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Abstract: Gradients of smooth functions with non-independent variables are relevant for exploring complex
models and for the optimization of functions subjected to constraints. In this paper, we investigate new and
simple approximations and computations of such gradients by making use of independent, central and symmetric
variables. Such approximations are well-suited for applications in which the computations of the gradients are
too expansive or impossible. The derived upper-bounds of the biases of our approximations do not suffer from
the curse of dimensionality for any 2-smooth function, and theoretically improve the known results. Also, our
estimators of such gradients reach the optimal (mean squared error) rates of convergence (i.e., O(N~1)) for the
same class of functions. Numerical comparisons based on a test case and a high-dimensional PDE model show

the efficiency of our approach.
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1. Introduction

Non-independent variables arise when at least two variables do not vary independently, and
such variables are often characterized by their covariance matrices, distribution functions, copulas,
weighted distributions (see e.g., [1-7]). Recently, dependency models provide explicit functions that
link these variables together by means of additional independent variables ([8-12]). Models with non-
independent input variables, including functions subjected to constraints, are widely encountered in
different scientific fields, such as data analysis, quantitative risk analysis, and uncertainty quantification
(see e.g., [13-15]).

Analyzing such functions requires being able to calculate or to compute their dependent gradients,
that is, the gradients that account for the dependencies among the inputs. Recall that gradients are
involved in i) inverse problems and optimization (see e.g., [16-20]), ii) exploring complex mathematical
models or simulators (see [21-28] for independent inputs and [9,15] for non-independent variables); ii)
Poincaré inequalities and equalities ([9,28-30]), and recently in iv) derivative-based ANOVA (i.e., exact
expansions) of functions ([28]). While the first-order derivatives of functions with non-independent
variables have been derived in [9] for screening dependent inputs of high-dimensional models, the
theoretical expressions of the gradients of such functions (dependent gradients) have been introduced
in [15], enhancing the difference between the gradients and the first-order partial derivatives when the
input variables are dependent or correlated.

In high-dimensional settings and for time-demanding models, having an efficient approach
for computing the dependent gradients provided in [15] using a few model evaluations is worth
investigating. So far, the adjoint methods can provide the exact classical gradients for some classes of
PDE/ODE-based models ([31-36]). Additionally, Richardson’s extrapolation and its generalization
considered in [37] provide accurate estimates of the classical gradients using a number of model
runs that strongly depends on the dimensionality. In contrary, the Monte-Carlo approach allows
for computing the classical gradients using a number of model runs that can be very less than the
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dimensionality (i.e., d € N) ([17,38,39]). The Monte-Carlo approach is a consequence of the Stokes
theorem, which claims that the expectation of a function evaluated at a random point about x € R is
the gradient of a certain function. Such a property leads to randomized approximations of the classical
gradients in derivative-free optimization or zero-order stochastic optimization (see [16,18-20] and
references therein). Such approximations are also relevant for applications in which the computations
of the gradients are impossible ([20]).

Most of the randomized approximations of the classical gradients, including the Monte-Carlo
approach, rely on randomized kernels and/or random vectors that are uniformly distributed on the
unit ball. The qualities of such approximations are often assessed by the upper-bounds of the biases
and the rates of convergence. The upper-bounds provided in [19,20,40] depend on the dimensionality
in general.

In this paper, we propose new surrogates of the gradients of smooth functions with non-
independent inputs and the associated estimators that

e are simple and applicable to a wide class of functions by making use of model evaluations at
randomized points, which are only based on independent, central and symmetric variables;

* lead to a dimension-free upper-bound of the bias, and improve the best known upper-bounds of
the bias for the classical gradients;

* lead to the optimal and parametric (mean squared error) rates of convergence;

e are going to increase the computational efficiency and accuracy of the gradients estimates by

means of a set of constraints.

Surrogates of dependent gradients are derived in Section 3 by combining the properties of i) the
generalized Richardson extrapolation approach thanks to a set of constraints, and ii) the Monte-Carlo
approach based only on independent random variables that are symmetrically distributed about
zero. Such expressions are followed by their order of approximations, biases and a comparison with
known results for the classical gradients. We also provide the estimators of such surrogates and their
associated mean squared errors, including the rates of convergence for a wide class of functions (see
Section 3.3). A number of numerical comparisons is considered so as to assess the efficiency of our
approach. While Section 4 presents comparisons of our approach to other methods, simulations based
on a high-dimensional PDE (spatio-temporal) model with given auto-collaborations among the initial
conditions are considered in Section 5 to compare our approach to the adjoint-based methods. We
conclude this work in Section 6.

2. Preliminaries

For an integer d > 0, let X := (Xy, ..., X;) be a random vector of continuous and non-
independent variables having F as the joint cumulative distribution function (CDF) (i.e., X ~ F).
For any j € {1,...,d}, we use Fy; or F; for the marginal CDF of X; and F]fl for its inverse. Also,
weuse (~j):=(1,...,j—1,j+1,...,d) and X.j = (X, .. .,X]',l,XjH,...,Xd). The equality (in
distribution) X 2 7 means that X and Z have the same CDF.

