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Abstract: Nonlinear optimization (NOPT) is a meaningful tool for solving complex tasks in fields like engineering,

economics, and operations research, among others. However, NOPT has problems when it comes to dealing with

data variability and noisy input measurements that lead to incorrect solutions. Furthermore, nonlinear constraints

may result in outcomes that are either infeasible or suboptimal, such as non-convex optimization. This paper

introduces a novel regularized physics-informed neural network (RPINN) framework as a new NOPT tool for

both supervised and unsupervised data-driven scenarios. By using custom activation functions and regularization

penalties in an artificial neural network (ANN), RPINN can handle data variability and noisy inputs. Besides, it

uses physics principles to build the network architecture, computing the optimization variables based on network

weights and learned features. In addition, it uses automatic differentiation training to make the system scalable

and cut down on computation time through batch-based back-propagation. The test results for both supervised

and unsupervised NOPT tasks show that our RPINN can provide solutions that are competitive compared to

state-of-the-art solvers. In turn, RPINN’s robustness against noisy input measurements makes it particularly

valuable in environments with fluctuating information. Additionally, RPINN’s ANN-based foundation offers

significant flexibility and scalability.

Keywords: nonlinear optimization; physics-informed neural networks; egularization; data-driven

1. Introduction

Optimization approaches have emerged as tools for solving complex problems across various
disciplines. Unlike traditional linear models, nonlinear optimization (NOPT) methods are capable of
incorporating the intricate and interdependent relationships inherent in real-world scenarios [1]. These
techniques are particularly valuable in fields such as engineering, economics, and operations research,
where they enable the formulation and solution of models that more accurately reflect the underlying
dynamics [2]. By leveraging advanced algorithms and computational solutions, NOPT facilitates
improved decision-making and implementation, thereby enhancing efficiency and effectiveness in
tackling multifaceted challenges. As research and technology continue to evolve, their significance in
achieving optimal outcomes in diverse applications is becoming increasingly evident [3,4]. Nonetheless,
NOPT comprises salient issues: First, data variability and noisy input measurements yield erroneous
and fluctuating solutions. Second, nonlinear constraints greatly complicate the task of achieving
optimal outputs [5]. Moreover, system scalability should be considered.

Data variability and noisy samples, in particular, are known to be a problem that makes stochastic
measurements less accurate and increases the number of errors in NOPT [6]. The presence of unwanted
effects in the data not only reduces the solution quality but also adds complications to the computation,
making it more difficult to choose suitable optimization parameters [7]. The instability greatly impedes
the optimization process, rendering the algorithm vulnerable to external effects and significantly
reducing its overall efficiency [8]. Besides, the intricacies of nonlinear constraints might result in
outcomes that are either infeasible or suboptimal [9]. Then, the NOPT may have a slow rate of
convergence, with a tendency to become trapped at a local minimum. This might present a challenge
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when both speed and accuracy are crucial [10]. Hence, optimization techniques become impractical
for large-scale applications [11], and as the number of variables increases, scalability becomes a
significant hindrance, underscoring the pressing need for specialist software and more processing
time [12]. Consequently, it is important to deal with large optimization problems, reduce runtime,
and simplify the inherent complexity of noisy inputs and nonlinear constraints [11]. Indeed, many
NOPT tasks are nondeterministic polynomial-time (NP-hard), making it difficult to find an exact
solution for large instances because there is not a polynomial-time algorithm that works well or that
does not introduce errors into the final output [13]. Additionally, some NOPT tasks have non-convex
nonlinear programming (NLP) issues. The latter are especially challenging because they involve a lot
of non-convex and integer functions [14].

Typically, mathematical programming or other classical techniques solve NOPT. These methods
are capable of effectively handling non-linearities and discontinuities [9]. Customized strategies
are also implemented to refine the iterative search [15]. Gradient-based techniques, mostly based
on descent methods, have also shown they can deal with problems like non-linear and convex con-
straints [16]. Similarly, decomposition methods simplify complexity by segmenting the optimization
into more manageable subproblems [17]. Additionally, search approaches and metaheuristics are
crucial for maintaining a proper balance between exploration and exploitation [18], which enhances
efficiency in finding optimal outputs. However, conventional methods often converge on solutions
that may not be useful, especially in stochastic and noisy environments with high uncertainty and
intrinsic data variability, which can reduce their accuracy [19].

Nowadays, artificial neural networks (ANNs) employ supervised learning to tackle nonlinear
and stochastic problems through regression tasks. These networks are trained to find complex patterns
and make accurate predictions even when there is a lot of uncertainty using data-driven strategies [20].
Commonly, ANN-based approaches employ automatic differentiation (AD), a computational technique
used to evaluate the derivatives of functions efficiently and accurately. Unlike numerical alternatives,
which can suffer from precision issues, or symbolic differentiation, which can be computationally
expensive, AD works by breaking down functions into elementary operations for which derivatives
are known and applying the chain rule systematically [21]. This process ensures that the derivative
calculations are exact to machine precision and enables the calculation of loss function gradients with
respect to network parameters, which is essential for gradient-based optimization algorithms like
back-propagation.

