Pre prints.org

Article Not peer-reviewed version

Feature Distributions of Technologies

Jiannan Zhu, Chao Deng, Jiaofeng Pan, Fu Gu i , Jianfeng Guo i

Posted Date: 18 June 2024
doi: 10.20944/preprints202406.1235.v1

Keywords: 2D analytical space; commerciality; disruptiveness; representative keyword; search engine;
significance; technological assessment; versatility

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/505417
https://sciprofiles.com/profile/431171

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 June 2024 d0i:10.20944/preprints202406.1235.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Feature Distributions of Technologies

Jiannan Zhu 12, Chao Deng '?, Jiaofeng Pan 2, Fu Gu ** and Jianfeng Guo 2*

! Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China;
zhujiannan20@mails.ucas.ac.cn (J.Z.); dengchaol91@mails.ucas.ac.cn (C.D.); jfpan@cashq.ac.cn (J.P.)

2 School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing 100049,
China.

3 Center of Engineering Management, Polytechnic Institute, Zhejiang University, Hangzhou 310015, China.

* National Institute of Innovation Management, Zhejiang University, Hangzhou 310027, China.

* Correspondence: gufu@zju.edu.cn (F.G.); guojf@casipm.ac.cn (J.G.)

Abstract: The development of one technology can be portrayed by common methods like Gartner’s hype cycle
or S-curve, however, there is no method to characterize the feature distributions of multiple technologies within
a specific domain. This study proposes a big data-based method in terms of four proposed features, namely
versatility, significance, commerciality, and disruptiveness, to characterize the technologies within a given domain.
The features of technologies are quantitively portrayed using the representative keywords and volumes of
returned search results from Google and Google Scholar in two-dimensional analytical spaces of technique and
application. We demonstrate the applicability of this method using 452 technologies in the domain of intelligent
robotics. The results of our assessment indicate that the versatility values are normally distributed, while the
values of significance, commerciality, and disruptiveness follow power-law distributions, in which few
technologies possess higher feature values. We also show that significant technologies are more likely to be
commercialized or causing potential disruption, as such technologies have higher scores in these features.
Further, we validly prove the robustness of our approach via comparing historical trends with literature and
characterizing technologies in reduced analytical spaces. Our method can be widely applied in analyzing
feature distributions of technologies in different domains, and it can potentially be exploited in decisions like
investment, trade, and science policy.

Keywords: 2D analytical space; commerciality; disruptiveness; representative keyword; search
engine; significance; technological assessment; versatility

1. Introduction

Technological advances propel economic growth, long-term social well-being [1], and
sustainable development [2]. They also threaten the status quo through disrupting the existing
markets or creating completely new markets [3]. Moreover, technological developments affect the
global competitiveness of nations [4], given that competitive edges are deeply rooted in technological
superiority [4]. Characterizing technological development facilitates important decision-making such
as investment, product launch, and business expansion. Therefore, it has attracted much attention of
investors, industrial captains, academics, and even policy makers. The developmental trend of one
single technology has been extensively studied, and is commonly be characterized by well-known
methods like Gartner’s hype cycle [5] or S-curve [6] (see Figure 1 [a]). However, the features of the
technologies within a chosen domain have not been systematically investigated and remain largely
unknown (see Figure 1 [b]). Characterizing multiple technologies is extremely challenging,
considering that the technologies in any given domain are highly heterogeneous and can have
complex distributions/relationships. Consequently, important decision-making in investment, trade,
and science policy is hindered due to a lack of reliable analytical tools for characterizing domain-
specific technologies’ feature distributions.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. (a) Evolution of an individual technology can be described by common assessment methods
like Gartner’s hype cycle [5]. (b) Evolution of technologies within a domain is more complex and
poorly understood.

In general, the extant technological assessment methods can be grouped into two categories:
qualitative and quantitative [7]. However, aside from the primary and common flaw, that is, analysis
object of the reported methods is limited to one feature of one single technology, these methods also
suffer from other intrinsic weaknesses. Most qualitative methods, such as technology roadmap [8],
and Delphi [9,10], rely only upon surveys, which are always constrained by interviewees’ personal
experiences and attitudes. Considering that the interviewees are not anonymous to the assessor(s)
and the potential competitors are often excluded [11], the reliability of these survey-based tools is
further compromised. The quantitative methods like bibliometrics and patent analysis [1,4,12], are
primarily based on limited historical data, the latency of which hinders their applicability in
characterizing the feature distributions of technologies in emerging domains. Given the constant
evolution of technologies [13], quantitatively characterizing feature distributions of technologies in
real time is highly desirable in technological assessment and the related decision-making processes
like investment and trade. Yet, to the best of our knowledge, none of the existing methods can cope
with this challenging task.