As the sample values of X are dependent, here we use of

Er
w.r.t. X, that is, the partial derivative obtained by considering other inputs as constant or independent

for the formal partial derivative of f

T
of xx. Thus, Vf := [%, el %} stands for the formal or classical gradient of f.

Given an open set () C R9, consider a weak partial differentiable function f : QO — R ([41,42]).

Given7 := (i1,...,iz) € N¢, denote D) f := (H,‘f:l g%{)f; (x)f =X = szl x;(",?! =1i!...i4!,and

consider the Holder space of a-smooth functions given by Vx,y € R?

(@) -
Ha i {f:Rd SR ‘f(X) - x Py

0<ii+..+iy<a—1

SszIIX—yllg}/
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with « > 1 and M, > 0. We use ||||, for the Euclidean norm, || - ||; for the Li-norm, E(-) for the
expectation and V(+) for the variance.

For the stochastic evaluations of functions, consider L, ¢ € N\ {0}, By € Rwith ¢ =1,...,L,
h = (hy,... . hy) € Ri, and denote with V := (V,...,V;) a d-dimensional random vectors of
independent variables satisfying: Vj € {1,...,d},

E[v] =0 E|()] =% E[(W)] =0  E[(1)"] < +e.

Random vectors of independent variables that are symmetrically distributed about zero are instances
of V, including the standard Gaussian random vector and symmetric uniform distributions about zero.
Also, denote hV := (l’l1V1; e ,thd); h’lV = (Vl/hl,' ceey Vd/hd) and ,thV = (ﬁgl’qu; ceey ﬁgthd).

The reals f,’s are used for controlling the order of approximations and the order of derivatives (i.e.,
[7]]1 = 1,2) we are interested in. Finally, /;’s are used to define a neighborhood of a sample point

of X (i.e., x). Thus, using Byay := max(|B1], ..., |BL|) and keeping in mind the variance of B/h;V;, we
assume thatVj e {1,...,d},

Assumption (A1) : Buaxhjo < 1/2  orequivalently 0 < ﬁmuxhj|Vj| < 1 for bounded Vj’s.

3. Main Results

This section aims at providing new expressions of the gradient of a function with non-independent
variables, and the associated order of approximations. We are also going to derive the estimators of
such a gradient, including the optimal and parametric rates of convergence. Recall that the input

variables are said to be non-independent whenever there exists at least two variables X;, X; such that
the joint CDF Pj,k (X]', xk) # P]-(x]-)Fk(xk).

3.1. Stochastic expressions of the gradients of functions with dependent variables

Using the fact X ~ F with F(x H‘-i: F:(x;), we are able to model X as follows ([8-12,14,43]):
g j=11Lj\Xj

X L or(X,Z.) 1)

T
= [ Z) 11 (5, Z) i (X5, 2g) 1 (X5, 29) |

where ri RY — R4-1; X]- and Z.:= (Zl,...,Z]-_l,ZjH,...Zd) are independent. Moreover, we

have (X;, X;) 4 (Xj, rj(Xj,Z)), and it is worth noting that the function r; is invertible w.r.t. Z.; for
continuous variables, that is,

ZN]' = 7’;1 (XN] | X]) .

Note that the formal Jacobian matrix of ¢ : R? — R?, x + x is the identity matrix. As x is a sample
value of X, the dependent Jacobean of g based on the above dependency function is clearly not the
identity matrix due to the fact that such a matrix accounts for the dependencies among the elements of
x. The dependent partial derivatives of x w.r.t. x; is then given by ([9,15])

T
. ox 81’1 i ard 1
(7 — 2 |2 J | Ao
JV(x) : ax; o, 1 ... ax, (x], r; (ij\x])> ,

jth position

and the dependent Jacobian matrix becomes (see [15] for more details)

(x) = [](U(x),..., ](d)(x)] .
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Moreover, the gradient of f with non-independent variables is given by ([15])

grad(£)(0) = [I'00" (0] VF(x) = 60 VF(x), @

with G(x) := J¥(x)TJ4(x) the tensor metric and G~!(x) its generalized inverse. Based on the above
framework, Theorem 1 provides the stochastic expression of grad(f)(x). In what follows, denote
To:=11,...,1]T e R4

Theorem 1. Assume f € Hq with o > 2L, (A1) holds and B,’s are distinct. Then, there exists aq € {1,...,L}
and reals coefficients Cq, . .., Cy, such that

L -1
grad(f)(x) = G (x) Y C/E [f(x + ﬁzhwvf,‘z} +O(IIn/[3") 7. 3)
(=1

Proof. See Appendix A for the detailed proof. [

Using the Kronecker symbol 41 ,, the setting L = 1,81 = 1, C; = 1 or the constraints 259;2 CB, =
01,5 r = 0,1lead to the order of approximation O (| |h| |§) , while the constraints Y5, CBy =01 1=

1,3,5,...,2L — 1 allow for increasing that order up to O (] |h| |§L) . For distinct B’s, the above constraints
lead to the existence of the constants Cy, ..., Cr. Indeed, some constraints rely on the Vandermonde

matrix of the form
1 1 ... 1

Bi B2 ... BL

A = s
TR OB B

which is invertible for distinct values of B,’s (i.e., B;, # Py,) because the determinant det(A;) =

[Ti<t,<t,<0(Be, — Be,)-

72 [
When L is odd, one may add O to the above set. Of course, there are other possibilities provided that

Y 1Cefr=1.

