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Abstract: As more and more numerical and analytical solutions to the linear neutron transport equation
become available, verification of numerical results is increasingly important. This presentation concerns the
development of another benchmark for the linear neutron transport equation. There are numerous ways of
solving the transport equation, such as the Wiener-Hopf method based on analyticity, method of singular
eigenfunctions, Laplace and Fourier transforms and analytical discrete ordinates, which is arguably one of the
most straightforward, to name a few. Another potential method is the PN method, where the solution is
expanded in terms of full range orthogonal Legendre polynomials and with orthogonality and truncation, the
moments form a set of second order ODEs. Because of the half-range boundary conditions for incoming
particles however, full range Legendre expansions are inaccurate near material discontinuities. For this
reason, a double PN (DPN) expansion is more appropriate, where the incoming and exiting flux distributions
are expanded separately to preserve the discontinuity at material interfaces. Here, a new method of solution
for the DPN equations is proposed and demonstrated for an isotropically scattering medium.

Keywords: neutron transport; isotropic scattering; analytic discrete ordinates; response matrix;
matrix diagonalization; wynn-epsilon acceleration

1. Introduction

Boltzmann's equation of particle transport, indeed presents a significant challenge and
noteworthy opportunity to solve because of its complexity and wide range of physical phenomena it
describes. Originally, the non-linear integro-differential equation, as prescribed by kinetic theory of
particle motion, was considered unsolvable. With time however, and advances in mathematics and
physical applications, where, in some cases, non-linearity could be relaxed to give a linear equation,
the situation changed. In the early to mid twentieth century, a flurry of analytical solutions were
constructed for the linear and linearized Boltzmann equation primarily based on solving partial
differential equations (PDEs) with distributions admitted, specifically for one-dimension.
Alongside the development of analytical solutions were numerical solutions as well such as Monte
Carlo, thus enabling the practical use of Boltzmann's equation in nuclear physics experiments and
nuclear reactor physics. With numerical solutions and applications to sensitive physics, there arose
a need for numerical method’s verification, which led to the development of benchmarks and
benchmarking. This, in turn, led to a host of numerical benchmark solutions to more relevant
transport applications requiring sophisticated benchmarking techniques but still generally limited to
model problems. Some readers may have the misconception that benchmarking comprehensive
transport algorithms is a wasted exercise since only idealized cases can be treated; however, the
opposite is true. Even the most advanced numerical method to solve the transport equation can
contain unknown errors that a benchmark, even for a simple problem, can easily find. The following
is about developing another high precision benchmark in one-dimension.

2. Proposed DPN algorithm

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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The PN solution is a well-known solution to determine the angular flux as described by the
transport equation. In the method, one expresses the angular flux to the transport equation in a 1D-
plane slab as the full-range PN infinite series approximation. However, this approach is problematic
for two fundamental reasons. The first concerns how the equations are closed since there is always
one more unknown than equation. The second is how one best represents half-range boundary
conditions by a continuous full-range expansion, which is not possible in an exact way. There have
been several methodologies proposed on how to treat these outstanding issues [See Refs. 1-4]. The
simplest approach to specifying boundary conditions is to avoid the difficulty altogether by resorting
to the DPN moments approximation, where the expansions are split between forward and backward
neutron directions. Now, the moments over the incoming fluxes on the slab near and far boundaries
are exact in the limit. Since the DPN approximation also has the advantage of being a coupled set
of ODEs for flux moments, one can solve for them following well-established methods.
Furthermore, one way to close the system is through convergence acceleration as N approaches
infinity.