Recently, physics-informed neural networks (PINNs) have emerged as an effective ANN-based
optimization technique. Designed to align training with relevant physical principles, they have proven
successful in various NOPT applications [22]. Commonly, the Karush-Kuhn-Tucker (KKT) criteria are
used to represent constraints and integrate them into the network’s cost function during supervised
training [23]. Additionally, a novel approach for integrating constraints using Runge-Kutta (RK) in
unsupervised training has been proposed in [24]. Nevertheless, putting these networks into action is
hard, especially when it comes to defining the right loss functions, choosing the best hyperparameters,
and making sure that computations run quickly while complex systems are being trained [25]. Also,
although PINNs have remarkable capabilities, their ability to generalize to nonlinear optimization
problems is limited [26].

In this paper, we present a novel regularized PINN framework, termed RPINN, as a NOPT
optimization tool for both supervised and unsupervised data-driven scenarios. As a result, we
deal with three key NOPT issues. We first address data variability and noisy input measurements by
appropriately adapting custom activation and regularization penalties within an ANN scheme. Second,
we effectively integrate nonlinear constraints into the network architecture, adhering to the principles of
model physics. Specifically, we utilize the network weights and/or learned features within a functional
composition framework to determine the NOPT variables. Third, our ANN-based strategy employs
AD training, which favors system scalability and computational time through batch-based back-
propagation. Experimental results from both supervised and unsupervised data-driven NOPT tasks
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confirm that our proposal is robust and competitive against state-of-the-art optimization approaches.
The primary advantage of our proposal lies in its stability against noisy input measurements, making
it a particularly valuable solution in contexts with fluctuating information. Furthermore, because
RPINN is based on ANN, it offers flexibility in terms of network architecture.

The agenda for this paper is as follows: Section 2 summarizes the related work. Section 3 describes
the materials and methods. Sections 5 and 6 depict the experiments and discuss the results. Lastly,
Section 7 outlines the conclusions and future work.

2. Related Work

Some studies have shown that mathematical programming has become a crucial tool in numerical
optimization. A notable example is the analysis by [9], which employs a sequential linear program-
ming algorithm to address nonlinearities and discontinuities. In this context, the simplex method
proves essential, being a classic technique effective for solving linear programming problems through
iterative adjustments of solutions within a feasible set [27]. Similarly, the study by [15] explores a
solution via quadratic programming (QP). Mixed-integer programming (MIP), on the other hand,
is an optimization strategy that uses both integer and continuous variables. It is widely used to
solve difficult problems [28], focusing on how the branch-and-cut (BC) algorithm can be employed to
find the best solution [29]. Furthermore, second-order cone programming (SOCP) facilitates effective
solutions for problems involving linear and quadratic constraints [30]. New studies, like [31], look
into semidefinite programming (SDP), and the work in [32] uses convexification techniques. Likewise,
exponential programming (EXP), which models NOPT objectives and constraints through exponential
functions [33]. Additionally, power cone programming (PCP) is considered for modeling product and
square relationships [34]. Yet, these classical methods face challenges such as scalability, computation
time, convergence, and practical precision, underscoring their inherent complexity and limitations.
Furthermore, the use of relaxations or approximations affects the optimization accuracy [35].

On the other hand, gradient methods’ efficiency and precision in identifying optimal solutions
highlight their relevance for practical optimization tasks. The work in [36] uses the Dai-Liao conjugate
gradient method and hyperplane projections for global convergence to solve nonlinear equations.
In addition, [37] faces the non-convex issue based on a set of starting points. Moreover, nonlinear
decomposition using linear programming (LP) and gradient descent was also proposed [38]. Fur-
ther, the work in [39] examined the Newton-based search to deal with convergence issues in poorly
conditioned systems. Also, the semi-sweeping Newton technique was applied for optimization in
Hilbert spaces [40]. For noisy problems, the authors in [41] use piecewise polynomial interpolation
and box reformulations, along with an interior-point (IP) method. Authors in [42] tackle similar
problems with integrated penalty techniques. Overall, gradient methods are effective at solving NOPT
tasks, but they have a challenging time convergent and are expensive to run in noisy and nonlinear
situations [43]. Besides, it can be challenging to choose the best learning rate, and they run the risk of
finding local minima [44]. As seen in [45], it is also important to make sure that at least first-degree
differentiation continuity is maintained when using techniques like the conjugate gradient, the IP, and
the Newton-based approach.