In this study, we propose a method that innovatively exploits online big data to develop an
empirical tool for characterizing feature distributions of technologies in any technical domain. This
approach depicts the development of a technology based on its representative keywords and
volumes of returned results from public search engines. This big data is real time and more accessible,
have much broader coverage than surveys of selected individuals or examination of patents and
scientific publications, which can be employed to portray the dynamics of ongoing or fleeting issues
[14], in this case, technological features. The suitability of using the representative keywords and
volumes of returned results to portray the development of certain technologies is demonstrated in
the following four aspects:

1) The diffusion of contents is primarily driven by selective exposure [15]. In other words, online
resources contain sufficient domain specificity.

2) Innovation processes are driven by specified search behaviors [16,17], which are equivalent
to online keyword searching.

3) The volumes of returned results are aggregation of massive human behavioral traces that
contain diversified knowledge and values, which are highly valued in decisions related to
complicated and uncertain issues, such as assessing emerging technologies [18].

4) Search data from public search engines is more affordable to acquire than publications and
patents that are stored in specific databases, the access of which may cost a fortune.

In this study, we exploit the search data on Google and Google Scholar, which are the most used
public search engines in the world. The behavioral traces on these engines have been employed to
explain volatility in financial markets [19] or commodity markets [20], predict values of real estate
[21], and trace epidemic outbreaks [22], but this data has not yet considered in technological
assessment.
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We select the domain of intelligent robotics as a case study to illustrate the concepts and the
method, because it is a rapidly evolving field that has attracted extensive attention and investment.
The selected technologies and their representative keywords are shown in Supplementary Materials
entitled Supplementary Contents: Information about Candidate Technologies. Our proposed method is
applied to quantify the feature distributions of the 452 technologies within the domain, based on the
keyword searching that was conducted on January 1, 2018.

The rest of this article is organized as follows. In Section I, we review the literature on relevant
topics. In Section III, we elaborate our method. In Section IV, we present the major observations
derived from our case study, i.e., the 452 intelligent robotic technologies. In Section V, we discuss our
contributions to the field, and offer key managerial implications for stakeholders. Finally, Section VI
concludes this work.

2. Literature Review

In this section we briefly review the existing literature on technological feature evaluation,
technology roadmapping, and forecasting. Although the reported methods from the included
publications are not directly related or comparable to our proposed online-big-data-based approach,
this literature review highlights the need of characterizing the feature distributions of technologies,
and identifies the presence of knowledge gap in the literature, further justifying the positioning of
our article.

2.1. Technological Feature Evaluation

Evaluating technological features is a persistent research hotspot in the field of technological
assessment, as such task could identify potentially important technologies. However, to date, there
are only few features have been considered in the previous studies, and the reported methods only
aim for one single feature.

One of the frequently evaluated features is disruptive susceptibility, the assessment of which
draws continuous attention. According to Klenner et al. [23], innovations’ disruptive susceptibility is
evaluated using approaches of three categories, namely scoring models, economic models, and
scenario analysis. Scoring models are the most frequently used ones in identifying potentially
disruptive innovations like, Google’s web-based office applications [24], 3D printing [25], and Virtual
Reality/Augmented Reality [26]. Yet, most of these scoring models require to survey (or interview) a
panel of well-selected experts, the access of which is always limited, thereby compromising the
applicability of such methods. Economic models [27] and scenario analysis [28] are also essentially
based on personal experiences and attitudes, and these methods tend to be more case-specific [81],
thereby resulting in confined usage.

Another intensively investigated technological feature is maturity, or more precisely the
potential of commercialization. The most used method is the Technology Readiness Level (TRL)
assessment, which is proposed by National Aeronautics and Space Administration (NASA) in the
late 1970s [29]. The extensive applications of TRL can be seen in the domains of artificial intelligence
[30] and sustainable energy [31]. Although the use of the TRL system is supported by well-defined
documents [32], it still calls for personal expertise on the technologies that to be assessed, to establish
suitable metrics [29]. Therefore, the TRL system shows limited capacity in dealing with emerging
technologies, and could still suffer the hazard of personal bias.