2.1. DPN Moment and Parity Equations

We consider the simplest case of 1D plane geometry where scattering is isotropic, for which the
transport equation is

il gl =2 J w0+ Q{10 N

¢(a,—,u)=0. (1b)

¢(x, ,u) is the neutron angular flux, x is its position, u is the neutron direction cosine, @ is the

probability of scattering and Q is an imposed external source. The DPN approximation assumes the
flux representation

0

> (21+1)¢ (x)B (21 —-1), u=0
o(xru)=1""

0

D (20+1)g ()P (2p+1), u<0,
1=0 (2a,b)

where B (2 Hx 1) is the half-range Legendre polynomial of degree . When projected over half-
range polynomials P, (2 ux 1) over intervals [O, 1] and [—1, O] respectively and from
orthogonality

1

1
duP,(2u+1)P(2u+tl)=——56,,,
,([ J( ) 1( ) 20 +1 Jid

®)
the coefficients in Eqs(2) become the moments over the positive and negative directions,

(10)

5 (x)= | dup, (2u51)(x.11)
o (@

The integral on the RHS of Eq(1a), called the scalar flux, in terms of moments is
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§(x)= [ dud () = [ (o) + | dud (i) =5 (x) 5 ()
-1 0 -1 (5)

and the transport equation to solve becomes
0 or . _
[ua_u}b(x,y):_[% (x)+45 (x)]+ O(x.11).
X 2 ©)

To find a recurrence relation for the moments, we first multiply Eq(6) over P, (2 uF 1)

L up a1+ (2051 0=

=24 (x)+4, (x) ]2, (271) + O (. ) P, (2071); -
a)*
and from the recurrence of half-range Legendre polynomials, substitute
41
/T p L (2uF1)+

1127+1
#3(2#11)25 / .

to find

10| j+1 _ j B ~
S A P (2u7F1 P (2us)+P (2ux1
20x|:2j+1 JH( + )+2j+1 J—l( H+ ) J( H+ ):|¢(xa:u)+

+P,-(2u¢1)¢(x,u)=%[¢J(X)+¢J(X)]Pj(2“11)+Q(X’“)Pf(2”11)'<7c>+

Finally, on projection over intervals [0, 1] and [-1,0] respectively applying orthogonality

1[ JLdg () dg <x>id¢,-+<x>}+ o)

202j+1 dx  2j+1 dx dx

=240 (x)+ 45 (16,0 +0; (x). o

To arrive at the final result, change j to [ and multiply by (J_rl)l to give for I=0,1,...,N-1

11 141 d&i](X)_i_ [ d&f](x)_i_d&i(x) +¢i(x):
202141 dx 2041  dx e |

= J_r%[qi; (x) +dy (x)] 5+ 03 (x). ey

when

¢ (x)=(£1) ¢ (x), 76y
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and for closure, we assume

d(l;liﬂ (X) =0
dx (7g)¢
By defining the vectors

7+ eI et

¢ (x) =% & N:| (8a,b)*
At Nt At ~: 7

0'(x)=|0, O .. 0],

Eq(7e) becomes
1 dé¢* (x) - or 7, ~_ ~y
SA— =26 () =274 (1) +4 (1) [, 20" (%),
(9a)*
where
A={5,, 1/Q2I+1), 5, ,, 8., ,(I+1)/2I+1); 1,j=0,..N -1}
1,={100...0}". b,
Expressing the RHS more conveniently in terms of ¥ (x ) gives
1 dé*(x) -, O .7 . A
EA . + (x)=i55[¢ (x)+¢ (x)]iQ (x),
(10a)*
where the matrix § is
§=11" =1, }. (10b)

The key to solving for the flux vector are the even-odd parity equations derived next.

2.2. The Even/Odd DPN Parity Equations

We form the even and odd parity moment vectors

v (x)=¢"(x)+¢ () (11a,b)
2(x)=¢"(x)-¢"(x)

1l
A=

with the flux moments recovered from

5 (1)=3lw(v) ()]

(11c)
Similarly, the source parity moments are
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0 (x)=0"(x)20 (v) e
The parity equations come from adding and subtracting Eqs(10a)* to give
d
Y ";ix) vx(x) =g (x)
1 dy(x N
AT L ()= w6 (1) 44 ()

27 dx (12a,b)

On combining Eqs(12) by differentiating Eq(12a)

