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Abstract: The rapid urbanization in China has significantly contributed to the vast expansion of urban built-
up areas. Precisely extracting and monitoring these areas is crucial for understanding and optimizing the
developmental process and spatial attributes of smart, compact cities. However, most existing studies tend to
focus narrowly on a single city or global scale with a single dimension, often ignoring mesoscale analysis across
multiple urban agglomerations. In contrast, our study employs GIS and image processing techniques to
integrate multi-source data for the identification of built-up areas. We specifically compare and analyze two
representative urban agglomerations in China: the Yangtze River Delta (YRD) in the east and the Chengdu-
Chongqing (CC) region in the west. We use different methods to extract built-up areas from socio-economic
factors, natural surfaces, and traffic network dimensions. Additionally, we utilize a high-precision built-up
area dataset of China as a reference for verification and comparison. Our findings reveal several significant
insights: (1) The multi-source data fusion approach effectively enhances the extraction of built-up areas within
urban agglomerations, achieving higher accuracy than previously employed methods. (2) Our research
methodology performs particularly well in the CC urban agglomeration. The average precision rate in CC is
96.03%, while the average precision rate in YRD is lower at 80.33%. This study provides an objective and
accurate assessment of distribution characteristics and internal spatial structure of built-up areas within urban
agglomerations. This method offers a new perspective for identifying and monitoring built-up areas in Chinese
urban agglomerations.

Keywords: urban cluster; nighttime light (NTL) data; point of interest (POI) data; built-up area
identification;

1. Introduction

Currently, China is experiencing rapid urbanization growth. However, urban development is
encountering increasingly prominent issues, such as disordered spatial distribution, lack of synergy
between regional development, and significant pressure on natural resources and the environment
[1]. Urban agglomeration in China serves as the primary form of new-type urbanization and the
spatial carrier to address the new economic normal [2]. It accommodates over 80 percent of the
population and contributes nearly 90 percent of the GDP. City clusters will continue to play a crucial
role in high-quality development in this new era. Therefore, scientifically identifying built-up area
boundaries is essential for understanding the development patterns of urban agglomerations,
diagnosing urban system problems, and achieving efficient layout of regional functional space
through scientific development planning.

The concept of an urban built-up area refers to an area within an urban administrative region
that has been developed and constructed with basic municipal public facilities available. In practical
terms, it represents a densely constructed surface space with both municipal public facilities and
supporting public facilities simultaneously present [3]. When delineating the scope of urban built-up
areas, factors such as natural topography, landforms, management boundaries of grass-roots
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administrative units should be considered while maintaining consistency with geographical
population statistics where possible [4]. The feature extraction method based on single dimension
may have limitations when identifying built-up areas on city outskirts.

Domestic and foreign scholars have used different geographical spatial big data to study the
boundary identification of built-up areas. It mainly includes the recognition method based on social
and economic statistics data, the recognition method based on remote sensing image interpretation,
and the fusion recognition method combining POI and remote sensing image [5,6]. However, at
present, there is still a lack of urban identification analysis combining social economy, natural
conditions and traffic network. In addition, most of the existing studies focus on a single city or global
scale, and there is a lack of mesoscale studies for multiple urban agglomerations.

Traditional methods of urban agglomeration built-up area boundary research focus on the
differentiation of urban levels, and select indicators related to urban development and establish an
urban indicator system through qualitative evaluation with the help of basic geographical theories
such as “pole-axis” theory, “center-periphery” theory and urban hinterland theory [7-10]. With the
deepening of the research, other scholars determined the boundary from different angles through a
combination of quantitative and qualitative methods, using POI data [11], population data [12] and
land price [13]. The advantage of this method is that the indicators and data are easily available, and
the disadvantage is that it is highly subjective.

