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Abstract: Focusing on the problem of identifying and classifying aero-engine models, this paper
measures the infrared spectrum data of aero-engine hot jets using a telemetry Fourier transform
infrared spectrometer. Simultaneously, infrared spectral data sets with the six different types of
aero-engines are created. For the purpose of classifying and identifying infrared spectral data, a
CNN architecture based on the continuous wavelet transform peak seeking attention mechanism
(CWT-AM-CNN) is suggested. This method calculates the peak value of middle wave band by
continuous wavelet transform, and the peak data is extracted by the statistics of the wave number
locations with high frequency. Attention mechanism is used for the peak data, and the attention
mechanism is weighted to the feature map of the feature extraction block. The training set,
validation set and prediction set are divided in the ratio of 8:1:1 for the infrared spectral data sets.
For three different data sets, CWT-AM-CNN proposed in this paper is compared with the classical
classifier algorithm based on CO: feature vector and the popular AE, RNN and LSTM spectral
processing networks. The prediction accuracy of the proposed algorithm in the three data sets is as
high as 97%, and the lightweight network structure design not only guarantees high precision, but
also has a fast running speed, which can realize the rapid and high-precision classification of the
infrared spectral data of the aero-engine hot jets.

Keywords: Infrared Spectral detection; FT-IR; Aero-engine hot jet; deep learning; Attention
Mechanism

1. Introduction

Aircraft fault detection requires rapid identification of aero-engine models, and infrared
spectroscopy provides a solution. A method for determining a substance's chemical makeup and
molecular structure is called infrared spectroscopy (IR) [1-3]. This method measures the wavelength
and intensity of the absorbed or emitted light and generates a particular spectrum diagram by taking
advantage of the energy level transition that occurs in material molecules when exposed to infrared
radiation. Therefore, the chemical bond and structure of the substance are analyzed and judged. This
technology been studied importantly in environmental monitoring [4], refuse classification [5],
biochemistry [6] and other fields.

Varied types of aero-engines will create varied gas compositions and emissions during
combustion. The categorization features of aero-engines are frequently connected to fuel type,
combustion mode, and emission characteristics. The vibrations and rotations of these molecules form
a specific infrared absorption and emission spectrum. Fourier Transform Infrared Spectrometer (FT-
IR Spectrometer) [7-9] is an important means to measure infrared spectrum. Interferogram is

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202406.1279.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 June 2024 d0i:10.20944/preprints202406.1279.v1

obtained through interferometer. Based on Fourier transform, the interferogram is reduced to
spectrogram. In this paper, FT-IR is used to cover a wider spectral range(The spectral range of the
hyperspectrum is usually from the visible region (0.4-0.7um) to the short-wave infrared (SWIR)
region (nearly 2.4pm), and the spectral coverage of the FT-IR spectrometer used in this experiment is
2.5~12um.) and the spectral data implies molecular type and structure information, so the richer and
finer characteristic information of FT-IR is the data basis for classification and recognition in this
paper. At the same time, hyperspectral detection usually uses a dispersive spectrometer to measure
the continuous narrow-band spectrum in the visible region. Different from hyperspectral detection,
FT-IR has a larger luminous flux. This method can complete the interferometer measurement of
optical signals in the range of 2.5~12um and convert them into spectral data in a few seconds. Since
passive FT-IR can gather data in any direction and perform fast target analysis as well as continuous,
long-distance real-time monitoring, it is frequently employed to identify air contaminants. This
method is more suitable for the measurement of the hot jet spectrum of aero-engines.

The research on image recognition methods has been mature [10,11]. While, for spectral data
classification methods, spectral classification methods of hyperspectral data provide us with a
reference approach, which is divided into classical methods and deep methods. Li[12] summarized
that the classical method of spectral classification is to transform data into new feature space and
retain identification information through data projection, including principal component analysis
(PCA), independent component analysis (ICA), linear discriminant analysis (LDA), one-dimensional
discrete wavelet transform (1D-DWT), etc. With the rapid development of deep learning in recent
years, various feature extraction frameworks have emerged in an endless stream. Deep learning
methods for spectral classification mainly include convolutional neural network (CNN), recurrent
neural network (KNN), Transformer[13] and variants of the above methods. AUDEBERT[14],
RASTI[15] summarized that deep learning methods mainly include supervised learning methods
(IDCNN, RNN, recursion and convolution) and unsupervised learning methods (AE and PCA). For
the method of spectral feature extraction in deep learning networks, Lu[l6] adopted five
convolutional layers 1IDCNN, Chen[17] and Kemker[18] adopted automatic encoder (AE) and
stacked autoencoder (SAE), Ding [19] adopted graph convolutional network, Li[20] combined
spectral convolution and dictionary learning. Ashraf[21] constructed BERT induction, and
Hamouda[22] used spectral digits and minimum redundancy and maximum correlation selection.
Transformer framework structure is the most popular deep learning structure at present, and it is
also a popular research topic in hyperspectral data processing in recent years. However, Transformer
replaces computing efficiency with high memory consumption, which needs to take up more
memory resources and does not match the computing power of edge computing platform. In
contrast, lightweight network design is needed for our infrared spectral data to achieve a balance
between accuracy and efficiency. The wide application of IDCNN in spectral feature extraction and
appropriate memory and time efficiency make 1DCNN the preferred choice for the network structure
in this paper.

Because of the extraordinary lack of public data sets, the infrared spectral data of six different
models of aero-engine hot jets are measured by outfield experiment and three spectral data sets are
made according to the measurement distance and the different environment. In this paper, a
convolutional neural network framework based on continuous wavelet transform peak seeking
attention mechanism is designed for the extraction of spectral features and the realization of multi-
classification tasks. In order to compare the accuracy of the deep learning method and the traditional
classification algorithm, this paper designs the characteristic spectral vector based on CO2, an
important component of the aero-engine hot jet, and combines it with the classifier to compare the
classification accuracy of CWT-AM-CNN with the traditional classifier method. To compare the
effectiveness of deep learning method of spectral data, CWT-AM-CNN is compared with the popular
AE, RNN and LSTM spectral processing networks.

The contribution of this paper is summarized in the following three points:

1. This paper utilizes the infrared spectrum detection method of aero-engine hot jet as the
foundation for aero-engine identification and input of data source. The hot jet is a significant
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infrared radiation feature of an aero-engine, and the infrared spectrum offers molecular-level
information about substances. Thus, employing this approach for categorization is more
scientifically valid.

2. In this paper, a new benchmark data set is developed. The data set is obtained from the field
environment. The dataset consists of three sub-datasets, including a 443 spectral data set with a
resolution of 1cm™, a 1371 spectral data set with 1cm™ and 0.5cm resolution and a large dataset
of 1814 spectral data. The data set covers the infrared spectrum in the wavelength range of 2.5~12
um, including six types of different aero-engine models (including turbine engine and turbofan
engine).

