenced by the absorption and scattering of atmospheric 

molecules such as H2O, mixed gases (CO2, CO, N2O, CH4, O2), O3, N2, etc., as well as the scattering or 

absorption of aerosolized particulate matter. This leads to a reduction in the intensity of both solar 

radiation and surfaces thermal radiation. When the difference between the target and our result is 

considerable, the atmosphere will significantly impact the acquired spectrum. Currently, we employ 

the method of conducting experiments in the outfield, and the distance of the experiment is relatively 

short. While the gas temperature of the hot jet is generally as high as 300-400 ℃, which is very 

different from the background, so the effects of atmosphere and environment can be ignored.  

3.2 Data Preprocessing 

The Brightness Temperature spectrum (BTS) [29][30] of an object refers to the temperature of a 

blackbody that emits the same spectral radiation intensity at the same wavelength as the object. The 

utilization of BTS analysis can directly extract the characteristics of the target gas. 

To get the BTS using passive infrared spectrum, it is essential to subtract the instrument's bias 

and response from the measured spectral signal obtained by the spectrometer. This subtraction 

allows us to acquire the incident radiance spectrum on the spectrometer. 𝑇(𝑣) can be calculated by 

transforming Planck’s formula to obtain the formula below: 

𝑇(𝑣) =
ℎ𝑐𝑣

𝑘ln⁡{[𝐿(𝑣)+2ℎ𝑐2𝑣3]/𝐿(𝑣)}
                              (15) 

In the formula, Planck’s constant is recorded as ℎ with a value of 6.62607015 × 10−34 J·S, 𝑐 is the 

speed of light with a value of 2.998 × 108 m/s, 𝑣  is the wave number in cm−1, 𝑘  is Boltzmann’s 

constant with a value of 1.380649 × 10−23 J/K, and 𝐿(𝑣)  stands for the radiance about the wave 

number. 

The BTSs of the aero-engine hot jets are measured experimentally as shown in Figure 6, in which 

the transverse coordinate is wavenumber and the longitudinal coordinate is Kelvin temperature. 

Simultaneously, the important components of the hot jet are marked in the Figure 6: 
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Figure 6. Experimental measurement of the BTSs of aero- engines’ hot jet. 

3.3 Data Set Production 

According to the difference of test object, detection distance and detection environment, three 

types of data sets are made to complete the experiment of the algorithm. The specific data information 

is presented in Tables 3– 5: 

Table 3. Dataset A information table. 

Label Type 

Number 

of data 

pieces 

Number 

of error 

data 

Full band data volume 

Medium wave 

range data 

volume 

1 
Turbofan engine 

1 
792 17 16384(1cm−1)/32768(0.5cm−1) 7464/14928 

2 
Turbofan engine 

2 
258 2 16384(1cm−1)/32768(0.5cm−1) 7464/14928 

3 Turbojet engine 384 4 16384(1cm−1)/32768(0.5cm−1) 7464/14928 

Table 4. Dataset B information table. 

Label Type 
Number of 

data pieces 

Number 

of error 

data 

Full band 

data 

volume 

Medium wave 

range data 

volume 

1 Turbojet UAV 193 0 16384 7464 

2 
Turbojet UAV with 

propeller at tail 
48 0 16384 7464 

3 
Turbojet manned 

aircraft 
202 3 16384 7464 

Table 5. Dataset C information table. 

Label Type 
Number of 

data pieces 

Number 

of error 

data 

Full band 

data 

volume 

Medium wave 

range data 

volume 

1 Turbojet UAV 193 0 16384 7464 

2 
Turbojet UAV with 

propeller at tail 
48 0 16384 7464 

3 
Turbojet manned 

aircraft 
202 3 16384 7464 

4 Turbofan engine 1 792 17 16384 7464 

5 Turbofan engine 2 258 2 16384 7464 
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6 Turbojet engine 384 4 16384 7464 

Where, Dataset C is the combination of Dataset A and Dataset B. 

4. Experiments and Results 

The fourth section continues with the experimental evaluation of the algorithm. Initially, this 

paper introduces the performance measures of the classification algorithm and presents the 

experimental results of the network on three data sets. Then the experimental results with the 

classifier method based on CO2 feature vector and the method using CNN, AE, RNN and LSTM are 

compared. Finally, the ablation study is proved to compare the effectiveness of the peak method, the 

effectiveness of the attention mechanism, the design of the network and the running time. 