With the rapid development of remote sensing technology and the updating of research
methods, the traditional top-down approach using only socio-economic indicators to identify small
metropolitan areas has been replaced by more advanced methods. This requires the definition of
large-scale urban agglomerations and interconnected metropolitan areas based on remote sensing
images [15]. Compared with traditional methods, remote sensing images provide better spatial
characteristics of urban landscape and infrastructure [16], which helps to characterize the scope of
human activities or the physical distribution pattern of cities and towns. Recent studies have focused
on extracting impervious surfaces from satellite images to represent actual urban areas because they
have higher resolution and lower threshold dependence [17]. In order to obtain a more objective
understanding of urban built-up area boundaries, scholars have proposed morphological analysis
methods based on remote sensing interpretation, such as identifying the actual scope of urban space
through information such as night light intensity [18], land vegetation coverage rate or building
coverage rate [19]. Indicators such as the density of economic activities, the intensity of economic ties
with the central city, land use and building density are constructed as the reference basis for dividing
the boundaries of urban built-up areas.

In general, the existing research has shifted from the identification of spatial scope to the
detection of spatial pattern characteristics within urban agglomerations, and gradually shifted from
single-dimensional feature analysis to the construction of multi-dimensional feature index. However,
the research difficulties of multi-dimensional analysis, such as data fusion algorithm and multi-
source data unification, have not been thoroughly developed [25]. In addition, the relevant research
of developed urban agglomerations such as the eastern coastal areas of China is relatively abundant,
while the research of developing urban agglomerations in the central and western regions is still
vacant for the time being. In this study, the YRD and CC city clusters have been selected for
comparative analysis. The main reason for this selection is that the YRD is situated on the east coast
of China, with a flat terrain and strong economic vitality. In contrast, the CC is located in the central
and western inland of China, characterized by mountains and hills, and relatively insufficient
economic power [26-29]. The comparison of these representative urban agglomerations can enrich
existing regional economic theory analysis and provide valuable insights for promoting high-quality
development of urban agglomerations in China. The main purpose of our research is to explore a
strategy for the recognition of built-up area with a shorter time update cycle on the premise of
ensuring a certain accuracy. Our main research topics are:

(1) Urban agglomeration built-up area identification. The built-up area is identified from three
dimensions: social economy, natural coverage and traffic accessibility.
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(2) Delineate the evaluation of recognition results. We conduct qualitative and quantitative
assessments reliability in terms of consistency and integrity of built-up area delineation results.

(3) Summarize the built-up area characteristics of urban agglomerations in different regions.
Using spatial analysis techniques, we conduct a comparative analysis of representative urban
agglomerations in eastern and western China.

The main innovations of this study are as follows:

(1) Quantitative and comparative analysis of the development status of the Yangtze River Delta
and Chengdu-Chongging urban agglomerations has broadened the scope of existing research and
improved the lack of scientific data support for qualitative research on urban agglomerations
development.

(2) Three different technical routes were adopted to determine the built-up area boundaries of
the Yangtze River Delta and Chengdu-Chongqing urban agglomeration from multiple perspectives,
which improved the problem that a single index could not accurately reflect the internal
heterogeneity of the urban edge.

(3) Multi-source data fusion method is used to improve the accuracy of urban agglomeration
built-up area identification.

2. Materials and Methods

2.1. Study Area

The study focuses on the urban agglomerations with the highest population density and
economic activity in China. Specifically, the study areas selected are the Yangtze River Delta (YRD)
urban agglomeration and the Chengdu-Chongqing urban agglomeration (CC) (Figure 1).
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Figure 1. Yangtze River Delta (YRD) Urban Agglomeration, Chengdu-Chongqing(CC) Urban
Agglomeration, China.

According to a Chinese government report in 2023, YRD’s GDP has consistently accounted for
approximately 24% of China’s GDP, demonstrating a stable development trend. Despite occupying
only 4% of the land area, YRD urban agglomeration has contributed nearly a quarter of the country’s
economy. CC’s GDP has reached 819.88 billion yuan, representing 6.5% of China’s GDP and 30.4% of
western China’s GDP respectively. Rapid urbanization has led to various issues such as low resource
utilization rates, ecosystem degradation, and frequent natural disasters in many regions. As part of
China’s 14th Five-Year Plan, there is an emphasis on reinforcing economic and population-carrying
capabilities by focusing on central cities, city clusters, and other advantageous regions for economic
development. The outline underscores the importance of YRD as a leading force for promoting high-
quality development in China while also highlighting CC’s growth into “the fourth pole” of China’s
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economic growth. This illustrates their critical roles in China’s regional strategies and improving the
spatial layout of urbanization process.