Of note, most of the available optimization solvers are based on the classical approaches men-
tioned above. Among them, Clarabel stands out for its versatility in optimizing a wide variety of
problems. However, it still faces significant challenges in areas such as MIP [46]. Gurobi is renowned
for its proficiency in MIP due to its extensive range of techniques, including simplex and IP methods.
However, because it is proprietary software, it might not be able to be used in situations that require li-
cense flexibility [47]. Mosek is efficient concerning the IP approach, but its support for MIP is relatively
limited, and its aptitude for NLP remains under debate, which could be a hindrance for developers
who prefer open-source solutions [48]. Xpress specializes in solving MIP, offers conditional support for
NLP, but is a closed-license alternative [49]. In turn, SCS, leveraging its open-source status, promotes
adaptability and collaborative development, although its limitations in NLP reduce its effectiveness in
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certain optimization areas [50]. IPOPT excels at solving NLP problems, and its open access allows for
flexibility [51].

Now, in this multifaceted optimization environment, the integration of tools such as MATPOWER,
GEKKO, and CVXPY significantly expands the available options. MATPOWER is essential for solving
energy system issues and supports solvers like Gurobi, Xpress, and IPOPT for linear, mixed-integer,
and nonlinear programming [52–54]. GEKKO specializes in dynamic systems and nonlinear models,
offering a holistic and open-source Python platform [55,56]. CVXPY is an open-source modeling
language for convex optimization problems embedded in Python. It allows you to express your
problems naturally, mirroring the mathematical formulation rather than conforming to the restrictive
standard form required by solvers [57,58]. Table 1 summarizes the mentioned solvers.

Table 1. State-of-the-art solvers for optimization. (*) Except mixed-integer SDP. (**) Features available
with the licensed version only.

Solver LP QP SOCP SDP EXP PCP MIP NLP Strategy Open source Software

Clarabel [46] ✓ ✓ ✓ ✓ ✓ x x x IP ✓ CVXPY
Gurobi [47] ✓ ✓ ✓ x x x ✓ x IP, Simplex, BC x MATPOWER, CVXPY
Mosek [48] ✓ ✓ ✓ ✓ ✓ ✓ ✓* x IP x MATPOWER, CVXPY
Xpress [49] ✓ ✓ ✓ x x x ✓ ✓** IP, Simplex, BC x CVXPY
SCS [50,59] ✓ ✓ ✓ ✓ ✓ ✓ x x IP ✓ CVXPY
IPOPT [51] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ IP ✓ MATPOWER, GEKKO

Recently, ANNs have positioned themselves as fundamental tools in optimization by incorpo-
rating deep learning techniques, effectively addressing the complexity and non-linearities of various
problems. Conventional ANNs employ supervised learning to tackle nonlinear and stochastic prob-
lems through regression tasks. To this end, historical data or solutions precomputed by specialized
NOPT tools are used to train these networks [60]. This approach enables ANNs to learn complex
patterns and make accurate predictions even under significant uncertainty [20]. Typically, ANN-based
approaches utilize AD, a computational method for efficiently and accurately evaluating function
derivatives. Instead of numerical or symbolic differentiation, which can have issues with accuracy and
require a lot of computing power, AD breaks functions down into simple operations whose derivatives
are known and uses the chain rule consistently [21]. Thereby, AD ensures machine-level accuracy
in derivative calculations and simplifies the determination of loss function gradients in relation to
network parameters, enabling the use of gradient-based search with back-propagation. The work
in [61] combines quasi-Newton methods and ANNs for NOPT. Furthermore, the authors in [60] utilize
deep learning to solve optimal flow problems. Similarly, the work in [62] introduces an integrated
training technique that, while effective, requires larger neural networks and presents challenges in
generalization. Concurrently, [63] uses elastic layers and incremental training as optimization-based
solvers. Furthermore, the method by [64] combines convex relaxation with graph neural networks.

Besides, PINN has recently emerged as a powerful optimization tool. These training approaches
have proven effective in various NOPT applications, integrating relevant physical principles within
ANNs [22]. The KKT criteria are applied to formulate constraints that are incorporated into an ANN’s
cost function during supervised training [23]. In [65], a PINN framework is detailed that imposes
penalties for constraint violations in the loss function. The study in [66] proposes a loss function that
combines errors from differential and algebraic states with normative equation violations. Additionally,
a novel strategy has been proposed to include constraints in unsupervised training using an RK-based
technique [24]. Nevertheless, complete approaches based on ANNs and PINNs face challenges such
as optimality degradation. In response, advanced alternatives like [67] have emerged, integrating
system constraints into the cost function and applying penalties for violations. Furthermore, [68]
introduces an algorithm to address nonlinear problems modeled by partial differential equations
with noisy data through Bayesian physics-informed neural networks (B-PINNs). Additionally, [69]
proposes a parametric differential equation-based approach holding functional connections to enhance
the robustness and accuracy of PINNs. In turn, [70] presents a truncated Fourier decomposition,
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termed Modal-PINNs, to optimize the reconstruction of periodic signals. However, these alternatives
often lack adequate precision, generalization capability, and scalability [71]. Finally, supervised data is
usually required, complicating their application in various NOPT scenarios.