4.1 Performance Measures and Experimental Results 

The performance measures for aero-engine spectral classification include accuracy, precision, 

recall, F1-score and confusion matrix. If an instance is classified as a positive class and is correctly 

predicted as positive, it is labeled as TP. If it is predicted as negative, it is labeled as FN. Conversely, 

if an instance is classified as a negative class and is incorrectly predicted as positive, it is labeled as 

FP. If it is correctly predicted as negative, it is labeled as TN. Based on the above assumptions, these 

performance measures are respectively defined as follows: 

①Accuracy: the ratio of correctly classified samples to the total number of samples. 

Accuracy =
TP+TN

TP+TN+FP+FN
                           (16) 

②Precision: the ratio of the number of true positive samples to the total number of samples 

predicted as positive. 

Precision =
TP

TP+FP
                                 (17) 

③Recall: the ratio of the number of samples correctly predicted to be in the positive category to 

the number of samples in the true positive category. 

Recall =
TP

TP+FN
                                   (18) 

④F1-score: a metric that quantifies the overall performance of a model by combining the 

harmonic mean of precision and recall. 

F1-score =
2∗𝑃∗𝑅

𝑃+𝑅
                                 (19) 

where, 𝑃 stands for the precision and 𝑅 stands for the recall. 

⑤Confusion matrix: The confusion matrix provides a comprehensive evaluation of the 

classifier's performance in classifying various categories. It displays the discrepancy between actual 

value and predicted values. The diagonal elements of the matrix indicate the number of accurate 

predictions generated by the classifier for each category. Table 6 displays the confusion matrix: 

Table 6. Confusion matrix. 

 Forecast results 

Positive samples Negative samples 

Real results Positive samples TP TN 

Negative samples FP FN 

This research validates the efficacy of the CWT-AM-CNN method by assessing its performance 

on three benchmark data sets. The computation experiment is conducted on a Windows 10 

workstation with a 32GB RAM, an Intel Core i7-8750H processor, and a GeForce RTX 2070 graphics 

card. 

Specific parameters of the CWT-AM-CNN are provided by Table 7: 
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Table 7. Parameter table of CWT-AM-CNN model. 

Methods Parameter Settings 

CWT-AM-

CNN 

Conv1D(32, 3) ,Conv1D(64, 3), Conv1D(128, 3)，activation='relu' 

BatchNormalization() 

MaxPooling1D(2)(x) 

Dense(128, activation='relu')，activation='softmax' 

Optimizers=Adam ，lr=0.00001 

loss='sparse_categorical_crossentropy',metrics=['accuracy']) 

epochs=500 

According to the table parameters, we conduct network training and label prediction, and the 

experimental results are displayed in Table 8:： 

Table 8. Results of CWT-AM-CNN classification experiments. 

Evaluation criterion 

 

Datasets 

Accuracy 
Precision 

score 
Recall 

Confusion 

matrix 
F1-score 

DatasetA 97.44% 94.08% 85.11% 
[11  8  0] 

[ 0 77  0] 

[ 1  0 38] 
88.24% 

DatasetB 100.00% 100.00% 100.00% 
[19  0  0] 

[ 0  8  0] 

[ 0  0 17] 
100.00% 

DatasetC 100% 98.72% 94.70% 

[17  0  0  0  0  0] 

[ 0  7  0  0  0  0] 

[ 0  0 16  0  0  0] 

[ 0  0  0 84  0  0] 

[ 0  0  0  7 15  0] 

[ 0  0  0  0  0 33] 

96.18% 

 

 
(a) 

 

(b) 
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(c) 

Figure 7. CWT-AM-CNN network training and validation loss function and accuarcy change curve: 

the blue curve represents the training set, the orange curve represents the validation set, (a) is the 

experimental result of dataset a, (b) is the experimental result of dataset B, and (c) is the experimental 

result of dataset C 

By analyzing the experimental results of the Loss curve and the Accuracy curve, we observe that 

the CWT-AM-CNN effectively enhances the processing speed of spectral data and converge rapidly 

in short training. In terms of accuracy, first of all, according to the overall performance of the 

algorithm in short training. In terms of accuracy, first of all, according to the overall performance of 

the algorithm in the three data sets based on Accuracy and F1-score, Accuracy is higher, indicating 

that the overall classification performance of the algorithm is better, and high F1-score represents a 

good balance performance of the classifier. Secondly, according to the analysis of the three data sets 

of Precision and Recall, the Precision is high, indicating that the algorithm performs well in reducing 

false positives, while Recall is slightly lower than Precision, indicating that the classifier still has some 

room for improvement in reducing false positives. According to the results of the confusion matrix, 

the three categories in Dataset A show that the component of the first category is relatively weak, and 

the other two categories have good performance; the number of data in Dataset B is relatively small, 

and the performance of the network on this data set is perfect, and each category is accurate; in 

Dataset C, the fifth category is unideal, and the classification of other categories is very accurate. 

