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Abstract: The development of one technology can be portrayed by common methods like Gartner’s hype cycle 

or S‐curve, however, there is no method to characterize the feature distributions of multiple technologies within 

a specific domain. This study proposes a big data‐based method in terms of four proposed features, namely 

versatility, significance, commerciality, and disruptiveness, to characterize the technologies within a given domain. 

The  features of  technologies are quantitively portrayed using  the  representative keywords and volumes of 

returned search results from Google and Google Scholar in two‐dimensional analytical spaces of technique and 

application. We demonstrate the applicability of this method using 452 technologies in the domain of intelligent 

robotics. The results of our assessment indicate that the versatility values are normally distributed, while the 

values  of  significance,  commerciality,  and  disruptiveness  follow  power‐law  distributions,  in  which  few 

technologies possess higher feature values. We also show that significant technologies are more likely to be 

commercialized or causing potential disruption, as  such  technologies have higher  scores  in  these  features. 

Further, we validly prove the robustness of our approach via comparing historical trends with literature and 

characterizing  technologies  in  reduced  analytical  spaces. Our method  can be widely  applied  in  analyzing 

feature distributions of technologies in different domains, and it can potentially be exploited in decisions like 

investment, trade, and science policy. 

Keywords:  2D  analytical  space;  commerciality;  disruptiveness;  representative  keyword;  search 

engine; significance; technological assessment; versatility 

 

1. Introduction 

Technological  advances  propel  economic  growth,  long‐term  social  well‐being  [1],  and 

sustainable  development  [2].  They  also  threaten  the  status  quo  through  disrupting  the  existing 

markets or creating completely new markets [3]. Moreover, technological developments affect the 

global competitiveness of nations [4], given that competitive edges are deeply rooted in technological 

superiority [4]. Characterizing technological development facilitates important decision‐making such 

as investment, product launch, and business expansion. Therefore, it has attracted much attention of 

investors, industrial captains, academics, and even policy makers. The developmental trend of one 

single technology has been extensively studied, and is commonly be characterized by well‐known 

methods  like Gartner’s hype cycle  [5] or S‐curve  [6]  (see Figure 1  [a]). However,  the  features of  the 

technologies within a chosen domain have not been systematically investigated and remain largely 

unknown  (see  Figure  1  [b]).  Characterizing  multiple  technologies  is  extremely  challenging, 

considering  that  the  technologies  in  any  given  domain  are  highly  heterogeneous  and  can  have 

complex distributions/relationships. Consequently, important decision‐making in investment, trade, 

and science policy  is hindered due to a  lack of reliable analytical tools for characterizing domain‐

specific technologies’ feature distributions. 
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Figure 1. (a) Evolution of an individual technology can be described by common assessment methods 

like Gartner’s hype cycle  [5].  (b) Evolution of  technologies within a domain  is more complex and 

poorly understood. 

In general,  the extant  technological assessment methods can be grouped  into  two categories: 

qualitative and quantitative [7]. However, aside from the primary and common flaw, that is, analysis 

object of the reported methods is limited to one feature of one single technology, these methods also 

suffer from other intrinsic weaknesses. Most qualitative methods, such as technology roadmap [8], 

and Delphi [9,10], rely only upon surveys, which are always constrained by interviewees’ personal 

experiences and attitudes. Considering that the interviewees are not anonymous to the assessor(s) 

and the potential competitors are often excluded [11], the reliability of these survey‐based tools  is 

further compromised. The quantitative methods like bibliometrics and patent analysis [1,4,12], are 

primarily  based  on  limited  historical  data,  the  latency  of  which  hinders  their  applicability  in 

characterizing  the  feature distributions of  technologies  in  emerging domains. Given  the  constant 

evolution of technologies [13], quantitatively characterizing feature distributions of technologies in 

real time is highly desirable in technological assessment and the related decision‐making processes 

like investment and trade. Yet, to the best of our knowledge, none of the existing methods can cope 

with this challenging task. 

In  this study, we propose a method  that  innovatively exploits online big data  to develop an 

empirical tool for characterizing feature distributions of technologies in any technical domain. This 

approach  depicts  the  development  of  a  technology  based  on  its  representative  keywords  and 

volumes of returned results from public search engines. This big data is real time and more accessible, 

have much broader coverage  than  surveys of selected  individuals or examination of patents and 

scientific publications, which can be employed to portray the dynamics of ongoing or fleeting issues 

[14],  in  this case,  technological  features. The suitability of using  the  representative keywords and 

volumes of returned results to portray the development of certain technologies is demonstrated in 

the following four aspects: 

1) The diffusion of contents is primarily driven by selective exposure [15]. In other words, online 

resources contain sufficient domain specificity. 

2) Innovation processes are driven by specified search behaviors [16,17], which are equivalent 

to online keyword searching. 

3) The volumes of  returned  results are aggregation of massive human behavioral  traces  that 

contain  diversified  knowledge  and  values,  which  are  highly  valued  in  decisions  related  to 

complicated and uncertain issues, such as assessing emerging technologies [18]. 