3. Materials and Methods

3.1. Nonlinear Optimization Fundamentals (NOPT)

Let x ∈ RP be a vector in P variables. The conventional NOPT problem can be summarized as
follows:

min
x

ϱ(x)

s.t. ξmin ≤ x ≤ ξmax

hL(x) ≤ 0

hN(x) ≤ 0,

(1)

where the objective function ϱ : RP → R is real-valued. Also, the bound constraints are shown
by ξmin, ξmax ∈ RP. The linear and nonlinear constraints are described by hL : RP → RCL and
hN : RP → RCN , where CL ∈ N and CN ∈ N.

Figure 1 depicts the main pipeline of the classical approaches for NOPT. First, it includes the
physical system’s parameters, constraints, limits, and the objective function to be optimized. Second,
starting from an initial point, the optimization algorithm iterates until convergence. Of note, the
number of iterations, the level of improvement, and the objective function thresholding are the relevant
stopping criteria to return the final output.

Input Stopping
criterion

Output

Constraints

Physical system
 information

Model integration

Updated point

Convergence
 evaluation

Objective
function

Model construction Solution search

Figure 1. Classical optimization pipeline for NOPT.

3.2. Regularized Physics-Informed Neural Network (RPINN)

Let {yr ∈ Y , zr ∈ Z}R
r=1 be an input-output set holding R samples. Our data-driven RPINN

approach aims to couple the optimization problem in Eq. 1 as a penalty-based loss with bounded
constraints from both network weights and learned features, as follows:
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min
X̃,Z̃

λL
R

R

∑
r=1

L
(
yr, f̃ (zr|X̃, Z̃)

)
+

CL

∑
i=1

λLi
R

R

∑
r=1

h̃Li(yr, f̃ (zr|X̃, Z̃))+
CN

∑
j=1

λNj

R

R

∑
r=1

h̃Nj(yr, f̃ (zr|X̃, Z̃))

s.t. λL +
CL

∑
i=1

λLi +
CN

∑
j=1

λNj = 1

ζmin ≤ X̃ ≤ ζmax

ψmin ≤ f̃ (zr|X̃, Z̃) ≤ ψmax, ∀r ∈ R;

(2)

where f̃ : Z → Y is an ANN-based mapping function, L : Y × Y → R is a given loss, X̃ holds the
network parameters, and Z̃ gathers the learned features along layers. Also, h̃Li(·, ·) and h̃Ni(·, ·) are the
i-th linear and j-th nonlinear penalty functions to follow the NOPT constraints set by the regularization
terms λL, λLi, λNj ∈ [0, 1], where i ∈ {1, 2, . . . , CL} and j ∈ {1, 2, . . . , CN}. Furthermore, ζmin and ζmax
collect the network parameter limit values, and ψmin and ψmax capture the network output and feature
bounds.

For a given input z ∈ Z , our deep learning-based function with L̂ layers yields:

f̃ (z|X̃, Z̃) = ( f L̂ ◦ · · · ◦ f1|X̃, Z̃)(z),

z̃l = fl(z̃l−1|x̃l , bl) = νl(x̃
⊤
l z̃l−1 + bl).

(3)

In the l-th layer of Eq. 3, where l ∈ {1, 2, . . . , L̂}, the weights and bias are x̃l , bl ∈ X̃, the learned feature
vector is z̃l ∈ Z̃, and νl(·) is a nonlinear activation function to deal with both network representation
and customized bounds to fulfill the Eq. 2 limit constraints. Furthermore, the RINN optimization
problem can be solved via gradient descent with AD and back-propagation [72].

It is worth noting that our baseline RINN studies a supervised scenario for simplicity, but by
addressing its regularized loss, we can easily achieve an unsupervised extension. Figure 2 depicts the
RINN main sketch.

Feature learning

Autodiff-based backpropagation

Solution search

Input Output

RPINN for NOPT

Physical system
 information

Custom activation Regularized custom loss

Figure 2. Regularized physics-informed neural network for data-driven nonlinear constrained opti-
mization main sketch .

4. Tested Scenarios for NOPT Using RPINN

We study two main datasets to test our RPINN as a data-driven NOPT approach: i) a constrained
uniform mixture model with nonlinear loss and supervised target; and ii) a constrained flow and
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pressure gas-powered system optimization with unsupervised loss. Below, we provide a detailed
description of each experiment.

4.1. Supervised Constrained Optimization: Uniform Mixture Model

This task comprises a linear and bound-constrained optimization of a nonlinear cost [73]:

min
x

R

∑
r=1

|yr − x⊤zr|22

s.t. 0 ≤ x ≤ 1,

x⊤1 = 1;

(4)

where yr ∈ R+ is the r-th target output, x ∈ RP denotes the mixing coefficients, and zr ∈ RP holds
random samples drawn from a uniform distribution as: zrp ∼ U (z|p − 1, p). 0 and 1 are all-zeros and
all-ones vectors of proper size.

     

Figure 3. Uniform mixture model optimization. Left: weighted uniform probabilities. Right: visual
representation of the mixing results.