To remediate such a flaw, a lot of efforts are invested to improve this technological maturity
assessment method via linking subjective opinions with contextual attributes and technological texts.
Vik et al. [33] couples TRL with market readiness level, regulatory readiness level, acceptance level
readiness, and organizational level to build the balanced readiness level assessment to evaluate the
maturity of agricultural technologies. Kyriakidou et al. [34] uses structural equation modeling (SEM),
a multivariate technique, to evaluate the maturity levels of information and communications
technology (ICT) with consideration of contextual characteristics in terms of ICT access, use and
skills. Online blogs [35], academic publications [79,80] and patents [36] have been exploited for
technology maturity assessments, and the results show a good agreement with expert opinions [35].
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However, the selection of such contextual attributes and technological texts is still based on the
personal knowledge of the assessors, and the inclusiveness and timeliness of these resources are
limited [83]. In addition, as previously mentioned, all these technological feature evaluation
approaches are specifically designed for only one single technological feature.

2.2. Technology Roadmapping

Technology roadmapping is a tool for planning technological developments in response to the
market drivers [37], and its applications can be found in technological domains like robotics [8],
aircrafts [38], nanotechnology [39], and bio-medical [40]. In essence, technology roadmaps are the
composite outcomes of experts’ opinions, stakeholder collaboration, and bibliometric analysis [41,42];
the first two elements are the backbone of roadmap construction [43], while the use of bibliometric
analysis is seldomly mentioned [41,44]. Inevitably, individual bias dwells in the reported technology
roadmapping methods. Besides, as Chakraborty et al. [42] points out that academics are more often
employed as experts than industrial practitioners in technology roadmapping, the selection of experts
is biased. To reduce the presence of individual bias and to ensure the quality of involved experts,
Nazarenko et al. [45] incorporates text mining and semantic maps into technology roadmapping to
select suitable experts. Nevertheless, these approaches still heavily rely on experts” opinions.

With sustained input of efforts, technology roadmapping methods are continuously evolving.
One notable fraction is model-based technology roadmapping, approaches, in which game theory
[46], or meta model [47] are integrated. The application of these model-based methods usually
requires well-established industrial datasets like Car Specs Database [46]. Since such datasets are
always in short supply, the applicability of these model-based approaches is thereby be constrained.

Attention also be paid on adjusting the procedure of technology roadmapping to reduce
potential biases. Okada et al. [48] puts forward a backcasting technology roadmapping process; with
complete participation of experts, a future vision is firstly defined, then technology pathways to
realize the vision is constructed. Noh et al. [49] proposes an opportunity-driven technology
roadmapping approach, in which technological opportunities are identified based on patent analysis
and market opportunities are identified via value propositions. Similar to the backcasting process
[48], this opportunity-driven approach also requires groups of technological and marketing experts
who participate retrospective technology roadmap analysis [49].

Few set their sights on a broader picture. Maja and Letaba [50] suggests that big data could be
an available source of value creation and technological analytics, and data-driven technology
roadmap can be rendered by coordinating big data analytics and expert knowledge. Yet, this article
is conducted based on a virtual interview with financial professionals [51]; it neither explain the
linkage between big data and expert knowledge, nor specify the details of big data usage in
technological roadmapping.

2.3. Technology Forecasting

Technology forecasting, also referred to as technological forecasting, concerns with emerging
technological trends and radical new technologies. Traditionally, technology forecasting is an
iterative process during which the forecasters progressively familiarize themselves with a certain
technological domain and make predictions [52].

With ever-increasing data resources, technology forecasting is switched from expert-centric
approaches to data-based approaches [12,53]. Owning to their relevance with technological
developments, patents and scientific papers are the primary resources of quantitative technology
forecasting [12,54,55]. Other textual resources such as blogs [56], hyperlinks [57], and product
specifications [46,58] have also been employed in technology forecasting. Increasing data resources
further stimulate the incorporation of big data analytics like data fusion [51], topic analysis [59],
semantic analysis [60], and machine learning [61] in technology forecasting, as these techniques not
only improve the performance of the existing methods, but also facilitate the development of novel
approaches [62].
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In general, there are commonalities between the developments of technology forecasting and
technology roadmapping approaches; both procedures increasingly rely on historical data like
patents and publications, and state-of-the-art data analytical techniques are utilized. Intrinsically,
technology forecasting and technology roadmapping are trying to position technologies in some
certain stages of their life cycles, a concept defined by Ford and Ryan [63]. Patent-based technology
forecasting processes can determine the life cycle stages of technologies [54], and calculate the upper
limit of technologies” S-curve [54]. However, not all technologies necessarily follow Gartner’s hype
cycle or S-curve; the development and diffusion of a fraction of technologies might slow and take a
relatively longer period to reach their peak diffusion rates, while others can be much faster.
Distinctive technology life cycle stages may not be applicable to all technologies [64]. Moreover,
patent-based methods suffer from one common but often overlooked weakness, that is, a fraction of
patent applications are of strategic purposes like patent trolling and market monopoly.