2.2. Study Data

2.2.1. Land Use Data

The China Land Cover Dataset is an annual land cover dataset of China produced by Wuhan
University based on 335,709 Landsat data from Google Earth Engine. The data set contains yearly
land improvement information in China from 1985 to 2020. Based on the Landsat data obtained, the
research team constructed temporal and spatial characteristics, combined with the random forest
classifier to obtain classification results, and proposed a post-processing method including temporal
and spatial filtering and logical reasoning to further improve the temporal and spatial consistency of
CLCD. The overall accuracy of this dataset is 80%.

The greatest strength of the dataset is the 30 meters of land use classification per year, which
covers a continuous period of 30 years. Compared with other products such as GLC FCS30, Gobal30,
FROM-GLC10, ESA10, ESRI10, CLCD has higher temporal resolution, and the current data set is only
for China.

2.2.2. Nighttime Light Data

In 2012, Visible Infrared lmaging Radiometer Suite carried by National Polar-Orbiting
Partnership System of the United States provided a new generation of night light remote sensing
data. Compared with DMSP/OLS data, it has many advantages, such as high image resolution (about
500 m), eliminating the oversaturation phenomenon of light, and comparability of data at different
times, which further expands the research and application field of nighttime light remote sensing.
The 2020 NPP-VIIRS monthly composite data used in this study were downloaded from National
Oceanic and  Atmospheric ~ Administration’s  National = Geophysical Data  Center
(https://www.ngdc.noaa.gov).

2.2.3. LST and NDVI Data

The Moderate-resolution Imaging Spectroradiometer (MODIS) is a primary sensor aboard the
Terra and Aqua series of satellites. MODIS provided continuous spatial-temporal LST and NDVI
datasets for this study. MOD11A2 eight days synthesized 1-km-resolution LST Day-and-Night data
and Normalized Difference Vegetation Index (NDVI) band data were acquired from the United States
Geological Survey (https://earthexplorer.usgs.gov/). To maintain the stability of the data, we
calculated the 2020 annual weighted mean instead of emphasizing extreme values.

2.2.4. Road Network and POI Data

This study collected all types of POI data of Yangtze River Delta and Chengdu-Chongging urban
agglomeration in 2020 based on the AmAP platform. Each data contains attributes such as name,
address, telephone number, type, latitude and longitude, city, county, township and postal number.
Since the original POI data types are miscellaneous and the classification criteria are not clear, there
is a phenomenon of overlapping among various data points. Through reclassification analysis, 49,908
pieces of data of Yangtze River Delta city cluster and 180,000 pieces of data of Chengdu-Chongqing
city cluster were obtained. In addition, the land road network data were obtained from OSM maps
(https://download.geofabrik.de/asia.html). OSM is currently the most extensive collaborative and
publicly licensed collection of geospatial data, widely used as an alternative or supplement to
authoritative data [34]. Based on the attribute information of the road network data, we extracted the
high-speed rail, general rail, expressway, national highway, provincial highway, and other roads of
each city group.

2.3. Method
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This study used spatio-temporal big data, including POI, NDVI, luminous remote sensing, OSM
data, etc., to extract built-up areas of urban agglomerations. The research scheme is divided into two
parts (Figure 2). The first part is to extract the built-up area boundary from three dimensions
respectively, and the second part is to fuse the results according to the fusion rules and complete the
accuracy verification.
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Figure 2. Research Technology Route.

2.3.1. Recognition Method based on POI (POIM)

Due to aggregation effect and scale effect, all kinds of POI tend to gather in cities, making the
density of POl in cities significantly higher than that in suburbs and rural areas, and the change rate
of POI density is the largest at the junction of cities and rural areas.