The experimental results show that the CWT-AM-CNN designed in this paper performs well on 

the three spectral data sets. In the process of the experiment, some exceptional cases like engine 

failure have remotely impact on our classification results. On the other hand, our network as a whole 

has good robustness, and the incorrect data has little influence on the overall classification accuracy. 

4.2 Comparative Experimental Results of Traditional Classification Methods 

The main components of the aero-engine hot jet are analyzed to To compare with the classical 

classifier method. Meanwhile, the feature vector is constructed to be used in conjunction with 

classifier methods. As known, the emission products of an aero-engine typically include oxygen (O2), 

nitrogen (N2), carbon dioxide (CO2), steam (H2O), carbon monoxide (CO), et al. Among them, the 

spectral characteristics of CO2 are obvious. Based on the peak positions of CO2, four wavenumbers 

were selected, including 2350 cm−1, 2390 cm−1, 719 cm−1, and 667 cm−1, as shown in Figure 7 for 

constructing feature vectors. 
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Figure 8. Four characteristic peak positions in the infrared spectrum of aero-engine hot jet. 

Spectral feature vectors 𝑎 = [𝑎1, 𝑎2]  are constructed from the difference in brightness 

temperature spectra between two characteristic peaks: 

𝑎1 = 𝑇𝑣=2390cm−1 − 𝑇𝑣=2350cm−1

𝑎2 = 𝑇𝑣=719cm−1 − 𝑇𝑣=677cm−1
                                  (20) 

Due to environmental influences, the peak positions of characteristic peaks may subtly shift. 

Table 9 shows the range of the maximum values of the four characteristic peak wave number 

positions: 

Table 9. Value range of characteristic peak threshold. 

Characteristic Peak 

Type 

Emission Peak (cm−1) Absorption Peak (cm−1) 

Peak standard 

features 
2350 2390 720 667 

Characteristic peak 

range values 
2350.5-2348 2377-2392 722-718 666.7-670.5 

The CO2 feature vector needs to be combined with a classifier for classification tasks. 

Experimental classification of aero-engine hot jet infrared spectra using feature vectors and widely 

used classifier algorithms, including SVM, XGBoost, CatBoost, AdaBoost, Random Forest, 

LightGBM, and neural networks. Table 10 provides parameter settings for the classifier algorithm: 

Table 10. Parameter table of classifier method based on feature vector. 

Methods Parameter Settings 

SVM decision_function_shape = ‘ovr’, kernel = ‘rbf’ 

XGBoost objective = ‘multi:softmax’, num_classes = num_classes 

CatBoost loss_function = ‘MultiClass’ 

Adaboost n_estimators = 200 

Random Forest n_estimators = 300 

LightGBM 
objective’: ‘multiclass’, 

‘num_class’: num_classes 

Neural 

Network 
hidden_layer_sizes = (100), activation = ‘relu’, solver = ‘adam’, max_iter = 200 

To compare with the deep learning method, we combine the training set and the validation set, 

setting the training set and the prediction set in a 9:1 ratio. The following Tables 11–13 are the 

experimental results on three data sets using CO2 feature vectors and classifiers: 

Table 11. Experimental results of classifier method based on feature vector on Dataset A. 

Evaluation criterion 

 

Classification methods 

Accuracy 
Precision 

score 
Recall 

Confusion 

matrix 

F1-

score 

Feature vector+SVM 57.04% 33.33% 19.01% 
[ 0  0  0] 

[19 77 39] 

[ 0  0  0] 
24.21% 

Feature vector+XGBoost 96.30% 96.09% 94.36% 
[18  3  0] 

[ 1 74  1] 

[ 0  0 38] 
95.14% 

Feature vector+CatBoost 97.04% 96.53% 95.80% 
[18  2  0] 

[ 1 75  1] 

[ 0  0 38] 
96.14% 
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Feature vector+AdaBoost 74.81% 74.29% 71.93% 
[11 25  0] 

[ 8 52  1] 

[ 0  0 38] 
71.35% 

Feature vector+Random Forest 97.04% 96.53% 95.80% 
[18  2  0] 

[ 1 75  1] 

[ 0  0 38] 
96.14% 

Feature vector+LightGBM 96.30% 96.09% 94.36% 
[18  3  0] 