1, dy(x) dx(x)_dq ()
2 dx’ dx dx (13)

Then, multiplying by 4/2

2 _
et
x x x (14a)

and introducing Eq(12b)

1 ,dw(x) 1 dq (x)
—A—=" [l -ws =—A -q°
g A - edly(x) =g A4——=~¢"(x) ab)
and simplifying
dz‘// (x) 2 L dq (x) -2
- =24 —~~—-447q"
dx2 !//(X) dx q (x)’ (14_C)
where
I’ =447[1-w6]. (14d)

Once ¥ (x ) is found from Eq(14b), then from Eq(12a)

x(x)z—%Adv;,—)(Cx)+q‘ (x). -

The two moments of boundary conditions for the solution of Eq(14b) are found from the incoming
flux moments at the boundaries [see Eq(1b)]

5 (0)=[duB (2u-1) £ (1)

¢, (a)=0. (16a,b)
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The exiting moments will be given by the DPN solution designed to accommodate the half-range
condition; therefore, the BCs for ¥ (x ),

$°(0)+4 (0)

9" (a), (17a,b)

v (0)
v (a)

are not fully determined. This is where the response matrix enters the analysis.
It should be stated that the approach taken thus far is not unique. Instead of a second order

ODE for !//(x), a second order ODE can equally be found for )((x) However, there are

additional technical issues with the second approach, and therefore will not be further considered.

3. Solution to the Parity Equations

Our task is to solve the following second order inhomogeneous ODE:

d’w(x) _,
——-T x)=Q(x),
)y (x)-a () -
with inhomogeneous term
L dq (x) -2
Q(x)=24""—"“-44"¢" (x).
(=247 L1 (* -
The solution naturally decomposes into additive solutions to the homogeneous and the particular
parts.
v (x) =, (x) v, (2) o

We begin with the homogeneous parity equation for ¥/, (x ) ,

dz!//h (x) 2
— T x)=0,
dx’ vi(x) (20a)

and apply diagonalization to T°

[— r * = 71
I =Tdiag{/;k=1,.,N}T™, (20b

where T is a matrix of size N whose columns are eigenvectors Tx of T" corresponding to the
eigenvalues 4, . With diagonalization, Eq(20a) becomes

dzy(x) 2
——~—diagi/l x)=0,
dx’ g{ k}y( ) (21a)

with
y()=T"y (x). (21b)

Eqgs(21) are scalar ODEs along the diagonal with the convenient solution [5]
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sinh (4, x) sinh (4, (a-x))

y(x)=diag {W}:a)}y(a)+diag{ sinhk(ika) }y(O)

chosen to directly incorporate the (unknown) boundary conditions. By re-inserting y from Eq(21b),
the solution to Eq(20a) is

(22)

Vi (x):H(x)Wh (a)+H(a_x)Wh (0)’ (23a)
where the matrix function H (x) forms the two solutions to the homogeneous part
H(x), H(a —x)

H(x)= Tdiag{smh(l x)}T :

sinh (4,a)
(23b)
H(a - x) = Tdiag s1nh( (a x))
sinh(4,a)
(23¢c)

From Eq(19)

v, (0)=y(0)-v,(0)

Vi (a)=(//(a)—(//p (a)’ (24a)
we find for Eq(23a)

v ()=, ()= H (0w (@), (@)]+ H @)y (0¥, (0] 4y
o

v (x)=H(2)y (a) + H(a 5y (0)+v, (), (), 0.y
Note that the solution contains the unknown boundary conditions.