The optimization problem in Eq. 4 can be solved through our RPINN as follows:

min
X̃

λL
R

R

∑
r=1

LH
(
yr, f̃ (zr|X̃); ϵ

)
+

λL
R

x̃⊤L̂ 1

s.t. λL + λL = 1, ∀λL, λL ∈ [0, 1]

0 ≤ x̃L̂ ≤ 1.

(5)

For concrete testing and to mitigate noisy samples, a Huber-based loss is used in Eq. 5:

LH
(
y, f̃ (z|X̃); ϵ

)
=

{
1
2∥y − f̃ (z|X̃)∥2 ∥y − f̃ (z|X̃)∥ ≤ ϵ

ϵ · (∥y − f̃ (z|X̃)∥ − 1
2 ϵ) ∥y − f̃ (z|X̃)∥ > ϵ,

(6)

where ϵ ∈ R+. Next, we fix a scaled exponential linear (SELU) activation for the network function
composition, as follows:

SELU(x) =

{
θx x > 0

θϑ · (ex − 1) x ≤ 0,
(7)

where θ, ϑ ∈ R. Then, x̃L̂. To fulfill the former NOPT limit restriction, RPINN’s weights at the output
layer L̂ hold a l1-based max-constraint.

4.2. Unsupervised Constrained Optimization: Gas-Powered System

We study a gas-powered system as a function of flow and pressure. For this purpose, a synthetic
network of eight nodes is used, as detailed in [74] and illustrated in Figure 4.
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1 2 3 4

5

6 7

8

Figure 4. Optimizing gas-powered systems. An eight-node gas network is studied. The diagram
depicts the nodes as points, and the arrows indicate flow direction. The trapezoidal shapes represent
the pressure compressors.

In particular, the NOPT problem is written as:

min
x,π

x⊤a

s.t. Bx = z

xq = sgn
(

π2
w(q) − π2

w′(q)

)√
kq|π2

w(q) − π2
w′(q)|,

∀q ∈ Q; w(q), w′(q) ∈ W

βmin(n, n′) ≤ πn

πn′
≤ βmax(n, n′), ∀n, n′ ∈ V

γmin ≤ π ≤ γmax

δmin ≤ x ≤ δmax,

(8)

where a ∈ RP represents the gas transport costs for the P flows in x ∈ RP. The incidence matrix
B ∈ RW×P encodes the gas network structure, with W nodes and z ∈ RW the input gas demand. The
first equality constraint is what encodes the linear-based flow and gas demand equilibrium along the
network nodes. Next, the node pressure is stored in π ∈ RW . In turn, the q-th flow xq ∈ x is selected
according to the network structure from B to fulfill the Weymouth equality with kq ∈ R and Q ≤ P [54].
Then, the function w(q) extracts the related pressure πw(q) ∈ π regarding such a Weymouth-based
physic constraint. Furthermore, πn, πn′ ∈ π chose the inlet and outlet pressures to fulfill the system
compression ratio, with V components (n, n′ ∈ {1, 2, . . . , V}, V ≤ W) and compression factor limits
βmin(n, n′), βmax(n, n′) ∈ R+. Also, γmin, γmax ∈ RW and δmin, δmax ∈ RP are the minimum and
maximum pressure and flow limits, respectively.

Now, let {zr ∈ RW}R
r=1, be an unsupervised input set concerning the required gas demand for R

observations. Our RPINN solution of Eq. 8 is as follows:

min
{z̃r ,π̃r}R

r=1

λL
R

R

∑
r=1

z̃⊤r a +
λL1

R

R

∑
r=1

h̃L1(Bz̃r, zr; ϵL1)+

λN1

R

R

∑
r=1

h̃N1(z̃r, π̃r; B, ϵN1) +
λN2

R

R

∑
r=1

h̃N2(π̃r; B, β, ϵN2)

s.t. λL + λL1 + λN1 + λN2 = 1

f̃ = f̃ † ∪ f̃ ‡

z̃r = f̃ †(zr|X̃†, Z̃†), π̃r = f̃ ‡(zr|X̃‡, Z̃‡)

γmin ≤ π̃r ≤ γmax

δmin ≤ z̃r ≤ δmax, ∀r ∈ R.

(9)
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Given the r-th gas demand vector zr ∈ RW , z̃r ∈ RP predicts the flow vector based on f †, and π̃r ∈ RW

the corresponding pressure vector using f ‡. Moreover:

h̃L1(Bz̃r, zr; ϵL1) =LH(Bz̃r, zr; ϵL1)

h̃N1(z̃r, π̃r; B, ϵN1) =
1
Q

Q

∑
q=1

LH(z̃rq, φq(π̃r; B); ϵN1)

h̃N2(π̃r; B, β) =
1

V2 ∑
n,n′∈V

LH̃(π̃rn, π̃rn′ ; B, β, ϵN2),

(10)

where notation LH(·, ·; ϵ·) stands for a Huber-based penalty (see Eq. 6), φ(π̃r; B) ∈ RQ holds elements:

φq(π̃r; B) = sgn
(

π̃2
rw(q) − π̃2

rw′(q)