3. This paper provides a deep learning framework for classification of aero-engine hot jet infrared
spectra. A convolutional neural network based on peak seeking attention mechanism is
designed. The backbone network consists of three feature extraction blocks with the same
structure, batch normalization layer and maximum pooling layer. In the part of attention
mechanism based on peak seeking, the spectral peak value is detected by continuous wavelet
transform method and the peak wave number of high frequency occurs is counted. The attention
mechanism weights the peak value obtained by statistics and acts on the feature map of the trunk
CNN. The structure of the network is light, and the classification accuracy and operation
efficiency can be taken into account.

The structure of this paper consists of five parts. The first section reviews the method of spectral
feature extraction, and briefly describes the method, contribution and structure of this paper. In the
second section, the detailed structure and algorithm details of the attention mechanism convolutional
neural network designed in this paper are described. In the third section, the data set used in the
experiment is designed, and the design of the outfield experiment, the data preprocessing and the
composition of the spectral data set are described in detail. In the fourth section, the experiment and
results are analyzed, and the performance results are used to evaluate and analyze the experiment,
and the traditional classifier methods and the current popular spectral processing network methods
are compared. The fifth section summarizes the thesis.

2. Spectral Classification Network Structure Design

In this section, the CNN based on peak seeking attention mechanism designed by infrared is
described, which consists of four parts: overall network structure design, backbone network design,
peak-based attention mechanism and network training method.

2.1. Overall Network Design

Convolutional Neural Networks (CNNs) structures commonly used at present include LeNet-
5[23], AlexNet[24], VGG[25], GoogleNet[26], ResNet[27], etc., all of which achieve high accuracy in
the classification of ImageNet data sets. However, the commonality feature of these algorithms is that
by increasing the depth of the network, the accuracy of the calculation results is exchanged with more
excessive consumption of computing resources. Our spectral data adopts the file type of prn, which
is expressed as two-dimensional point set data of horizontal wave number and vertical brightness
temperature spectrum. The data are characterized by a single piece of data with many data points
and few dimensions. Choosing a network model that is too deep will reduce the efficiency of the
algorithm and consume a lot of computing resources. In hyperspectral spectral processing, IDCNN
is often used as the extraction method of spectral data features, so we design a spectral classification
network with 1IDCNN as the basic structure of spectral data processing.

The CWT-AM-CNN developed in this paper, as depicted in Figure 1, is composed of three
modules: backbone network, feature extraction block, peak seeking algorithm block and attention
mechanism block. When the network is in the training stage, the infrared spectrum and its label
information are input, and the feature extraction block is first entered to extract the feature map. At
the same time, the peak seeking block is input to detect the peak value. The peak detection results are
assigned to the attention mechanism, and the attention weight is assigned to the feature map. When
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the network is in the prediction stage, the prediction data set is entered into the network, and the
classification results and performance results are obtained.
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Figure 1. CWT-AM-CNN classification network of aero-engine hot jet infrared spectrum.

2.2. Backbone Network Design

Before data entry, we need to unify the spectral data with different resolutions, because the aero-
engine hot jet is composed of high-temperature gas, and the radiation characteristics of high-
temperature gas are more obvious in the medium-wave band (400-4000cm™"), so we focus on cutting
the data in the medium-wave band. The 0.5 cm™ resolution data are downsampled and data amounts
in the mid-wave band are adjusted to ensure the consistency of the model data input.

We define the three components of the backbone network as feature extraction blocks. Each
feature extraction block, as presented in Figure 2, consists of one-dimensional convolution layer,
Batch Normalization layer and Maximum pooling layer.

BatchNormalization

Figure 2. Feature extraction block.

(DOne-dimensional convolutional layer (Cov1D layer): The convolutional layer is a means of
feature extraction for convolutional neural networks, and the convolutional layer is complete with
linear and translation invariant operations. Through convolution operation, we can extract the
features of the data, enhance some features of the original signal, and reduce the noise.
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The convolution between two functions can be defined as f, g: R - R:

f*9)) = [ f(Dg(x - 2)dz @

Convolution can be understood as the overlap between two functions when the function is
flipped and shifted by x. For two-dimensional tensors, convolution can be written as:

Fx9.) = Zaz,,f(a, b)g(i —a,j—b) )

Among them,(a, b)is the index of f, (i —a,j— b)is the index of g.

(2)Batch Normalization(BN)[28] is commonly used to accelerate convergence and solve the
gradient dispersion of deep neural networks. The BN layer can be represented as a learnable network
layer with parameters(y. 3).With the introduction of BN, the network can learn to recover the feature
distribution that the original network needs to learn.

Assuming that the input from a small batch B is x € B, BN can be converted to x according to
formula (3):

BNG) =y O==+8 ©)

Among them,[this the sample mean of the small lot B, ¢A773 is the sample standard deviation of
the small lot B. After applying BN, the mean value of the generated small batches is 0 and the unit
variance is 1.y is the scale parameter, while f is the shift parameter. These two parameters need to
be learned.

BN maintains the amplitude of change in the middle layer during trammg, through the active

centralization of each layer. While ad]ust the mean and size by re-adjusting gz and 6%, can help

smooth the middle layer change. The pz and aBare shown in equation (4):

Up = i erB X
4

o} = izm CHx - pp)? €

Where, the constant €>0.,

BN can train the model with a larger initial learning rate to achieve fast convergence. When the
convergence rate is very slow, gradient explosion, etc., BN can be used. At the same time, the use of
BN behind the convolution layer can normalize the value of each spatial position.

®Maximum pooling layer: Pooling is a method of downsampling in CNN, which can reduce
the amount of data processing while retaining useful information. Operations such as convolution
layer, pooling layer, and activation function layer can be understood as mapping raw data to the
hidden layer feature space.

(#)Extension layer: Splice learned feature maps.

(5Fully Connected layer (FC layer) : The purpose of the FC layer is to transform the acquired
distributed feature representation into the corresponding sample label space. The FC layer integrates
the features together and outputs them as one value, which greatly reduces the influence of the
feature position on the classifier.

2.3. Attention Mechanism based on Peak Seeking

The attention mechanism based on peak seeking is mainly composed of two parts, one part is
the peak seeking algorithm, the other part is the attention mechanism. The peak seeking algorithm is
used to analyze the infrared spectral data in the mid-wave band. In the part of attention mechanism,
peak features are input, Global Average Pooling (GAP) is added, and attention weights are calculated
and applied to the feature map of the backbone network. Figure 3 shows the composition diagram of
the attention mechanism module based on peak seeking. The left figure is the peak seeking algorithm
block, and the right figure is the attention mechanism block.
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Figure 3. Composition diagram of attention mechanism module based on peak seeking: (a) represents
peak seeking algorithm block, (b) represents attention mechanism block.