Remark 1. For an even integer L , the following nodes may be considered: {B1,...,Br} = {:I:Zk, k=0,..., 152 }

Beyond the strong assumption made on functions in Theorem 1, and knowing that increasing
L will require more evaluations of f at random points, we are going to derive the upper-bounds of
the biases of our appropriations under different structural assumptions on the deterministic functions
fand V, such as f € H, with « > 1. To that end, denote with R := (Ry,...,R;) a d-dimensional
random vector of independent variables that are centered about zero and standardized (i.e., E[Ri] =1,
k=1,...,d),and R, the set of such random vectors. Define

Kl ;= inf

K2 = inf
ReR,

1 ReR,

6710 |E[R?RIL |

G B[RRI |

2}

with |G| the matrix obtained by putting the entries of G in the absolute value.

When1 < a« <2,only L =1 or L =2 can be considered for any function that belongs to H,. To
be able to derive the parametric rates of convergence, Corollary 1 starts providing the upper-bounds
of the bias when L = 2.
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Corollary 1. Consider p1 = 1,82 = =1, C; =1/2; Co = —=1/2. If f € H; and (A1) holds, then there exists
My > 0 such that

1
g?‘lld(f) Z C[E|: X—l-‘thV) Vh_ ] < 0’M2K1||h||2; 4)

1

< oMK ||k, . (5)
2

1
grad(f)(x ZCKE[ x+,thV)Vh ]

Proof. Detailed proofs are provided in Appendix B. O

For a particular choice of V, we obtain the results below.

Corollary 2. Consider p1 =1, = —1,C; =1/2,Co = —=1/2. If Vi, ~U(—E, &) withe >0,k =1,...,d;
f € Hyand (A1) holds, then

grad(f)(x) - G ZCeE[f(X+/5th)Vh || < mag] o ool ©
1

gmd(f)(X)—G‘l(X)ZijCeE[ ot gy V|| < a6 7)
= 2

Proof. Since |Vi| < &, we have ||hV||; < ¢||h||; and the results hold using the upper-bounds
M2H|G’1(x)|E{X—§||hV||l} Hl and Mz‘ ‘ |G’1(x)|]E[X—22||hV||1} HZ obtained in Appendix B. [J

It is worth noting that, choosing /i = h and ¢ = 1/d? leads to the dimension-free upper-bound of
the bias, that is,

because |||G ™1 (x) |1, |],
For the sequel of generality, Corollary 3 provides the bias of our approximations for highly smooth

Mzh

Vh— 1}

grad(f)(x 2 C/B|f(x+ pihV)

i lllo7ex

is a function of d in general.

functions. To that end, define

L+1 1L
K3 = ’Cg,B + ‘

B[RRI ||

Corollary 3. For an odd integer L > 2, consider ZLH CBy =01, r=0,1,..., L. If f € Hy1y and (A1)
holds, then there exists M1, > 0 such that

Moreover, if Vi ~U(—E, &) with > 0andk =1,...,d, then

Proof. The proofs are similar to those of Corollary 1 (see Appendix B). [

L+1
grad(f)(x 2 Cg]E[ (x+ B,hV)

L
< (TLM1+LK2,LK3| ‘h| |2 :

Vh]
2

L+1

grad(f)(x Z C1E|: x—l—,thV)Vh; IKs.

< g Mi||[GT
2
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In view of the results provided in Corollary 3, finding f’s and C’s that minimize the quantity
K3 = ZL“ ‘C ,BHL‘ might be helpful for improving the above upper-bounds.

3.2. Links to other works for independent input variables

Recall that for independent input variables, the matrix |G~ (x)| comes down to the identity
matrix, and grad(f) = Vf. Thus, Equation (7) becomes

< Myh,

Vhl}
2

va Z CoE\f(x+pehV)
=1

when & = v/d/d?. Taking & = v/d/d leads to the upper-bound Myhd.

Other results about the upper-bounds of the bias of the (formal) gradient approximations have
been provided in [19,20] (and the references therein) under the same assumptions made on f and
evaluations of f. Such results rely on a random vector S that is uniformly distributed on the unit ball
and a kernel K. Under such a framework, the upper-bound derived in [19,20] is

< 2v2adMh* 1,

’ ’Vf(x) _ %E[f(x +UnS)SK(U))|

where U ~ U(—1,1) is independent of S. Therefore, our results improve the upper-bound obtained in
[19,20] when a = 2 for instance.