With the chosen two solutions of Eqs(23b,c) to the homogeneous part and from variation of
parameters, the particular solution is [5]

v, (x)=W" {H(x)j.dx'H(a—x')Q(x')+H(a—x)j.dx’H(x’)Q(x')}
x 0 (25a)

with Wronskian

W= —T|:diag {MH T
A
(25b)

Note that the particular solution has been constructed such that
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v, (0)=v,(a)=0. 29

From Eq(24c)
w(x)=H (x)y(a)+H(a—x)y(0)+y,(x); (27a)

and from Eq(15)

1(x) == AL (x)y (@) + H'(a=x) (0) ]+ U (x),

(27b)
where
: , cosh(4,x) |,
H =Td A ——*LT
(X) 1628{ k sinh(lka)}
h(A -
H'(a—x)E—Tdiag A cos ( k(a x)) T
sinh(4,a)
1
U(x)=q (x)—=A4y’ (x).
(x)=4"(x) =54y} (x) .
The flux moments in Eqs(2a,b) will be constructed from Eqs(27); but since the parity vectors
y (0).y(a)
w(0)=4"(0)+¢ (0)
y(a)=¢"(a)+¢ (a) o8

contain the unknown exiting flux vectors ¢~ (0),¢"(a), these must be determined first.

4. Response matrix

To begin, we define /Al,l;’

Y .
H'(x) =Tdiagi————T"' =B
(x)‘o dlag{sinh(lka)}

, . cosh(A.a)|, ~
H (x)L Eszag{lk W}T '=_4;
k (29a,b)

and note the following;:

h(A .
H'(a—x)‘ =-Tdiag %M T'=4
0 s1nh(lka)

A R
H'(a- =-Tdiag{——*—_\T"'=—B.
(a x)‘a lag{sinh(lka)} (29¢,d)
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To recover the outgoing positive and negative moments at the boundaries, one introduces x = 0 and

a into Eq(27b) to give

;((0):——A[H'(x)|0|//(a)+H'(a—x)|0|//(0)]+U(O)

;((a):——A[H'(x)Lv/(a)+H'(a—x)|a|//(0)]+U(a)

2 (30a,b)
or from Eqs(28a,b)
;((0):—%A[Bw(a)+/]y/(0)]+v(0)
;((a)=%A[;1|//(a)+l§|//(0)]+U(a) o)
Substituting Eqs(11a,b) at x = 0 and 4 respectively yields
q?*(o)—qg(0):—%A{l§[$*(a)+q§(a)]+;1[q5*(0)+q§(0)]+U(0)}
q?*(a)—q?’(a)=%A{/][¢§*(a)+q§’(a)]+l§[q§*(0)+$’(0)]+U(a)}
(32a,b)
and if
_AB A4
b= =7 (32¢,d)
then Eqs(32a,b) become
$"(0)—¢ (0)= [(5 (a)]-7[8"(0)+4 (0)]+U(0)
$" (a) 5 (a)=7[4"(a) ] B9 (0)+4(0)]+U(a); (32¢,f)

and re-arranging

pé (a)=[1-7] (0)=-p¢ (a)-[1+7]¢" (0)+U(0)

[1-716"(a)= B4~ (0)=[1+7]¢"(a)+ B$"(0)+U(a) (328,h)
into matrix form
A e i
where
x=[I+y]. (32K)

When we multiply both sides by the skew symmetric block identity matrix
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] It 2 b |

we find
2 5Ll sl
x —pllé (0) x' B ¢+ (0) (a) (33b)
Finally, multiplying by the inverse of the leading matrix gives the exiting flux

solall Bl

where the response matrix is
-l .
x Bl lx B (34b)

{_UU((aO))} ) {_‘Iq((ao))} ’ %{—vai((o‘z )} (35a,b)

To complete the expression

with
Bjdx'H(a - x')Q (x')
0

{—lﬁ;((oz)}’”]
(35¢,d)

On the left, we have the moments of the outgoing flux distribution and on the right the moments

—ﬁZ[dx'H(x')Q(x')

of the incoming flux distribution. Hence, for a known incoming distribution, the outgoing moments
are now known.