2.3.1 Peak Seeking Algorithm Block

Continuous Wavelet Transform (CWT) is a classical peak detection method that uses wavelet
transform to analyze signals at multiple scales to detect peaks at different scales.
The continuous wavelet coefficient W (a, b) is calculated as follows:

W(a,b) = [7 Cix(@)¥" (=) dt 5)

Where, x(t) is the original signal, which is generally the continuous time signal, W(t)
represents the complex conjugate of the wavelet function, the scaling parameter a is used to control
the broadening or compression of the wavelet function in time and frequency, and the translation
parameter b is used to control the translation of the wavelet function in time. This formula is the
result of the transformation of the original signal with the wavelet function under different scales and
translations.

We describe the algorithm running flow of the peak seeking algorithm block in the form of
pseudo-code:

Algorithm 1 : Peak seeking algorithm and peak statistics.

Input: Spectral data.

Output: Peak data.

Trim the mid-wave band of spectral data (400-4000cm™).

Data smoothing.

Set the threshold and scale parameters of continuous wavelet change.

Count the wave number with peak value.

Extract the wave number position with high frequency according to the proportion of
threshold value.

According to the peak wave number position, for each data, the adjacent points are extracted
as the peak data points.

Output the peak data for each spectral data.

® OOEE

S

2.3.2. Attention Mechanism

Attention Mechanism(AM) consists of three parts: Query. Key and Value. Suppose there is a
query q € R? and M key-value pairs (K, vy), ..., (K, Vi), where k; € R¥,v; € R”, the attention
aggregation function is expressed as a weighted sum of values:

£@ (&, V), e, (i Vi)) = N1 (g k), € RY (6)

Among them, the attention weight (scalar) of the query q and key k; is mapped into a scalar
by the two vectors of the attention score function a, and then obtained by softmax operation:
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Figure 4 reflects the operation of the attention mechanism, in which attention score function is
indicated a. Choosing different attention scoring functions « leads to different attention gathering
operations.

Output

Attention scoring  Attention scoring
function

Key Value

5

Query

Dllg

Figure 4. Attention mechanism operation diagram.

We describe the action mode of the attention mechanism based on peak seeking in the network
in the form of pseudo code:
Algorithm 2: CNN with attention Mechanism.
Input: Spectral data, peak data.

Output: Prediction label for prediction data set.

Trim the mid-wave band of spectral data (400-4000cm™)

The Adam optimizer with a learning rate of 0.00001 is adopted, and the number of iterations
€ is set to 500.

Create a training and test data loader.

fori=1to € do:

Using feature extraction block to extract shallow features from spectral data.

Global average pooling of peak data and intensive layer calculation of attention weight.
Apply the weight of attention mechanism to feature graph.

The weighted feature graph continues to extract features.

Calculate the Loss function, category and accuracy.
End for
Use trained models and data for prediction to obtain predictive labels.

SIGICICOICIGICICIONNCIC)

2.4. Network Training Method

2.4.1. Optimizer

The optimizer is a method for finding the optimal solution of the model. The commonly used
optimizer such as gradient descent(GD) method includes standard gradient descent, stochastic
gradient descent (SGD), batch gradient descent (BGD), GD method is slow to train and easy to fall
into the local optimal solution, and adaptive learning rate optimization algorithms, including
AdaGrad, RMSProp, Adam and AdaDelta. Among them, Adam optimizer is the most commonly
used, which is suitable for many kinds of neural network structures, such as CNN, RNN, GANs and
so on.

Adaptive Moment Estimation (Adam)[35] uses exponential weighting to estimate momentum
and second moments with winter averages. The state variables of Adam are:

Ve & BV + (1 — B1)g:

S« Boses + (1 — B)g2 ®)
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Where ; and f, are non-negative weighted parameters, the §; usually set to 0.9 and the 5,
usually set to 0.999. Standardized state variables can be derived using the formula below:

A

—_Vt
Ve = 1-pt )
=T (10)

As a result, the update formula of gradient is obtained:

g =7 (11)
Where, 7 is the learning rate, € is a constant which usually set to 10-.
A simple update is shown in formula 12:

Xp < Xeoq — 8t (12)

By combining momentum and root mean square propagation (RMSProp), Adam dynamically
modifies the learning rate of each parameter, and dynamically adjusts the update step of parameters
in the training process, which improves the convergence speed and stability. Moreover, Adam can
achieve a excellent balance between computational complexity and performance, and can ensure
good performance while having low computational complexity.

2.4.2. Loss Function

The cross-entropy loss function is usually used for classification tasks, which is used to describe
the difference of the sample probability distribution and to measure the difference between the
learned distribution and the real distribution. The cross-entropy loss function can be expressed as:

1 N=1 k-1
Loss = T E o Zk:o Vil pig (13)
i=

Where, K represents the number of tag values and N represents the number of samples, the y;
indicates the real label of the ith sampleis k,and p;; represents the probability that the sample i is
predicted to be the k tag value. The smaller the value of cross entropy, the better the prediction effect
of the model. At the same time, cross-entropy is often used together with softmax in classification.
Softmax sums up the classification predicted values of the output results to 1, and then calculates the
loss by cross-entropy.

2.4.3. Activation Function

Rectified Linear Unit (ReLU) is a commonly used nonlinear activation function. Relu controls
the input of data. If the input is less than or equal to zero, the output will be zero. If the input is a
positive number, the output will be the same as the input value. Relu can be expressed as:

f(x)=max(0,x) (14)

The function of ReLLU activation function is to introduce nonlinear transformation, so that the
neural network has the ability to grasp more complex patterns and features. Its main advantages are
that the calculation is simple, there is no gradient disappearance problem, and it can accelerate the
convergence and improve the generalization ability of the model.

3 Spectral Dataset

The third section briefly describes the production process of aero-engine hot jet infrared spectral
data set, including design of aero-engine spectrum measurement experiment, data preprocessing and
data set production.
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3.1. Design of Aero-Engine Spectrum Measurement Experiment

Initially, outfield measurement experiment were conducted to acquire infrared spectrum data
from six types of aero-engines. The experiment utilized two FT-IR spectrometers: the EM27 and the
telemetry FT-IR spectrometer created by the Aerospace Information Research Institute. The precise
specifications of the two devices are displayed in Table 1:

Table 1. Parameters of the FT-IR spectrometers used for the experiment.