)√
kq|π̃2

rw(q) − π̃2
rw′(q)|, ∀q ∈ Q, (11)

and:

LH̃(π̃rn, π̃rn′ ; B, β, ϵN2) =


0 βmin(n, n′) ≤ π̃rn

π̃rn′
≤ βmax(n, n′)(

π̃rn
π̃rn′

−0.5βmin(n,n′)

βmax(n,n′)

)2

otherwise.
(12)

It is worth mentioning that the custom penalty in Eq. 10 aims to deal with noisy inputs while
preserving the NOPT limits and constraints. In particular, LH̃(·, ·; B, β, ϵN2) penalizes pressures that
are far from the middle of the compression factor range, according to βmin(n, n′), βmax(n, n′) ∈ β.
Finally, a scaled sigmoid function σ̃(·) ∈ [umin, umax] addresses the predicted flow and pressure limits
in Eq. 9, as:

σ̃(x) = α
1

1 + e−x + ι, (13)

where α, ι ∈ R.

5. Experimental Set-Up

The scenarios in Section 4 will be used to test our RPINN in both supervised and unsupervised
settings. They will be utilized to look at sample variability, noisy input measurements, and nonlinear
constraints.

5.1. Deep Learning Architectures

To address the uniform mixture model NOPT (supervised constrained optimization), our RPINN
consists of two dense layers, as shown in Figure 5 and Table 2.

Input Dense Dense

Huber-based loss

Figure 5. RPINN pipeline for the uniform mixture model-based NOPT.

Table 2. RPINN details for the uniform mixture model-based NOPT. R̃: batch-size for AD-based
back-propagation. Param. #: number of trainable parameters. Total # of parameters: 30.

Layer name Type Output shape Param. #

Input InputLayer (R̃, 5) 0
Dense_1 Dense(SELU) (R̃, 5) 25
Dense_2 Dense(SELU, l1-max-constraint) (R̃, 1) 5
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Next, as seen in Figure 6 and Table 3, a wide ANN architecture is proposed for our RPINN-based
gas-powered system scenario. We can specifically focus on essential variables—flows and pressures—in
our sketch, adapting it to the unique characteristics of the gas network. To achieve this, our model
incorporates blocks of dense layers designed to map input data, as well as batch normalization layers
that help stabilize and normalize the features and gradient along the back-propagation. Additionally,
it includes custom layers named: custom dense, bounded dense, source switching, and unsupply gas
switching. We design these to encode the source behavior of the system, manage unmet demand, and
delineate system boundaries.

Input

Dense BatchNormalization

Source switching

Bounded dense(flow)

Unsupply gas switching ConcatenateDense BatchNormalization

Bounded dense(pressure)BatchNormalizationDense

Penalty-based loss

Flow-gas
balance

Weymouth
equality

Compression
factor limits

Figure 6. RPINN pipeline for the gas-powered system-based NOPT.

Table 3. RPINN architecture details for the gas-powered system NOPT. R̃: batch-size for AD-based
back-propagation. Source switching, unsupply gas switching, custom dense, and bounded dense stand
for specific switching, limited, and scaled layers, as explained in Section 4.2. Param. #: number of
trainable parameters. Total # of parameters: 11855.

Layer name Type Output shape Param. #

Input InputLayer (R̃, 8) 0
Dense_1 Dense(SELU) (R̃, 236) 2124
Dense_2 Dense(SELU) (R̃, 8) 1896
Source switching CustomDense (R̃, 1) 1
BatchNormalization_1 BatchNormalization (R̃, 236) 944
BatchNormalization_2 BatchNormalization (R̃, 8) 32
Partial flows BoundedDense (R̃, 50) 1422
Unsupply gas switching CustomDense (R̃, 8) 0
Flow prediction Concatenate (R̃, 59) 0
Dense_3 Dense(SELU) (R̃, 236) 2124
BatchNormalization_3 BatchNormalization (R̃, 236) 944
Pressure prediction BoundedDense (R̃, 8) 1896
Node balance CustomDense (R̃, 8) 472
Weymouth CustomDense (R̃, 14) 0

5.2. Training Details and Method Comparison

To evaluate the effectiveness of our methodology in addressing optimization problems, we utilized
the mean absolute percentage error (MAPE) as the primary performance measure across all conducted
experiments, defined as:

MAPE(ỹr, ŷr) =
100
R

R

∑
r=1

∣∣∣∣ ỹr − ŷr

ỹr

∣∣∣∣[%], (14)

where ỹr, ŷr ∈ R stands for r-th target and predicted value, MAPE(·, ·) ∈ [0, 100][%], and | · | is the
absolute value operator.
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Now, for the uniform mixture model, we generate 500 samples, each composed of five variables.
We trained our RPINN architectures on a total of 400 samples, allocating 30% for the validation phase.
We used the remaining 100 samples to evaluate the model’s performance. To see how well NOPT works
with noisy inputs, we add white Gaussian noise to the model output while keeping the signal-to-noise
ratio (SNR) value within the set {−1, 3, 5}. Further, for the gas-powered system, we defined three
distinct scenarios to evaluate the network’s capacity under varying demand conditions. This process
yielded a total of 20.000 samples, of which 30% were designated for testing. We produced 320 samples
using GEKKO v1.0.6 to compare the model’s performance with IPOPT v3.12 [75].