2.4. Literature Summary

In sum, the reported technological assessment methods still suffer from some common
weaknesses [82]. First, the reported approaches can only evaluate one single technology, and mostly
are for one single technological feature. Second, the extant methods are based on defective resources;
qualitive approaches have to endure personal biases, while quantitative approaches can only be
based on limited and lagged publication records, in particular patents and scientific papers. Although
big data analytical techniques have been extensively discussed in the literature of technological
assessment, the use of big data is rarely discussed, as most of the works are still based on conventional
datasets such as patents [54], publications [36,79], and product specifications [46,58]. But the used
data resources tend to be more specific, have poor timeliness, and sometimes are costly or even
impossible to access. Rapid technological developments urge the utilization of more inclusive,
accessible, timely, and affordable big data for the task of technological assessment.

Another major challenge is related to rapid and radical technological progress. Important
decisions like capital investment and science policy usually require detailed analysis on the
technologies in a targeted domain. Considering the speed of technological advances, the number of
technologies in a given domain can be substantial. However, the currently available technological
assessment approaches like the TRL system and technology roadmapping can only handle one single
technology, heavily rely on personal expertise [29,43], and cannot be rendered in a timely fashion.
The use of big data could remediate this problem, but it requires novel approaches, which are
supposed to be capable of processing such data resources swiftly. Yet, till now, to the best of our
knowledge, there is no approaches that can portray feature distributions of technologies in a specific
technological domain.

3. Methods

Our proposed approach portrays the feature distributions of technologies in defined two-
dimensional (2D) analytical spaces, in terms of a series of characterizing indicators that are calculated
based on the technologies’ most representative keywords and volumes of returned search results
from public search engines like Google and Google Scholar. Therefore, the elaboration of our
approach is thereby divided into two major subsections, including the proposal of the analytical
framework and feature indicators. The setting of the case study of assessing the feature distributions
of the 452 selected intelligent robotic technologies is introduced in the end of this sector.

3.1. Analytical Framework

Our technological assessment approach is based on a 2D analytical space of “technique” (the
horizontal axis) and “application” (the vertical axis), where the feature distributions of technologies
are portrayed. Tracing progress and identifying applications are two fundamental aspects of any
technological assessment methods like technology roadmap [8]. Referring to the intelligent robotics
literature [8,65], the two basic dimensions are further refined into the corresponding sets:{perception,
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cognition, human-computer interaction, decision, action, other} and {manufacturing robotics,
medical robotics, agricultural robotics, civil robotics, commercial robotics, transport robotics,
consumer robotics, other robotics}. The 48 analytical spaces are thus developed, as shown in Figure
2.

Application
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Figure 2. [llustration of division of the 2D analytical space. The original 2D analytical space is refined
given that six subsectors of the technique dimension and eight subsectors of the application
dimension yield a total of 48 2D analytical spaces.

The coordinates of the included technologies in the analytical spaces were calculated according
to the modified Google Distance [66]. Based on returned search volumes by the engines, the
coordinates Sk (SkXi, SkYj) are calculated as follows:

le Sk+Xi_SkXi
skY;
SpY =—K
k' Sk+Yj_SkY;' (2)

where S5:Xi and SiYj denote the x-coordinate and the y-coordinate of the technology in the 2D
analytical space, respectively; sk denotes the total number of returned web pages on which the
extracted terms occur; Xi and Yj denote the total numbers of returned web pages on which the axial
keywords of the horizontal axis (the subsector of the technique dimension) and the vertical axis (the
subsector the application dimension) occur, respectively; stXi and stY;j denote the total number of
returned web pages on which the extracted terms and the axial keywords occur; k denotes the kth
technology, k=1, 2, ..., 452; I denotes the ith subdivision of the technique dimension, I=1, 2, ..., 6; j
denotes the jth subdivision of the application dimension, j=1, 2, ..., 8.

The coordinates Skj (5kXi, SkYj) not only characterize the position of a certain robotic technology
in some 2D analytical space but also measure the semantic similarity between the technology and the
axis of the space. Unlike the conventional Google Distance which is inversely correlated to the semantic
similarity between selected keywords [67], the proposed coordinates are positive measurements of
the relationships between the technology and the two dimensions of the analytical spaces. Therefore,
the relevance between the technologies and the 2D analytical spaces is measured using the modified
version of Google Distance, and the magnitudes of these intelligent robotic technologies to certain
fields are quantitatively determined.