3.3. Computation of the gradients of functions with dependent variables

Consider a sample of V given by {V; := (V;1,...,V; d)} . Using Equation (3), the estimator of
grad(f)(x) is derived as follows:

—

1
grad(f)(x) = v

N L
ZZ Cof(x+ BchV;)

Z\H

To assess the quality of such an estimator, it is common to use the mean squared error (MSE),
including the rates of convergence. The MSEs are often used in statistics for determining the optimal
value of h as well. Theorem 2 and Corollary 4 provide such quantities of interest. To that end, define

K= gog /[~ comn ]|

Theorem 2. Consider B1 =1,B2 = -1, C; =1/2; Co = =1/2. If f € Hy and (A1) holds, then

— 2 , MiKa [
B |[srad (7)) — grad(£) | [}| < 2MBRGIIHIE + 2. ®

Moreover, if Vi ~U(—E, &) with > 0andk =1,...,d, then

E[ng/ad(\ —grad(f H} < M%ﬁsz_l )
T g o]

Proof. See Appendix C. [
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Using a uniform bandwidth, that is, by = h with k = 1,...,d, the upper-bounds of MSEs
provided in Theorem 2 have simple expressions. Indeed, the upper-bounds in Equations (8)-(9)
become, respectively,

v+ U g |t ] ]
] ] i+ 2 g o com ]

It comes out that the second-terms of the above upper-bounds do not depend on the bandwidth 5.
This key observation leads to the derivation of the optimal and parametric rates of convergence of the
proposed estimator.

Corollary 4. Under the assumptions made in Theorem 2, if ¢ = d—3/2 and hy =h«xN =7/2 with v €11, 2],
then we have

B |[srad (F)0x) ~ grad() 0[] = 0 (1),

Proof. The proof is straightforward since h* « N~7 and Nk — co when N — co. [

It is worth noting that the upper-bound of the squared bias obtained in Corollary 4 does not
depend on the dimensionality thanks to the choice & = d~3/2. But, the derived rate of convergence
depends on d?, meaning that our estimator suffers from the curse of dimensionality. In higher-
dimensions, an attempt to improve our results consists in controlling the upper-bound of the second-
order moment of the estimator through Y%, |C,8/|. For instance, requiring Y°-_,|C¢B,| = 1/d? with
L = 2 admits a solution in C and not in R.

Remark 2. For highly smooth functions (i.e., f € Hq4p with L > 3) and under the assumptions made in
Corollary 3, we can see that

B |[srad ()0 ~grad(neo[;] < a6 ool lmIRt
\[ 2 2
Y, g oo ]

4. Computations of the Formal Gradient of Rosenbrock’s Function

For comparing our approach to i) the finite differences method (FDM) using the R-package
numbDeriv ([44]) with i = 1074, ii) the Monte Carlo (MC) approach provided in [17] with h = 1074, let
us consider the Rosenbrock function given as follows: V x € RY,

d—1 5 ) 2
r(x) =Y [(1 — X))+ lOO(ka - xk) } .
k=1
The gradient of that function at 0is Vr(0) = [-2,..., -2, O}T € R!% (see [17]). To assess the numerical

accuracy of each approach, the following measure is considered:

HW‘”‘VA’(O)Hl
[Ivr@)l,

Err .=

do0i:10.20944/preprints202406.1138.v1
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where 6\7(0) is the estimated value of the gradient. Table 1 reports the values of Err for the three
approaches. To obtain the results using our approach, we have used & = 1/+/N with N the sample
size and & = 1/d* = 10~* with d = 100. Also, the Sobol sequence is used for generating the values of
Vj’s, and the Gram-schmidt algorithm is applied to obtain (perfect) orthogonal vectors for a given N.

Table 1. Values of Err for three different approximations of the formal gradients.

Number of total model evaluations (i.e., LN)

100 150 200 200 1000 1000
Methods
FDM ([44]) - - - 0.005 - -
MC ([17]) 0.042 - - - - -
L=1 L=1 L=1 L=2 L=1 L=2
This paper 0.035 0.014 0.009 0.009 0.0020 0.00199

Based on Table 1, our approach provides efficient results compared to other methods. Since the
FDM is not possible when N < 2d = 200, it comes out that our approach is much flexible thanks to
L and the fact that the gradient can be computed for every value of N. Increasing N improves our
results, as expected.

5. Application to a Heat PDE Model with Stochastic Initial Conditions

5.1. Heat Diffusion Model and Its Formal Gradient

Consider a time-dependent model f(x, t) defined by the one-dimensional (1-D) diffusion PDE
with stochastic initial conditions, that is,

) 02
(_TJ;_D%:(), x €]0, 1, t € [0,T]
f(x,t=0)=Z(x) xel0,1]
flx=0,t)=0, f(x=11) =1, te 0, T)
where D € R} represents the diffusion coefficient. It is common to consider J(Z =3 fo dxd t

as the quantity of interest (Qol). The spatial discretisation consists in subd1v1d1ng the spatlal domam
[0, 1] in d equally-sized cells, which lead to d initial conditions or inputs given by Z(x;) withj = 1,...,d.
Given zero-mean random variables (R;, j = 1,...,d), assume that X; := Z(xj) = sm(ch]) +siRj, j=
1,...,d, wheres; € Ry represents the inverse precision about our knowledge on the initial conditions.
For the dynamic aspect, a time step of 0.025 is considered starting from O up to T = 5.