5. Final Moments Solution

One then recovers the N spatial moments from Eqs(11c)* as
- 1
5 ()2 () + 2 ()]
ra 1
5 (=1l ()-2()]

(36a)*

and from Eqs(27a,b) to give the general solution
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_H(x)—%AH’(x):y/(a)+:H(a—x)—%AH’(a—x)_y/(O)+_

w, (¥)+U(x)

_H(x)+—AH’(x):1//(a)+:H(a—x)+%AH’(a—x)_l//(O)—_

+y,(x)-U(x) |
(36b)*

Or with

(37a)*

and

7 (¥)=w, (1)£U(x), -

With additional manipulation

SOl el sl o]
or introducing Eq(34a)

[RAIE bt R AR e

with

{MHI : ]
¢"(0) duP, (2pu-1) f (1)

0 (38¢)*

and
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P,(2u-1)=[R(2u-1) R(2u-1) .. P (2u-1)] (38d.e)
1={11..1".

and U (x) is from Eq(27e).

6. The DPN Approximation

The DPN solution comes from the convergence of the series solution of Eqs(2)

¢(x. 1) = lim ¢ (x, 1; N),
(39a)

where the DPN approximation is the partial sum

N
Z 2l+l ¢, x)P(2y ) u=0
(ZS(X,,U;N): ;O
> (20+1)¢; (x)P (21 +1), u<0.
=0 (39b,c)

To incorporate the moments vector of Eqs(38b), we let u negative be —|ul and trivially multiply by
(+1)! in the partial sum for u positive to give for >0

N

p(x:N) = (21 +1)d7 (x)B (2] -1).
an (40a)
and if
N Ediag{21+1, l=1,~-,N}, (40b)
Eq(40a) becomes the N-term inner product
¢(x,xu;N)=Py (2|M|—1)sz‘l;i (x) (40c)

to be evaluated in the next section.
7. Numerical Implementation and Demonstration

7.a. Numerical Implementation for an Isotropic Source

Numerical implementation of the DPN algorithm for an isotropic source at the near surface and
none at the far surface is relatively straightforward by following the algorithm presented. In
particular, matrix diagonalization is through an HQR procedure originating from the LAPACK
routine [6] and is one of the most reliable of numerical methods in use today. Once eigenvalues are
known, the matrix functions come from common matrix multiplication of Eqs(23b,c). LU
decomposition gives the matrix inversions. Our final consideration is convergence in DPN order N
through a sequence of DPN approximations [Eq(40c)] and convergence acceleration. To develop a
sequence of partial sums, we increment the number of moments by stride AN (usually AN = 5) and
monitor convergence of the sequence through sequential convergence and convergence acceleration
until the relative error is below a desired relative error or convergence fails. If failure, we increase
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the number of sequence elements or change expectations. In this way, convergence provides a
measure of closure. There are numerous variants of acceleration to choose from. Here, we first
apply common sequential convergence similar to a sensitivity study and then Wynn-epsilon (W-e)
acceleration. Sequential convergence starts from DPN order No and compares the convergence
standard, called the engineering estimate of the relative error between iterations m-1 and m [i.e,,
orders N, +(m—1)AN and N, +mAN ], for m=1,2,...

Egy (X, 13m)

5

B |¢(x,i,u;N0 +mAN )~ (x,£4; N, +(m—1)AN)|
=‘ ¢(x,i,u;N0+mAN)

(41a)

to the desired relative error

Egeq (x, 3m) <e. (41b)

If satisfied, the sequence has converged sequentially at (x, 11). W-e acceleration, in contrast, is non-
linear. Similarly, to sequential convergence, the same sequence of DPN approximations

sm=¢(x,i,u;N0+mAN), m=0,1,... (422)
is the initial sequence list. W-e convergence essentially extrapolates a known sequence to give the
next sequence element (and an estimate of the limit) from previous elements. The algorithm is
recursive and for L+1 iterations, in principle, improved DPN partial sums result for k odd

g(’l") =0

e =g  m=0,1,.,L

(m) _ (mw)) [ () _ () 1 _
et =el" + " e | s m=0,L..L—k-1; k=0,1..,L L oy

The algorithm is conveniently written as the following tableau:

)

(43)

Every element of the odd columns should give an improved estimate of the original DPN partial sum
in column one. The last term in each column, indicated by the arrow, assumed most precise, gives
the following relative error standard after L iterations:

£ u)—& 2) ,
e, (x,,u;L) _|°L (X ,1(102 L2 (X ,u)|,
‘ gL (X,/J)

(44a)

considered converged when

8We(x,,u;L)<8; L=12,... (44b)

Overall convergence therefore is a competition between the two modes of partial sum convergence,
where convergence occurs for the least relative error


https://doi.org/10.20944/preprints202406.1186.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 June 2024 d0i:10.20944/preprints202406.1186.v1

14

min I:&‘Seq (x, 3m), &, (x, ,u;L)] <e. )

As a first demonstration, we consider an isotropic source, f(11) = 1 entering the near surface and no
incoming flux entering the far surface to give surface flux moments vectors

o
¢+ (0) 10 (46)
From Eqs(34a,b), the exiting flux moments vectors are therefore
R 3T 5K
50 o)) e ) L sl .

and the interior flux moment vectors are from Eqs(38b,c)

V(X)}l{df(ﬂ o‘é’(a:i)}[,e”@;(a)}_

§(x)| 2| () o (a—x) OF
The flux vectors enter Eq(40a) re-written as
Y +
b(x.1:N) =2 a) ()9, (1)
1=0 (48a)
with
0,(1)= R (2lu-1)
a; (x)=(20+1)¢" (x). (48b)
Since 6, ( ,u) obeys the recurrence
2[+1 [
0 = (2|u|-1 0 -—0
1+1(,U) ( |,U| ) ; l(ﬂ) J41 - (,u), (492)

the Clenshaw sum [7] applies, where
#(x,1:N) =0y (w)ay (x)+ 0, (u)by (x, 1)+ B, (1) 0y (1) B2 (%, 1) 4y

and

21 +1

0‘1(,“):(2,“_1) /

b
[+1 (49¢)

ﬂl(ﬂ):
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by (X, 1) = by, (3, 1) =0 (49d)
by (% ) = ay (x) + 0 (4)bry (% 1) + By (1) Dy, (% 1),

We now turn to the issue of solution precision. To address precision, we compare the DPN
solution to a well-established fully analytical discrete ordinates response matrix benchmark
RM/DOM[5]. We assume no absorption (v =1) and a slab of 1 mfp thickness. Table 1 gives what is
believed to be precise angular fluxes to better than one unit in the 8" place using RM/DOM. The
DPN angular flux approximation for N = 100 agrees to all 7- digits of the angular flux from the
RM/DOM of quadrature order 250 and to all but three entries (last digit emboldened and underlined)
in the 8n place for N = 150 without acceleration. Thus, the method presented indeed does
successfully provide an extreme benchmark to nearly 8 places.

The effectiveness of W-e acceleration is shown by Figure 1, which is the ratio of the relative error
with and without acceleration over all directions at the seven spatial coordinates. One observes the
W-e relative errors at convergence are generally smaller than the errors of the original sequence for
this benchmark solution. This is further confirmation of the high quality-- to one unit in the seventh
and nearly one unit in the eighth place-- of the proposed DPN algorithm. 40 of the 72 fluxes
converged by W-e showing the significance of the Wynn-epsilon algorithm.

Table 1. Angular Flux for an entering isotropic source.