[ 1 74  1] 

[ 0  0 38] 
95.14% 

Feature vector+Neural 

Networks 
86.67% 68.42% 92.64% 

[ 1  0  0] 

[16 77  0] 

[ 2  0 39] 
66.03% 

Based on the analysis of the experimental results of Dataset A the performance of SVM is 

disappointing, all the indicators are low, and there are many misclassifications in the confusion 

matrix; the performance of XGBoost is very excellent, all the performance results are more than 96%, 

and the misclassification of the confusion matrix is very few; all the performance results of AdaBoost 

represent 70%, there are some misclassifications; the performance results of Random Forest and 

CatBoost are both more than 96%, and the classification performance is extremely good. The 

performance of LightGBM is equally excellent when the performance results are close to 95%. Neural 

Networks has high recall rate, low accuracy and F1 score, and has more classification errors. 

Table 12. Experimental results of classifier method based on feature vector on Dataset B. 

Evaluation criterion 

 

Classification methods 

Accuracy 
Precision 

score 
Recall 

Confusion 

matrix 

F1-

score 

Feature vector+SVM 86.36% 88.24% 92.00% 
[19  0  6] 

[ 0  8  0] 

[ 0  0 11] 
88.31% 

Feature vector+XGBoost 84.09% 86.48% 88.89% 
[18  0  6] 

[ 0  8  0] 

[ 1  0 11] 
86.53% 

Feature vector+CatBoost 86.36% 88.24% 92.00% 
[19  0  6] 

[ 0  8  0] 

[ 0  0 11] 
88.31% 

Feature vector+AdaBoost 77.27% 80.60% 85.19% 
[18  0  9] 

[ 0  8  0] 

[ 1  0  8] 
79.93% 

Feature vector+Random Forest 86.36% 88.24% 92.00% 
[19  0  6] 

[ 0  8  0] 

[ 0  0 11] 
88.31% 

Feature vector+LightGBM 84.09% 86.48% 88.89% 
[18  0  6] 

[ 0  8  0] 

[ 1  0 11] 
86.53% 

Feature vector+Neural 

Networks 
88.64% 90.20% 93.06% 

[19  0  5] 

[ 0  8  0] 

[ 0  0 12] 
90.38% 

Based on the analysis of the experimental results of Dataset B, except for AdaBoost, all classifiers 

have accurate performance, while the performance of AdaBoost is slightly inferior. But the accuracy 

of all classifiers is not moreover than 90%. 

Table 13. Experimental results of classifier method based on feature vector on Dataset C. 

Evaluation criterion 

 

Classification methods 

Accuracy 
Precision 

score 
Recall 

Confusion 

matrix 
F1-score 

Feature vector+SVM 59.78% 44.15% 47.67% 

[ 8  0  3  0  0  0] 

[ 0  3  0  0  0  0] 

[ 9  1 12  0  0  0] 

[ 0  3  1 84 22 33] 

42.38% 
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[ 0  0  0  0  0  0] 

[ 0  0  0  0  0  0] 

Feature vector+XGBoost 94.97% 92.44% 93.59% 

[15  0  3  0  0  0] 

[ 0  7  0  0  0  0] 

[ 2  0 13  0  0  0] 

[ 0  0  0 83  3  0] 

[ 0  0  0  1 19  0] 

[ 0  0  0  0  0 33] 

92.95% 

Feature vector+CatBoost 94.41% 90.35% 93.52% 

[15  0  2  0  0  0] 

[ 0  6  0  0  0  0] 

[ 2  0 14  0  0  0] 

[ 0  0  0 83  4  0] 

[ 0  1  0  1 18  0] 

[ 0  0  0  0  0 33] 

91.81% 

Feature vector+AdaBoost 79.89% 63.66% 71.49% 

[17  5  6  0  0  0] 

[ 0  2  0  0  0  0] 

[ 0  0 10  0  0  0] 

[ 0  0  0 84 18  3] 

[ 0  0  0  0  0  0] 

[ 0  0  0  0  4 30] 

62.56% 

Feature vector+Random 

Forest 
94.41% 91.40% 92.70% 

[15  0  4  0  0  0] 

[ 0  7  0  0  0  0] 

[ 2  0 12  0  0  0] 

[ 0  0  0 83  3  0] 

[ 0  0  0  1 19  0] 

[ 0  0  0  0  0 33] 

91.91% 

Feature vector+LightGBM 94.41% 90.68% 92.40% 

[14  0  2  0  0  0] 

[ 0  6  0  0  0  0] 

[ 3  0 14  0  0  0] 