Given a direction z(x) and the Gateaux derivative f(x,t) := aZa(J; L the tangent linear model is
derived as follows:

. 5 s
%—{—Dng;:o, x €]0, 1], t € [0, T]
fx, t=0) =z(x), xel0,1] .
fx=0,8)=fx=1 =0, te o, T]

and we can check that the adjoint model (AM) (i.e., f*) is given by
_ﬂ_Df;; = f, x €]0,1], t € [0,T]
ff(x=0,t)=f"(x=1,t) =0, tel0, T
f(x,T) =0, x €10,1]

The formal gradient of J(Z(x)) w.r.t. the inputs Z(x) is Vz](Z(x)) = f*(x,0). Remark that the above
gradient relies on f*(x,0), and only one evaluation of such a function is needed.

do0i:10.20944/preprints202406.1138.v1
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5.2. Spatial Auto-Correlations of Initial Conditions and the Tensor Metric

Recall that the above gradient is based on the assumption of independent input variables, sug-
gesting that the initial conditions within different cells are uncorrelated. To account for the spatial
auto-correlations between different cells, assume that the d input variables follow the Gaussian process
with the following auto-correlation function:

1\ 112l o o
P %) = (3) Mos(in =il Ve (Lo d),

where Tjo 5 (|j1 — j2|) = 1if [j1 — j2| € [0,3] and zero otherwise. Such spatial auto-correlations lead to
the correlation matrix of the form

1 05 025 0125 0 0 0 .. 0
0.5 1 0.5 025 0.125 0 0 .. 0
R:.-=| 025 05 1 05 025 0125 0 . 0
0.125 025 0.5 1 05 025 0125 0 ...0
0

Using the same standard deviation s; = s leads to the following covariance matrix £ = s?R, and
X = (Xy,...,X3) ~ Ny(p, X) with u := (sin(27t¢cq), ...,sin(27cy)) and cq, ..., ¢4 the centers of the
cells. The associated dependency model is given below.

Consider the diagonal matrix D.; = diag(Zl,l, e X1, B - ~-/Zd,d)/ and the Gaussian
random vector W ~ N, 4 (IJN]'/ DNj). Denote with ZU) the matrix obtained by moving the jth
row and column of ¥ to the the first row and column; £() the Cholesky factor of 2(), and u/) :=
(Hjs#1, - Him1s Bjs1s - - -, Ha)- We can see that (X, Xj) ~ Ny (y(f),Z(f)), and the dependency model

is given by ([10])
1
X; —E[X;
(X, X)) = £U v %~ ) pul); j=1,...,d. (10)
jr ANj D_1/2<W_ ) o] EREY)
~i P~i
x., Y = T N
Based on Equation (10), we have ij = % = ZN] 1]51 = ﬁ]]’ Thus, we can deduce that JU) = ):;]] with
jij , g :

L, the jth column of ¥, and the dependent Jacobian becomes ]d = [](1), i (d)} = [é;i P T

S% =R,askj; = s]z = s? and £ = s?R. The tensor metric is given by G = RTR.

5.3. Comparisons between Exact Gradient and Estimated Gradients

For running the above PDE-based model using the R-package deSolve ([45]), we are given
D = 0.0011 and s = 1.96. The exact and formal gradient associated with the mean values of the initial
conditions is obtained by running the corresponding adjoint model. For estimating the gradient using
the proposed estimators, we consider L = 2,3 and N = 50, 100,150,200. We also use h = 1/ VN and
Vi~ N(0,1),j=1,...,d =50. The Sobol sequence is used for generating the random values of Vj’s,
and the Gram-schmidt algorithm is applied to obtain perfect orthogonal vectors for a given N.

Figure 1 shows the comparisons between the estimated and the exact values of the formal
gradient Vf (i.e., p(X;, Z;,) = 0) for L = 1,2. Likewise, Figures 2-3 depict the dependent gradient
grad(f) = (RTR) v f and its estimation. The estimates of both gradients are in line with the exact
values using only NL = 50 (resp. NL = 100) model evaluations when L = 1 and N = 50 (resp. L =1
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and N = 100 or L = 2 and N = 50). Increasing the values of L and N gives the same quasi-perfect
results for both the formal and dependent gradients (see Figure 3).
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Figure 1. Exact gradient versus estimated gradients using L = 1 (o) and L = 2 (+4) of the Qol by
considering the inputs as independent (formal gradients).
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Figure 2. Exact gradient versus estimated gradients using L = 1 (o) and L = 2 (+4) of the Qol by
considering the auto-correlations anong the inputs (dependent gradients).
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Figure 3. Exact gradient versus estimated gradients using L = 2 (o) and L = 3 (+) of the QoI by
considering the auto-correlations anong the inputs (dependent gradients).

6. Conclusion

In this paper, we have proposed new, simple and generic approximations of the gradients of
functions with non-independent input variables by means of independent, central and symmetric
variables and a set of constraints. It comes out that the biases of our approximations for a wide
class of functions, such as 2-smooth functions, do not suffer from the curse of dimensionality by
properly choosing the set of independent, central and symmetric variables. For functions including
only independent input variables, a theoretical comparison has shown that the upper-bounds of the
bias of the formal gradient derived in this paper outperform the best known results.