4) Search data from public search engines is more affordable to acquire than publications and 

patents that are stored in specific databases, the access of which may cost a fortune. 

In this study, we exploit the search data on Google and Google Scholar, which are the most used 

public search engines in the world. The behavioral traces on these engines have been employed to 

explain volatility in financial markets [19] or commodity markets [20], predict values of real estate 

[21],  and  trace  epidemic  outbreaks  [22],  but  this  data  has  not  yet  considered  in  technological 

assessment. 
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We select the domain of  intelligent robotics as a case study to  illustrate the concepts and the 

method, because it is a rapidly evolving field that has attracted extensive attention and investment. 

The selected technologies and their representative keywords are shown in Supplementary Materials 

entitled Supplementary Contents:  Information  about Candidate Technologies. Our proposed method  is 

applied to quantify the feature distributions of the 452 technologies within the domain, based on the 

keyword searching that was conducted on January 1, 2018. 

The rest of this article is organized as follows. In Section I, we review the literature on relevant 

topics.  In Section  III, we elaborate our method.  In Section  IV, we present  the major observations 

derived from our case study, i.e., the 452 intelligent robotic technologies. In Section V, we discuss our 

contributions to the field, and offer key managerial implications for stakeholders. Finally, Section VI 

concludes this work. 

2. Literature Review 

In  this  section we  briefly  review  the  existing  literature  on  technological  feature  evaluation, 

technology  roadmapping,  and  forecasting.  Although  the  reported  methods  from  the  included 

publications are not directly related or comparable to our proposed online‐big‐data‐based approach, 

this literature review highlights the need of characterizing the feature distributions of technologies, 

and identifies the presence of knowledge gap in the literature, further  justifying the positioning of 

our article. 

2.1. Technological Feature Evaluation 

Evaluating  technological  features  is a persistent research hotspot  in  the  field of  technological 

assessment, as such task could identify potentially important technologies. However, to date, there 

are only few features have been considered in the previous studies, and the reported methods only 

aim for one single feature. 

One of the frequently evaluated features  is disruptive susceptibility, the assessment of which 

draws continuous attention. According to Klenner et al. [23], innovations’ disruptive susceptibility is 

evaluated  using  approaches  of  three  categories,  namely  scoring models,  economic models,  and 

scenario  analysis.  Scoring models  are  the most  frequently  used  ones  in  identifying  potentially 

disruptive innovations like, Google’s web‐based office applications [24], 3D printing [25], and Virtual 

Reality/Augmented Reality [26]. Yet, most of these scoring models require to survey (or interview) a 

panel  of well‐selected  experts,  the  access  of which  is  always  limited,  thereby  compromising  the 

applicability of such methods. Economic models [27] and scenario analysis [28] are also essentially 

based on personal experiences and attitudes, and these methods tend to be more case‐specific [81], 

thereby resulting in confined usage. 

Another  intensively  investigated  technological  feature  is  maturity,  or  more  precisely  the 

potential of  commercialization. The most used method  is  the Technology Readiness Level  (TRL) 

assessment, which  is proposed by National Aeronautics and Space Administration  (NASA) in the 

late 1970s [29]. The extensive applications of TRL can be seen in the domains of artificial intelligence 

[30] and sustainable energy [31]. Although the use of the TRL system is supported by well‐defined 

documents [32], it still calls for personal expertise on the technologies that to be assessed, to establish 

suitable metrics [29]. Therefore,  the TRL system shows  limited capacity  in dealing with emerging 

technologies, and could still suffer the hazard of personal bias. 

To remediate such a flaw, a  lot of efforts are  invested to improve  this technological maturity 

assessment method via linking subjective opinions with contextual attributes and technological texts. 

Vik et al. [33] couples TRL with market readiness level, regulatory readiness level, acceptance level 

readiness, and organizational level to build the balanced readiness level assessment to evaluate the 

maturity of agricultural technologies. Kyriakidou et al. [34] uses structural equation modeling (SEM), 

a  multivariate  technique,  to  evaluate  the  maturity  levels  of  information  and  communications 

technology  (ICT) with  consideration of  contextual  characteristics  in  terms of  ICT access, use and 

skills. Online  blogs  [35],  academic  publications  [79,80]  and  patents  [36]  have  been  exploited  for 

technology maturity assessments, and the results show a good agreement with expert opinions [35]. 
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However,  the  selection of  such  contextual  attributes  and  technological  texts  is  still based on  the 

personal knowledge of  the assessors, and  the  inclusiveness and  timeliness of  these  resources are 

limited  [83].  In  addition,  as  previously  mentioned,  all  these  technological  feature  evaluation 

approaches are specifically designed for only one single technological feature. 