We implemented RPINN using Python 3.10.12 and the TensorFlow API 2.15.0 on Google Colabo-
ratory. For training, we fixed 500 epochs, a batch size of 64 samples, an Adam optimizer, and a learning
rate value of 1e − 3. The regularization hyperparameters, namely λ· in Eq. 2, are experimentally set
using a gridsearch strategy within the set {0, 0.25, 0.5, 0.75, 1}. Since IPOPT excels at solving NOPT,
not to mention its open access, we fix it as a method comparison [51]. Our codes and studied datasets
are publicly available at https://github.com/UN-GCPDS/python-gcpds.optimization (accessed on 1
March 2024).

6. Results and Discussion

6.1. Supervised Constrained Optimization Results

As shown in Figure 7 (left) and Figure 8, for noisy-free data on the uniform mixture model
scenario, both our proposal and the IPOPT solution exhibit similar results. The similarity of the
results stems from the fact that the problem defined in Eq. 4 is convex. Next, for noisy inputs, our
RPINN, based on the Huber loss function, shows greater robustness against data variability and
noise issues. In fact, the Huber function applies the l1-norm for errors exceeding a defined threshold,
reducing sensitivity to extreme values, while for smaller errors it uses the l2-norm, ensuring accuracy
by penalizing smaller errors. In contrast, the classical IPOPT technique uses an objective function
based on the l2-norm, which is sensitive to outliers because it significantly penalizes large deviations.
The weight distributions provide support for the latter hypothesis. Noise-free data leads to similar
strength predictions for both RPINN and IPOPT. Conversely, for noisy inputs, our proposal regularizes
the network weights, yielding concentrated values to find the main output dynamics, and outperforms
the IPOPT regarding the MAPE for all considered SNR values.
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Figure 7. RPINN uniform mixture model-based NOPT results. First row: SNR= −1. Second row:
SNR= 3. Third row: noise-free. Left: output prediction. Right: weight distribution. Green: target. Red:
noisy target. Black: RPINN. Blue: IPOPT.
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Figure 8. Uniform mixture model MAPE results. Left: output error. Right: weights error. (N): noisy-
free. (-1),(3), and (5) stand for the SNR value.

6.2. Unsupervised Constrained Optimization Results

Figure 9 depicts our RPINN regularized penalty illustration for the gas-powered system NOPT.
We adopted a standard variant of the Huber loss for the node balance and Weymouth constraints.
As shown, the threshold ϵ· transitions between the l1 and l2 norms. Regarding the constraint on
the compression ratio limit, it was essential to alter the structure due to its inequality behavior. This
enhancement stabilizes the transition between the l2 and l1 norms at zero, based on the distance to the
central value of the required range. Furthermore, it is crucial to correctly integrate these cost functions
into our RPINN. Then, the right plot in Figure 9 shows the Weymouth (blue) and compression ratio
(orange) penalty evolution. As seen, the obtained loss shows a decreasing trend, indicating that the
Huber-based approach can handle the physical limitations of the gas-powered NOPT.
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Figure 9. Gas-powered system regularized loss illustration. Left: node balance and Weymouth penalties
based on conventional Huber-loss. Middle: Compression factor limit constraint using our Huber-based
enhancement. (see Eq. 10). Right: Gas-powered system custom penalty evolution (Blue: Weymouth
equality constraint; Orange: compression ratio limit constraint).
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In turn, we designed three evaluation scenarios in comparison with the IPOPT framework to
validate the performance of regularization functions in data generation. In the first scenario, data
remain below the source’s maximum capacity. In the second scenario, 50 percent of the samples exceed
this capacity, while in the third, about 100 percent of the data surpasses it. Figure 10 shows that even
though IPOPT has a lower MAPE, its precision (variance) changes a lot over the iterations. This means
that conventional methods for NOPT are not strong against data variability and nonlinear constraints.
In contrast, our RPINN achieves acceptable MAPE with low variability across experiments due to
its regularized strategy based on ANNs. In fact, both approaches share similar costs and adhere to
compression ratio constraints. In the first two cases, traditional solutions to the Weymouth equation
work better than ours. But in the third case, our proposal is better because it is more stable and less
affected by outliers, thanks to the Huber-based penalty.
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Figure 10. Gas-powered system objective cost and constraint compliance MAPE results. Upper left:
node balance. Upper right: Weymouth constraint. Bottom left: compression ratio constraint. Bottom
right: cost difference (objective function) between RPINN and IPOPT.