For computing the dependent gradient of the function of interest, we have provided estimators
of such a gradient by making use of evaluations of that function at LN randomized points. Such
estimators reach the optimal (mean squared error) rates of convergence (i.e., O(N ~142)) for a wide
class of functions. Numerical comparisons using a test case and simulations based on a PDE model
with given auto-collaborations among the initial conditions have shown the efficiency of our approach,
even when L = 1,2 constraints are used. Our approach is then flexible thanks to L and the fact that the
gradient can be computed for every value of the sample size N in general.

While the proposed estimators reach the parametric rate of convergence, note that the second-
order moments of such estimators depend on d?. An attempt to reach a dimension-free rate of
convergence requires working in C rather than R when L = 2. In next future, it is worth investigating
the derivation of the optimal rates of convergence that are dimension-free or (at least) are linear with
respect to d by considering L > 3 constraints. Also, combining such a promising approach with a
transformation of the original space might be helpful for reducing the number of model evaluations in
higher dimensions.

Acknowledgments: We would like to thank the reviewers for their comments that have helped improving our
manuscript.
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Appendix A. Proof of Theorem 1

AsT = (11,...,14), letk = |0,...,0, 1 ,0...,0] e R4 and 4 = (q1,...,q4) € N4,
k th position

Multiplying the Taylor expansion of f(x + B/hV) about x, that is,

fot gy =3 ¥ DO gy T o(|1BhVIET)

p=0|[i||;=p

by %2_1 € R? and the constant Cy, and taking the sum over ¢ = 1, ..., L, we can see that the expectation
E:= Zﬁzl C/E [f(x + ﬁghV)VfT’;l} becomes

o2

@ £(x
- £ ¥ 2 (zan)e

p20|fily=p

(Vﬁ(thh—l] .

Firstly, for a given k € {1,...,d} and by independence, we can see that
E[(V) ()it = E[(v) ()] £ 0

iff i = 295 +1;1; = 2g; forany j € {1,...,d} \ {k} with g, 4; € N, which implies that 7 = k +24.
Thus, one obtains % when |[7||; = ||k +2q||1 = 1, and the fact that E[V?] = ¢?; E[V;] = 0and
Y0 CeBe = 1. At this point, by taking k = 1,...,d and setting L = 1, 8y = 1 and Cy = 1 result in the
approximation of V f(x) of order O(||h|[3) because when |[{]|; = 2, E [(V)?(h)?thk*l} =0

Secondly, for L > 1 the constraints Z?:l Cgﬁ2+1 =dp,r=0,2,...,2(L —1) allow to eliminate some
higher-order terms so as to reach the order O (| |h| |§L> . Using other constraints complete the proof,
bearing in mind Equation (2).

Appendix B. Proof of Corollary 1

Foqu(ql,...,qd)ENd;ke{l,...,d}andE: 0,...,0, 1 ,0...,0| € RY, con-

~—
k th position
sider sy := {Ei—l—% 2] = 1}. As f € Hp, we can write
1 . z(hV)f
focr vy = ¥ DOl IV 5 0 0PIV L Ry, v,
|[ll1=0 ' |71 =2
1¢sy

with the remainder term

; 2(hV)! . 2(hv )itk
R V) = ¥ DOpxrpaiv) PV 5 plhei iy vy LY :
=2 C g (e+ )t
1€8) 1€sy
= Vgt 3 DE (- phv) <~th
l4lT=1 (et )"


https://doi.org/10.20944/preprints202406.1138.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 d0i:10.20944/preprints202406.1138.v1

13 of 16

Denote RY := Yldl1=1 plk+a) f(x+ B¢ hV) ))‘, and remark that |R}| < M,||hV||;. Using Theorem

1, we can see that the absolute value of the blas, that is,

B = ||grad(£)(0) — G~ (x) Thy CE[f(x-+ V) ¥ ||| s givenby

S
I

L
G '(x)E Z Cef(x+ BehV)

Vh—ll

1

“1(x) eleg('[ng[VfR?,. ..,VjRg]T

1

A

L '32 T
< Yol G—l(x)E[vag),...,v,}Rg}

=1

1

IN

L ) 1 V2
¥ Icogie |6 e | Ty linvin ||
=1 o

using the expansion of the product between matrices.
Using the same reasoning and taking the Euclidean norm, we obtain

B, = ||[G'(XE|V

LY Gt ﬁth)thl]
=1 4

‘ 2

2

IN

o[ S|

L
Y ICi|BiM,
(=1
The results hold using R := V /0.

Appendix C. Proof of Theorem 2

— 2
Firstly, remark that MSE := E U ‘grad(f)(x) —grad(f)(x) ’ ‘2] is given by

wisE — & |adC o)~ g7t co) |-+ [ [t )] - sty [].