2.2. Technology Roadmapping 

Technology roadmapping is a tool for planning technological developments in response to the 

market drivers  [37], and  its applications  can be  found  in  technological domains  like  robotics  [8], 

aircrafts [38], nanotechnology  [39], and bio‐medical  [40].  In essence, technology roadmaps are the 

composite outcomes of experts’ opinions, stakeholder collaboration, and bibliometric analysis [41,42]; 

the first two elements are the backbone of roadmap construction [43], while the use of bibliometric 

analysis is seldomly mentioned [41,44]. Inevitably, individual bias dwells in the reported technology 

roadmapping methods. Besides, as Chakraborty et al. [42] points out that academics are more often 

employed as experts than industrial practitioners in technology roadmapping, the selection of experts 

is biased. To reduce the presence of individual bias and to ensure the quality of involved experts, 

Nazarenko et al. [45] incorporates text mining and semantic maps into technology roadmapping to 

select suitable experts. Nevertheless, these approaches still heavily rely on experts’ opinions. 

With sustained input of efforts, technology roadmapping methods are continuously evolving. 

One notable fraction  is model‐based technology roadmapping, approaches,  in which game  theory 

[46],  or meta model  [47]  are  integrated.  The  application  of  these model‐based methods  usually 

requires well‐established  industrial datasets  like Car Specs Database  [46]. Since such datasets are 

always in short supply, the applicability of these model‐based approaches is thereby be constrained. 

Attention  also  be  paid  on  adjusting  the  procedure  of  technology  roadmapping  to  reduce 

potential biases. Okada et al. [48] puts forward a backcasting technology roadmapping process; with 

complete participation of experts, a  future vision  is  firstly defined,  then  technology pathways  to 

realize  the  vision  is  constructed.  Noh  et  al.  [49]  proposes  an  opportunity‐driven  technology 

roadmapping approach, in which technological opportunities are identified based on patent analysis 

and market opportunities are identified via value propositions. Similar  to  the backcasting process 

[48], this opportunity‐driven approach also requires groups of technological and marketing experts 

who participate retrospective technology roadmap analysis [49]. 

Few set their sights on a broader picture. Maja and Letaba [50] suggests that big data could be 

an  available  source  of  value  creation  and  technological  analytics,  and  data‐driven  technology 

roadmap can be rendered by coordinating big data analytics and expert knowledge. Yet, this article 

is  conducted based on a virtual  interview with  financial professionals  [51];  it neither explain  the 

linkage  between  big  data  and  expert  knowledge,  nor  specify  the  details  of  big  data  usage  in 

technological roadmapping. 

2.3. Technology Forecasting 

Technology  forecasting, also referred to as  technological forecasting, concerns with emerging 

technological  trends  and  radical  new  technologies.  Traditionally,  technology  forecasting  is  an 

iterative process during which  the  forecasters progressively  familiarize  themselves with a certain 

technological domain and make predictions [52]. 

With  ever‐increasing  data  resources,  technology  forecasting  is  switched  from  expert‐centric 

approaches  to  data‐based  approaches  [12,53].  Owning  to  their  relevance  with  technological 

developments, patents and scientific papers are  the primary  resources of quantitative  technology 

forecasting  [12,54,55].  Other  textual  resources  such  as  blogs  [56],  hyperlinks  [57],  and  product 

specifications [46,58] have also been employed in technology forecasting. Increasing data resources 

further  stimulate  the  incorporation of big data analytics  like data  fusion  [51],  topic analysis  [59], 

semantic analysis [60], and machine learning [61] in technology forecasting, as these techniques not 

only improve the performance of the existing methods, but also facilitate the development of novel 

approaches [62]. 
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In general,  there are commonalities between  the developments of technology forecasting and 

technology  roadmapping  approaches;  both  procedures  increasingly  rely  on  historical  data  like 

patents and publications, and state‐of‐the‐art data analytical  techniques are utilized.  Intrinsically, 

technology  forecasting  and  technology  roadmapping  are  trying  to position  technologies  in  some 

certain stages of their life cycles, a concept defined by Ford and Ryan [63]. Patent‐based technology 

forecasting processes can determine the life cycle stages of technologies [54], and calculate the upper 

limit of  technologies’ S‐curve  [54]. However, not all  technologies necessarily  follow Gartner’s hype 

cycle or S‐curve; the development and diffusion of a fraction of technologies might slow and take a 

relatively  longer  period  to  reach  their  peak  diffusion  rates,  while  others  can  be  much  faster. 

Distinctive  technology  life  cycle  stages may not be applicable  to all  technologies  [64]. Moreover, 

patent‐based methods suffer from one common but often overlooked weakness, that is, a fraction of 

patent applications are of strategic purposes like patent trolling and market monopoly. 