[ 0  0  0 82  2  0] 

[ 0  1  0  2 20  0] 

[ 0  0  0  0  0 33] 

91.42% 

Feature vector+Neural 

Networks 
84.92% 76.79% 76.57% 

[17  0  2  0  0  0] 

[ 0  6  0  0  0  0] 

[ 0  0 12  0  0  0] 

[ 0  0  2 84 18  0] 

[ 0  1  0  0  0  0] 

[ 0  0  0  0  4 33] 

76.02% 

Based on the analysis of the experimental results of Dataset C, the SVM algorithm's overall 

classification effect is mediocre, while XGBoost, CatBoost, Random Forest, and LightGBM show good 

performance in predicting and capturing correct examples, displaying a balance between accuracy 

and recall rate. The prediction effect of AdaBoost is not good, all indicators are low, and the 

performance of Neural Networks indicators is not excellent. 

The experiments above confirm the outstanding performance of our CO2 feature vector and 

classifier. XGBoost, CatBoost, Random Forest, and LightGBM demonstrate higher classification 

accuracy across three data sets, although substantially not exceeding 90% in Dataset B. It is clear that 

in a outfield experiment with complex environmental factors, using CO2 as a single spectral feature 

to classify spectral data is not accurate enough and more potential features must be explored. 

Simultaneously, we observe that the deep learning approach continues to display outstanding 

performance in classification prediction when comparing the performance of CWT-AM-CNN with 

that of traditional classifiers. 

4.3 Comparative Experimental Results of Deep Learning Classification Methods 

We compare and analyze the widespread network of spectral processing in hyperspectral data 

at present, and the network parameters are shown in Table 14: 
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Table 14. Parameters of common deep learning networks. 

Methods Parameter Settings 

AE 

Dense(encoding_dim,activation="relu") 

Dense(input_dim, activation="sigmoid") 

Dense(num_classes, activation="softmax") 

epochs=500, optimizer= Adam(lr=0.00001),loss='sparse_categorical_crossentropy', 

metrics=['accuracy'] 

RNN 

SimpleRNN(4, return_sequences=True) 

BatchNormalization() 

Dense(4, activation='relu') 

Dense(num_classes, activation='softmax') 

epochs=500, optimizer= Adam(lr=0.00001),loss='sparse_categorical_crossentropy', 

metrics=['accuracy'] 

LSTM 

LSTM(8, return_sequences=True),BatchNormalization() 

LSTM(8),BatchNormalization() 

Dense(8, activation='relu')) 

Dense(num_classes, activation='softmax') 

epochs=500, optimizer= Adam(lr=0.00001),loss='sparse_categorical_crossentropy', 

metrics=['accuracy'] 

From the above parameters, we get the classification experimental results on three data sets, as 

shown in Table 15: 

Table 15. Results of common deep learning network classification experiments. 

Methods Dataset Accuracy 
Precision 

score 
Recall 

Confusion 

matrix 
F1-score 

AE 

A 58.52% 52.63% 36.84% 
[ 2 17  0] 

[ 0 77  0] 

[ 0 39  0] 
30.79% 

B 38.64% 12.88% 33.33% 
[ 0  0 19] 

[ 0  0  8] 

[ 0  0 17] 
18.58% 

C 46.93% 7.82% 16.67% 

[ 0  0  0 17  0  0] 

[ 0  0  0  7  0  0] 

[ 0  0  0 16  0  0] 

[ 0  0  0 84  0  0] 

[ 0  0  0 22  0  0] 

[ 0  0  0 33  0  0] 

10.65% 

RNN 

A 38.64% 12.88% 33.33% 
[ 0  0 19] 

[ 0  0  8] 

[ 0  0 17] 
18.58% 

B 57.03% 19.01% 33.33% 
[ 0 19  0] 

[ 0 77  0] 

[ 0 39  0] 
24.21% 

C 46.92% 7.80% 16.66% 

[ 0  0  0 17  0  0] 

[ 0  0  0  7  0  0] 

[ 0  0  0 16  0  0] 

[ 0  0  0 84  0  0] 

[ 0  0  0 22  0  0] 

[ 0  0  0 33  0  0] 

10.64% 

LSTM 

A 38.63% 12.88% 33.33% 
[ 0  0 19] 

[ 0  0  8] 

[ 0  0 17] 
18.58% 

B 57.03% 19.01% 33.33% 
[ 0 19  0] 

[ 0 77  0] 

[ 0 39  0] 
24.21% 

C 62.57% 48.72% 41.91% 
[ 4  0 13  0  0  0] 