Kernel density estimation (KED) was used to establish the probability density of POI KED is
one of the nonparametric test methods used to predict unknown density functions in probability
theory. The formula is as follows:

POI, = iik(ﬁ)
= nh h 1)

In the formula, h is the bandwidth; n is the number of element points that are less than or equal
to the distance from the location; k is a spatial weight function.

Considering that POI data meet the requirements of this method in terms of data type, data
amount and the proportion of various PO], this study chooses Densi-Graph method to extract the
built-up area of toponymy address POI data. The Densi-Graph curve is drawn with the core density
value d as the horizontal axis and the theoretical radius increment AS ;/ ? of the closed curve as the
vertical axis. When the growth rate of the curve is greater than the preset threshold, the
corresponding nuclear density value is the critical value of the urban built-up area boundary, and the
contour line of nuclear density is determined as the urban built-up area boundary.

2.3.2. Recognition Method Based on Remote Sensing Data (RSM)

In this study, an NTL-based city index was selected to extract the built-up area boundary, which
uses MODIS Land surface temperature (LST) and Normalized Vegetation Index (NDVI) images to
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adjust and compensate for the desaturation of NTL images obtained from the corresponding urban
areas. The ratio between LST and NDVI has been shown to be an appropriate comprehensive
measure of LST-NDVI feature spatial patterns and has been used to distinguish different land cover
types.

Based on a common observation that the closer an area is to the city centre, the higher the LST is
due to high population density, levels of human activity and the number of artificial structures.
Vegetation cover decreases with the increase of impervious surface construction and urban
population growth. Therefore, in this study, the ratio between LST and NDVI is combined with NTL
data to construct the new city index LVTD. Considering that the ratio of LST and NDVI tends to have
infinite values when the NDVI of some land cover types approaches zero, the inverse tangent of
LST/NDVI is combined with the NTL data. Therefore, the proposed LVTD is expressed as:

LST
arctan( )
LVID = — NDVI_ & npp
Vs

2 2)
LST—LST,

min

" IST  —LST..
max min (3)

According to the LVID index, the built-up area boundary is extracted using the global fixed
threshold. In the global fixed threshold method, a specified threshold for the NTL data is determined
for the entire study area, which is set to minimize the difference between the extracted urban area
and the reference data.

2.3.3. Recognition Method Based on Traffic Road (TRM)

In this study, cost-distance algorithm is used to measure the reachability of surface space in
terms of time cost. The transportation network of urban agglomeration mainly includes railways,
highways, expressways, national highways, provincial highways and other roads. Given the closed
nature of the railway, it is necessary to “wrap” them, which includes enclosing the said road layer by
building barrier layers on both sides of the line. Specifically, the grid speed value within the 500m
buffer of the railway is defined as 1km/h, which indicates that the closed road cannot be passed
directly. In addition, on both sides of the enclosed railway, high speed values are provided. In order
to obtain a closed layer with open entrances and exits, the study adopted a railway station buffer to
“erase” the closed road buffer, which indicates that the line can only be connected to the outside
world through the entrance and exit of the railway station. Then, according to the existing research,
the traffic speed is assigned to the traffic network layer. Each city in the study area is loaded as a
target node and the minimum cumulative cost distance from each grid to the nearest target is
calculated, which represents the spatial accessibility within the urban agglomeration. Finally, the
corresponding urban built-up area is extracted based on the isochronous map.

Table 1. Unit travel speed and cost of different modes of transport.

Road network type Speed (km/h) Speed cost (min) Barrier
Railway 300 0.2 Station
Highroad 120 0.5
National road, Express road 80 0.75
Provincial road 60 1 /
Township road, County road 40 1.5
Other roads 30 2

2.3.4. Fusion Method of Multi-Source Data Extraction Results

The built-up area boundary extracted from POI data, night light data and traffic data is
superimposed. The built-up area extracted from POI data is fragmented, but the boundary is smooth
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and rich in details. The built-up area extracted by night light data has good integrity, but due to the
limitation of resolution, the boundary will show obvious zigzag shape. The built-up area data
extracted from traffic data has good coherence, generally showing linear distribution, and the
boundary is tortuous and complicated. In this study, the mathematical morphology method is used
to combine the extraction results of the three kinds of data, combine the advantages of the three
methods, make up for the shortcomings, and get a more accurate built-up area. The fusion and
validation rules are shown in Figure 3.