2.4. Literature Summary 

In  sum,  the  reported  technological  assessment  methods  still  suffer  from  some  common 

weaknesses [82]. First, the reported approaches can only evaluate one single technology, and mostly 

are for one single technological feature. Second, the extant methods are based on defective resources; 

qualitive  approaches have  to  endure personal biases, while quantitative  approaches  can only be 

based on limited and lagged publication records, in particular patents and scientific papers. Although 

big data  analytical  techniques  have  been  extensively  discussed  in  the  literature  of  technological 

assessment, the use of big data is rarely discussed, as most of the works are still based on conventional 

datasets such as patents [54], publications  [36,79], and product specifications  [46,58]. But the used 

data  resources  tend  to be more  specific, have poor  timeliness,  and  sometimes are  costly or  even 

impossible  to  access.  Rapid  technological  developments  urge  the  utilization  of more  inclusive, 

accessible, timely, and affordable big data for the task of technological assessment. 

Another major  challenge  is  related  to  rapid  and  radical  technological  progress.  Important 

decisions  like  capital  investment  and  science  policy  usually  require  detailed  analysis  on  the 

technologies in a targeted domain. Considering the speed of technological advances, the number of 

technologies in a given domain can be substantial. However, the currently available technological 

assessment approaches like the TRL system and technology roadmapping can only handle one single 

technology, heavily rely on personal expertise [29,43], and cannot be rendered in a timely fashion. 

The  use  of  big  data  could  remediate  this  problem,  but  it  requires  novel  approaches, which  are 

supposed  to be capable of processing such data resources swiftly. Yet,  till now,  to  the best of our 

knowledge, there is no approaches that can portray feature distributions of technologies in a specific 

technological domain. 

3. Methods 

Our  proposed  approach  portrays  the  feature  distributions  of  technologies  in  defined  two‐

dimensional (2D) analytical spaces, in terms of a series of characterizing indicators that are calculated 

based on  the  technologies’ most  representative keywords and volumes of  returned search  results 

from  public  search  engines  like  Google  and  Google  Scholar.  Therefore,  the  elaboration  of  our 

approach  is  thereby divided  into  two major  subsections,  including  the proposal of  the analytical 

framework and feature indicators. The setting of the case study of assessing the feature distributions 

of the 452 selected intelligent robotic technologies is introduced in the end of this sector. 

3.1. Analytical Framework 

Our technological assessment approach  is based on a 2D analytical space of “technique” (the 

horizontal axis) and “application” (the vertical axis), where the feature distributions of technologies 

are portrayed. Tracing progress and  identifying applications are  two  fundamental aspects of any 

technological assessment methods like technology roadmap [8]. Referring to the intelligent robotics 

literature [8,65], the two basic dimensions are further refined into the corresponding sets:{perception, 
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cognition,  human–computer  interaction,  decision,  action,  other}  and  {manufacturing  robotics, 

medical  robotics,  agricultural  robotics,  civil  robotics,  commercial  robotics,  transport  robotics, 

consumer robotics, other robotics}. The 48 analytical spaces are thus developed, as shown in Figure 

2. 

 

Figure 2. Illustration of division of the 2D analytical space. The original 2D analytical space is refined 

given  that  six  subsectors  of  the  technique  dimension  and  eight  subsectors  of  the  application 

dimension yield a total of 48 2D analytical spaces. 

The coordinates of the included technologies in the analytical spaces were calculated according 

to  the  modified  Google  Distance  [66].  Based  on  returned  search  volumes  by  the  engines,  the 

coordinates Skij (SkXi, SkYj) are calculated as follows: 

𝑆௞𝑋௜ ൌ
𝑠௞𝑋௜

𝑠௞ ൅ 𝑋௜ െ 𝑠௞𝑋௜
  (1)

𝑆௞𝑌௝ ൌ
𝑠௞𝑌௝

𝑠௞ ൅ 𝑌௝ െ 𝑠௞𝑌௝
 

(2)

where  SkXi  and  SkYj  denote  the  x‐coordinate  and  the  y‐coordinate  of  the  technology  in  the  2D 

analytical  space,  respectively;  sk  denotes  the  total  number  of  returned web  pages  on which  the 

extracted terms occur; Xi and Yj denote the total numbers of returned web pages on which the axial 

keywords of the horizontal axis (the subsector of the technique dimension) and the vertical axis (the 

subsector  the application dimension) occur,  respectively;  skXi and  skYj denote  the  total number of 

returned web pages on which the extracted terms and the axial keywords occur; k denotes the kth 

technology, k = 1, 2, ..., 452; I denotes the ith subdivision of the technique dimension, I = 1, 2, ..., 6; j 

denotes the jth subdivision of the application dimension, j = 1, 2, ..., 8. 

The coordinates Skij (SkXi, SkYj) not only characterize the position of a certain robotic technology 

in some 2D analytical space but also measure the semantic similarity between the technology and the 

axis of the space. Unlike the conventional Google Distance which is inversely correlated to the semantic 

similarity between selected keywords [67], the proposed coordinates are positive measurements of 

the relationships between the technology and the two dimensions of the analytical spaces. Therefore, 

the relevance between the technologies and the 2D analytical spaces is measured using the modified 

version of Google Distance, and  the magnitudes of  these  intelligent  robotic  technologies  to certain 

fields are quantitatively determined. 