Measurement SPeCtr?l Spectral Full Field of
Name Resolution Measurement .
Pattern View Angle
(cm™) Range (um)
. . Active: 0.5/1 30 mrad (no
EM27 A P 2.5~12
ctive/Passive Passive: 0.5/1/4 telescope) (1.7°)
Telemetry
Fourier
Transform Passive 1 2.5~12 1.5°
Infrared
Spectrometer

Meanwhile, the infrared spectrum measurement of aero-engine hot jet is arranged on the spot
as shown in figure Figure 5:
g Background

Walkie-talkie

ajzzou [1e) d2uiduy

Infra Thermo Image
System

Telescope

—

Computer Walkie-talkie

Hygrothermograph

Figure 5. Site layout of outfield measurement experiment for infrared spectrum of aeroengine hot jet.

The aero-engine hot jet is mainly composed of gases. The infrared spectrum of the hot jet
measured by the outfield experiment is not only determined by the radiation of the mixed gas itself,
but also a complex result of the comprehensive action of many factors. Environmental temperature,
humidity and measurement distance are the influencing factors of the experiment. Thus, we recorded
the parameters of environmental conditions during the experiment as shown in Table 2:
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Table 2. Table of experimental aero-engines and environmental factors.

Aero-Engine Serial Environmental Environmental Detection

Number Temperature Humidity Distance
Turbofan engine 1 19°C 58.5%Rh 5m
Turbofan engine 2 16°C 67%Rh 5m
Turbojet engine 14°C 40%Rh 5m

Turbojet UAV 30°C 43.5%Rh 11.8m
Turbojet UAV Wlth 20°C 71 5%Rh 5m
propeller at tail

Turbojet manned 19°C 73.5%Rh 10m

aircraft

The spectrum of gas is affected by many complex factors, such as pressure, temperature,
humidity and environment. Among them, the environmental temperature will affect the response of
the spectrometer, resulting in the inconsistency before and after the spectrogram; the environmental
humidity will affect the intensity of the spectrum and the width of the characteristic spectrum; the
observation distance indicates the atmospheric transmission on the measurement path. The
atmosphere will absorb and attenuate the spectrum. The transmission of solar radiation and surface
thermal radiation in the atmosphere is influenced by the absorption and scattering of atmospheric
molecules such as H2O, mixed gases (COz, CO, N20, CHy, Oz2), O3, N, etc., as well as the scattering or
absorption of aerosolized particulate matter. This leads to a reduction in the intensity of both solar
radiation and surfaces thermal radiation. When the difference between the target and our result is
considerable, the atmosphere will significantly impact the acquired spectrum. Currently, we employ
the method of conducting experiments in the outfield, and the distance of the experiment is relatively
short. While the gas temperature of the hot jet is generally as high as 300-400 ‘C, which is very
different from the background, so the effects of atmosphere and environment can be ignored.

3.2 Data Preprocessing

The Brightness Temperature spectrum (BTS) [29][30] of an object refers to the temperature of a
blackbody that emits the same spectral radiation intensity at the same wavelength as the object. The
utilization of BTS analysis can directly extract the characteristics of the target gas.

To get the BTS using passive infrared spectrum, it is essential to subtract the instrument's bias
and response from the measured spectral signal obtained by the spectrometer. This subtraction
allows us to acquire the incident radiance spectrum on the spectrometer. T(v) can be calculated by
transforming Planck’s formula to obtain the formula below:

hcv
Tw) = kin {[L(v)+2hc2v3]/L(v)}

(15)

In the formula, Planck’s constant is recorded as h with a value of 6.62607015 x 1034]-S, ¢ is the
speed of light with a value of 2.998 x 108 m/s, v is the wave number in cm™, k is Boltzmann’s
constant with a value of 1.380649 x 102 J/K, and L(v) stands for the radiance about the wave
number.

The BTSs of the aero-engine hot jets are measured experimentally as shown in Figure 6, in which
the transverse coordinate is wavenumber and the longitudinal coordinate is Kelvin temperature.
Simultaneously, the important components of the hot jet are marked in the Figure 6:
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Figure 6. Experimental measurement of the BTSs of aero- engines’ hot jet.

3.3 Data Set Production

According to the difference of test object, detection distance and detection environment, three
types of data sets are made to complete the experiment of the algorithm. The specific data information
is presented in Tables 3- 5:

Table 3. Dataset A information table.

Number Number Medium wave
Label Type of data  of error Full band data volume range data
pieces data volume
1 TurbOfai‘ MBINE 79 17 16384(1cm7)/32768(0.5cm™)  7464/14928
Turbofan engine
2 ) 258 2 16384(1cm™1)/32768(0.5cm™l)  7464/14928
3 Turbojet engine 384 4 16384(1cm™)/32768(0.5cm™) 7464/14928
Table 4. Dataset B information table.
Number  Full band Medium wave
Number of
Label Type . of error data range data
data pieces
data volume volume
1 Turbojet UAV 193 0 16384 7464
2 Turbojet UAV with 48 0 16384 7464
propeller at tail
3 Turbojet manned 202 3 16384 7464
aircraft
Table 5. Dataset C information table.
Number Full band Medium wave
Number of
Label Type . of error data range data
data pieces
data volume volume
1 Turbojet UAV 193 0 16384 7464
2 Turbojet UAV with 48 0 16384 7464
propeller at tail
3 Turbojet manned 202 3 16384 7464
aircraft
4 Turbofan engine 1 792 17 16384 7464

5 Turbofan engine 2 258 2 16384 7464
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6 Turbojet engine 384 4 16384 7464
Where, Dataset C is the combination of Dataset A and Dataset B.

4. Experiments and Results

The fourth section continues with the experimental evaluation of the algorithm. Initially, this
paper introduces the performance measures of the classification algorithm and presents the
experimental results of the network on three data sets. Then the experimental results with the
classifier method based on CO: feature vector and the method using CNN, AE, RNN and LSTM are
compared. Finally, the ablation study is proved to compare the effectiveness of the peak method, the
effectiveness of the attention mechanism, the design of the network and the running time.

4.1 Performance Measures and Experimental Results

The performance measures for aero-engine spectral classification include accuracy, precision,
recall, F1-score and confusion matrix. If an instance is classified as a positive class and is correctly
predicted as positive, it is labeled as TP. If it is predicted as negative, it is labeled as FN. Conversely,
if an instance is classified as a negative class and is incorrectly predicted as positive, it is labeled as
FP. If it is correctly predicted as negative, it is labeled as TN. Based on the above assumptions, these
performance measures are respectively defined as follows:

(DAccuracy: the ratio of correctly classified samples to the total number of samples.

TP+TN

Accuracy = —
Y = TP+TN+FP+EN

(16)

(@)Precision: the ratio of the number of true positive samples to the total number of samples
predicted as positive.