Fusion Rule | Image Operation |

SEM RSM

Erosion or Dilation
Action

L

l—)\ Connect Close Patches
/

L4 A )

Fusion TNM ‘ Remove Small Patches

' Y

¢ ‘ Exiract Final Result
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Figure 3. Multi-source Data Fusion and Validation Rules.

2.3.5. Accuracy Test Method

In this study, China’s urban built-up area data (http://www.resdc.cn) produced by high-
precision data sources and high-precision data products were used as the test reference data.
Overall accuracy (OA) is the percentage of the number of all random points successfully verified.
The Kappa coefficient of consistency test can be used to measure the accuracy of classification.
Spatial consistency is assessed by comparing the classification results for a particular location
with the corresponding points of the reference data. In this study, representative Kappa coefficient
and overall accuracy (OA) were selected as evaluation indexes of confusion matrix to evaluate
accuracy. Kappa coefficient and OA are calculated as follows:
A=(TP+FP)x(TP+FN)+(IN + FP)*(IN+ FN) 4

KAPPA :M
04=IN+TP)
(6)

In the formula, TP is the number of points in the correct built-up area part of the extraction result,
FP is the number of points in the wrong part of the extraction result, FN is the number of points in
the missing pixel extraction result, and TN is the number of points in the non-built-up area part of
the extraction result.

3. Results

3.1. Identification Result

The results of the POIM are presented in Figure 4. The built-up area of YRD is 8012.73 km®,

while the built-up area of CC is 3035.85 km® . Based on an analysis of the built-up area boundaries of
prefecture-level cities in China, a growth rate of 5% has been determined as the allowable value for
the Density-Graph curve. As depicted in the figure, YRD reached a critical point when the nuclear
density value was 42, whereas CC reached a critical point at a nuclear density value of 24. In YRD,
due to a higher concentration of points-of-interest around Shanghai, the identification results indicate
that the built-up area is more connected. Conversely, the built-up areas in CC are mostly scattered.
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Figure 4. This is a set of figures. (a) Description of YRD nuclear density analysis result; (b) Description
of YRD Density-Graph Curves and threshold point; (c¢) Description of YRD extraction results using
RSM method; (d) Description of result of CC nuclear density analysis; (e) Description of CC Density-
Graph Curves and thresholds; (f) Description of CC extraction results using RSM method.

The RSM results are shown in Figure 5. The built-up area of YRD is 11592.07 km®, the built-up
area of CC is 4755.95km’ . We can find that the extraction results of built-up areas have a strong
correlation with NPP-VIIRS data. At the same time, the natural land cover also affects the actual
distribution of built-up areas, especially in CC.
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Figure 5. This is a set of figures. (a) (b) Description of NPP-VIIRS data of night light index in two
urban agglomerations; (c) (d) Description of LST data of land surface temperature in two urban
agglomerations; (e) (f) Description of NDVI vegetation coverage in two urban agglomerations; (g) (h)
Description of the built-up area results of two urban agglomerations extracted by RSM.

The TRM results are depicted in Figure 6, showing that the built-up area of YRD is 19353.18 km’
and CC is 3903.62 km® . The transportation road infrastructure in the YRD is well-developed,
providing accessibility to the transportation network, with a median travel time cost of 5.65 hours for
the entire region. In contrast, CC’s transportation road infrastructure is primarily concentrated in the
Chengdu-Chongqing economic circle and is still undergoing gradual improvements to its
transportation network. The median travel time cost for this area is 32.15 hours. The extended travel
time within the CC can be attributed mainly to the complex landform in western Sichuan province.
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Figure 6. This is a set of figures. (a) (b) Description of traffic accessibility distribution map of two

urban agglomerations; (c) (d) Distribution of traffic passage time in two urban agglomerations; (e) (f)
Description of the results of urban built-up areas extracted by TRM in two urban agglomerations.
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3.2. Fusion Result

In this study, an image morphology algorithm combined with a rational intersection algorithm
was utilized for multi-source fusion. Following integration, the built-up area of YRD is 17,560.15 km’
and the area of CC is 4224.07 km’ .The comparison of the high-precision verification set and fusion
experiment result results indicates a general consistency in the distribution of built-up areas.
However, in the surrounding regions of economically developed cities such as Shanghai and
Chonggqing, the identified built-up area results exceed those of the verification set.