3.2. Feature Indicators 
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We describe the feature distributions of the technologies using the four proposed characterizing 

indicators. The first indicator is “versatility” given that the application scope of a technology defines 

its  fate  [68].  For  the  domain  of  intelligent  robotics  technologies,  having  multi‐applications  is 

considered  the most  important criterion  [6], and  functionalities of  robotics are  rooted  in different 

configurations of technological features [77]. A versatile technology can be applied in a wide range 

of scenarios, and the versatility characteristic is dependent on the degree of uniformity of coordinates. 

Based on the definition of Gini Index [25], a statistical measure of economic inequality in a population, 

we define the versatility indicator as Eq. (3): 

 

(3)

where n denotes the number of the 2D analytical subspaces and n = 48; m = 1, 2, …, n; q = 1, 2, …, m; 

(SkXi)m/q and (SkYj)m/q denote the coordinates of the kth technology in the m or qth analytical subspace. 

The second indicator is “significance”, an indicator that measures the degree of significance of 

the  kth  innovation  to  analytical  subspaces. The  “significance”  indicator  is  calculated  based  on  an 

“averaging” indicator that is defined as Eq. (4): 

 

(4)

where n denotes  the  total number of  the 2D analytical subspaces. The “significance”  indicator  is a 

combined  indicator  that measures  the  degree  of  significance  of  the  kth  innovation  to  analytical 

subspaces. The value  of  this  indicator  is defined  as  the  ratio  of  the  averaging  indicator  and  the 

versatility indicator, as shown in Eq. (5): 

𝑆𝑖𝑔௞ ൌ
𝐴𝑣𝑔௞
𝑉𝑒𝑟𝑠௞

  (5)

The  third  indicator  is “commerciality”,  inspired by  the  theory of  technology  life cycle;  the  life 

cycle stage of a technology can be approximately determined on the basis of the “hits” on relevant 

items like journal papers and patents [68]. The volumes of search results are expected to provide more 

direct  and  credible  evidence  to  portray  massive  traces  of  technological  evolution  instead  of 

speculating the potential changing trends of “hits” [69]. Instead of decomposing the technology life 

cycle  into several distinctive stages, and  then determining what stage  the  technology might be  in 

based on historical analogies [12], this indicator provides a quantitative measurement in a continuous 

and  real‐time manner.  Hence,  the  “commerciality”  indicator measures  the  degree  of  correlation 

between the y‐coordinate and x‐coordinate of a technology as shown in Eq. (6). 

 
(6)

where a high Comk value suggests that the corresponding technology has an application value that is 

greater than its technique value, which may suggest that this technology might be at a stage that is 

closer to commercialization. 

The  last  indicator  “disruptiveness”  is  proposed  to  assess  whether  the  technology  can  be 

disruptive, and our definition of disruptiveness is compatible with that of the disruptive innovation 

literature given that possessing the competency to capture niche or emerging markets is a key feature 
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of disruptive  innovations  [23,28]. By  combining  the  skewness  indicator  (Eq.  [7])  and  the A_Comk 

values of the commerciality, the “disruptiveness” indicator is calculated as Eq. (8): 

 

(7)

(8)

where s denotes the standard deviation of all the SkYj values. The skewness indicator measures the 

degree  of  deviation  in  the  distribution  of  y‐coordinates,  while  the  versatility  index  shows  the 

evenness  of  the  distribution  of  x‐coordinates  and  y‐coordinates.  According  to  Eq.  (8),  a  high 

disruptiveness  value  is  attributed  to  two  components:  high  application  values,  and  uneven 

distributions of application values. In other words, a supposedly disruptive technology is expected 

to be important in applications and holds an irreplaceable position in a few fields. Sufficiently high 

application  values  ensure  that  the  technology  cannot  be  readily  substituted  by  others,  but  even 

distributions of application values imply that the technology could be more fundamental. This setting 

is compatible with the disruptive innovation literature, as the disruptive potential of technologies is 

linked to their capacity of capturing niche markets [28]. 

3.3. Case Study Setting 

Initially, we select 470 technologies based on 22 strategic plans of intelligent robotics proposed 

by major powers  in  the world,  including U.S., European Union,  Japan, U.K., Russia, France, and 

China.  A  total  of  452  authentic  technologies  are  obtained  for  characterization  by  excluding  18 

obviously  atypical,  vague,  and  irrelevant  technologies  (as  marked  with  “N”  in  Table  I  in 

Supplementary Materials). 

Then, we  extract  the  representative  keywords  from  the  452  technologies  according  to  the 

procedure shown in Figure 3. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 June 2024                   doi:10.20944/preprints202406.1235.v1

https://doi.org/10.20944/preprints202406.1235.v1


  9 

 

 

Figure 3. Keyword extraction procedure for the included intelligent robotics technologies. 