— 2
Since, the bias E | ||E | grad X)| — grad X has been derived in previous Corollaries, we are
8 8 ) p

going to treat the second-order moment.
Secondly, as f € H, implies that f € H;, we have |f(x+ B/hV) — f(x)| < My||BshV]]|,. Also, as
25%21 Cy; = 0, we then have

L L
Z; Cof (x+ BehV) = ; Colf (x+ BehV) = f(X)],

which leads to ‘zﬁ;:l D f(x+ ﬁghV)‘ < YL |CoBe|My||HV|], and

Vh— Vh 1

Q(x) := G~ (x+ BehV) =

Zcz (x+BhV) — f(x)]. (A1)
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Thirdly, using (3), we can see that E[Q(x)] = E [g;d(\f) (x)} . Bearing in mind the definition of the Eu-
clidean norm and the variance, the centered second-order moment, that is,

Veraa = E “ ‘g@(\f)( ) — {gmd } H } is given by

- 1 . 2
Vo < wE|||6700 Y ZCef X+ BehV) — E[grad(f)(x)]
2
1 [ Vh 1 ’
< =E|||G” chf x+ BshV)
2
(A1) 1 : Vh 1 ’
= SEll6 ZCe{f X+ BehV) — f(x)}
i 2
_ 2
1 Vh-!
< NE_ G 1(x) 2 ]MZQZJCWI)
- 2
< %E G~ (x)Vh H ]HhZH M2<Z|Cfﬁe|>

bearing in mind the Holder inequality. The results hold using R := V /7, and the fact that when

U(-¢,¢), ||V?], < Vdz? and 0% = ¢2/3.
References
1. Rosenblatt, M. Remarks on a Multivariate Transformation. Ann. Math. Statist. 1952, 23, 470-472.

Nataf, A. Détermination des distributions dont les marges sont données. Comptes Rendus de I’ Académie des
Sciences 1962, 225, 42-43.

3. Joe, H. Dependence Modeling with Copulas; Chapman & Hall/CRC, London, 2014.

4. McNeil, A.].; Frey, R.; Embrechts, P. Quantitative Risk Management; Princeton University Press, Princeton

and Oxford, 2015.

5. Navarro, J.; Ruiz, ].M.; Aguila, Y.D. Multivariate weighted distributions: a review and some extensions.
Statistics 2006, 40, 51-64.

6. Sklar, A. Fonctions de Repartition a n Dimensions et Leurs Marges. Publications de I'Institut Statistique de
I"Universite de Paris 1959, 8, 229-231.

7. Durante, F,; Ignazzi, C.; Jaworski, P. On the class of truncation invariant bivariate copulas under constraints.

Journal of Mathematical Analysis and Applications 2022, 509, 125898.
8. Skorohod, A.V. On a representation of random variables. Theory Probab. Appl 1976, 21, 645-648.

9. Lamboni, M.; Kucherenko, S. Multivariate sensitivity analysis and derivative-based global sensitivity
measures with dependent variables. Reliability Engineering & System Safety 2021, 212, 107519.

10. Lamboni, M. Efficient dependency models: Simulating dependent random variables. Mathematics and
Computers in Simulation 2022. doi:https://doi.org/10.1016/j.matcom.2022.04.018.

11.  Lamboni, M. On exact distribution for multivariate weighted distributions and classification. Methodology
and Computing in Applied Probability 2023, 25, 1-41.

12.  Lamboni, M. Measuring inputs-outputs association for time-dependent hazard models under safety

objectives using kernels. International Journal for Uncertainty Quantification 2024, -, 1-17. https:/ /doi.org/10
.1615/Int.J.UncertaintyQuantification.2024049119

13. Kucherenko, S.; Klymenko, O.; Shah, N. Sobol” indices for problems defined in non-rectangular domains.
Reliability Engineering & System Safety 2017, 167, 218 —231.

14.  Lamboni, M. On dependency models and dependent generalized sensitivity indices. arXiv preprint
arXiv2104.12938 2021.

15.  Lamboni, M. Derivative Formulas and Gradient of Functions with Non-Independent Variables. Axioms

2023, 12. doi:10.3390/axioms12090845.


https://doi.org/https://doi.org/10.1016/j.matcom.2022.04.018
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2024049119
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2024049119
https://doi.org/10.3390/axioms12090845
https://doi.org/10.20944/preprints202406.1138.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 d0i:10.20944/preprints202406.1138.v1

150f 16

16.  Nemirovsky, A.; Yudin, D. Problem Complexity and Method Efficiency in Optimization; Wiley & Sons, New
York, 1983; p. 404.

17.  Patelli, E.; Pradlwarter, H. Monte Carlo gradient estimation in high dimensions. International Journal for
Numerical Methods in Engineering 2010, 81, 172-188.

18. Agarwal, A.; Dekel, O.; Xiao, L. Optimal Algorithms for Online Convex Optimization with Multi-Point
Bandit Feedback. Colt. Citeseer, 2010, pp. 28—40.

19. Bach, E; Perchet, V. Highly-Smooth Zero-th Order Online Optimization. 29th Annual Conference on
Learning Theory; Feldman, V.; Rakhlin, A.; Shamir, O., Eds., 2016, Vol. 49, pp. 257-283.

20. Akhavan, A.; Pontil, M.; Tsybakov, A.B. Exploiting higher order smoothness in derivative-free optimization
and continuous bandits; Curran Associates Inc.: Red Hook, NY, USA, 2020; NIPS "20.