Legend

0 65 130 260 Kilometer
[ A

YRD-Validation set
YRD-Fusion
- YRD
0 60 120 240 Kilometer
[

(a) (b)

Figure 7. The Overlay Effect of Fusion Experimental Results and High-precision Data Sets.

We employed the method of randomly sampling points within the region to validate the
accuracy. In order to ensure the comprehensiveness and reliability of the experiment, 3000 and 10000
random points were used respectively. The average value was obtained through multiple samples
and the results are presented in Table 2 and 3. The data indicates that in CC, the correct extraction
rate of the four methods can exceed 95% at 3000 random points. Additionally, the correct extraction
rate of RSM and fusion method can surpass 90% at 10000 random points. In contrast, in YRD, the
correct extraction rate at 3000 random points is over 91% for all methods except TRM. However, only
the fusion method achieves a correct extraction rate of more than 80% at 10000 random points. Overall,
the correct extraction rate of the fusion method is higher than that of any single method.

Table 2. Results of Random Point Verification in CC.

TYPE POIM RSM TRM Fusion
TN 2784 92.80% 2776 92.53% 2767 92.23% 2776 92.53%
TP 118 3.93% 166 5.53% 84 2.80% 175 5.83%
FN 94 3.13% 46 1.53% 128 4.27% 37 1.23%
FP 4 0.13% 12 0.40% 21 0.70% 12 0.40%
TN 6956 69.56% 6935 69.35% 6935 69.35% 6932 69.32%

TP 1625 16.25% 2358 23.58% 1263 12.63% 2470 24.70%
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FN 1405 14.05% 672 6.72% 1767 17.67% 560 5.60%
FP 14 0.14% 35 0.35% 35 0.35% 38 0.38%
Table 3. Results of Random Point Verification in YRD.
TYPE POIM RSM TRM Fusion
TN 2565 85.50% 2549 84.97% 2483 82.77% 2504 83.47%
TP 175 5.83% 237 7.90% 184 6.13% 273 9.10%
FN 13 0.43% 29 0.97% 95 3.17% 74 2.47%
FP 247 8.23% 185 6.17% 238 7.93% 149 4.97%
TN 4787 47.87% 4754 47.54% 4746 47.46% 4680 46.80%
TP 2259 22.59% 2906 29.06% 1048 10.48% 3363 33.63%
FN 2920 29.20% 2273 22.73% 4131 41.31% 1816 18.16%
FP 34 0.34% 67 0.67% 75 0.75% 141 1.41%

When comparing three single-dimension methods, it is evident that RSM has the highest correct
extraction rate while TRM has the lowest. The results demonstrate that in this study, all four
extraction methods performed better in CC compared to YRD.

This study addresses classification issues in data science, emphasizing the importance of
evaluating the performance of the research model. Therefore, accuracy (OA), precision (P), recall rate
(R), F1 score, and kappa coefficient are selected as measures to assess the effectiveness of the model.
With the exception of R value, a higher value for each index indicates more accurate extraction results.
The P value represents accuracy rate, while the R value represents recall rate; these two values are
often contradictory, with F1 representing a balance between them. According to the findings
presented in Table 4 and 5, the extraction method utilized in this study can take both recall and
precision into account. The average overall accuracy (OA) of the first three methods is respectively
86.08%,90.12% and 80.96%, and the average kappa coefficient is respectively 0.5646,0.7132 and 0.4112.
After data fusion, the average overall accuracy (OA) is 91.35%, and the average Kappa coefficient is
0.7501. The performance effect of this research method in CC is better than that in YRD. The average
precision rate in CC is 96.03%, the average recall rate is 82.03%; The average precision rate in YRD is
80.33%, and the average recall rate is 70.80%. The F1 value reaches 0.89 in CC and 0.77 in YRD. It is
evident that combining three dimensions through fusion method yields superior extraction effects on
various measurement indicators compared to single dimension methods. Notably, in CC, the kappa
coefficient of the fusion method exceeds 0.85, indicating nearly complete consistency in extraction
results; while in YRD it exceeds 0.61 signifying highly consistent extraction results.