3.2. Feature Indicators
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We describe the feature distributions of the technologies using the four proposed characterizing
indicators. The first indicator is “versatility” given that the application scope of a technology defines
its fate [68]. For the domain of intelligent robotics technologies, having multi-applications is
considered the most important criterion [6], and functionalities of robotics are rooted in different
configurations of technological features [77]. A versatile technology can be applied in a wide range
of scenarios, and the versatility characteristic is dependent on the degree of uniformity of coordinates.
Based on the definition of Gini Index [25], a statistical measure of economic inequality in a population,
we define the versatility indicator as Eq. (3):

=1
1
Versy=1-= fzz Wy, + 1)

nrml

@)

) zg*.l\[cskxawsﬁm%

1 { -
e S0+ (S

where 1 denotes the number of the 2D analytical subspacesand n=48; m=1,2,...,n,9=1,2, ..., m;
(SxXi)mqg and (SkYj)miq denote the coordinates of the kth technology in the m or gth analytical subspace.

The second indicator is “significance”, an indicator that measures the degree of significance of
the kth innovation to analytical subspaces. The “significance” indicator is calculated based on an
“averaging” indicator that is defined as Eq. (4):

1
Avgy = (Z Z Sk + Z Z Skl;) 4)

where n denotes the total number of the 2D analytical subspaces. The “significance” indicator is a
combined indicator that measures the degree of significance of the kth innovation to analytical
subspaces. The value of this indicator is defined as the ratio of the averaging indicator and the
versatility indicator, as shown in Eq. (5):

Sig = )

The third indicator is “commerciality”, inspired by the theory of technology life cycle; the life
cycle stage of a technology can be approximately determined on the basis of the “hits” on relevant
items like journal papers and patents [68]. The volumes of search results are expected to provide more
direct and credible evidence to portray massive traces of technological evolution instead of
speculating the potential changing trends of “hits” [69]. Instead of decomposing the technology life
cycle into several distinctive stages, and then determining what stage the technology might be in
based on historical analogies [12], this indicator provides a quantitative measurement in a continuous
and real-time manner. Hence, the “commerciality” indicator measures the degree of correlation
between the y-coordinate and x-coordinate of a technology as shown in Eq. (6).

_ L5l 6

Comy = 2 5n X ©

where a high Comx value suggests that the corresponding technology has an application value that is

greater than its technique value, which may suggest that this technology might be at a stage that is
closer to commercialization.

The last indicator “disruptiveness” is proposed to assess whether the technology can be

disruptive, and our definition of disruptiveness is compatible with that of the disruptive innovation

literature given that possessing the competency to capture niche or emerging markets is a key feature
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of disruptive innovations [23,28]. By combining the skewness indicator (Eq. [7]) and the A_Comx
values of the commerciality, the “disruptiveness” indicator is calculated as Eq. (8):

n
St ¥l — S
Skewy, = n Z [( k _f)rr; k .f]a ?)
timl

(n=1)(n— 2}

Drpy = |Skewyl xZSF;}} ®)

where s denotes the standard deviation of all the StY; values. The skewness indicator measures the
degree of deviation in the distribution of y-coordinates, while the versatility index shows the
evenness of the distribution of x-coordinates and y-coordinates. According to Eq. (8), a high
disruptiveness value is attributed to two components: high application values, and uneven
distributions of application values. In other words, a supposedly disruptive technology is expected
to be important in applications and holds an irreplaceable position in a few fields. Sufficiently high
application values ensure that the technology cannot be readily substituted by others, but even
distributions of application values imply that the technology could be more fundamental. This setting
is compatible with the disruptive innovation literature, as the disruptive potential of technologies is
linked to their capacity of capturing niche markets [28].

3.3. Case Study Setting

Initially, we select 470 technologies based on 22 strategic plans of intelligent robotics proposed
by major powers in the world, including U.S., European Union, Japan, U.K., Russia, France, and
China. A total of 452 authentic technologies are obtained for characterization by excluding 18
obviously atypical, vague, and irrelevant technologies (as marked with “N” in Table I in
Supplementary Materials).

Then, we extract the representative keywords from the 452 technologies according to the
procedure shown in Figure 3.
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Step 1: To determine the unique root keyword for each technology

Example: “brain-like” is for the technology of Brain-like Artificial
Intelligence

Step 2: To develop related keywords based on the root keyword

Example: “brain-like computing”, “brain-like intelligence”, and “brain-like
intelligence” are developed based on “brain-like”

i

Step 3: To select the keyword with the largest volume of returned
web pages on the public search engines

Example: “brain-like computing” is selected because this keyword has the
largest volume of returned webpages from Google

¥

Step 4: To use the combination of keywords if the technology has
more than one root keyword, and the combination is obtained based
on the results of a co-occurrence analysis

Example: the combined keywords of “perception and decision making” from
the technology of Autonomous Enhanced Intelligence and Principles,
Computations, and Structures of Decision Making.

v

Step 5: To obtain one set of keywords corresponding to one
technology

Figure 3. Keyword extraction procedure for the included intelligent robotics technologies.