u\x 0.0 0.05 0.1 0.2 0.5 0.75 1.0

- 3.41328760E- 3.20920611E  3.01041128E  2.62366118E  1.53240509E  7.07430107E  0.00000000E+0

1.000E+0 01 -01 -01 -01 -01 -02 0

0

-8.000E- 3.92084430E- 3.69683964E  3.47820410E  3.05071361E  1.82180798E  8.60214436E  0.00000000E+0

01 01 -01 -01 -01 -01 -02 0

-6.000E- 4.58134371E- 4.33685363E  4.09782681E  3.62759573E  2.24012630E  1.09614879E  0.00000000E+0

01 01 -01 -01 -01 -01 -01 0

-4.000E- 5.43854301E- 5.17792855E  4.92356464E  4.42065792E  2.88493773E  1.50567243E  0.00000000E+0

01 01 -01 -01 -01 -01 -01 0

-2.000E- 6.45967494E- 6.19276078E  5.93756446E  5.43978308E  3.90966211E  2.35919292E  0.00000000E+0

01 01 -01 -01 -01 -01 -01 0
7.58146459E- 7.22978545E  6.94563136E  6.42872374E  5.00000000E  3.81715377E  2.41853541E-

0.000E+0 01 -01 -01 -01 -01 -01 01

0

2.000E- 1.00000000E+0  9.42160751E  8.90352375E  8.02157479E  6.09033789E  4.80750231E  3.54032506E-

01 0 -01 -01 -01 -01 -01 01

4.000E- 1.00000000E+0  9.69316928E  9.38639544E  8.78613253E  7.11506227E  5.83062169E  4.56145699E-

01 0 -01 -01 -01 -01 -01 01

6.000E- 1.00000000E+0  9.79131021E  9.57479617E  9.12982318E  7.75987370E  6.60525697E  5.41865629E-

01 0 -01 -01 -01 -01 -01 01

8.000E- 1.00000000E+0  9.84189969E  9.67479934E  9.32267600E  8.17819202E  7.15927250E  6.07915570E-

01 0 -01 -01 -01 -01 -01 01
1.00000000E+0  9.87275159E  9.73675082E  9.44578242E  8.46759491E  7.56515359E  6.58671240E-

1.000E+0 0 -01 -01 -01 -01 -01 01

0
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Figure 1. Ratio of unaccelerated to accelerated relative errors.

7.b. Numerical Implementation for a Beam Source

The final example is for a beam source entering the near surface and none at the far surface

$(0, )= f (1) =5(p—p)
¢(a,—p)=0. (50a,b)

For this case, it is convenient to separate the uncollided ¢0 (X, ,U) from the collided ¢c (xa ,U)

component

d(x, 1) = (x, 1)+, (x, 1), (51)

where he uncollided (scalar) component should not be confused with the zeroth vector flux moments
s (x), avector. The uncollided flux satisfies

[uaﬁﬂ}%(x,u):O

X (52a)
¢o(0u“):5(:“_,uo)
o (a,—u)=0 (52b)

to give

b (x,1) =6 (1=t )e O () (52¢)
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where ©( y) is the Heaviside step function required to maintain the uncollided flux in the positive
direction. When Eq(51) is introduced into Eq(la) with Eq(52c)

[u£+l}¢c (x, ) zgj.du'gbc (x,1')+0O(x)

ox (53a,b)
0(x)=Fe ™.
with boundary conditions
¢c (O’ Iu) = 0
¢.(a,—p)=0. (53¢,d)
From Eq(14c) for the collided component derived from Eq(53b)
2
v (x) "’Cz(x) Ty, (x)=—4we " A7 1,
dx (54a)
with
v.(0)=4 (0
v.(a)=¢"(a). (54b,c)
Assuming the particular solution
v, (x)=e""C, (55a)
we find
C=-4pjo[1-1T* |47, 550
From Eq(38b)
Ty - - _ 7+ —x/ ty
8 el )
¢ (x)]| 2|H# (x) H#(a—x)| ¢ (0)] 2 1\ 2u, |-1 (562)
where
{"’ (a)} _ {—ﬂ X } {—U (0)} (56b)
b (0)] [x -8 [U(a) ]
and

{_UU((“O))} i %{‘W'/’i((o‘z )} - 21‘0 LI’ ea?”['l Hi} (560)
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to be inserted into

b (x.2u;N) = Py (2|u|-1) L 4" (x) (56d)

for the angular flux.