[ 0  0  7  0  0  0] 

[ 0  0 16  0  0  0] 
36.97% 
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[ 0  0  0 82  0  2] 

[ 0  0  0 22  0  0] 

[ 0  0  0 23  0 10] 

Correspondingly, we carry out 500 times of training and make predictions, and the 

misclassification rates of the three networks are found to be high, the classification accuracy is low, 

AE and LSTM have a very fast running speed, but the shock is obvious, it is easy to fall into local 

optimization, and the network structures do not adapt to our data set. The running speed of RNN is 

very slow, and the prediction effect is poor. In contrast, the CNN structure designed in this paper 

and CWT-AM-CNN have good feature learning ability, compared with the popular network 

structure, it is more suitable for our FT-IR data sets. 

4.4 Analysis of Ablation Study 

(1) Effectiveness of peak features: The effectiveness of peak features for algorithm improvement 

can be verified by the effect of combining peak features with traditional classifiers for data 

classification. We seek peaks on three data sets and obtain experimental results as presented in Figure 

9: 

Datase

t 

Visualization of peak 

detection 
Peak frequency statistics 

Peak position 

visualization 

Datase

t A 
   

Datase

t B 
   

Datase

t C 
   

Figure 9 Experimental results of CWT peak detection and high frequency peak statistics. 

Among them, the three graphs on the left with red points indicate the wavelet algorithm's 

extracted peak points, the three graphs in the middle show the data set's frequency of these peak 

points, and the three graphs on the right with red lines indicate the location of the points with higher 

frequency in the spectral data set. According to the intersection of the high frequency wavenumber 

positions of data set A and data set B, we get 13 peak wavenumber positions, which are 403,720,853, 

1091, 1107, 1226, 1462, 1502, 2042 and 3998, respectively. At the same time, we calculate the data of 

the 13 peak positions of each data, and combine the two classifier methods SVM and XGBoost, which 

are generally and well performed in the above experiment, and get the classification results as shown 

in Table 16: 
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Table 16. Experimental results of peak seeking classifier classification. 

SVM Accuracy Precision Recall Confusion Matrix F1-score Running time 

Dataset A 59.26% 51.08% 42.27% 
[ 0  0  0] 

[10 41  0] 

[ 9 36 39] 
42.49% 0.131497 

Dataset B 100.00% 100.00% 100.00% 
[19  0  0] 

[ 0  8  0] 

[ 0  0 17] 
100.00% 0.008979 

Dataset C 56.98% 46.13% 44.43% 

[ 4  0  0  0  0  0] 

[ 0  0  0  0  0  0] 

[13  7 15  0  0  0] 

[ 0  0  0 50 11  0] 

[ 0  0  0  0  0  0] 

[ 0  0  1 34 11 33] 

37.47% 0.24201 

XGBoost Accuracy Precision Recall Confusion Matrix F1-score Running time 

Dataset A 100.00% 100.00% 100.00% 
[19  0  0] 

[ 0  8  0] 

[ 0  0 17] 
100.00% 0.135857 

Dataset B 99.26% 99.15% 99.57% 
[19  0  0] 

[ 0 77  1] 

[ 0  0 38] 
99.35% 0.204039 

Dataset C 98.88% 95.24% 98.15% 

[17  0  0  0  0  0] 

[ 0  5  0  0  0  0] 

[ 0  2 16  0  0  0] 

[ 0  0  0 84  0  0] 

[ 0  0  0  0 22  0] 

[ 0  0  0  0  0 33] 

96.24% 0.34023 

Combined with the experimental results, the peak data we extracted is effective, compared with 

the CO2 feature vector and classifier algorithm, all the performance results are improved. The 

experimental results show that the peak seeking algorithm is effective for classification tasks. 

(2)Effectiveness of AM:The experimental results of three data sets with CNN with the same 

parameters of Table 7 are shown in the Table 17: 

Table 17. Results of CNN classification experiment. 