The complete list of the total of 452 selected technologies with their corresponding keywords is
displayed in Table I in Supplementary Materials. The keyword searching procedure has been
conducted on January 1, 2018, and the feature distributions of the 452 technologies are thereby
portrayed.

4. Results

The results of the application of our technological assessment approach on the 452 intelligent
robotic technologies are illustrated in according to the four indicators.

4.1. Distributions of Versatility Values

The 452 technologies from the domain of intelligent robotics were sorted according to their
versatility values, as shown in Figure 4. The patterns of the versatility curves based on Google and
Google Scholar are quite similar (Figure 4 [a]). The p-values of the two curves are 0.0277 and 0.0000,
respectively. Thus, the hypothesis of normal distribution has been rejected according to the Shapiro—
Wilk test for an alpha level of 0.05. Thus, the versatility values have skewed distributions. The
arithmetic averaging values of the two curves are plotted in Figure 4 (b). We define the technologies
with a Vers_Avg value over 0.4145 (the average versatility value) as versatile, while the others are
labeled as specialized technologies. A total of 229 versatile technologies and 223 specialized
technologies are available, accounting for 50.7% and 49.3% of the total figure, respectively. In other
words, all the technologies are normally distributed in their Vers_Avg values; the p-value is 0.1635,
which rejects the hypothesis of non-normal distribution. Figure 4 shows that the versatility values
based on Google and Google Scholar are inconsistent. This discrepancy may be attributed to the
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differences between the focuses and users of these engines: Google Scholar focuses on scientific
publications and caters for academics [70], whereas Google is far more inclusive.

1.0 10
08 | 038
N L
L = Vers_Avg
06 - - Vers_Google 0.6
- Vers_Google
+ Vers_Google -
04 Scholar 04 - Vers_Google
Scholar
02 L 02
0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500
(a) (b)

Figure 4. Values of the versatility index of the 452 selected intelligent robotic technologies: (a) the
Vers_Google and Vers_GoogleScholar values are calculated and plotted in a descending order; (b) the
Vers_Avg values are calculated and plotted in a descending order, along with the corresponding
Vers_Google and Vers_GoogleScholar values.

4.2. Distributions of Significance Values

The significance values of the included technologies are plotted in descending orders in Figure
5 (a). In general, the significance values from Google are noticeably higher than those from Google
Scholar. The curves follow power-law distributions: a few technologies possess higher significance
values, whereas the majority have lower values. This finding is similar to those obtained on scale-
free networks like the World Wide Web [71], personal attributes like wealth [72], and names [73], and
natural events like solar energetic particle events [74].

We compare the top 150 technologies of the highest significance values based on Google and
Google Scholar. We observe that 79 technologies have the top 150 Sig_Google values and the top 150
Sig_GoogleScholar values. We compute the arithmetic averages of the two curves (Sig_Avg) and
plotted the results in Figure 5 (b). The Pearson correlation coefficients of the Sig_Avg values and the
two series are 0.9296 and 0.7254, respectively. This observation suggests that our measurement is
robust and Google is more suitable for technological assessment due to its wider scope of users.
Among the most significant 150 technologies (Sig_Google), only 22 are versatile (14.7%), while the
others are specialized (85.3%). The observation shows that the significance values of the specialized
technologies are generally higher than those of the versatile ones due to their lack of focus. As their
applications are comparatively limited, these specialized technologies possess high specificity in
certain fields. Creativity is highly domain specific, but some degrees of generality may also be
involved [70]. Considering that specific usefulness perceived by users could influence the acceptance
of a technology [74], the technologies of specificity are valued as reflected by their low versatility
values and high significance values. This finding partially explains why technological competitions
highly value specialization [4].
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Figure 5. Values of the significance indicator of the 452 selected intelligent robotic technologies: (a)
the Sig_Google and Sig_GoogleScholar values are plotted in descending orders; (b) the Sig_Avg
values are plotted in a descending order, and the corresponding Sig_Google and Sig_GoogleScholar
values are also presented in the figure.