21.  Sobol, LM.; Kucherenko, S. Derivative based global sensitivity measures and the link with global sensitivity
indices. Mathematics and Computers in Simulation 2009, 79, 3009-3017.

22. Kucherenko, S.; Rodriguez-Fernandez, M.; Pantelides, C.; Shah, N. Monte Carlo evaluation of derivative-
based global sensitivity measures. Reliability Engineering and System Safety 2009, 94, 1135-1148.

23. Lamboni, M.; Iooss, B.; Popelin, A.L.; Gamboa, F. Derivative-based global sensitivity measures: General
links with Sobol” indices and numerical tests. Mathematics and Computers in Simulation 2013, 87, 45 — 54.

24. Roustant, O.; Fruth, J.; Iooss, B.; Kuhnt, S. Crossed-derivative based sensitivity measures for interaction
screening. Mathematics and Computers in Simulation 2014, 105, 105 — 118.

25. Fruth, J.; Roustant, O.; Kuhnt, S. Total interaction index: A variance-based sensitivity index for second-order
interaction screening. Journal of Statistical Planning and Inference 2014, 147, 212 — 223.

26.  Lamboni, M. Derivative-based generalized sensitivity indices and Sobol” indices. Mathematics and
Computers in Simulation 2020, 170, 236 — 256.

27.  Lamboni, M. Derivative-based integral equalities and inequality: A proxy-measure for sensitivity analysis.
Mathematics and Computers in Simulation 2021, 179, 137 — 161.

28. Lamboni, M. Weak derivative-based expansion of functions: ANOVA and some inequalities. Mathematics

and Computers in Simulation 2022, 194, 691-718.
29.  Bobkov, S. Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures. The Annals of
Probability 1999, 27, 1903-1921.

30. Roustant, O.; Barthe, F,; Iooss, B. Poincare inequalities on intervals - application to sensitivity analysis.
Electron. ]. Statist. 2017, 11, 3081-3119.
31.  Le Dimet, EX,; Talagrand, O. Variational algorithms for analysis and assimilation of meteorological

observations: theoretical aspects. Tellus A: Dynamic Meteorology and Oceanography 1986, 38, 97-110.

32. Le Dimet, EX.; Ngodock, H.E.; Luong, B.; Verron, J. Sensitivity analysis in variational data assimilation.
Journal-Meteorological Society of Japan 1997, 75, 245-255.

33.  Cacuci, D.G. Sensitivity and uncertainty analysis - Theory; Chapman & Hall/CRC, 2005.

34.  Gunzburger, M.D. Perspectives in flow control and optimization; SIAM, Philadelphia, 2003.

35.  Borzi, A.; Schulz, V. Computational Optimization of Systems Governed by Partial Differential Equations; SIAM,

Philadelphia, 2012.

36. Ghanem, R.; Higdon, D.; Owhadi, H. Handbook of Uncertainty Quantification; Springer International
Publishing, 2017.

37.  Guidotti, E. calculus: High-Dimensional Numerical and Symbolic Calculus in R. Journal of Statistical

Software 2022, 104, 1-37.

38. Ancell, B.; Hakim, G.J. Comparing Adjoint- and Ensemble-Sensitivity Analysis with Applications to
Observation Targeting. Monthly Weather Review 2007, 135, 4117-4134.

39.  Pradlwarter, H. Relative importance of uncertain structural parameters. Part I: algorithm. Computational
Mechanics 2007, 40, 627-635.

40.  Polyak, B.; Tsybakov, A. Optimal accuracy orders of stochastic approximation algorithms. Probl. Peredachi
Inf. 1990, pp. 45-53.

41.  Zemanian, A. Distribution Theory and Transform Analysis: An Introduction to Generalized Functions, with
Applications; Dover Books on Advanced Mathematics, Dover Publications, 1987.

42. Strichartz, R. A Guide to Distribution Theory and Fourier Transforms; Studies in advanced mathematics, CRC
Press, Boca, 1994.


https://doi.org/10.20944/preprints202406.1138.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 d0i:10.20944/preprints202406.1138.v1

16 of 16

43.  Lamboni, M. Kernel-based Measures of Association Between Inputs and Outputs Using ANOVA. Sankhya
A 2024, -. doi:10.1007/513171-024-00354-w.

44. Gilbert, P.; Varadhan, R. R-package numDeriv: Accurate Numerical Derivatives; CRAN Repository, 2019.

45.  Soetaert et al., K. R-package deSolve: Solvers for Initial Value Problems of Differential Equations; CRAN
Repository, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.1007/s13171-024-00354-w
https://doi.org/10.20944/preprints202406.1138.v1

	Introduction
	Preliminaries
	Main Results
	Stochastic expressions of the gradients of functions with dependent variables
	Links to other works for independent input variables
	Computation of the gradients of functions with dependent variables

	Computations of the Formal Gradient of Rosenbrock's Function
	Application to a Heat PDE Model with Stochastic Initial Conditions
	Heat Diffusion Model and Its Formal Gradient
	Spatial Auto-Correlations of Initial Conditions and the Tensor Metric
	Comparisons between Exact Gradient and Estimated Gradients

	Conclusion
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	References