The complete list of the total of 452 selected technologies with their corresponding keywords is 

displayed  in  Table  I  in  Supplementary  Materials.  The  keyword  searching  procedure  has  been 

conducted  on  January  1,  2018,  and  the  feature  distributions  of  the  452  technologies  are  thereby 

portrayed. 

4. Results 

The results of the application of our technological assessment approach on the 452  intelligent 

robotic technologies are illustrated in according to the four indicators. 

4.1. Distributions of Versatility Values 

The  452  technologies  from  the domain of  intelligent  robotics were  sorted  according  to  their 

versatility values, as shown in Figure 4. The patterns of the versatility curves based on Google and 

Google Scholar are quite similar (Figure 4 [a]). The p‐values of the two curves are 0.0277 and 0.0000, 

respectively. Thus, the hypothesis of normal distribution has been rejected according to the Shapiro–

Wilk  test  for  an  alpha  level  of  0.05. Thus,  the  versatility  values  have  skewed  distributions. The 

arithmetic averaging values of the two curves are plotted in Figure 4 (b). We define the technologies 

with a Vers_Avg value over 0.4145 (the average versatility value) as versatile, while the others are 

labeled  as  specialized  technologies.  A  total  of  229  versatile  technologies  and  223  specialized 

technologies are available, accounting for 50.7% and 49.3% of the total figure, respectively. In other 

words, all the technologies are normally distributed in their Vers_Avg values; the p‐value is 0.1635, 

which rejects the hypothesis of non‐normal distribution. Figure 4 shows that the versatility values 

based  on Google  and Google  Scholar  are  inconsistent.  This  discrepancy may  be  attributed  to  the 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 June 2024                   doi:10.20944/preprints202406.1235.v1

https://doi.org/10.20944/preprints202406.1235.v1


  10 

 

differences  between  the  focuses  and  users  of  these  engines: Google  Scholar  focuses  on  scientific 

publications and caters for academics [70], whereas Google is far more inclusive. 

 

Figure 4. Values of  the versatility  index of  the 452 selected  intelligent robotic  technologies: (a)  the 

Vers_Google and Vers_GoogleScholar values are calculated and plotted in a descending order; (b) the 

Vers_Avg values are calculated and plotted  in a descending order, along with  the  corresponding 

Vers_Google and Vers_GoogleScholar values. 

4.2. Distributions of Significance Values 

The significance values of the included technologies are plotted in descending orders in Figure 

5  (a).  In general,  the significance values  from Google are noticeably higher  than  those  from Google 

Scholar. The curves follow power‐law distributions: a few technologies possess higher significance 

values, whereas the majority have lower values. This finding is similar to those obtained on scale‐

free networks like the World Wide Web [71], personal attributes like wealth [72], and names [73], and 

natural events like solar energetic particle events [74]. 

We compare  the  top 150  technologies of  the highest significance values based on Google and 

Google Scholar. We observe that 79 technologies have the top 150 Sig_Google values and the top 150 

Sig_GoogleScholar  values. We  compute  the  arithmetic  averages  of  the  two  curves  (Sig_Avg)  and 

plotted the results in Figure 5 (b). The Pearson correlation coefficients of the Sig_Avg values and the 

two series are 0.9296 and 0.7254, respectively. This observation suggests  that our measurement  is 

robust  and Google  is more  suitable  for  technological  assessment due  to  its wider  scope of users. 

Among  the most significant 150  technologies  (Sig_Google), only 22 are versatile  (14.7%), while  the 

others are specialized (85.3%). The observation shows that the significance values of the specialized 

technologies are generally higher than those of the versatile ones due to their lack of focus. As their 

applications  are  comparatively  limited,  these  specialized  technologies possess high  specificity  in 

certain  fields. Creativity  is  highly  domain  specific,  but  some  degrees  of  generality may  also  be 

involved [70]. Considering that specific usefulness perceived by users could influence the acceptance 

of a  technology [74],  the  technologies of specificity are valued as reflected by their  low versatility 

values and high significance values. This finding partially explains why technological competitions 

highly value specialization [4]. 
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Figure 5. Values of the significance indicator of the 452 selected intelligent robotic technologies: (a) 

the  Sig_Google  and  Sig_GoogleScholar  values  are plotted  in descending  orders;  (b)  the  Sig_Avg 

values are plotted in a descending order, and the corresponding Sig_Google and Sig_GoogleScholar 

values are also presented in the figure. 

4.3. Distributions of Commerciality Values 

Figure 6 (a) shows the commerciality values of all the 452 technologies in a descending order, as 

well as the corresponding values of the upper ( , denoted as A_Comk) and lower ,denoted 

as I/T_Comk) parts. Only two technologies have exceptionally high commerciality values over 11, 55 

technologies with the commerciality values of 2 to 6, while the others’ correlation values are below 2. 

Power‐law distributions are observed in Figure 6 (a), which means that the intelligent robotics 

technologies form a scale‐free network [75]. It also implies that most of the technologies still have a 

long distance from commercialization. For example, European Commission claimed that “undeniable 

gap  between  the  basic  science  and  engineering  implementations”  exists  in  robotic  research  [76]. 