Table 4. Accuracy Set of Random Points Verification in CC.

POIM RSM TRM Fusion

3000 10000 3000 10000 3000 10000 3000 10000

OA 96.7333% 85.8100% 98.0667% 92.9300% 95.0333% 81.9800% 98.3667% 94.0200%
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p 96.7213% 99.1458% 93.2584% 98.5374% 80.0000% 97.3035% 93.5829% 98.4848%

R 55.6604% 53.6304% 78.3019% 77.8218% 39.6226% 41.6832% 82.5472% 81.5182%
F1 0.7066  0.6961 0.8513 0.8696  0.5300 0.5836  0.8772  0.8920
KAPPA 0.6906  0.6140 0.8410 0.8220 0.5069 0.4912 0.8685  0.8512

Table 5. Accuracy Set of Random Points Verification in YRD.

POIM RSM TRM Fusion

3000 10000 3000 10000 3000 10000 3000 10000

OA 91.3333% 70.4600% 92.8667% 76.6000% 88.9000% 57.9400% 92.5667% 80.4300%

P 41.4692% 98.5172% 56.1611% 97.7464% 43.6019% 93.3215% 64.6919% 95.9760%

R 93.0851% 43.6185% 89.0977% 56.1112% 65.9498% 20.2356% 78.6744% 64.9353%
F1 05738 0.6047 0.6890 0.7130 0.5250  0.3326  0.7100  0.7746
KAPPA 0.5333 04204 0.6510 0.5387 04651 0.1815 0.6678  0.6127

4. Discussion

4.1. Comparison with Previous Studies

This study employs a multi-source data fusion method to identify the built-up areas of
representative urban agglomerations in eastern and western China. After analysing the advantages
and disadvantages of various data types and methods, GIS and image processing technology are
utilized for data fusion. Random point verification further confirms that the data fusion method is
more accurate than the single-dimension method and more effective in identifying urban
agglomeration. The results of this study align with previous research findings. Wang et al.[37]
discovered that the average kappa coefficient of the results of multi-method fusion can reach 0.7394,
which accurately reflects the geographical scope of the three major urban agglomerations in China.
He et al.[38] found that fusing multi-source big data can help accurately evaluate polycentric spatial
structure within urban agglomeration.

In comparison to prior studies, this research takes into account triple attributes of built-up area
including land cover, land use, and convenient transportation, forming a multi-source data fusion
identification method. By combining the advantages of these three methods, it compensates for
shortcomings while considering integrity and extracting details to obtain a more accurate built-up
area scope. The boundary of built-up area for YRD and CC is determined from multiple angles,
addressing issues where a single index cannot accurately reflect internal heterogeneity at an urban
edge. According to the experimental results, we can find that the built-up area extracted in this study
is highly consistent with the area shown in the Chinese urban built-up area data set, but the built-up
area extracted in the experiment has higher adhesion and closer spatial connection. In the comparison
of various methods, it is found that the accuracy of built-up area extracted by RSM and POIM is
higher than TRM. Therefore, combined with theoretical model and practical exploration, the built-up
area has a strong correlation with social and economic factors such as POI and population activities,
and the influence of intra-city traffic road network on the built-up area is limited.

In terms of data fusion means, the main idea of extracting built-up area boundary based on
multi-source data is low rough extraction and high refinement, that is, using low-resolution data to
extract the rough boundary of the built-up area, and then using high-precision vector data such as
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accurate POl and traffic roads for fine extraction. Referring to the previous research, it is found that
the difficulty of data fusion is that when the spatial resolution of the adopted data is very different,
there will be a large gap between the intersection boundaries of different data extraction built-up
areas. Therefore, this study adopts morphological image processing technology, smoothing rules or
morphological optimization method to process the boundary, and maintains the overall shape of the
built-up area and refines the internal structure.