Finally, to see if our RPINN model can handle the limits in Eq. 9 well, we looked at the results of
the flow and pressure prediction layers and how they behaved, as shown in Figure 11. The parameters
analyzed, including injection and pipe flows as well as pipeline pressures, remain within acceptable
limits. This behavior is attributed to custom activation in Eq. 13, which ensures a smooth and steady
transition between the established ranges.
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Figure 11. Gas-powered system bound constraint MAPE results. The star symbol on this graph denotes
the defined limits for each of the sources, compressors, pipelines, and pressures as well as their behavior.
The number on the x-axis indicates the node to which the information belongs. MMSCFD: Million
standard cubic feet per day. psia: pounds per square inch absolute.

6.3. Computational Cost Results

Figure 12 shows the training and prediction times needed by the RPINN compared to IPOPT.
Our model needs more time to process during the training phase because it has to do both forward
and backward passes in each iteration within an ANN-based framework. However, in the prediction
phases, our RPINN outperforms IPOPT, resulting in significantly shorter prediction times. This is
due to the fact that the model only requires forward passes after training the weights. These tools
demonstrate the RPINN’s capability to generate fast and accurate predictions for NOPT solutions, not
only by reducing processing times but also by narrowing interquartile ranges.
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Figure 12. RPINN vs. IPOPT computational cost results. The graph compares solution times for the
test data between the classical technique (IPOPT, in blue) and our strategy (RPINN, in green). On the
left, the training times are shown, while on the right, the prediction times are displayed.

6.4. Limitations

The RPINN framework, while innovative and effective in addressing many challenges of NOPT,
has several limitations that need to be considered. One significant limitation is the complexity involved
in defining appropriate loss functions and selecting optimal hyperparameters, which can make the im-
plementation process cumbersome. Additionally, extremely high levels of noise or complex nonlinear
constraints can hinder the performance of RPINN, despite its robustness against data variability and
noisy inputs. Although AD has improved the model’s scalability, it may still face challenges when
applied to very large-scale problems due to computational resource limitations.

Furthermore, integrating precise physical principles into the network architecture can be intricate
and may not always generalize well across different types of NOPT problems. Current trends in PINNs
emphasize improving these models’ generalization capabilities and computational efficiency [76]. To
better solve the problems of scalability and accuracy, researchers are focusing on hybrid approaches
that mix PINNs with other advanced optimization methods, like metaheuristics and gradient-based
methods. The latter indicates a growing recognition of the need for more flexible and adaptive
frameworks that can handle a broader range of NOPT scenarios.

7. Conclusions

We introduce a novel Regularized Physics-Informed Neural Network (RPINN) framework, named
RPINN, presenting a significant advancement in addressing the challenges associated with nonlinear
constrained optimization. By integrating custom activation functions and regularization penalties
within an ANN architecture, RPINN effectively handles data variability and noisy inputs. Besides,
the incorporation of physics principles into the network architecture allows for the computation
of optimization variables based on network weights and learned features, leading to competitive
performance compared to state-of-the-art solvers. Furthermore, the use of automatic differentiation
for training enhances scalability and reduces computation time, making RPINN a robust solution
for various NOPT tasks. Experimental results included two scenarios regarding supervised and
unsupervised datasets.

The uniform mixture model experiments (supervised constrained NOPT) show that the RPINN
is good at dealing with data variability and noisy samples. For noise-free data, both RPINN and the
IPOPT solver achieved similar results due to the convex nature of the problem. Still, in scenarios
with noisy inputs, RPINN significantly outperformed IPOPT. The RPINN framework, leveraging the
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Huber loss function, showed greater robustness against noise by effectively regularizing the network
weights. This resulted in more accurate and stable output predictions compared to IPOPT, which
relied on an objective function based on the l2-norm and was more sensitive to outliers. The RPINN
weight distributions were concentrated, which showed that the model could find the main output
dynamics even when noise was present, as shown by the lower mean absolute percentage error across
all signal-to-noise ratio values.

Then, the results of the gas-powered system (unsupervised constrained optimization) highlight
the capability of the RPINN framework to effectively manage complex, nonlinear constraints under
varying conditions of gas demand. Compared to the IPOPT framework, the RPINN showed consistent
performance with low changes in the mean absolute percentage error. This was especially true
when the gas demand was higher than the source’s maximum capacity. While IPOPT showed lower
MAPE in terms of node balance and Weymouth constraints, its precision fluctuated significantly
with data variability. In contrast, RPINN maintained stable performance, ensuring compliance with
physical constraints such as the Weymouth equation and compression ratio limits. The custom penalty
functions within RPINN facilitated this stability, proving particularly valuable when traditional
methods struggled with outliers and extreme values. Overall, RPINN offered a robust, scalable
solution with reduced prediction times.

As future work, authors plan to include Bayesian hyperparameter optimization for RPINN fine
tuning [77]. We will also look at normalized and information theoretic learning-based loss as ways to
deal with noisy inputs and complicated constraints [78,79]. Finally, Bayesian PINN and graph neural
networks will be coupled with our RPINN for representation learning enhancement [68,80].
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