Several  exceptional  high  I/T_Comk  values  in  Figure  6  (a)  correspond  to  the  innovations  of  low 

significance, which  implies  that versatile  technologies  always have  less  technological  features.  It 

provides additional quantitative evidence  to support  the speculation  that high domain specificity 

benefits and propels innovation [70]. 

 

Figure 6. Values of the commerciality indicator of the selected intelligent robotic technologies: (a) the 

Comk  values  of  the  total  of  452  technologies  are  plotted  in  a  descending  order,  as well  as  the 

corresponding A_Comk and I/T_Comk values; (b)  line chart of the A_Comk and I/T_Comk values 

according to the descending order of the corresponding Comk values of the top 150 technologies with 

the highest Sig_Google values. 

We acquire  the commerciality values of  the  top 150  technologies with  the highest Sig_Google 

values, and we plot the values in a descending order in Figure 6 (b) with the corresponding A_Comk 
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values and I/T_Comk values. Figure 6 (b) shows that the curves of the A_Comk and I/T_Comk values 

still  follow power‐law distributions. Figure 6  (b) also shows  that  the commerciality  indicator of a 

technology is negatively correlated to its x‐coordinates, and the y‐coordinates affect the value of the 

commerciality indicator positively. This finding implies that asymmetry exists between applications 

and  technological  developments.  This  situation  confirms  that  different  life  cycle  stages  of  a 

technology  have  different  focuses  [68]  and  the  heterogeneity  between  research  and  technology 

commercialization persists  [76].  Furthermore, we  find  that  the  arithmetic  average  commerciality 

value of the top significant 150 technologies (1.3109) is higher than that of the total of 452 technologies 

(1.1805), which means that the top ones are closer to be commercialized. 

4.4. Distributions of Disruptiveness Values 

We  calculate  the  disruptiveness  values  of  the  452  technologies  and  the  top  significant  150 

technologies, as shown  in Figs. 7  (a) and  (b), respectively. The  technologies are still of power‐law 

distributions  according  to  their  disruptiveness  values  despite  the  existence  of  some  degrees  of 

distortion (Figure 7 [a]). Except for one technology with the highest disruptiveness value of 45.4715, 

the disruptiveness values of the other technologies are within 0 to 30. This observation could be the 

bane of the theory of disruptive  innovation, which has long been under heavy criticisms of being 

highly selective [77]; in fact, disruptive innovations are rare. The disruptiveness values show that the 

significant technologies are generally supposed to have higher potential of causing disruption; the 

arithmetic average disruptiveness value of the top significant 150 technologies (11.0176) is noticeably 

greater  than  that  of  the  total of  452  technologies  (9.6488),  as  shown  in Figure  7  (b). The  finding 

supports the route of technological disruption: specialization promotes the adoption of a technology 

[75], and disruptiveness is fulfilled after successfully acquiring market shares [23,28]. 

 

Figure 7. Values of the disruptiveness  index of the selected  intelligent robotic technologies: (a) the 

Drpk values of the total of 452 technologies are plotted in descending orders, with the corresponding 

A_Comk and I/T_Comk values; (b) line chart of the A_Comk and I/T_Comk values according to the 

descending order of  the corresponding Comk values of  the  top 150  technologies with  the highest 

Sig_Google values. Notably, some degrees of distortion  from a proper power‐law distribution are 

found in the curve of the Drpk values, and they are marked in a circle of black dot line. 

We also check the robustness of the observed feature distributions. We calculate the historical 

values of the four indicators of two selected technologies: Industrial Robot Programming and Artificial 

Muscle. In the Robustness Checks: On the Characterizing Indicators in Supplementary Materials, we observe 

a  good  synergy  between  historical  data  and  literature  review.  In  the  Robustness  Checks: On  the 

Observed Feature Distributions in Supplementary Materials, the same feature distributions are found in 

the reduced 2D measurements, which attests the robustness of the observed pattern. 

Furthermore, we  compare  our method with  the  commonly  used  technological  assessment 

methods,  i.e.,  Gartner’s  hype  cycle  or  S‐curve,  in  depicting  the  developmental  trends  of  two 

technologies, i.e., Industrial Robot Programming and Artificial Muscle. We elaborate this comparison in 
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Methodological Comparison  in  Supplementary Materials,  and  prove  the  superiority  of  our  proposed 

approach. 

5. Discussion 

In  this  section,  the  theoretical  contributions  and managerial  implications  of  the  proposed 

methods and observed results are discussed, and potential directions of future works are suggested. 

5.1. Theoretical Contributions 

In general, our study offers two principal contributions to the literature. 