TP
TP+FP

Precision = 17)

(3)Recall: the ratio of the number of samples correctly predicted to be in the positive category to
the number of samples in the true positive category.

TP
Recall =
TP+FN

(18)

(#)F1-score: a metric that quantifies the overall performance of a model by combining the
harmonic mean of precision and recall.

2*P*R

F1l-score = (19)

where, P stands for the precision and R stands for the recall.

(8Confusion matrix: The confusion matrix provides a comprehensive evaluation of the
classifier's performance in classifying various categories. It displays the discrepancy between actual
value and predicted values. The diagonal elements of the matrix indicate the number of accurate
predictions generated by the classifier for each category. Table 6 displays the confusion matrix:

Table 6. Confusion matrix.

Forecast results

Positive samples Negative samples
Real results Positive samples TP TN
Negative samples FP FN

This research validates the efficacy of the CWT-AM-CNN method by assessing its performance
on three benchmark data sets. The computation experiment is conducted on a Windows 10
workstation with a 32GB RAM, an Intel Core i7-8750H processor, and a GeForce RTX 2070 graphics
card.

Specific parameters of the CWT-AM-CNN are provided by Table 7:
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Table 7. Parameter table of CWT-AM-CNN model.

Methods Parameter Settings
Conv1D(32, 3) ,Conv1D(64, 3), Conv1D(128, 3), activation='relu’
BatchNormalization()
CWT-AM.- .Ma.xPoc‘)hng'lD(Z)(.x) o '
CNN Dense(128, activation=relu'), activation='softmax

Optimizers=Adam , 1r=0.00001
loss='sparse_categorical_crossentropy’,metrics=['accuracy'])
epochs=500

According to the table parameters, we conduct network training and label prediction, and the

experimental results are displayed in Table 8::

Table 8. Results of CWT-AM-CNN classification experiments.

Muation criterion

Datasets

Precision
Accuracy

Recall

Confusion

score

matrix

F1-score

DatasetA

97.44% 94.08% 85.11%

[11 8 0]
[077 0]
[1 038]

88.24%

DatasetB

100.00% 100.00% 100.00%

19 0 0]
[0 8 0]
[0 017]

100.00%

DatasetC

[17
[0
[0
98.72% 94.70% [0
[0
[0

100%

0000
7000
016 0 O
0 084 0
00 715

0]
0]
0]
0]
0]

0 0 0 033]

96.18%
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Figure 7. CWT-AM-CNN network training and validation loss function and accuarcy change curve:
the blue curve represents the training set, the orange curve represents the validation set, (a) is the
experimental result of dataset a, (b) is the experimental result of dataset B, and (c) is the experimental
result of dataset C

By analyzing the experimental results of the Loss curve and the Accuracy curve, we observe that
the CWT-AM-CNN effectively enhances the processing speed of spectral data and converge rapidly
in short training. In terms of accuracy, first of all, according to the overall performance of the
algorithm in short training. In terms of accuracy, first of all, according to the overall performance of
the algorithm in the three data sets based on Accuracy and Fl-score, Accuracy is higher, indicating
that the overall classification performance of the algorithm is better, and high F1-score represents a
good balance performance of the classifier. Secondly, according to the analysis of the three data sets
of Precision and Recall, the Precision is high, indicating that the algorithm performs well in reducing
false positives, while Recall is slightly lower than Precision, indicating that the classifier still has some
room for improvement in reducing false positives. According to the results of the confusion matrix,
the three categories in Dataset A show that the component of the first category is relatively weak, and
the other two categories have good performance; the number of data in Dataset B is relatively small,
and the performance of the network on this data set is perfect, and each category is accurate; in
Dataset C, the fifth category is unideal, and the classification of other categories is very accurate.

The experimental results show that the CWT-AM-CNN designed in this paper performs well on
the three spectral data sets. In the process of the experiment, some exceptional cases like engine
failure have remotely impact on our classification results. On the other hand, our network as a whole
has good robustness, and the incorrect data has little influence on the overall classification accuracy.

4.2 Comparative Experimental Results of Traditional Classification Methods

The main components of the aero-engine hot jet are analyzed to To compare with the classical
classifier method. Meanwhile, the feature vector is constructed to be used in conjunction with
classifier methods. As known, the emission products of an aero-engine typically include oxygen (O2),
nitrogen (Nz), carbon dioxide (COz), steam (H20), carbon monoxide (CO), et al. Among them, the
spectral characteristics of CO:z are obvious. Based on the peak positions of COz, four wavenumbers
were selected, including 2350 cm™, 2390 cm™, 719 cm™, and 667 cm™, as shown in Figure 7 for
constructing feature vectors.

719cm’
2390cm’ |
)

:Jsm‘ﬁ"

667cm™
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Figure 8. Four characteristic peak positions in the infrared spectrum of aero-engine hot jet.

Spectral feature vectors a = [aj,a,] are constructed from the difference in brightness
temperature spectra between two characteristic peaks:
a; = Ty=2390cm=1 ~ Ty=2350cm~1

(20)

az = Ty=719em=t — Ty=677cm=1

Due to environmental influences, the peak positions of characteristic peaks may subtly shift.
Table 9 shows the range of the maximum values of the four characteristic peak wave number

positions:
Table 9. Value range of characteristic peak threshold.
Characteristic Peak Emission Peak (cm™) Absorption Peak (cm-)
Type
Peak standard 2350 2390 720 667
features
haracteristi k
Characteristic pea 2350.5-2348 2377-2392 722-718 666.7-670.5

range values

The CO: feature vector needs to be combined with a classifier for classification tasks.
Experimental classification of aero-engine hot jet infrared spectra using feature vectors and widely
used classifier algorithms, including SVM, XGBoost, CatBoost, AdaBoost, Random Forest,
LightGBM, and neural networks. Table 10 provides parameter settings for the classifier algorithm:

Table 10. Parameter table of classifier method based on feature vector.