4.3. Distributions of Commerciality Values

Figure 6 (a) shows the commerciality values of all the 452 technologies in a descending order, as

1

,denoted
Iy Fg¥y

well as the corresponding values of the upper (F; $yX; denoted as A_Comi) and lower:

as I/T_Comx) parts. Only two technologies have exceptionally high commerciality values over 11, 55
technologies with the commerciality values of 2 to 6, while the others’ correlation values are below 2.

Power-law distributions are observed in Figure 6 (a), which means that the intelligent robotics
technologies form a scale-free network [75]. It also implies that most of the technologies still have a
long distance from commercialization. For example, European Commission claimed that “undeniable
gap between the basic science and engineering implementations” exists in robotic research [76].
Several exceptional high I/T_Comxk values in Figure 6 (a) correspond to the innovations of low
significance, which implies that versatile technologies always have less technological features. It
provides additional quantitative evidence to support the speculation that high domain specificity
benefits and propels innovation [70].
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Figure 6. Values of the commerciality indicator of the selected intelligent robotic technologies: (a) the
Comk values of the total of 452 technologies are plotted in a descending order, as well as the
corresponding A_Comk and I/T_Comk values; (b) line chart of the A_Comk and I/T_Comk values
according to the descending order of the corresponding Comk values of the top 150 technologies with
the highest Sig_Google values.

We acquire the commerciality values of the top 150 technologies with the highest Sig_Google
values, and we plot the values in a descending order in Figure 6 (b) with the corresponding A_Comx
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values and I/T_Comx values. Figure 6 (b) shows that the curves of the A_Comx and I/T_Comx values
still follow power-law distributions. Figure 6 (b) also shows that the commerciality indicator of a
technology is negatively correlated to its x-coordinates, and the y-coordinates affect the value of the
commerciality indicator positively. This finding implies that asymmetry exists between applications
and technological developments. This situation confirms that different life cycle stages of a
technology have different focuses [68] and the heterogeneity between research and technology
commercialization persists [76]. Furthermore, we find that the arithmetic average commerciality
value of the top significant 150 technologies (1.3109) is higher than that of the total of 452 technologies
(1.1805), which means that the top ones are closer to be commercialized.

4.4. Distributions of Disruptiveness Values

We calculate the disruptiveness values of the 452 technologies and the top significant 150
technologies, as shown in Figs. 7 (a) and (b), respectively. The technologies are still of power-law
distributions according to their disruptiveness values despite the existence of some degrees of
distortion (Figure 7 [a]). Except for one technology with the highest disruptiveness value of 45.4715,
the disruptiveness values of the other technologies are within 0 to 30. This observation could be the
bane of the theory of disruptive innovation, which has long been under heavy criticisms of being
highly selective [77]; in fact, disruptive innovations are rare. The disruptiveness values show that the
significant technologies are generally supposed to have higher potential of causing disruption; the
arithmetic average disruptiveness value of the top significant 150 technologies (11.0176) is noticeably
greater than that of the total of 452 technologies (9.6488), as shown in Figure 7 (b). The finding
supports the route of technological disruption: specialization promotes the adoption of a technology
[75], and disruptiveness is fulfilled after successfully acquiring market shares [23,28].
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Figure 7. Values of the disruptiveness index of the selected intelligent robotic technologies: (a) the
Drpk values of the total of 452 technologies are plotted in descending orders, with the corresponding
A_Comk and I/T_Comk values; (b) line chart of the A_Comk and I/T_Comk values according to the
descending order of the corresponding Comk values of the top 150 technologies with the highest
Sig_Google values. Notably, some degrees of distortion from a proper power-law distribution are
found in the curve of the Drpk values, and they are marked in a circle of black dot line.

We also check the robustness of the observed feature distributions. We calculate the historical
values of the four indicators of two selected technologies: Industrial Robot Programming and Artificial
Muscle. In the Robustness Checks: On the Characterizing Indicators in Supplementary Materials, we observe
a good synergy between historical data and literature review. In the Robustness Checks: On the
Observed Feature Distributions in Supplementary Materials, the same feature distributions are found in
the reduced 2D measurements, which attests the robustness of the observed pattern.

Furthermore, we compare our method with the commonly used technological assessment
methods, i.e., Gartner’s hype cycle or S-curve, in depicting the developmental trends of two
technologies, i.e., Industrial Robot Programming and Artificial Muscle. We elaborate this comparison in
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Methodological Comparison in Supplementary Materials, and prove the superiority of our proposed
approach.

5. Discussion

In this section, the theoretical contributions and managerial implications of the proposed
methods and observed results are discussed, and potential directions of future works are suggested.

5.1. Theoretical Contributions

In general, our study offers two principal contributions to the literature.