Evaluation 

criterion 

 

Datasets 

Accuracy 
Precision 

score 
Recall 

Confusion 

matrix 
F1-score 

Dataset A 94.07% 96.86% 85.96% 
[11  8  0] 

[ 0 77  0] 

[ 0  0 39] 
89.47% 

Dataset B 100% 100% 100% 
[19  0  0] 

[ 0  8  0] 

[ 0  0 17] 
100% 

Dataset C 96.09% 98.72% 94.70% 

[17  0  0  0  0  0] 

[ 0  7  0  0  0  0] 

[ 0  0 16  0  0  0] 

[ 0  0  0 84  0  0] 

[ 0  0  0  7 15  0] 

[ 0  0  0  0  0 33] 

96.18% 
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(a) 

 
(b) 

 
(c) 

Figure 10. CNN network training and validation loss function and accuarcy change curve: the blue 

curve represents the training set, the orange curve represents the validation set, (a) is the experimental 

result of dataset a, (b) is the experimental result of dataset B, and (c) is the experimental result of 

dataset C 

The CNN structure designed in this paper performs well on all three data sets, and the accuracy 

is more than 90%. There are a few misclassifications above Dataset A and Dataset C. Compared with 

CWT-AM-CNN, only using backbone network for classification will occur Loss shock, and compared 

with CWT-AM-CNN, its convergence speed is slightly lower and the accuracy is also slightly lower. 

(3) Comparison of network design: 

①Effectiveness of BN layer design: Remove the BN layer using the same parameters in Table 7 

to get the experimental results such as Table 18:  
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Table 18. Results of CNN (without BN layer) classification experiment. 

Evaluation criterion 

 

Datasets 

Accuracy 
Precision 

score 
Recall 

Confusion 

matrix 
F1-score 

Dataset A 92.59% 91.70% 84.68% 
[11  8  0] 

[ 1 76  0] 

[ 1  0 38] 
87.29% 

Dataset B 100% 100% 100% 
[19  0  0] 

[ 0  8  0] 

[ 0  0 17] 
100% 

Dataset C 92.18% 94.11% 89.94% 

[17  0  0  0  0  0] 

[ 0  7  0  0  0  0] 

[ 4  0 12  0  0  0] 

[ 0  0  0 81  0  3] 

[ 0  0  0  7 15  0] 

[ 0  0  0  0  0 33] 

91.02% 

 

 
(a) 

 
(b) 
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(c) 

Figure 11. Loss function and accuracy change curve of CNN (without BN layer) network training and 

validation: the blue curve represents the training set, the orange curve represents the validation set, 

(a) is the experimental result of dataset a, (b) is the experimental result of dataset B, and (c) is the 

experimental result of dataset C 

Only using the CNN network without BN layer network structure in this paper also has a good 

classification accuracy, while the Loss curve and the accuracy change curve have a great shock in the 

process of training, which shows that the model is too sensitive to the training data, and the model is 

unstable, which will affect the results of our classification experiments. 

②Network depth: In deep learning algorithms, network depth carries out a decisive role in 

network expression. The deeper the depth, the better the network expression, because network depth 

determines the quality of features from aspects such as invariance and abstraction. Therefore, we 

conduct an experimental comparison of networks with different layer structures. Each layer uses a 

feature extraction block, and uses the same loss function, optimizer, and learning rate to get table 19: 

Table 19. Results of network depth comparison. 

Dataset 

Number of layers 

 

Evaluation 

1 2 3 4 5 6 

Dataset A 

Accuracy 63% 66% 83% 81% 79% 82% 

Training Time /s 315.83 939.22 1332.54 1527.18 1735.24 2032.12 

Evaluation Time/s 0.14 0.18 0.22 0.33 0.35 0.32 

Dataset B 

Accuracy 93% 100% 100% 100% 100% 100% 

Training Time /s 81.90 148.38 258.92 347.15 408.00 431.55 

Evaluation Time/s 0.12 0.13 0.18 0.25 0.22 0.25 

Dataset C 

Accuracy 63% 74% 77% 73% 78% 82% 

Training Time /s 421.56 1088.86 1522.65 2014.09 2411.60 2850.66 

Evaluation Time/s 0.16 0.15 0.21 0.23 0.30 0.36 
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(a) 

 
(b) 

 
(c) 

Figure 12. Training and validation of CNN network with different layers loss function and accuarcy 

change curve: the blue curve represents the one layer structure, the orange curve represents the two 

layer structure, the green represents the three layer structure, the red represents the four layer 

structure, the purple represents the five layer structure, and the brown represents the six layer 

structure, (a) is the experimental result of dataset A, (b) is the experimental result of dataset B, and (c) 

is the experimental result of dataset C 

In general, CNN with three layer feature extraction blocks as the structure has excellent results 

in training time and accuracy, so we adopt it as the structure of our backbone network. 

③Optimizer selection:The five optimizers are essentially divided into two categories, SGD, 

SGDM and Adagrad, RMSProp, Adam. The most frequently used ones are SGDM and Adam. We 

test the backbone network with different optimizers on our data set and get table Table 20:  
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Table 20. Results of different optimizer experiments. 