The slab for the beam source is the same as for the isotropic source. Table 2 shows the results
from RM/DOM [5], which is a 7-place benchmark. Overlaid is the DPN result where it is observed
that DPN gives nearly all 7 places except for two entries in one unit in the last digit. The beam source
behaves differently from the isotropic source however, as it is more sensitive to round off error. The
DPN results of Table 2 required quadruple precision (QP) to achieve nearly 7-places; whereas, the
isotropic source required double precision. For the beam source, double precision only gives at best
4-places. A future effort will attempt to determine where the loss of precision occurs; nevertheless,
the DPN provides a solid 6 digits and near 7 with QP.

Table 2. Angular Flux for a perpendicularly (o =1) entering beam source.

U\ x 0 0.05 0.1 0.2 0.5 0.75 1
- 5.3877491E-01  5.1979897E-  4.9826415E-  4.5015758E-  2.8363970E-  1.3670184E-  0.0000000E+00
1.000E+00 01 01 01 01 01
-8.000E- 6.1358488E-01  5.9454278E-  5.7227580E-  5.2122894E-  3.3675659E-  1.6617467E-  0.0000000E+00
01 01 01 01 01 01
-6.000E- 7.0705901E-01  6.8953074E-  6.6778458E-  6.1558120E-  4.1317580E-  2.1164480E-  0.0000000E+00
01 01 01 01 01 01
-4.000E- 8.1805757E-01  8.0600276E-  7.8820201E-  7.4066647E-  5.2986404E-  2.9042486E-  0.0000000E+00
01 01 01 01 01 01
-2.000E- 9.1606674E-01  9.1832709E-  9.1231716E-  8.8438367E-  7.1013555E-  4.5375071E-  0.0000000E+00
01 01 01 01 01 01

8.7868708E-01  9.2867409E-  9.4863473E-  9.5773321E-  8.6865051E-  7.1731075E-  4.8302802E-01
0.000E+00 01 01 01 01 01
2.000E-  0.0000000E+00 2.0129990E-  3.6476856E-  59744092E-  8.4223675E-  7.9950036E-  6.5012804E-01
01 01 01 01 01 01
4.000E-  0.0000000E+00 1.0687614E-  2.0478323E-  3.7093644E-  6.5966190E-  7.2022080E-  6.6508565E-01
01 01 01 01 01 01
6.000E-  0.0000000E+00 7.2711601E-  1.4205915E-  2.6699419E-  5.2395290E-  6.1548983E-  6.1208033E-01
01 02 01 01 01 01
8.000E-  0.0000000E+00 5.5092891E-  1.0870690E-  2.0824783E-  4.3113588E-  5.2849359E-  5.4968216E-01
01 02 01 01 01 01

0.0000000E+00  4.4345690E-  8.8026420E-  1.7060822E-  3.6524695E-  4.6023695E-  4.9305877E-01
1.000E+00 02 02 01 01 01
Conclusion

By expressing the solution to the 1D monoenergetic neutron transport equation in plane
geometry in an infinite series of half-range Legendre polynomials, a first order coupled set of ODEs
for half-range moments in the positive and negative directions follows on truncation. By adding
and subtracting, the ODEs transform into a second order form for the even and odd parity moments.
At this point, one can choose to follow several solution scheme to solve for the parity moments.
Here, we choose to establish the even parity solution to include the unknown boundary conditions.
By manipulation of the matrix equations, one finds the relationship between the incoming and the
exiting fluxes through the response matrix. With the exiting fluxes known, the fluxes interior to the
slab also become known. We form the solution in terms of the diagonalization of the matrix
associated with the second order ODE, or, in other words, expressible as eigenvectors and
eigenvalues. Convergence of the infinite series is through sequential convergence of the partial
sums and Wynn-epsilon convergence acceleration. It was shown, via two examples, that
benchmarks of 6 and 7 digits can be constructed. It should be noted that the precision quoted
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depends on the spatial positions and directions sampled but is thought to be representative of a wide
variety of samples.
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