The primary contribution of this work lies in the methodology. Our online behavioral big data-
based approach is the first method that is capable of assessing the features of multiple technologies,
while the reported technological assessment methods like Gartner’s hype cycle [5], S-curve [6], or
disruptive susceptibility evaluation models [23] can only assess one single technological feature of a
technology. Also, our proposed method tends to overcome the limitations of the resources on which
the extant technological assessment methods are based, for examples, personal expertise or patents
and publications (see Literature Review), and allows us to quantify the feature distributions of multiple
technologies in any given domain in a more inclusive, accessible, timely, and affordable manner.

The other theoretical contribution of this article is derived by testing hypotheses proposed in the
extant literature. We show that among the 452 intelligent robotics technologies, most of the features
follow power-law distributions; a few technologies exhibit higher values, while the majority have
much lower values. This observation is compatible with the theory of disruptive innovation, which
implies that potentially disruptive innovations are always in scarcity.

5.2. Managerial Implications

In addition to contributing to our knowledge of the key features of technology and their
distribution in a technical domain, the insights into the distributions of technology features gained
using this method can have important managerial implications for the decision-making processes of
various stakeholders.

First, for policy makers and industrial practitioners, more attention and resources can be
allocated to the technologies with higher significant values. The definition of the significant indicator
suggests that the technologies with higher significant values receive higher attention from a few
limited fields, and they are much closer to being commercialized or causing potential disruption.
Considering that in any specific domain, only a few technologies possess higher significant values,
our big data-based approach could be beneficial for decision makers by explicitly identifying such
technologies. The proposed method can also enhance the understanding of the technological research
needs of a given domain. Knowing the distributions and even potentials of technologies in their
studied domains in a timely and comprehensive manner, they can better decide their strategic focus
and priority.

Second, this method also provides a correction function to all stakeholders. When the feature
distributions of some technologies deviate from their supposed distributions, the deviations may
suggest that expectations on such technologies could be excessively overrated. For instance, the
distortion of the disruptiveness values of intelligent robotics technologies (see the black circle in
Figure 6[a]) can be explained by the fact that some innovations are thought to have disruptive
potential and are being intensively discussed, but the real disruptive innovations are indeed rare [28].
This finding also offers sound explanation to the question why the disruptive innovation theory has
been highly selective in and sensitive to cases under study [77]. Although more intelligent
technologies are believed to be disruptive and are under heated discussion, only a few technologies
indeed possess the potential of causing disruption.

Third, the proposed approach can effectively and constantly monitor the gap between research
and application, which is crucial to decision-making in research and development. The existence of
such a gap calls for a closer scrutiny on technological development, which is usually full of
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unexpected sudden changes. For instance, the technology of Artificial Muscles has enjoyed rapid
development in the beginning of 21st century due to the advent of electroactive polymers [78] after a
long period of stagnation. For this reason, the conventional technology life cycle description tools like
Gartner’s hype cycleor S-curve become useless, and timely approaches like the proposed big data-based
method are much more viable; we successfully prove this statement in Methodological Comparison in
Supplementary Materials.

5.3. Theoretical Implications

This paper leaves three potential arenas for future study.

The first direction is to further exploit online human behavioral traces and investigate national
or regional differences in the trends and dynamics of developments in certain technological domains.
This would enable us to better understand the complicated nexus between technological and
institutional factors [4].

The second arena for further investigation is the differing perceptions of different groups, as
noticeable differences have been observed in the preliminary search results derived from Google and
Google Scholar, for example, the significance indicator.

The third potential research area lies in the feature characterization based on different methods
for defining technologies and their representative keywords, since the definitions and keywords
selections could also affect the feature distributions.

6. Conclusions

In this article, we design a novel big data-based method to characterize the feature distributions
of technologies in a given domain. Four technological features are proposed, namely versatility,
significance, commerciality, and disruptiveness, corresponding to important aspects of technologies.
These features are determined based on the technologies’ representative keywords and volumes of
returned search results from public search engines in two-dimensional analytical spaces of technique
and application, and the feature distributions are thereby acquired. Using a sample of 452 intelligent
robotics technologies as a case study, we show that except for the values of the versatility indicator,
which are normally distributed, the other features follow power-law distributions (distribution that
has more sample data with extreme values than normal distribution, drawing a curve with a long tail
lowering as the value increases). The observed patterns are proved to be robust in the selected
technologies, i.e., Industrial Robot Programming and Artificial Muscles, and reduced analytical spaces.
The findings of this work provide insights to assist relevant decision-makings, for examples, capital
investment on research and formulation of science policy.
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