Optimizers Prediction accuracy Training time/s Prediction time/s 

SGD 93% 1663.36 0.25 

SGDM 93% 2074.59 0.23 

Adagrad 94% 2133.88 0.24 

RMSProp 89% 2194.60 0.27 

Adam 94% 2165.09 0.24 

 

 

Figure 13. Network training and validation of the different optimizers on dataset C loss function and 

accuracy change curve: blue is SGD, orange is SGDM, green is Adagrad, red is RMSProp, and purple 

is Adam. 

By comparing the outcomes, we can observe that the Adagrad and Adam tables on our network 

and dataset are now quite good. The Adam algorithm has better adaptability and convergence effect, 

so this paper manipulates Adam as the optimizer. 

④Selection of learning rate: In the training of the data set, the loss curve shows a situation of 

concussion. Given this scenario, we examine our data set using various learning rates and descent in 

increments of 10−1 from 0.001 to generate Table 21: 

Table 21. Table of experimental results of optimizer Adam at different learning rates. 

Learning rate Prediction accuracy Training time/s Prediction time/s 

0.01 0.47 878.21 0.26 

0.001 0.75 1215.80 0.20 

0.0001 0.42 1246.89 0.21 

0.00001 0.95 1241.00 0.22 

0.000001 0.95 1221.39 0.21 
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Figure 14. Network training and validation of Adam optimizer with different learning rates on 

dataset C loss function and accuracy change curve: blue is the learning rate of 0.01, orange is the 

learning rate of 0.001, green is the learning rate of 0.0001, red is the learning rate of 0.00001, and purple 

is the learning rate of 0.000001. 

The learning rate affects the classification effect of the network to a great extent. From the 

prediction accuracy, running time and loss function training effect, the comprehensive effect of the 

learning rate at 0.00001 is the best.  

(4) Running time: Compared with the traditional classifier method, the deep learning method 

needs to expend more time on the model training. However, the advantage of the deep learning 

method is in the trained model. We compare the prediction time of the proposed algorithm and each 

method on three data sets and obtain the following expression, as shown in Table 22: 

Table 22. Comparison table of classified prediction running time. 

Method 
Running time /s 

Dataset A Dataset B Dataset C 

CNN 5 4 6 

CNN-BN 5 4 5 

CWT-AM-CNN 6 5 6 

RNN 980 243 1151 

LSTM 14 4 17 

AE 0.025 0.025 0.026 

Feature vector+SVM 0.08  0.01 0.12  

Feature vector+XGBoost 0.17  0.24 0.30  

Feature vector+CatBoost 3.09  2.61 4.74  

Feature vector+AdaBoost 0.30  0.26 0.39  

Feature vector+Random Forest 0.48  0.44 0.56  

Feature vector+LightGBM 0.20  0.17 0.44  

Feature vector+Neural Networks 0.29  0.31 0.85  

Table 22 shows that in terms of running time, most of the traditional classifier methods and AE 

methods have high running efficiency. The CWT-AM-CNN method and the same structure CNN 

also have higher running efficiency in prediction. The running efficiency of LSTM method is a little 

slower, and the running efficiency of RNN is the worst. The network's drawback compared to the 

classifier is the extended training time, but it offers increased running efficiency post-training. 

5. Conclusions 

In order to classify aero-engines, the infrared spectrum of hot jets of six different types aero-

engines in various states are measured using a telemetry FT-IR spectrometer, and three data sets are 

created in this article. This study presents the design of a CNN based on peak seeking attention 

mechanism, named after CWT-AM-CNN. The medium wave band peak value is determined by 

CWT, the high frequency wave number position is tallied, and the peak data is recovered. Attention 

mechanism is adopted for the peak data, and the feature graph of feature extraction network is 

weighted by attention mechanism. The training set, validation set and prediction set were randomly 

sampled according to the ratio of 8:1:1; The CWT-AM-CNN was trained, verified and predicted, and 

the ablation experiment was conducted for experimental comparison. The accuracy, precision, recall, 

confusion matrix and F1-score are used to evaluate the classification results. the accuracy of the 

prediction on three data sets is as high as 97%. Comparing the experimental findings with the 

classifier algorithm based on feature vector and the current popular network approaches, AE, RNN, 

and LSTM, reveals that CWT-AM-CNN is effective, practical, and can achieve excellent classification 

accuracy. It is proposed that CWT-AM-CNN has higher accuracy and better stability for three 

different data sets, and can complete the task of infrared spectral classification of aero-engine hot jets. 
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