Methods Parameter Settings
SVM decision_function_shape = ‘ovr’, kernel = ‘rbf’

XGBoost objective = ‘multi:softmax’, num_classes = num_classes
CatBoost loss_function = “MultiClass’

Adaboost n_estimators = 200

Random Forest n_estimators = 300
LightGBM , objective’:’ ‘multiclass’,
num_class’: num_classes
Neural . . . , , . ’ .
hidden_layer_sizes = (100), activation = ‘relu’, solver = ‘adam’, max_iter = 200

Network

To compare with the deep learning method, we combine the training set and the validation set,
setting the training set and the prediction set in a 9:1 ratio. The following Tables 11-13 are the
experimental results on three data sets using CO2 feature vectors and classifiers:

Table 11. Experimental results of classifier method based on feature vector on Dataset A.

aluation criterion

Precision Confusion F1-
Accuracy Recall .

e . score matrix score

Classification metho

[0 0 0]

Feature vector+SVM 57.04% 33.33% 19.01% [1977 39] 24.21%
[0 0 0]
[18 3 0]

Feature vector+XGBoost 96.30% 96.09% 94.36% [174 1] 95.14%
[0 038]
18 2 0]

Feature vector+CatBoost 97.04% 96.53% 95.80% [175 1] 96.14%

[0 038]
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[1125 0]

Feature vector+AdaBoost 74.81% 74.29% 71.93% [852 1] 71.35%
[0 038]
[18 2 0]

Feature vector+Random Forest 97.04% 96.53% 95.80% [175 1] 96.14%
[0 038]
[18 3 0]

Feature vector+LightGBM 96.30% 96.09% 94.36% [174 1] 95.14%
[0 038]
[1 0 0]

86.67% 68.42% 92.64% [1677 0] 66.03%
Networks [2 039]

Feature vector+Neural

Based on the analysis of the experimental results of Dataset A the performance of SVM is
disappointing, all the indicators are low, and there are many misclassifications in the confusion
matrix; the performance of XGBoost is very excellent, all the performance results are more than 96%,
and the misclassification of the confusion matrix is very few; all the performance results of AdaBoost
represent 70%, there are some misclassifications; the performance results of Random Forest and
CatBoost are both more than 96%, and the classification performance is extremely good. The
performance of LightGBM is equally excellent when the performance results are close to 95%. Neural
Networks has high recall rate, low accuracy and F1 score, and has more classification errors.

Table 12. Experimental results of classifier method based on feature vector on Dataset B.

aluation criterion

Precision Confusion F1-
Accuracy score Recall matrix score
Classification metho

[19 0 6]

Feature vector+SVM 86.36% 88.24% 92.00% [0 8 0] 88.31%
[0 011]
[18 0 6]

Feature vector+XGBoost 84.09% 86.48% 88.89% [0 8 0] 86.53%
[1 011]
[19 0 6]

Feature vector+CatBoost 86.36% 88.24% 92.00% [0 8 0] 88.31%
[0 011]
[18 0 9]

Feature vector+AdaBoost 77.27% 80.60% 85.19% [0 8 0] 79.93%
[1 0 8]
[19 0 6]

Feature vector+Random Forest 86.36% 88.24% 92.00% [0 8 0] 88.31%
[0 011]
[18 0 6]

Feature vector+LightGBM 84.09% 86.48% 88.89% [0 8 0] 86.53%
[1 011]
[19 0 5]

Feature vector+Neural 88.64% 90.20% 93.06% [0 8 0] 90.38%
Networks [0 012]

Based on the analysis of the experimental results of Dataset B, except for AdaBoost, all classifiers
have accurate performance, while the performance of AdaBoost is slightly inferior. But the accuracy
of all classifiers is not moreover than 90%.

Table 13. Experimental results of classifier method based on feature vector on Dataset C.

luation criterion

Precision Confusion
Accuracy Recall . Fl-score
epe s score matrix
Classification metho

[8 0300 0]
[03000 0]
[9 112 0 0 0]
[0 3 1842233]

Feature vector+SVM 59.78% 44.15% 47.67% 42.38%
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(00000 0]
(0000 0 0]
150 3 0 0 0]
(0700 0 0]
Feature vector+XGBoost 9497%  92.44%  93.59% {3 o 8} 92.95%
[000 119 0]
[0 000 033
1502 0 0 0]
[06 00 0 0]
Feature vector+CatBoost 9441%  9035%  93.52% {3 P g} 91.81%
[010 118 0]
[00 00 033
17 5 6 0 0 0]
(0200 0 0]
Feature vector+AdaBoost 79.80%  63.66%  71.49% [[g 0 s g]] 62.56%
(00000 0]
[00 0 0 430]
150 4 0 0 0]
(07000 0]
Feature V;s;zz:Random 9441%  9140%  92.70% {3 o 8} 91.91%
[000 119 0]
[00 00 033
14 0 2 0 0 0]
[06 000 0]
Feature vector+LightGBM ~ 94.41%  90.68%  92.40% {3 o o 8} 91.42%
[01 0 220 0]
[00 00 033
17 0 2 0 0 0]
| [06 000 0]
Feature vector+Neura o o o [0 012 0 0 0] o
et 8492%  7679%  7657% 10 ('agis o 7602%
(01000 0]
[00 0 0 433

Based on the analysis of the experimental results of Dataset C, the SVM algorithm's overall
classification effect is mediocre, while XGBoost, CatBoost, Random Forest, and LightGBM show good
performance in predicting and capturing correct examples, displaying a balance between accuracy
and recall rate. The prediction effect of AdaBoost is not good, all indicators are low, and the
performance of Neural Networks indicators is not excellent.

The experiments above confirm the outstanding performance of our CO: feature vector and
classifier. XGBoost, CatBoost, Random Forest, and LightGBM demonstrate higher classification
accuracy across three data sets, although substantially not exceeding 90% in Dataset B. It is clear that
in a outfield experiment with complex environmental factors, using CO: as a single spectral feature
to classify spectral data is not accurate enough and more potential features must be explored.
Simultaneously, we observe that the deep learning approach continues to display outstanding
performance in classification prediction when comparing the performance of CWT-AM-CNN with
that of traditional classifiers.

4.3 Comparative Experimental Results of Deep Learning Classification Methods

We compare and analyze the widespread network of spectral processing in hyperspectral data
at present, and the network parameters are shown in Table 14:
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Table 14. Parameters of common deep learning networks.

Methods Parameter Settings

Dense(encoding_dim,activation="relu")
Dense(input_dim, activation="sigmoid")
AE Dense(num_classes, activation="softmax")
epochs=500, optimizer= Adam(Ir=0.00001),loss="sparse_categorical_crossentropy’,
metrics=['accuracy']

SimpleRNN(4, return_sequences=True)
BatchNormalization()
Dense(4, activation="relu’')
Dense(num_classes, activation='softmax')
epochs=500, optimizer= Adam(Ir=0.00001),loss="sparse_categorical_crossentropy’,
metrics=['accuracy']

RNN

LSTM(8, return_sequences=True),BatchNormalization()
LSTM(8),BatchNormalization()
Dense(8, activation="relu'))
Dense(num_classes, activation='softmax')
epochs=500, optimizer= Adam(Ir=0.00001),loss='sparse_categorical_crossentropy’,
metrics=['accuracy']

LSTM

From the above parameters, we get the classification experimental results on three data sets, as
shown in Table 15:

Table 15. Results of common deep learning network classification experiments.