4.2. Limits and Prospects

The development and change of the built-up areas of urban agglomerations in China have
attracted extensive attention from scholars at home and abroad. It is believed that the local spatial
dynamics of eastern China tend to be stable, while the local spatial dynamics of central and western
China are beginning to increase [35,36]. In this study, we utilize multi-source open spatio-temporal
data to investigate the built-up areas of representative urban agglomerations in both eastern and
western China. This broadens the scope of the original research and addresses a gap in relevant
research on urban agglomerations in central and western China. However, there are two major
limitations in this study. Firstly, factors such as GDP, POI density, population density, and night
lighting vary significantly among urban agglomerations. This may lead to a one-size-fits-all problem
in threshold analysis of built-up areas around megacities or regional core cities. Therefore, it is
necessary to further verify whether this method is applicable to urban agglomerations with large
differences in development levels. Additionally, further improvements are needed for the
classification and extraction of various threshold indicators. Secondly, there is also a need to enhance
data quality and ensure accuracy, timeliness, and sustainability of data. For example, through the use
of unmanned aerial vehicles (UAVs), autonomous vehicles, and other equipment for measuring
urban ground construction; multi-angle high-dynamic imaging technology can play a practical role
in detailed update monitoring of urban agglomeration.

5. Conclusions

We aim to explore a method for extracting the built-up area of urban agglomerations based on
multi-source data and constructing a rule that can integrate multi-source data reasonably, taking into
account the characteristics of the built-up area. The Density Graph analysis of POI was utilized to
extract the built-up area based on socio-economic levels, resulting in an overall accuracy rate (OA) of
91.27% in the Chengdu-Chongqing region and 80.90% in the Yangtze River Delta region.
Additionally, by using NPP-VIIRS luminous remote sensing data combined with LST and NDVI
index, we constructed a unique LVTD coefficient and analysed thresholds by combining urban
statistical yearbooks. Taking into consideration population distribution, land cover, and human
activities, we achieved an overall accuracy (OA) of 95.50% in the Chengdu-Chongging region and
84.74% in the Yangtze River Delta region. Furthermore, utilizing network data from OSM and railway
station data in China, we calculated minimum cumulative time costs using raster analysis algorithms
to extract built-up areas according to accessibility values while considering accessibility and
connectivity factors. This approach resulted in an overall accuracy rate (OA) of 88.51% in the
Chengdu-Chongqing area and 73.42% in the Yangtze River Delta area. Through numerous
experiments, adjustments were made to further explore methods for fusing multi-source data. By
verifying algorithm accuracy on high-precision datasets, our fused method achieved an overall
accuracy of 91.35% with a kappa coefficient of 0.75. This precision result is higher than the overall
accuracy of 85.34% and the kappa coefficient of 0.7394 of the built-up areas of the three major urban
agglomerations studied by Wang et al. [37].

The method proposed in this paper partially addresses the limitation of using a single data
source for built-up area extraction. It is particularly suitable for urban agglomeration scenarios that
demand high extraction accuracy and scientific rigor. The method relies on heavy remote sensing
imagery, requires access to recent luminous remote sensing data, depends on fast updates of POI
data, and necessitates high openness of traffic network data to ensure the timeliness of built-up area
extraction. The fusion extraction rule established in this paper offers a more comprehensive approach
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to extracting built-up areas, allowing for a more holistic reflection of regional construction,
development, and public facilities. However, because this method is based on economic population
distribution, land cover characteristics, and traffic network features to identify built-up areas, it not
only enhances accuracy but also introduces challenges related to low efficiency in extraction.
Additionally, there may be insufficient index analysis for urban agglomerations at different stages of
development which could impact the applicability of this method in highly developed urban
agglomerations. Future research should focus on refining integration rules and conducting
application studies in urban agglomerations at different scales to further enrich the theory and
methodology of urban built-up area extraction.
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