The primary contribution of this work lies in the methodology. Our online behavioral big data‐

based approach is the first method that is capable of assessing the features of multiple technologies, 

while  the  reported  technological  assessment methods  like Gartner’s  hype  cycle  [5],  S‐curve  [6],  or 

disruptive susceptibility evaluation models [23] can only assess one single technological feature of a 

technology. Also, our proposed method tends to overcome the limitations of the resources on which 

the extant technological assessment methods are based, for examples, personal expertise or patents 

and publications (see Literature Review), and allows us to quantify the feature distributions of multiple 

technologies in any given domain in a more inclusive, accessible, timely, and affordable manner. 

The other theoretical contribution of this article is derived by testing hypotheses proposed in the 

extant literature. We show that among the 452 intelligent robotics technologies, most of the features 

follow power‐law distributions; a  few technologies exhibit higher values, while  the majority have 

much lower values. This observation is compatible with the theory of disruptive innovation, which 

implies that potentially disruptive innovations are always in scarcity. 

5.2. Managerial Implications 

In  addition  to  contributing  to  our  knowledge  of  the  key  features  of  technology  and  their 

distribution in a technical domain, the insights into the distributions of technology features gained 

using this method can have important managerial implications for the decision‐making processes of 

various stakeholders. 

First,  for  policy makers  and  industrial  practitioners, more  attention  and  resources  can  be 

allocated to the technologies with higher significant values. The definition of the significant indicator 

suggests  that  the  technologies with higher  significant values  receive higher attention  from a  few 

limited  fields, and  they are much closer  to being commercialized or causing potential disruption. 

Considering that in any specific domain, only a few technologies possess higher significant values, 

our big data‐based approach could be beneficial for decision makers by explicitly identifying such 

technologies. The proposed method can also enhance the understanding of the technological research 

needs of a given domain. Knowing  the distributions and even potentials of  technologies  in  their 

studied domains in a timely and comprehensive manner, they can better decide their strategic focus 

and priority. 

Second, this method also provides a correction function to all stakeholders. When the feature 

distributions of  some  technologies deviate  from  their  supposed distributions,  the deviations may 

suggest  that  expectations  on  such  technologies  could  be  excessively  overrated.  For  instance,  the 

distortion of  the disruptiveness values of  intelligent  robotics  technologies  (see  the black  circle  in 

Figure  6[a])  can  be  explained  by  the  fact  that  some  innovations  are  thought  to  have  disruptive 

potential and are being intensively discussed, but the real disruptive innovations are indeed rare [28]. 

This finding also offers sound explanation to the question why the disruptive innovation theory has 

been  highly  selective  in  and  sensitive  to  cases  under  study  [77].  Although  more  intelligent 

technologies are believed to be disruptive and are under heated discussion, only a few technologies 

indeed possess the potential of causing disruption. 

Third, the proposed approach can effectively and constantly monitor the gap between research 

and application, which is crucial to decision‐making in research and development. The existence of 

such  a  gap  calls  for  a  closer  scrutiny  on  technological  development,  which  is  usually  full  of 
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unexpected  sudden  changes. For  instance,  the  technology  of Artificial Muscles has  enjoyed  rapid 

development in the beginning of 21st century due to the advent of electroactive polymers [78] after a 

long period of stagnation. For this reason, the conventional technology life cycle description tools like 

Gartner’s hype cycle or S‐curve become useless, and timely approaches like the proposed big data‐based 

method are much more viable; we successfully prove this statement in Methodological Comparison in 

Supplementary Materials. 

5.3. Theoretical Implications 

This paper leaves three potential arenas for future study. 

The first direction is to further exploit online human behavioral traces and investigate national 

or regional differences in the trends and dynamics of developments in certain technological domains. 

This  would  enable  us  to  better  understand  the  complicated  nexus  between  technological  and 

institutional factors [4]. 

The second arena  for  further  investigation  is  the differing perceptions of different groups, as 

noticeable differences have been observed in the preliminary search results derived from Google and 

Google Scholar, for example, the significance indicator. 

The third potential research area lies in the feature characterization based on different methods 

for defining  technologies  and  their  representative keywords,  since  the definitions  and keywords 

selections could also affect the feature distributions. 

6. Conclusions 

In this article, we design a novel big data‐based method to characterize the feature distributions 

of  technologies  in  a  given  domain.  Four  technological  features  are  proposed,  namely  versatility, 

significance,  commerciality,  and  disruptiveness,  corresponding  to  important  aspects  of  technologies. 

These features are determined based on the technologies’ representative keywords and volumes of 

returned search results from public search engines in two‐dimensional analytical spaces of technique 

and application, and the feature distributions are thereby acquired. Using a sample of 452 intelligent 

robotics technologies as a case study, we show that except for the values of the versatility indicator, 

which are normally distributed, the other features follow power‐law distributions (distribution that 

has more sample data with extreme values than normal distribution, drawing a curve with a long tail 

lowering  as  the  value  increases). The  observed  patterns  are proved  to  be  robust  in  the  selected 

technologies, i.e., Industrial Robot Programming and Artificial Muscles, and reduced analytical spaces. 

The findings of this work provide insights to assist relevant decision‐makings, for examples, capital 

investment on research and formulation of science policy. 
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