Methods Dataset Accuracy Precision Recall Confus.lon Fl-score
score matrix
[217 0]
A 58.52% 52.63% 36.84% [077 0] 30.79%
[039 0]
[0 019]
B 38.64% 12.88% 33.33% [0 0 8] 18.58%
[0 017]
AE [0 0 017 0 0]
[0007 0 0]
o o o, [0 0016 0 0] o
C 46.93% 7.82% 16.67% [0 0 084 0 0] 10.65%
[0 0 022 0 0]
[0 0 033 0 0]
[0 019]
A 38.64% 12.88% 33.33% [0 0 8] 18.58%
[0 017]
[019 0]
B 57.03% 19.01% 33.33% [077 0] 24.21%
RNN [039 0]
[0 0 017 0 0]
[0007 0 0]
o o o [0 0016 0 0] o
C 46.92% 7.80% 16.66% [0 0 084 0 0] 10.64%
[0 0 022 0 0]
[0 0 033 0 0]
[0 019]
A 38.63% 12.88% 33.33% [0 0 8] 18.58%
[0 017]
[019 0]
LSTM B 57.03% 19.01% 33.33% [077 0] 24.21%
[039 0]
[4 013 0 0 0]
C 62.57% 48.72% 4191% [0 07 0 0 0] 36.97%

[0 016 0 0 0]
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[0 0 082 0 2]
[0 0 022 0 0]
[0 0 023 010]

Correspondingly, we carry out 500 times of training and make predictions, and the
misclassification rates of the three networks are found to be high, the classification accuracy is low,
AE and LSTM have a very fast running speed, but the shock is obvious, it is easy to fall into local
optimization, and the network structures do not adapt to our data set. The running speed of RNN is
very slow, and the prediction effect is poor. In contrast, the CNN structure designed in this paper
and CWT-AM-CNN have good feature learning ability, compared with the popular network
structure, it is more suitable for our FT-IR data sets.

4.4 Analysis of Ablation Study

(1) Effectiveness of peak features: The effectiveness of peak features for algorithm improvement
can be verified by the effect of combining peak features with traditional classifiers for data
classification. We seek peaks on three data sets and obtain experimental results as presented in Figure
9:

Datase Visualization of peak
t detection

Peak position

Peak frequency statistics . -
visualization

Py Distriation ot Rounsed volves Scatter Plot mkh Wistogram Ranges
P g e i Rooge

RS

Datase
tA

Datase
tB

Datase
tC

Figure 9 Experimental results of CWT peak detection and high frequency peak statistics.

Among them, the three graphs on the left with red points indicate the wavelet algorithm's
extracted peak points, the three graphs in the middle show the data set's frequency of these peak
points, and the three graphs on the right with red lines indicate the location of the points with higher
frequency in the spectral data set. According to the intersection of the high frequency wavenumber
positions of data set A and data set B, we get 13 peak wavenumber positions, which are 403,720,853,
1091, 1107, 1226, 1462, 1502, 2042 and 3998, respectively. At the same time, we calculate the data of
the 13 peak positions of each data, and combine the two classifier methods SVM and XGBoost, which
are generally and well performed in the above experiment, and get the classification results as shown
in Table 16:
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Table 16. Experimental results of peak seeking classifier classification.
SVM Accuracy Precision Recall Confusion Matrix Fl-score Running time

[0 0 0]

Dataset A 59.26% 51.08% 42.27% (1041 0] 42.49% 0.131497
[93639]
19 0 0]

Dataset B 100.00% 100.00%  100.00% [0 8 0] 100.00% 0.008979
[0 017]

[4 0000 0]
[0000 0 0]
[13 715 0 0 0]
[0 0 05011 0]
[0000 0 0]
[0 0 1341133

XGBoost  Accuracy Precision  Recall = Confusion Matrix Fl-score Running time
[19 0 0]
Dataset A 100.00%  100.00%  100.00% [0 8 0] 100.00% 0.135857
[0 017]
[19 0 0]
DatasetB ~ 99.26% 99.15% 99.57% [077 1] 99.35% 0.204039
[0 038]
[17 0 0 0 0 0]
[0500 0 0]
[0 216 0 0 0]
[0 0 084 0 0]
[0 0 0 022 0]
[0 0 0 0 033]

Dataset C 56.98% 46.13% 44.43% 37.47% 0.24201

Dataset C 98.88% 95.24% 98.15% 96.24% 0.34023

Combined with the experimental results, the peak data we extracted is effective, compared with
the CO: feature vector and classifier algorithm, all the performance results are improved. The
experimental results show that the peak seeking algorithm is effective for classification tasks.

(2)Effectiveness of AM:The experimental results of three data sets with CNN with the same
parameters of Table 7 are shown in the Table 17:

Table 17. Results of CNN classification experiment.

Accuracy Precision Recall Confus‘lon F1-score

score matrix
Datasets

[11 8 0]

Dataset A 94.07% 96.86% 85.96% [077 0] 89.47%
[0 039]
[19 0 0]

Dataset B 100% 100% 100% [0 8 0] 100%
[0 017]

[17 0 0 0 0 0]
[07 000 0]
[0 016 0 0 0
[0 0 084 0 0]
[0 00 715 0]
[0 000 033]

—

Dataset C 96.09% 98.72% 94.70% 96.18%
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Figure 10. CNN network training and validation loss function and accuarcy change curve: the blue
curve represents the training set, the orange curve represents the validation set, (a) is the experimental
result of dataset a, (b) is the experimental result of dataset B, and (c) is the experimental result of
dataset C

The CNN structure designed in this paper performs well on all three data sets, and the accuracy
is more than 90%. There are a few misclassifications above Dataset A and Dataset C. Compared with
CWT-AM-CNN, only using backbone network for classification will occur Loss shock, and compared
with CWT-AM-CNN, its convergence speed is slightly lower and the accuracy is also slightly lower.

(3) Comparison of network design:

(DEffectiveness of BN layer design: Remove the BN layer using the same parameters in Table 7
to get the experimental results such as Table 18:
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Table 18. Results of CNN (without BN layer) classification experiment.
}imluation criterion . . .
Precision Confusion
Accuracy Recall . F1-score
score matrix
Datasets
[11 8 0]
Dataset A 92.59% 91.70% 84.68% [176 0] 87.29%
[1 038]
19 0 0]
Dataset B 100% 100% 100% [0 8 0] 100%
[0 017]
[17 0 0 0 0 0]
[07 00 0 0]
Dataset C 92.18% 94.11% 89.94% {3 P g} 91.02%
[0 0 0 715 0]
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Figure 11. Loss function and accuracy change curve of CNN (without BN layer) network training and

validation: the blue curve represents the training set, the orange curve represents the validation set,
(a) is the experimental result of dataset a, (b) is the experimental result of dataset B, and (c) is the
experimental result of dataset C

Only using the CNN network without BN layer network structure in this paper also has a good
classification accuracy, while the Loss curve and the accuracy change curve have a great shock in the
process of training, which shows that the model is too sensitive to the training data, and the model is
unstable, which will affect the results of our classification experiments.

(2)Network depth: In deep learning algorithms, network depth carries out a decisive role in
network expression. The deeper the depth, the better the network expression, because network depth
determines the quality of features from aspects such as invariance and abstraction. Therefore, we
conduct an experimental comparison of networks with different layer structures. Each layer uses a
feature extraction block, and uses the same loss function, optimizer, and learning rate to get table 19:

Table 19. Results of network depth comparison.

ber of layers

Dataset 1 2 3 4 5 6
Evaluation
Accuracy 63% 66% 83% 81% 79% 82%
Dataset A Training Time /s 315.83 939.22 133254  1527.18 173524 2032.12
Evaluation Time/s 0.14 0.18 0.22 0.33 0.35 0.32
Accuracy 93% 100% 100% 100% 100% 100%
Dataset B Training Time /s 81.90 148.38 258.92 347.15 408.00 431.55
Evaluation Time/s 0.12 0.13 0.18 0.25 0.22 0.25
Accuracy 63% 74% 77% 73% 78% 82%

Dataset C Training Time /s 421.56 1088.86 1522.65 2014.09 2411.60 2850.66
Evaluation Time/s 0.16 0.15 0.21 0.23 0.30 0.36
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Figure 12. Training and validation of CNN network with different layers loss function and accuarcy

change curve: the blue curve represents the one layer structure, the orange curve represents the two

layer structure, the green represents the three layer structure, the red represents the four layer

structure, the purple represents the five layer structure, and the brown represents the six layer
structure, (a) is the experimental result of dataset A, (b) is the experimental result of dataset B, and (c)

is the experimental result of dataset C

In general, CNN with three layer feature extraction blocks as the structure has excellent results
in training time and accuracy, so we adopt it as the structure of our backbone network.

(3)Optimizer selection:The five optimizers are essentially divided into two categories, SGD,
SGDM and Adagrad, RMSProp, Adam. The most frequently used ones are SGDM and Adam. We
test the backbone network with different optimizers on our data set and get table Table 20:
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Table 20. Results of different optimizer experiments.

Optimizers Prediction accuracy Training time/s Prediction time/s
SGD 93% 1663.36 0.25
SGDM 93% 2074.59 0.23
Adagrad 94% 2133.88 0.24
RMSProp 89% 2194.60 0.27
Adam 94% 2165.09 0.24
Training Loss by Optimizer Training Accuracy by Optimizer
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Figure 13. Network training and validation of the different optimizers on dataset C loss function and
accuracy change curve: blue is SGD, orange is SGDM, green is Adagrad, red is RMSProp, and purple
is Adam.

By comparing the outcomes, we can observe that the Adagrad and Adam tables on our network
and dataset are now quite good. The Adam algorithm has better adaptability and convergence effect,
so this paper manipulates Adam as the optimizer.

(#)Selection of learning rate: In the training of the data set, the loss curve shows a situation of
concussion. Given this scenario, we examine our data set using various learning rates and descent in
increments of 10! from 0.001 to generate Table 21:

Table 21. Table of experimental results of optimizer Adam at different learning rates.

Learning rate Prediction accuracy Training time/s Prediction time/s
0.01 0.47 878.21 0.26
0.001 0.75 1215.80 0.20
0.0001 0.42 1246.89 0.21

0.00001 0.95 1241.00 0.22
0.000001 0.95 1221.39 0.21
Training Loss by Learning Rate Training Accuracy by Learning Rate
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Figure 14. Network training and validation of Adam optimizer with different learning rates on
dataset C loss function and accuracy change curve: blue is the learning rate of 0.01, orange is the
learning rate of 0.001, green is the learning rate of 0.0001, red is the learning rate of 0.00001, and purple
is the learning rate of 0.000001.

The learning rate affects the classification effect of the network to a great extent. From the
prediction accuracy, running time and loss function training effect, the comprehensive effect of the
learning rate at 0.00001 is the best.

(4) Running time: Compared with the traditional classifier method, the deep learning method
needs to expend more time on the model training. However, the advantage of the deep learning
method is in the trained model. We compare the prediction time of the proposed algorithm and each
method on three data sets and obtain the following expression, as shown in Table 22:

Table 22. Comparison table of classified prediction running time.

Running time /s

Method Dataset A Dataset B Dataset C

CNN 5 4 6

CNN-BN 5 4 5

CWT-AM-CNN 6 5 6
RNN 980 243 1151

LSTM 14 4 17
AE 0.025 0.025 0.026
Feature vector+SVM 0.08 0.01 0.12
Feature vector+XGBoost 0.17 0.24 0.30
Feature vector+CatBoost 3.09 2.61 4.74
Feature vector+AdaBoost 0.30 0.26 0.39
Feature vector+Random Forest 0.48 0.44 0.56
Feature vector+LightGBM 0.20 0.17 0.44
Feature vector+Neural Networks 0.29 0.31 0.85

Table 22 shows that in terms of running time, most of the traditional classifier methods and AE
methods have high running efficiency. The CWT-AM-CNN method and the same structure CNN
also have higher running efficiency in prediction. The running efficiency of LSTM method is a little
slower, and the running efficiency of RNN is the worst. The network's drawback compared to the
classifier is the extended training time, but it offers increased running efficiency post-training.

5. Conclusions

In order to classify aero-engines, the infrared spectrum of hot jets of six different types aero-
engines in various states are measured using a telemetry FT-IR spectrometer, and three data sets are
created in this article. This study presents the design of a CNN based on peak seeking attention
mechanism, named after CWT-AM-CNN. The medium wave band peak value is determined by
CWT, the high frequency wave number position is tallied, and the peak data is recovered. Attention
mechanism is adopted for the peak data, and the feature graph of feature extraction network is
weighted by attention mechanism. The training set, validation set and prediction set were randomly
sampled according to the ratio of 8:1:1; The CWT-AM-CNN was trained, verified and predicted, and
the ablation experiment was conducted for experimental comparison. The accuracy, precision, recall,
confusion matrix and Fl-score are used to evaluate the classification results. the accuracy of the
prediction on three data sets is as high as 97%. Comparing the experimental findings with the
classifier algorithm based on feature vector and the current popular network approaches, AE, RNN,
and LSTM, reveals that CWT-AM-CNN is effective, practical, and can achieve excellent classification
accuracy. It is proposed that CWT-AM-CNN has higher accuracy and better stability for three
different data sets, and can complete the task of infrared spectral classification of aero-engine hot jets.
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